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Abstract 

It has been shown that human faces are processed holistically (i.e. as 

indecomposable wholes, rather than by their component parts) and this holistic face 

processing is linked to brain activity in face-responsive brain regions. Although several brain 

regions outside of the face-responsive network are also sensitive to relational processing 

and perceptual grouping, whether these non-face-responsive regions contribute to holistic 

processing remains unclear. Here, we investigated holistic face processing in the composite 

face paradigm both within and outside of face-responsive brain regions. We recorded 

participants’ brain activity using fMRI while they performed a composite face task. 

Behavioural results indicate that participants tend to judge the same top face halves as 

different when they are aligned with different bottom face halves but not when they are 

misaligned, demonstrating a composite face effect. Neuroimaging results revealed 

significant differences in responses to aligned and misaligned faces in the lateral occipital 

complex (LOC), and trends in the anterior part of the fusiform face area (FFA2) and 

transverse occipital sulcus (TOS), suggesting that these regions are sensitive to holistic 

versus part-based face processing. Furthermore, the retrosplenial cortex (RSC) and the 

parahippocampal place area (PPA) showed a pattern of neural activity consistent with a 

holistic representation of face identity, which also correlated with the strength of the 

behavioural composite face effect. These results suggest that neural activity in brain regions 

both within and outside of the face-responsive network contributes to the composite-face 

effect.  

 

Keywords: face perception, holistic processing, composite face effect, FFA, LOC, PPA, RSC 
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1. Introduction 

Faces are perceived as indecomposable wholes, rather than by their separate 

component parts (e.g. eyes, nose, mouth), a phenomenon known as holistic processing 

(Farah et al., 1998; Maurer et al., 2002; Rossion, 2013). Holistic processing of faces has been 

demonstrated in psychological studies showing that people cannot selectively attend to one 

part of a face and ignore the rest of it (Maurer et al., 2002; Richler and Gauthier, 2014). For 

example, if the top-half of one person’s face is aligned with the bottom-halves of two 

different faces (i.e. composite faces), observers often perceive the two identical top-halves 

as two different identities, as they are unable to ignore the irrelevant bottom-halves of the 

faces. If the bottom-halves of the faces are spatially misaligned from the top-halves, 

observers no longer process face holistically and they perceive the two top-halves to be the 

same. This phenomenon is known as the composite face effect (Hole, 1994; Young et al., 

1987). 

What neural processes underlie holistic processing of faces? Neuroimaging studies 

have suggested that holistic face processing occurs in face-responsive regions of the 

occipitotemporal cortex. Both the occipital face area (OFA) and fusiform face area (FFA) 

have been shown to respond stronger to intact faces than to scrambled facial parts 

(Brandman and Yovel, 2016; Zhao et al., 2014), but see (Arcurio et al., 2012), who found 

higher responses to face parts than to whole faces in the OFA. Some studies have proposed 

that the FFA may process faces more holistically than the OFA. For instance, two studies 

found that the FFA responds stronger when face parts are arranged in a normal 

configuration compared to a scrambled configuration, but did not find these differences in 

the OFA or object responsive lateral occipital area (Liu et al., 2010; Zhang et al., 2015; but 

see Engell et al., 2018, who found no difference in FFA activation to normal versus 

scrambled face configurations). Behavioural studies have shown that inverted faces are 

processed less holistically than upright faces (Richler et al., 2011b; Rossion and Boremanse, 

2008; Tanaka and Farah, 1993; Young et al., 1987), and correspondingly some studies have 

found that the FFA (but not the OFA) shows higher responses to upright than inverted faces 

(Goffaux et al., 2013; Pinsk et al., 2009; Yovel and Kanwisher, 2005), but see (Aguirre et al., 

1999; Epstein et al., 2006; Grotheer et al., 2014; Haxby et al., 1999). However, other studies 
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found that neural responses in the FFA are consistent with a mixture of both holistic and 

part-based representations of faces (Harris and Aguirre, 2010, 2008), and other evidence for 

a mix of part-based and holistic face neural responses has also been demonstrated from 

single cell recordings from the middle face patch in macaque monkeys (Freiwald et al., 

2009). The FFA is also involved in the perception of changing face identity when participants 

view composite faces. It has been shown that changes in neural activity in the FFA, and 

sometimes also the OFA, is consistent with the change in the perception of face identity 

induced by the composite face effect (Andrews et al., 2010; Goffaux et al., 2013; Schiltz et 

al., 2010; Schiltz and Rossion, 2006). In combination, these studies suggest that holistic face 

processing takes place in face-responsive brain regions, in particular the FFA.   

Many behavioural studies have demonstrated that holistic processing is not unique 

to faces. In particular, behavioural studies have demonstrated that objects of expertise can 

be processed holistically (Bukach et al., 2010; Diamond and Carey, 1986) and when 

participants are trained to recognise exemplars of novel kinds of objects this training leads 

to holistic processing of these objects (Chua and Gauthier, 2020; Gauthier and Tarr, 1997; 

Wong et al., 2009a). Neuroimaging studies have shown that the FFA shows higher responses 

to expertise objects in experts than in novices (Gauthier et al., 2000a; Xu, 2005), and that 

the strength of these neural responses in the FFA correlates with behavioural measures of 

holistic processing of expertise objects (Gauthier and Tarr, 2002; Wong et al., 2009b). 

Recently, (Ross et al., 2018) showed that there is a correlation between the level of 

expertise and the amount of neural activity related to holistic processing of expertise 

objects in the anterior portion of the FFA, known as the FFA2 (Pinsk et al., 2009; Weiner et 

al., 2016, 2014). These studies suggest that neural activity in the FFA may be involved in 

holistic processing of both faces and objects of expertise.  

These behavioural and neuroimaging studies indicate a strong link between holistic 

processing, expertise and neural activity in the FFA. However, recent behavioural work 

suggests that other factors may also contribute to holistic face processing. One study 

demonstrated that non-expertise objects can be processed as holistically as faces, and that 

this may be linked to salient Gestalt information in these objects (Zhao et al., 2016). Two 

recent behavioural studies found that holistic processing of faces and these non-expertise 

objects is partially overlapping (Curby et al., 2019; Curby and Moerel, 2019). These findings 
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lead to a new proposal that holistic face processing may involve two components or routes: 

an expertise component (or top-down route) related to the holistic processing of expertise 

objects and a perceptual component (or bottom-up route) related to the holistic processing 

of non-expertise objects with salient Gestalt information (Curby and Moerel, 2019; Zhao et 

al., 2016; Zhao and Bülthoff, 2017). While the expertise component of holistic face 

processing has been linked to the FFA, what neural mechanisms underlie the perceptual, 

Gestalt-related component of holistic face processing remains unknown. Given the 

behavioural evidence for two different components of holistic face processing, and findings 

that holistic processing applies to a variety of non-face object categories (e.g. fonts, 

greebles, music notes, line patterns, Chinese characters and English words, finger prints, 

chess board arrangements, etc.), see (Curby and Moerel, 2019; Zhao et al., 2016; Zhao and 

Bülthoff, 2017) for related discussion, we hypothesized that holistic face processing may be 

supported by broader neural mechanisms beyond face-responsive areas. Candidate 

mechanisms for a general perceptual route to holistic processing include perceptual 

grouping and relational processing. While previous studies have identified a set of brain 

regions related to the perceptual grouping and relational processing of scenes and objects, 

surprisingly little research has investigated whether they play a role in holistic face 

processing.   

 To unravel a broader picture of holistic processing in the brain, in this study, we 

investigated the neural mechanisms of holistic face processing both within and outside of 

face-responsive brain regions. In particular, we investigated if holistic face processing 

involves broader brain networks related to perceptual grouping in scene and object 

processing. Most previous studies investigated holistic face processing in specifically 

localized face-responsive brain regions, but they rarely tested whether brain regions 

responding to scenes, objects or perceptual grouping contribute to holistic processing. 

