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Abstract
The numerical weather prediction (NWP) of fog remains a challenge, with
accurate forecasts relying on the representation of many interacting physical
processes. The recent Local And Non-local Fog EXperiment (LANFEX) has gen-
erated a detailed observational dataset, creating a unique opportunity to assess
the NWP of fog events. We evaluate the performance of operational and research
configurations of the Met Office Unified Model (MetUM) with three horizon-
tal grid lengths, 1.5 km and 333 and 100 m, in simulating four LANFEX case
studies. In general, the subkilometre (sub-km) scale versions of MetUM are in
better agreement with the observations; however, there are a number of sys-
tematic model deficiencies. MetUM produces valleys that are too warm and
hills that are too cold, leading to valleys that do not have enough fog and hills
that have too much. A large sensitivity to soil temperature was identified from
a set of parametrisation sensitivity experiments. In all the case studies, the
model erroneously transfers heat too readily through the soil to the surface, pre-
venting fog formation. Sensitivity tests show that the specification of the soil
thermal conductivity parametrisation can lead to up to a 5-hr change in fog onset
time. Overall, the sub-km models demonstrate promise, but they have a high
sensitivity to surface properties.
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1 INTRODUCTION

Fog has large human and environmental impacts, which
are often understated; the reduction in visibility caused
by fog leads to huge disruptions for air, sea, and land
transport. The financial and human losses are comparable

to losses from tornadoes or severe tropical storms (Gul-
tepe et al., 2007). Fog is the second most likely cause of
weather-related aviation accidents behind strong winds
(Gultepe et al., 2019). Over 10,000 people died in India in
2017 from fog-related traffic accidents (Kapoor, 2019). Sim-
ilarly, in the United States, between 1995 and 2004, 13,720
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people were reported to have died in fog-related accidents
(Forthun et al., 2006). Fog and low cloud can have a desta-
bilising effect on electricity grids, due to the rapid change
in radiation conditions for photovoltaic installations (Köh-
ler et al., 2017). Fog can also lead to persistent temper-
ature inversions, which result in pollution stagnating in
the lower atmosphere for extended periods, with conse-
quences for human health (Tanaka et al., 1998, Nemery
et al., 2001). An example of the impact fog can have was the
widespread fog event of November 2, 2015, which resulted
in the cancellation of flights from airports across the UK, in
particular Heathrow airport, where over 112 flights were
cancelled (Cleaton, 2015). Other methods of transport
were also disrupted, with speed restrictions implemented
on roads, reports of traffic accidents due to the fog, and the
cancellation of ferries.

In contrast, fog can also have a positive impact on
human life. In arid regions, fog water can be collected as an
additional fresh water source (Schemenauer et al., 1988),
while, in the Montane cloud forests of Taiwan, fog is a
regulator for the entire ecosystem (Li et al., 2015). In Cal-
ifornia’s central valley, daytime fog enhances the winter
chill essential for improving crop yield in the following
season’s buds, flowers, and fruits (Baldocchi and Waller,
2014).

Radiation fog forms primarily by radiative cooling,
under clear skies, within a nocturnal surface inversion
and with low levels of turbulence leading to near-surface
saturation (Price, 2019). It develops vertically within the
stable boundary layer and is referred to as shallow stable
radiation fog hereafter. As the fog deepens, it can become
opaque to long-wave radiation (in the 8–12𝜇m range
commonly measured by instrumentation), and therefore
defined as optically thick fog. An optically thick fog cools
from the fog top, generating turbulence from the weak con-
vection created as the negatively buoyant air at the fog
top sinks. After on average two hours, this causes a transi-
tion in boundary-layer stability from stable to well-mixed
(Price, 2011). Within this well-mixed boundary layer, a
deep adiabatic radiation fog can develop, that is, the lapse
rate becomes saturated adiabatic. This boundary-layer sta-
bility transition occurs in around 50% of radiation fog
cases seen at the Met Office Meteorological Research Unit,
based at Cardington, Bedfordshire, UK