Although activity in non-localized regions may be revealed using whole-brain analyses, it is 

well-known that activity may be masked due to suboptimal alignment of functional brain 

regions across participants and poor statistical power in these analyses (Saxe et al., 2006; 

Weiner and Grill-Spector, 2013). In the present study, we recorded brain activity using 

functional magnetic resonance imaging (fMRI) as participants performed a composite face 

task (Hole, 1994; Young et al., 1987). As described earlier, when the top-half of one person’s 
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face is aligned with the bottom-halves of two different faces (i.e. composite faces), 

observers tend to perceive the two identical top-halves as two different identities. 

Participants viewed pairs of composite-faces and made same/different judgements as to the 

identity of the top-half of the face.  

We localized a variety of regions of interest (ROIs) that are either face-responsive or 

are sensitive to information that may support holistic processing. For face-responsive ROIs, 

we localized the FFA and the OFA, which have been shown to be related to holistic 

processing of faces (Andrews et al., 2010; Goffaux et al., 2013; Harris and Aguirre, 2010; 

Schiltz et al., 2010; Schiltz and Rossion, 2006). We subdivided the FFA into FFA1 and FFA2 

(two components of the FFA) (Weiner et al., 2016, 2014), as some previous work has found 

evidence of holistic processing only in the FFA2 (Ross et al., 2018). Additionally, we localized 

a more recently defined, higher-level face-responsive brain region, the anterior temporal 

face area (ATFA) (Rajimehr et al., 2009; Tsao et al., 2008). If holistic processing is involved in 

more high-level than early processing of faces (e.g. FFA vs. OFA), the ATFA, an even higher-

level face processing region, may also process faces holistically.  

For ROIs outside of the face-responsive brain network, we localized several core 

brain regions related to the processing of scenes, objects, and perceptual grouping. Scene-

responsive ROIs included the transverse occipital sulcus (TOS, also known as occipital place 

area, OPA), parahippocampal place area (PPA) and retrosplenial cortex (RSC). In the same 

way as the FFA responds more strongly to whole faces than facial parts, both PPA and RSC 

show higher neural activity for intact scenes than for fractured scenes (Kamps et al., 2016), 

suggesting that these areas are tuned to whole-scene processing. Although TOS is thought 

to be sensitive to the local elements of scenes (e.g. surfaces, furniture) (Kamps et al., 2016), 

it does contribute to the fine-grained perceptual discrimination of very similar scenes (Dilks 

et al., 2013) and it shows stronger activation to a whole scene (e.g. a furnished room) 

compared to scene components (e.g. isolated furniture) (Bettencourt and Xu, 2013). 

Furthermore, both PPA and TOS showed higher responses to holistically processed scene 

stimuli compared to control stimuli with matched low-level visual features that were not 

processed holistically (Schindler and Bartels, 2016). If configural/relational processing in 

general contributes to holistic face processing, these scene-responsive areas may also 

exhibit neural activity related to holistic processing.  
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We also localized the object-responsive lateral occipital cortex (LOC) to test whether 

holistic face processing involves general high-level visual object processing. Finally, we 

localized a region in the superior parietal lobule (SPL) that is involved in Gestalt grouping 

and perceptual organization (Grassi et al., 2018, 2016; Zaretskaya et al., 2013) and 

processing of configural face information (Zachariou et al., 2017). If Gestalt information is 

important for the perceptual component of holistic processing (Curby and Moerel, 2019; 

Zhao et al., 2016; Zhao and Bülthoff, 2017), neural activity in the SPL might contribute to 

holistic processing of faces during the composite-face task.  
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2. Materials and methods 

2.1. Participants  

 Nineteen participants (13 female, 6 male, 20-39 years old) were included in our fMRI 

data analyses. Data from three additional participants were excluded prior to the fMRI data 

analyses, one due to excessive head movement during scanning, two due to poor 

performance in the behavioural task (less than 65% correct responses on congruent-identity 

trials, where no illusion is present). All participants provided written informed consent prior 

to the experiment, and the procedure was approved by the local ethics committee of the 

University Clinic Tübingen. 

We conducted power analyses using G*Power3 (Faul et al., 2007) to assess the 

power of our sample size. For the behaviour measurement of the composite-effect using the 

complete design, a meta-analysis found an average effect size of ηp
2 = 0.32 (Richler and 

Gauthier, 2014), and a power analysis indicated that a sample size of 15 would be required 

to detect this effect size at the 0.05 alpha level with 80% power. A previous study 

investigating the neural mechanisms of holistic processing using the part-whole paradigm 

found an effect size of ηp
2 = 0.53 for a triple-interaction between congruent, face 

orientation (upright/inverted) and target similarity (same/different) (Goffaux et al., 2013). A 

power analysis indicated that a sample size of 5 would be required to detect this effect size 

at the 0.05 alpha level with 80% power.  

2.2. Stimuli  

2.2.1. Main experiment stimuli 

The experimental stimuli were created using images of 3D face models from the face 

database of the Max Planck Institute for Biological Cybernetics (Blanz and Vetter, 1999; 

Troje and Bülthoff, 1996). We selected the faces of 12 Caucasian individuals (6 females) and 

paired each face once with another face of the same sex to make 12 face pairs. Each face 

was separated into a top and bottom half, and the halves of the pairs were recombined to 

create composite faces, as illustrated by the 8 conditions in Fig. 1A. A horizontal black line 

(0.03° of visual angle) was shown between the top and bottom halves of each face to clearly 

separate the two face halves. During the experiment, face stimuli were displayed with a 
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height of 3.9° and width of 3.0° of visual angle. For misaligned stimuli, the bottom half of the 

face was shifted 1.0° of visual angle to the left. Faces were grayscale, and were shown in 

front of a gray background. Stimuli used for the practice trials were created via the same 

method, using additional faces taken from the database.  

 

 

Figure 1. Experimental conditions and trial outline. (A) Experimental conditions. The conditions 

consisted of a 2 x 2 x 2 factorial design, with factors alignment, whether the top and bottom halves 

of the faces were aligned or misaligned, top-same or top-different, whether the top halves of the 

faces were the same or different from each other and congruency, whether the bottom half of face 2 

was congruent with respect to the top half of face 2 or not (e.g. congruent-identity trials are when 

the bottom-half is the same if the top-half is the same and the bottom-half is different if the top-half 

is different). (B) Trial outline. Participants fixated for either 4 or 6 s, then viewed a first face, followed 

by a blank screen and then a second face. Participants then responded during the next fixation 

whether the top-halves of the two faces were the same or different.  
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2.2.2. Localizer stimuli 

 The localizer stimuli were grayscale images of faces, objects, scenes and phase-

scrambled scenes (9 exemplars per category). Phase-scrambled scenes were Fourier-

scrambled versions of the scene images.  

2.3. Experimental design 

Participants lay supine in the scanner and viewed the stimuli on a screen positioned 

behind their head, via a mirror attached to the head coil. The screen was positioned 82 cm 

from the participant, and spanned 28° x 16° of visual angle in horizontal and vertical 

directions respectively. Stimuli were presented via a projector with resolution 1920x1080. 

The experiment was programmed with Matlab 2013b using the Psychophysics Toolbox 

extensions (Brainard, 1997; Kleiner et al., 2007) on a Windows PC.  

2.3.1. Main experiment procedure 

 Participants performed a composite face task while their brain activity was recorded 

using fMRI. On each trial participants viewed two faces and made a judgement whether the 

top-halves of the faces were the same or different. The experimental design consisted of 8 

conditions of a 2 x 2 x 2 factorial design (see Fig. 1A). The factors were alignment (whether 

the bottom halves of the faces were aligned or misaligned with the top halves), congruency, 

(whether the bottom half of the second face was congruent with respect to the top half of 

the second face or not) and top-same/top-different (whether the top halves of the two faces 

were the same or different from each other). Each participant completed 3 runs, where 

each run contained 64 trials (8 repetitions per condition). Conditions were presented in a 

carryover counterbalanced design, such that each condition was preceded by every other 

condition once per run (Brooks, 2012). This was to avoid biases from carryover blood-

oxygen-level dependent (BOLD) activation from a previous condition (Aguirre, 2007).  

The trial procedure is illustrated in Fig. 1B. Participants viewed a central fixation 

cross for 4 s or 6 s (50% of trials each, order randomized). The first face was shown centrally 

on the screen for 1 s, followed by a blank screen (presented for 100 ms), then the second 

face was shown, 1.2° of visual angle offset to the right of the centre of the screen, for 200 

ms. Participants responded using a button press whether they judged the top halves of the 

two faces to be the same of different. They were instructed to ignore the bottom halves of 
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the faces and to respond as quickly and accurately as possible. The fingers participants used 

to respond same/different were counterbalanced across participants.  

 Participants performed practice trials prior to the experiment to familiarise them 

with the task. Each participant performed 8 practice trials outside of the MRI scanner and 8 

practice trials inside the MRI scanner.  

2.3.2. Localizer experiment procedure 

Participants completed 2 runs of the localizer experiment, which was used to define 

face-, scene- and object-responsive ROIs. In each run, participants viewed blocks containing 

faces, scenes, objects and phase-scrambled scenes. Faces and objects were shown in front 

of the phase-scrambled scenes to keep the visual field size of the stimuli constant in all 

blocks (scene images were equal in size to the phase-scrambled scenes). Blocks were 

presented in a carryover counterbalanced sequence (Brooks, 2012). In each block 8 images 

were shown, where each image was shown for 1.8 s, followed by a 0.2 s blank, grey screen. 

Participants performed a one-back task on the images (repetitions once every 9 s on 

average) to keep their attention to the stimuli.  

2.4. Imaging parameters 

Images were acquired using a 3T Siemens Prisma scanner with a 64-channel head 

coil (Siemens, Erlangen, Germany). Functional T2* echoplanar images (EPI) were acquired 

using a sequence with the following parameters; multiband acceleration factor 2, TR 1.39 s, 

TE 30 ms, flip angle 68°, FOV 192x192 mm. Volumes consisted of 42 slices, with an isotropic 

voxel size of 3x3x3 mm. The first 8 volumes of each run were discarded to allow for 

equilibration of the T1 signal. For each participant a high-resolution T1-weighted anatomical 

scan was acquired with the following parameters; TR 2 s, TE 3.06 ms, FOV 232x256 mm, 192 

slices, isotropic voxel size of 1x1x1 mm.  

2.5. fMRI data preprocessing 

fMRI data was preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). 

Functional images were slice-time corrected, realigned and coregistered to the anatomical 

image. The images were then normalized to MNI (Montreal Neurological Institute) space 

and spatially smoothed with a 6 mm full-width at half-maximum Gaussian kernel.   
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2.6. Definition of regions of interest 

 Figure 2 illustrates the average locations of our regions of interest (ROIs) and Table 1 

shows the mean MNI coordinates and volumes of each ROI. We defined face-, scene- and 

object-responsive ROIs using data from the localizer runs. Firstly, the contrast faces > 

objects and scenes was used to define the OFA, FFA1, FFA2 and ATFA (Gauthier et al., 

2000b; Kanwisher et al., 1997; Rajimehr et al., 2009; Tsao et al., 2008). We defined the FFA1 

and FFA2 based on functional selectivity and previously described anatomical landmarks 

(Weiner et al., 2016, 2014). Secondly, the contrast scenes > faces and objects was used to 

define the TOS, RSC and PPA (Epstein and Kanwisher, 1998; Grill-Spector, 2003; Maguire, 

2001). Thirdly, the contrast objects > phase-scrambled scenes was used to define the LOC 

(Malach et al., 1995). We defined each ROI individually in each participant, by selecting all 

active voxels falling within spheres (radius 6 mm) centred on the peak of activity in each 

hemisphere. A threshold of p < 0.001 uncorrected was used to define active voxels. This 

threshold allowed ROIs to be consistently defined across participants. 

 We additionally defined SPL and V1, based on anatomical location and higher activity 

during stimulus presentation (including all conditions) compared to the fixation interval 

between trials. This contrast is orthogonal to the activity differences between the conditions 

in this study (Friston et al., 2006). We used a p < 0.05 familywise error rate (FWE) corrected 

threshold to define voxels more active during the stimulus than fixation. A more stringent 

threshold was used for this contrast as all participants showed strong activation in this 

contrast. SPL was defined by selecting all active voxels falling within spheres (radius 6 mm) 

centred on the peak of activity in superior parietal cortex of each hemisphere. The entire V1 

was defined first for each participant using anatomical labels generated by Freesurfer (Hinds 

et al., 2009) (https://surfer.nmr.mgh.harvard.edu/). To define our final V1 ROI, we selected 

all posterior V1 voxels that were more active when participants viewed the pairs of face 

stimuli as compared to when they fixated and viewed a grey screen. Participants could move 

their eyes when viewing the faces, therefore this V1 ROI reflects the V1 voxels activated for 

each individual participant when viewing the face stimuli.  

                  



Holistic Face Processing   13 
 

 

Figure 2. Locations of ROIs. ROIs include face-responsive OFA (occipital face area), FFA1 (fusiform 

face area 1), FFA2 (fusiform face area 2) and ATFA (anterior temporal face area) shown in orange, 

scene-responsive TOS (transverse occipital sulcus), RSC (retrosplenial cortex) and PPA 

(parahippocampal place area) shown in green, object-responsive LOC (lateral occipital complex) 

shown in purple, parietal SPL (superior parietal lobule) shown in magenta and V1 shown in cyan. 

ROIs were defined individually in volume-space for each participant, for visualisation purposes here 

we show group average ROIs projected onto the inflated cortical surface. We defined group ROIs 

using a relatively low threshold as some information was lost during projection to the cortical 

surface. Thus, to create this figure, voxels were included in each group average ROI if they were part 

of the ROI in at least 25% of participants.  
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Table 1. ROI locations and volumes 

Average x, y and z coordinates (in MNI space) and volume of each ROI (± standard deviations). The 

volume indicates the number of active voxels that were included in each ROI. N indicates the 

number of participants each ROI was identified in.  

 

 

 

ROI hem x y z Volume (mm3) N 

OFA left -39 ± 4.6 -81 ± 4.3 -10 ± 4.0 197 ± 42.4 19 

 right 42 ± 4.1 -79 ± 4.3 -10 ± 4.0 208 ± 34.3 19 

FFA1 left -40 ± 4.1 -62 ± 8.8 -17 ± 4.0 202 ± 35.6 18 

 right 42 ± 5.1 -63 ± 6.6 -16 ± 4.1 204 ± 44.8 18 

FFA2 left -41 ± 4.0 -43 ± 10.2 -21 ± 5.3 157 ± 61.4 16 

 right 42 ± 3.4 -44 ± 5.5 -19 ± 3.6 205 ± 36.5 17 

ATFA left -35 ± 5.3 -8 ± 5.2 -34 ± 6.0 86 ± 67.4 14 

 right 34 ± 3.6 -5 ± 4.9 -38 ± 4.8 134 ± 60.7 16 

TOS left -32 ± 5.7 -85 ± 4.9 22 ± 7.0 203 ± 35.5 19 

 right 37 ± 4.1 -80 ± 2.9 21 ± 7.4 213 ± 22.1 19 

RSC left -17 ± 3.2 -59 ± 3.3 14 ± 3.6 184 ± 48.3 18 

 right 19 ± 3.0 -57 ± 4.8 17 ± 4.9 198 ± 54.1 18 

PPA left -26 ± 2.8 -44 ± 3.9 -10 ± 3.4 197 ± 52.9 19 

 right 29 ± 2.6 -45 ± 5.5 -10 ± 3.3 212 ± 19.4 19 

LOC left -43 ± 4.1 -79 ± 4.3 -4 ± 4.6 222 ± 13.6 19 

 right 43 ± 3.8 -80 ± 5.1 -4 ± 6.0 214 ± 25.6 19 

SPL left -26 ± 4.7 -60 ± 6.8 50 ± 6.1 206 ± 49.2 19 

 right 28 ± 4.9 -56 ± 6.7 50 ± 5.9 213 ± 49.8 19 

V1 left -13 ± 3.2 -98 ± 2.7 -7 ± 4.0 911 ± 380.6 19 

 right 13 ± 3.2 -96 ± 1.6 -4 ± 4.1 911 ± 211.5 19 

                  



Holistic Face Processing   15 
 

2.7. Statistical Analyses 

2.7.1. Behavioural analyses 

 Participants were instructed to respond to indicate whether they judged the top-

halves of the face pairs to be the same or different. Their behavioural performance was 

measured with accuracy (% correct) and reaction times. For each behavioural measure we 

first performed a 2 (alignment) x 2 (congruency) x 2 (top-same/top-different) repeated 

measures ANOVA. We then performed separated 2 (alignment) x 2 (congruency) ANOVAs 

for the top-same and top-different conditions to investigate whether they both showed 

patterns of behavioural responses consistent with holistic processing. We separately 

analysed the top-same and top-different conditions for the following reasons. Firstly, while 

behavioural studies usually combine the top-same and top-different  conditions with a 

measure of accuracy or d prime (in signal detection theory), neural responses to these two 

conditions cannot be combined in the same way as there is no neural equivalent of hit rates 

and false-alarm rates. Secondly, how the two conditions contribute to a reliable measure of 

holistic processing remains in debate (e.g. Richler and Gauthier, 2014; Rossion, 2013). 

Separate analysis of these two conditions in both behaviour and neural responses may help 

clarify their roles in measuring holistic processing. Finally, previous studies have suggested 

that holistic processing is stronger for top-same than top-different conditions (Goffaux, 

2012; Goffaux et al., 2013).   

According to previous behavioural studies (e.g. Richler et al., 2011a; Zhao et al., 

2016), holistic face processing should lead to an interaction effect between congruency and 

alignment and an effect of congruency. Specifically, the difference between the congruent-

identity and incongruent-identity conditions should be larger for the aligned conditions 

compared to the misaligned conditions. The rationale is the following. For accuracy, a lower 

performance is expected in aligned incongruent-identity conditions compared to aligned 

congruent-identity conditions, due to participants being unable to ignore the irrelevant 

bottom face half information. This difference should be reduced in the misaligned 

conditions, which disrupt holistic face processing and enable participants to ignore the 

bottom face half information. For reaction times, a longer reaction time is expected for 

aligned incongruent-identity conditions compared to aligned congruent-identity conditions, 

because participants take the irrelevant bottom face half into consideration and therefore 
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this interferes with their decision for the top half of the face. Again, this difference should 

be reduced in the misaligned conditions that disrupt holistic processing. Therefore, we first 

looked at the interaction between alignment and congruency and, in any cases where we 

found a significant interaction, we performed follow-up t-tests to examine whether the 

pattern of behavioural performance matched the above predictions.  

2.7.2. fMRI analyses 

We modelled a GLM for each participant containing regressors for our 8 conditions, 

plus 6 realignment regressors from the motion correction, using SPM12. The 8 condition 

regressors modelled the activity to each trial of the condition, excluding any trials where the 

participant did not make a task response (i.e. did not press a button to indicate a 

same/different judgment of the faces, on average 1.8% of trials). Responses to each 

condition are reported in % signal change with respect to the baseline of the GLM in each 

ROI. Similarly to the behavioural analysis mentioned above, we performed a 2 (alignment) x 

2 (congruency) x 2 (top-same/top-different) repeated measures ANOVA to investigate 

whether top-same and top different conditions elicit different patterns of response in our 

ROIs. We then performed two further analyses to investigate specific aspects of composite-

face effect.  

Firstly, we investigated the effect of alignment. Although behavioural studies often 

use the interaction between congruency and alignment (i.e. the composite face effect) to 

measure holistic processing, brain regions involved in holistic face processing may also 

exhibit in different neural responses to aligned and misaligned faces. This is because, 

regardless of the congruency manipulation in the composite task, aligned faces are 

considered to be processed holistically (which is why participants are unable to ignore the 

to-be-ignored parts in the incongruent aligned condition), whereas misaligned faces are 

considered to be processed less holistically (Rossion, 2013; Young et al., 1987)1. Therefore, 

we considered that brain regions involved in holistic processing of faces would show 

differences in activity between aligned and misaligned conditions. We performed 2 

(alignment) x 2 (top-same/top-different) repeated measures ANOVAs using only congruent-

identity conditions, as the incongruent-identity conditions contain additional change in face 

                                                             
1 We thank Dr. Isabel Gauthier for pointing this out in our data analysis.  
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identity (induced by the composite-face illusion) that differs between aligned and 

misaligned conditions.  

Secondly, we investigated whether any brain regions show a pattern of neural 

responses consistent with the pattern observed in behaviour. While the aforementioned 

alignment effect is indicative of holistic face processing, it does not reveal a full picture of 

neural processes underlying the composite face effect, as the characteristic behaviour is 

driven by differences in the perception of face identity. We hypothesized that any brain 

regions that represented face identity in a holistic manner, would show a pattern of 

repetition-effect responses consistent with the behavioural composite effect (i.e. a larger 

difference in neural responses between congruent- and incongruent-identity conditions for 

the aligned than for the misaligned conditions). We predicted we would be likely to find a 

repetition suppression effect, as this was found in previous studies investigating the neural 

responses to composite faces (Schiltz et al., 2010; Schiltz and Rossion, 2006), however, we 

also considered it possible that we could find a repetition enhancement effect, as several 

studies have found repetition-effects in this direction (Segaert et al., 2013). We performed 2 

(alignment) x 2 (congruency) repeated measures ANOVAs to test for neural composite 

effects. Similarly to our behavioural analysis, we conducted follow-up t-tests for any regions 

showing a significant congruency by alignment interaction. We performed this analysis 

separately for top-same and top-different conditions, which allowed us to investigate 

whether the neural and behavioural patterns of responses correspond with each other and 

whether the composite face effect is more prominent for top-same than top-different 

conditions (Goffaux, 2012; Goffaux et al., 2013).  

We performed all fMRI analyses in our ten ROIs as well as in whole-brain analyses. 

For ROI analyses, we corrected for multiple comparisons using a Bonferroni-correction to 

adjust for the number of ROIs tested. For whole-brain analyses, we used a False Discovery 

Rate (FDR) correction to adjust for multiple comparisons. 

2.7.3. Analyses linking behaviour and neural activity 

We performed follow-up analyses comparing any effects identified related to 

participants’ behaviour in the composite paradigm in neural and behavioural responses. We 

performed Pearson’s correlation analyses between significant top-same or top-different 

behavioural composite-effects and corresponding significant top-same or top-different 
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neural composite-effects in our ROIs. We performed these analyses only in cases where 

there was a corresponding behavioural and neural top-same or top-different composite-

effect, as our aim was to assess whether there was a link between the strength of each 

participant’s behavioural and neural composite-effects. We corrected for multiple 

comparisons using a Bonferroni-correction to adjust for the number of ROIs tested. 

2.8. Data and code availability statement 

Data cannot be shared as participants were informed that their data would be stored 

confidentially, in accordance with the rules of the local ethics committee. Code is available 

on request.  

                  



Holistic Face Processing   19 
 

3. Results 

3.1. Behavioural results 

 We measured participants’ behavioural performance in the composite-face task 

during scanning using accuracy (% correct) and reaction times. For both behavioural 

measures 2 x 2 x 2 repeated-measures ANOVAs showed a significant interaction between 

alignment, congruency and top-same/top-different conditions (accuracy: F1,18 = 24.24, p = 

1.1 × 10-4, ηp
2 = 0.57; reaction times: F1,18 = 8.92, p = 0.0079, ηp

2 = 0.33). Note that the same 

results were observed when participants’ performance was measured using d prime (see 

supplemental results). We then conducted further behavioural analyses separately for top-

same and top-different conditions.  

3.1.1. Accuracy and reaction times for top-same conditions  

For both accuracy (% correct) and reaction times for the top-same conditions (Figure 

3), 2 (alignment) x 2 (congruency) repeated-measures ANOVAs revealed a significant effect 

of congruency (accuracy: F1,18 = 23.67, p = 1.2 × 10-4, ηp
2 = 0.57; reaction times: F1,18 = 15.08, 

p = 0.0011, ηp
2 = 0.46) and a significant interaction between congruency and alignment 

(accuracy: F1,18 = 32.12, p = 2.2 × 10-5, ηp
2 = 0.64; reaction times: F1,18 = 23.44, p = 1.3 × 10-4, 

ηp
2 = 0.57). Furthermore, paired-sample t-tests showed that the congruency effect was 

significant for the aligned conditions (accuracy: M = 28.07 %, SE = 5.04 %; t18 = 5.57, p = 2.7 

× 10-5, Cohen’s dz = 1.28; reaction times: M = 0.13 s, SE = 0.023 s; t18 = 5.51, p = 3.1 × 10-5, 

Cohen’s dz = 1.26) but not for the misaligned conditions (accuracy: M = 1.97 %, SE = 2.07 %; 

t18 = 0.95, p = 0.35, Cohen’s dz = 0.22; reaction times: M = 0.019 s, SE = 0.020 s; t18 = 0.92, p 

= 0.37, Cohen’s dz = 0.21). These results show characteristic evidence of holistic processing 

elicited by the top-same conditions in our composite-task.   
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Figure 3. Behavioural performance in the top-same conditions of the composite-face task. (A) shows 

accuracy (% correct) as a function of congruency and alignment and (B) shows reaction times as a 

function of congruency and alignment. (C) and (D) show the interaction effect between congruency 

and alignment (difference between aligned congruent-identity and incongruent-identity conditions, 

minus the difference between misaligned congruent-identity and incongruent-identity conditions) as 

measured with accuracy (C) and reaction times (D). Error bars indicate ±1 SEM. ** indicates p < 

0.001. 

 

3.1.2. Accuracy and reaction times for top-different conditions  

Accuracy (% correct) and reaction times for the top-different conditions showed a 

different pattern of responses (Figure 4). 2 (alignment) x 2 (congruency) repeated-measures 

ANOVAs showed neither a significant effect of congruency (accuracy: F1,18 = 1.35, p = 0.26, 

ηp
2 = 0.070; reaction times: F1,18 = 0.25, p = 0.63, ηp

2 = 0.014) nor a significant interaction 

between congruency and alignment (accuracy: F1,18 = 0.39, p = 0.54, ηp
2 = 0.021; reaction 

times: F1,18 = 1.03, p = 0.32, ηp
2 = 0.054). Thus, the composite face effect seems to be 

primarily driven by the top-same conditions rather than the top-different conditions.  
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Figure 4. Behavioural performance in the top-different conditions of the composite-face task. (A) 

shows accuracy (% correct) as a function of congruency and alignment and (B) shows reaction times 

as a function of congruency and alignment. (C) and (D) show the interaction effect between 

congruency and alignment (difference between aligned congruent-identity and incongruent-identity 

conditions, minus the difference between misaligned congruent-identity and incongruent-identity 

conditions) as measured with accuracy (C) and reaction times (D). Error bars indicate ±1 SEM. 
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3.2. fMRI results 

 We first performed 2 (alignment) X 2 (congruency) X 2 (top-same/top-different) 

repeated measures ANOVAs in each ROI. The RSC showed a triple interaction (F1,17 = 8.66, p 

= 0.0091, ηp
2 = 0.34) which did not survive Bonferroni-correction for N = 10 ROIs. None of 

the other ROIs tested showed a significant triple interaction (OFA: F1,18 = 0.55, p = 0.47, ηp
2 = 

0.030; FFA1: F1,17 = 0.46, p = 0.51, ηp
2 = 0.027; FFA2: F1,16 = 0.25, p = 0.62, ηp

2 = 0.015; ATFA: 

F1,16 = 2.31, p = 0.15, ηp
2 = 0.13; TOS: F1,18 = 0.85, p = 0.37, ηp

2 = 0.045; PPA: F1,18 = 2.63, p = 

0.12, ηp
2 = 0.13; LOC: F1,18 = 0.86, p = 0.37, ηp

2 = 0.046; SPL: F1,18 = 0.41, p = 0.53, ηp
2 = 0.022; 

V1: F1,18 = 0.12, p = 0.73, ηp
2 = 0.0065). These results suggest that our manipulation of 

congruency and alignment may similarly affect the neural responses to the top-same and 

top-different conditions (cf. Goffaux, 2012; Goffaux et al., 2013).    

 As outlined earlier (Section 2.7.2), we performed  two further tests to specifically 

examine the effect of alignment (which investigates the neural processes supporting holistic 

processing of faces) and the interaction between alignment and congruency (which helps 

reveal holistic responses to face identity, which underly the composite face effect). To 

compare the neural responses to aligned and misaligned faces, we included only the 

congruent-identity conditions (i.e. where top and bottom halves of the face pairs are both 

the same or both different) to ensure that there is no change in the perception of face 

identity between the aligned and misaligned conditions. To test whether any brain regions 

exhibit a neural composite face effect (i.e. interaction between alignment and congruency) 

consistent with participants’ behavioural responses, we performed separate 2 (alignment) X 

2 (congruency) repeated measures ANOVAs for top-same and top-different conditions.  

3.2.1. Neural responses to face alignment within and outside of face-responsive ROIs 

 For face-responsive ROIs (Fig. 5A), 2 (alignment) x 2 (top-same/top-different) 

repeated measures ANOVAs revealed an effect of alignment in the FFA2 (F1,16 = 6.72, p = 

0.020, ηp
2 = 0.30), which was driven by higher responses to aligned than misaligned faces (M 

= 0.31 %, SE = 0.12 %), but did not survive Bonferroni-correction for N = 10 ROIs. We found 

no difference in the responses to aligned and misaligned faces in any of the other face-

responsive ROIs (OFA: F1,18 = 0.60, p = 0.45, ηp
2 = 0.032; FFA1: F1,17 = 0.071, p = 0.79, ηp

2 = 

0.0042; ATFA: F1,16 = 2.33, p = 0.15, ηp
2 = 0.13).  
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Figure 5. Differences in neural responses to aligned and misaligned faces for the congruent-identity 

conditions (i.e. where top and bottom halves of the face pairs were both the same or both different). 

We used the contrast aligned minus misaligned faces to investigate differences in neural activity in 

face-responsive ROIs (A) and in all other ROIs tested (B). Error bars indicate ±1 SEM. * indicates p < 

0.05 Bonferroni-corrected for N = 10 ROIs, + indicates p < 0.05 uncorrected.  

 

 

 For other ROIs (scene-responsive, object-responsive, parietal and early-visual ROIs, 

Fig. 5B), we found a significant effect of alignment in the LOC (F1,18 = 12.85, p = 0.0021, ηp
2 = 

0.42) and an effect of alignment in the TOS (F1,18 = 6.43, p = 0.021, ηp
2 = 0.26), but the effect 

in TOS did not survive Bonferroni-correction for N = 10 ROIs. Note that both LOC and TOS 

showed higher responses to misaligned faces than to aligned faces (LOC: M = -0.42 %, SE = 
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0.12 %; TOS: M = -0.32 %, SE = 0.13 %). None of the other ROIs tested showed significant 

differences in responses between aligned and misaligned faces (RSC: F1,17 = 0.055, p = 0.82, 

ηp
2 = 0.0032; PPA: F1,18 = 0.59, p = 0.45, ηp

2 = 0.032; SPL: F1,18 = 3.14, p = 0.093, ηp
2 = 0.15; 

V1: F1,18 = 0.16, p = 0.70, ηp
2 =  0.0086).  

To confirm that there were significant differences in the alignment effect across 

ROIs, we performed a 2 (alignment) x 2 (top-same/top-different) x 10 (ROI) repeated 

measures ANOVA. This analysis showed there was a significant interaction between 

alignment and ROI (F9,117 = 34.7, p = 4.5 x 10-29, ηp
2 = 0.73) indicating that the alignment 

effect varied significantly across ROIs. Furthermore, we investigated if there were any 

differences in the effect of alignment across hemisphere in the LOC, FFA2 or TOS by 

separating each ROI by hemisphere and performing 2 (alignment) x 2 (top-same/top-

different) x 2 (hemisphere) repeated measures ANOVAs in each ROI. We did not identify any 

significant interactions between alignment and hemisphere (LOC: F1,18 = 1.88, p = 0.19, ηp
2 = 

0.095; FFA2: F1,15 = 2.47, p = 0.14, ηp
2 = 0.14; TOS: F1,18 = 0.034, p = 0.86, ηp

2 = 0.0019).  

We additionally performed a whole-brain analysis to investigate if any other brain 

regions showed differences in activity between the aligned and misaligned congruent-

identity conditions. We did not identify any regions in this whole-brain analysis.  

3.2.2. Neural composite face effect (congruency x alignment interaction) for top-same 

conditions 

 For the face-responsive ROIs (Fig. 6), 2 (congruency) x 2 (alignment) repeated 

measures ANOVAs showed neither significant interactions between congruency and 

alignment (OFA: F1,18 = 3.07, p = 0.097, ηp
2 =  0.15; FFA1: F1,17 = 0.79, p = 0.39, ηp

2 =  0.044; 

FFA2: F1,16 = 0.91, p = 0.35, ηp
2 =  0.054; ATFA: F1,16 = 3.35, p = 0.086, ηp

2 = 0.17) nor 

significant effects of congruency (OFA: F1,18 = 0.35, p = 0.56, ηp
2 = 0.019; FFA1: F1,17 = 2.54, p 

= 0.13, ηp
2 =  0.13; FFA2: F1,16 = 0.23, p = 0.63, ηp

2 = 0.015; ATFA: F1,16 = 0.40, p = 0.53, ηp
2 = 

0.025). Thus, no face-responsive ROIs exhibited a neural composite face effect, despite 

participants showing a robust behavioural composite face effect. 
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Figure 6. Neural responses to the top-same conditions in the face-responsive ROIs. (A) % signal 

change as a function of congruency and alignment. (B) Interaction between congruency and 

alignment with the contrast: (aligned congruent-identity – aligned incongruent-identity) – 

(misaligned congruent-identity – misaligned incongruent-identity). Error bars indicate ±1 SEM. 
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For other ROIs, including scene-responsive, object-responsive, parietal and early-

visual ROIs (Fig. 7), we found a significant interaction between congruency and alignment in 

the scene-responsive RSC (F1,17 = 14.07, p = 0.0016, ηp
2 = 0.45) and PPA (F1,18 = 11.58, p = 

0.0032, ηp
2 = 0.39), both surviving Bonferroni-correction for N = 10 ROIs. Follow-up paired t-

tests showed a significant effect of congruency for the aligned conditions in both RSC (M = 

0.32 %, SE = 0.082 %; t17 = 3.91, p = 0.0011, Cohen’s dz = 0.92) and PPA (M = 0.24 %, SE = 

0.061 %; t18 = 3.87, p = 0.0011, Cohen’s dz = 0.89), but not for the misaligned conditions in 

RSC (M = -0.058 %, SE = 0.090 %; t17 = -0.64, p = 0.53, Cohen’s dz = -0.15) and PPA (M = -

0.018 %, SE = 0.067 %; t18 = -0.27, p = 0.79, Cohen’s dz = -0.063). These results confirm that 

the interaction observed in RSC and PPA was due to a larger congruency effect for aligned 

conditions than for misaligned conditions, consistent with the behavioural composite face 

effect induced by holistic processing. We did not find a significant interaction between 

congruency and alignment in the scene-responsive TOS (F1,18 = 1.85, p = 0.19, ηp
2 = 0.093). 

We did not find a significant effect of congruency in any of these scene-responsive ROIs 

(RSC: F1,17 = 3.55, p = 0.077, ηp
2 = 0.17; PPA: F1,18 = 4.33, p = 0.052, ηp

2 = 0.19; TOS: F1,18 = 

3.98, p = 0.061, ηp
2 = 0.18).  

None of the other ROIs we tested showed a significant interaction between 

congruency and alignment (LOC: F1,18 = 2.23, p = 0.15, ηp
2 = 0.11; SPL: F1,18 = 0.095, p = 0.76, 

ηp
2 = 0.0052; V1: F1,18 = 1.09, p = 0.31, ηp

2 = 0.057) or a significant effect of congruency (LOC: 

F1,18 = 1.91, p = 0.18, ηp
2 = 0.096; SPL: F1,18 = 1.42, p = 0.25, ηp

2 = 0.073; V1: F1,18 = 0.52, p = 

0.48, ηp
2 = 0.028). We additionally performed a whole-brain analysis to look if any other 

regions showed an interaction between congruency and alignment or effect of congruency, 

but we did not identify any regions in this analysis.  

To confirm that there were significant differences in the congruency by alignment 

interaction across ROIs, we performed a 2 (congruency) x 2 (alignment) x 10 (ROI) repeated 

measures ANOVA. This analysis showed there was a significant triple interaction between 

congruency, alignment and ROI (F9,117 = 35.1, p = 2.9 x 10-29, ηp
2 = 0.73) indicating that the 

congruency by alignment interaction varied significantly across ROIs. Furthermore, we also 

investigated if there were any differences in the congruency by alignment interaction across 

hemisphere in the RSC or PPA by separating both ROIs by hemisphere, and then performing 

2 (congruency) x 2 (alignment) x 2 (hemisphere) repeated measures ANOVAs in each ROI. 
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We did not identify any significant triple interaction between congruency, alignment and 

hemisphere in either ROI (RSC: F1,17 = 3.89, p = 0.065, ηp
2 = 0.19; PPA: F1,18 = 0.023, p = 0.88, 

ηp
2 = 0.0013).  
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Figure 7. Neural responses to the top-same conditions in the scene-responsive, object-responsive, 

perceptual grouping and early visual ROIs. (A) % signal change as a function of congruency and 

alignment. (B) Interaction between congruency and alignment with the contrast: (aligned congruent-

identity – aligned incongruent-identity) – (misaligned congruent-identity – misaligned incongruent-

identity). Error bars indicate ±1 SEM. * indicates p < 0.05, Bonferroni-corrected for N = 10 ROIs.  
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3.2.3. Neural composite face effect (congruency x alignment interaction) for top-different 

conditions  

 We did not observe a neural composite face effect for the top-different conditions 

(Fig. 8 & 9). None of our ROIs showed a significant interaction between congruency and 

alignment (OFA: F1,18 = 5.11 x 10-4, p = 0.98, ηp
2 = 2.8 x 10-5; FFA1: F1,17 = 0.11, p = 0.74, ηp

2 = 

0.0065; FFA2: F1,16 = 0.022, p = 0.88, ηp
2 = 0.0014; ATFA: F1,16 = 0.44, p = 0.52, ηp

2 = 0.027; 

TOS: F1,18 = 0.22, p = 0.65, ηp
2 = 0012; RSC: F1,17 = 0.79, p = 0.39, ηp

2 = 0.044; PPA: F1,18 = 

0.031, p = 0.86, ηp
2 = 0.0017; LOC: F1,18 = 0.089, p = 0.77, ηp

2 = 0.0049; SPL: F1,18 = 0.51, p = 

0.48, ηp
2 = 0.028; V1: F1,18 = 0.065, p = 0.80, ηp

2 = 0.0036) or a significant effect of 

congruency (OFA: F1,18 = 2.05, p = 0.17, ηp
2 = 0.10; FFA1: F1,17 = 0.11, p = 0.74, ηp

2 = 0.0064; 

FFA2: F1,16 = 0.18, p = 0.68, ηp
2 = 0.011; ATFA: F1,16 = 4.06, p = 0.061, ηp

2 = 0.20; TOS: F1,18 = 

0.42, p = 0.52, ηp
2 = 0.023; RSC: F1,17 = 0.44, p = 0.52, ηp

2 = 0.025; PPA: F1,18 = 0.19, p = 0.67, 

ηp
2 = 0.010; LOC: F1,18 = 2.77, p = 0.11, ηp

2 = 0.13; SPL: F1,18 = 0.60, p = 0.45, ηp
2 = 0.032; V1: 

F1,18 = 0.029, p = 0.87, ηp
2 = 0.0016). We additionally performed a whole-brain analysis to 

investigate if any other regions showed an interaction between congruency and alignment 

or an effect of congruency for the top-different conditions. No regions were identified in 

this analysis. These results are consistent with our behavioural results obtained with top-

different conditions, suggesting that top-same and top-different conditions may contribute 

differently to the behavioural measurement of composite face effect (Richler and Gauthier, 

2013; Rossion, 2013). 
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Figure 8. Neural responses to the top-different conditions in the face-responsive ROIs. (A) % signal 

change as a function of congruency and alignment. (B) Interaction between congruency and 

alignment with the contrast: (aligned congruent-identity – aligned incongruent-identity) – 

(misaligned congruent-identity – misaligned incongruent-identity). Error bars indicate ±1 SEM. 
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Figure 9. Neural responses to the top-different conditions in the scene-responsive, object-

responsive, perceptual grouping and early visual ROIs. (A) % signal change as a function of 

congruency and alignment. (B) Interaction between congruency and alignment with the contrast: 

(aligned congruent-identity – aligned incongruent-identity) – (misaligned congruent-identity – 

misaligned incongruent-identity). Error bars indicate ±1 SEM.  
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3.3. Correlation between the neural and behavioural composite face effect (i.e. 

congruency x alignment interaction) 

We conducted correlation analyses between neural composite face effects observed 

in the RSC and PPA (Fig. 7) and the behavioural composite effect measured with accuracy 

and reaction times (Fig. 3). As illustrated in Fig. 10, for the composite face effect measured 

with response accuracy, there was no significant brain-behaviour correlation in either RSC (r 

= -0.15, p = 0.56) or PPA (r = 0.20, p = 0.40). In contrast, for the composite face effect 

measured with reaction times, we found significant correlations between the behavioural 

and neural composite face effect observed in both RSC (r = 0.61, p = 0.0074) and PPA (r = 

0.61, p = 0.0056), both surviving Bonferroni-correction for N = 2 ROIs.  

Our behavioural composite effect measured with reaction times is based on 

difference scores between reaction times, which might have poor retest reliability when the 

same subject is tested multiple times (Draheim et al., 2019). To check whether our 

participants showed a consistent composite face effect in reaction times, we calculated 

Cronbach’s alpha (Cronbach, 1951). We found a Cronbach’s alpha of 0.85 for our 

participants’ composite effect in reaction times across the three experimental runs, 

indicating that our participants showed a consistent strength of composite effect in reaction 

times across the experiment.  

We additionally performed whole brain analyses to investigate if any other brain 

regions showed a correlation between neural activity and behaviour related to the 

composite face effect. No regions were identified in these analyses.  
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Figure 10. Correlation of interaction effect of congruency and alignment measured with neural 

responses and behavioural measures. (A) and (C) show the correlation between the interaction 

effect of congruency and alignment measured with response accuracy (% correct) and neural 

responses in the RSC (A) and PPA (C). (B) and (D) show the correlation between the interaction effect 

of congruency and alignment measured with reaction times and neural responses in the RSC (B) and 

PPA (D). * indicates p < 0.05, Bonferroni-corrected for N = 2 ROIs. 
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4. Discussion  

In this study, we investigated the neural substrates underlying the composite face 

effect—one of the most convincing demonstrations of holistic face processing—both within 

and outside of face-responsive brain regions. We found significantly different neural 

responses to aligned and misaligned faces in the LOC, as well as trends in the FFA2 and TOS. 

As aligned faces are processed more holistically than misaligned faces, the neural alignment 

effect suggests that these regions are sensitive to how holistically faces are processed. 

Furthermore, we found that the RSC and PPA showed a pattern of neural activation 

consistent with processing face identity in a holistic manner, which is a key factor underlying 

the characteristic responses of a behavioural composite face effect. The strength of this 

neural composite face effect in RSC and PPA also correlated with the behavioural composite 

face effect measured in reaction times. These results indicate that brain regions both within 

and outside the commonly defined face-responsive network contribute to the composite 

face effect.  

4.1. Neural responses to face alignment 

 Contrasting the neural responses to aligned and misaligned faces provides one way 

to reveal the neural substrates supporting holistic face processing (Schiltz et al., 2010; 

Schiltz and Rossion, 2006). Although in the composite task, the behavioural effect of holistic 

processing is measured as different responses to congruent versus incongruent aligned 

faces, holistic processing is assumed to occur for both types of aligned faces whereas part-

based processing is more prominent for misaligned faces. Therefore, brain regions showing 

differences in neural activation between aligned and misaligned faces would indicate their 

relative contribution to holistic and part-based face processing. In the present study, we 

found a significant alignment effect in the LOC driven by higher activation to misaligned 

faces compared to aligned faces. This pattern of results shows remarkable similarity to the 

differences in neural activation between upright and inverted faces. Several studies have 

found higher activation to inverted compared to upright faces in the LOC (Aguirre et al., 

1999; Epstein et al., 2006; Goffaux et al., 2013; Grotheer et al., 2014; Haxby et al., 1999). It 

has been proposed that this could be due to inverted faces being processed similarly to 

objects or due to a recruitment of these regions for more demanding face processing 
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(Aguirre et al., 1999; Haxby et al., 1999). Given that inverted faces are also processed in a 

more part-based manner (Rossion, 2013; Young et al., 1987) these results suggest that 

misaligned faces may be processed similarly to inverted faces (see also Schiltz and Rossion, 

2006). Together, these results suggest that the LOC contributes primarily to part-based 

processing of misaligned or inverted faces.  

 We also found marginal alignment effect trends in the FFA2 and TOS, but these 

effects did not survive Bonferroni correction for N = 10 ROIs. Although the FFA2 result was 

not significant after Bonferroni correction, this region has been associated with holistic 

processing in several previous studies (Andrews et al., 2010; Goffaux et al., 2013; Pinsk et 

al., 2009; Ross et al., 2018; Schiltz et al., 2010; Schiltz and Rossion, 2006). Our FFA2 results 

are comparable to those found in previous studies, though our Bonferroni correction might 

be too stringent to demonstrate a significant difference (note that Bonferroni correction 

may increase Type II errors, (Nakagawa, 2004)). Under such strict criteria, the FFA2 showed 

a trend towards higher activation to aligned faces compared to misaligned faces, suggesting 

that this region may process faces in a holistic manner. A specific involvement of FFA2 in 

holistic face processing is consistent with previous work showing higher activation to upright 

vs inverted faces in the FFA2 (Pinsk et al., 2009) and with previous work showing that the 

FFA2 is involved in holistic processing of expertise objects (Ross et al., 2018). Furthermore, 

several previous studies that did not separate the two components of the FFA have also 

linked activity in the FFA to holistic processing of faces (Andrews et al., 2010; Goffaux et al., 

2013; Schiltz et al., 2010; Schiltz and Rossion, 2006).  

An involvement of the FFA2, but not the FFA1 in holistic face processing may explain 

why studies investigating the neural responses to face inversion in the FFA have found 

mixed results. Some studies found higher responses to upright compared to inverted faces 

in the FFA (Goffaux et al., 2013; Yovel and Kanwisher, 2005), whereas some studies did not 

find differences in responses (Aguirre et al., 1999; Epstein et al., 2006; Grotheer et al., 2014; 

Haxby et al., 1999). One study that separated the FFA into two components, found higher 

activation to upright vs inverted faces in the FFA2 but not the FFA1 (Pinsk et al., 2009). Thus, 

the discrepant results across these studies might be due to differences in their FFA 

localization. Furthermore, (Pinsk et al., 2009) did not find differences in activity to upright vs 

inverted faces in the ATFA, which is consistent with our results in this region. The similarity 
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between our results in the FFA2 and the effect of face inversion in FFA in previous studies 

suggests that the FFA, particularly its anterior part FFA2, is involved in processing faces in a 

holistic manner.  

4.2. Neural responses to composite-faces 

Although a neural alignment effect helps reveal the neural substrates underlying the 

difference between holistic and part-based face processing, the neural alignment effect 

alone cannot tell us what neural mechanisms support the characteristic behaviour related to 

processing face identity holistically in the composite face paradigm. To address this 

question, we hypothesized that brain regions processing face identity holistically would 

show a similar pattern of neural responses to the pattern observed in behaviour: a larger 

congruency effect for aligned faces than for misaligned faces. We investigated which brain 

regions exhibit such a neural composite face effect. Our results identified two ROIs, the RSC 

and PPA, that showed neural responses consistent with the behavioural composite face 

effect. The RSC and PPA are known for their crucial role in scene perception, memory, 

navigation (Epstein, 2008; Epstein and Kanwisher, 1998; Vann et al., 2009) and contextual 

relationships (Bar, 2004; Bar and Aminoff, 2003). Recent studies have shown that the RSC 

and PPA also contribute to configural/relational processing of visual scenes. These two 

regions show stronger responses to whole scenes than parts of scenes (Kamps et al., 2016), 

and the PPA also shows higher responses when scene stimuli are processed holistically than 

when they are not (Schindler and Bartels, 2016). Our finding of a neural composite face 

effect in these ROIs suggests that the behavioural composite face effect may involve neural 

mechanisms supporting general configural/relational processing of face identity. However, 

we note that we did not identify a neural alignment effect in the RSC or PPA, suggesting that 

these regions do not play a general role in holistic processing of faces.  

We did not identify a neural composite face effect in the FFA, though previous 

studies suggest an important role of FFA in holistic face processing (Goffaux et al., 2013; 

Schiltz et al., 2010; Schiltz and Rossion, 2006), nor any other face-responsive region, 

including the higher-level ATFA which was not localized in most previous studies. It is 

possible that these discrepant results in the FFA may be due to differences in the 

experimental design. In this study, we used a different design of the composite-face 

paradigm than was used in previous studies (Schiltz et al., 2010; Schiltz and Rossion, 2006). 
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Thus, it may be that the measurement of holistic processing in the FFA is less sensitive when 

using this design, for example due to differences in the frequency of top-same and top-

different conditions, as this may change participants’ expectations (see below). 

Furthermore, it is also known that repetition effects can sometimes differ across the 

duration of an experiment (Müller et al., 2013), thus it is possible that differences in the 

number of faces used in the stimulus set or differences in the number of trials could lead to 

differences in the measured repetition effects. 

We found higher BOLD responses when two faces were aligned and congruent (i.e. 

identical faces) compared to when they were aligned and incongruent (i.e. same top-halves, 

different bottom-halves) and this repetition-effect disappeared when faces were 

misaligned. Most studies find a repetition-suppression effect when subjects view two 

identical faces compared to when they view two different faces (Grill-Spector et al., 1999), 

although repetition-enhancement was also found in many studies (Segaert et al., 2013). We 

speculate that this repetition-enhancement effect might be due to the role of expectation in 

fMRI repetition effects. Expectations may modulate how stimulus repetition affects evoked 

neural activity. For example, the probability of repetitions occurring in an experimental run 

changes the repetition-effect strength (Larsson and Smith, 2012; Summerfield et al., 2008). 

In both the FFA and PPA the neural response to faces was reduced when subjects had higher 

expectation of seeing a face, compared to lower expectation of seeing a face (Egner et al., 

2010). In our experiment, there were more trials where participants perceived the top-

halves of the faces to be different compared to trials where they perceived them to be the 

same, due to the composite face illusion. Thus, subjects may expect top-different trials 

more often than top-same ones, leading them to have a lower BOLD response when they 

perceive the faces to be different compared to when they perceive them to be the same. It 

is worth noting that our expected pattern for the neural composite face effect is an 

interaction between congruency and alignment (larger congruency effect for aligned than 

for misaligned faces) regardless of whether there is a repetition enhancement or repetition 

suppression effect.  

4.3. Linking composite face effect in neural activity and behaviour 

We found that the strength of the neural composite face effect (i.e. congruency x 

alignment interaction) in the RSC and PPA is correlated with the behavioural composite face 
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effect measured with reaction times, but not with accuracy. The correlation between the 

behavioural composite face effect and the neural composite face effect measured in RSC 

and PPA suggests that the neural activity in these areas contributes to the strength of the 

behavioural composite face effect across individuals. The different results between the two 

behavioural measures might be because reaction times are sometimes more sensitive to the 

individual differences in the composite face effect (e.g. Richler et al., 2011a) or are more 

sensitive to measurements of the composite face effect when the stimulus presentation 

times are long, as in the present study (Rossion, 2013). One may also argue that our 

observed correlations with reaction times are just due to different neural responses in the 

RSC and PPA that are sensitive to reaction times or their associated attentional differences. 

This attention-associated account is unlikely to be the case for two reasons. Firstly, tasks 

requiring longer reaction times or greater attention (e.g. incongruent-identity conditions) 

often elicit stronger neural responses rather than the lower neural activations we observe in 

RSC and PPA (e.g. compared to congruent-identity conditions). Secondly, we found no 

theoretical basis that such reaction time or attention differences would only modulate 

neural responses in the RSC and PPA and not also other ROIs. However, we note that we 

cannot fully exclude differences in trial difficulty contributing to the responses in these 

regions, in particular as the negative deflection in these regions could be due to a greater 

deactivation during the more difficult aligned incongruent conditions.  

We separately investigated the neural activity and behavioural responses to the top-

same and top-different conditions, which allowed us to perform consistent analyses across 

neural and behavioural responses and to evaluate the relative contribution of these 

conditions to the composite face effect. The necessity of incongruent-identity top-different 

conditions for measuring holistic face processing with the composite paradigm is debated 

(Richler and Gauthier, 2013; Rossion, 2013). It has also been suggested that the composite 

face effect is mainly found when the target face part being matched is more similar rather 

than different (Goffaux, 2012; Goffaux et al., 2013). We found different patterns of 

behavioural responses across these two conditions: the composite face effect was primarily 

driven by top-same conditions whereas the top-different conditions showed no evidence of 

a composite face illusion. Consistent with the behavioural responses, the neural composite 

face effect was observed with the top-same conditions but not with the top-different 
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conditions. Nonetheless, it is worth noting that we only observed a three-way interaction in 

one (i.e. the RSC) of 10 ROIs tested. Together, these results suggest a more prominent role 

of top-same than top-different conditions in measuring the behavioural and neural 

composite face effect.  

4.4. Conclusion 

Holistic processing has been measured with different research paradigms, and different 

underlying cognitive and neural processes have been proposed (e.g. Harris and Aguirre, 

2008; Haxby et al., 1999; Maurer et al., 2002; Ross et al., 2018; Schiltz et al., 2010). In the 

present study, when holistic processing is measured using a face alignment effect, we found 

that the FFA2 showed a trend toward responses consistent with holistic face processing 

whereas the LOC showed a pattern of responses consistent with part-based face processing. 

Furthermore, we found neural activity consistent with holistic processing of face identity, a 

key component of the composite face effect (i.e. congruency x alignment interaction), in the 

RSC and PPA, two brain regions sensitive to configural and relational processing of scene 

elements, and this neural composite face effect linked to behaviour. These results suggest 

that the composite face effect is supported by neural processes both within and outside of 

the face-responsive brain network.  
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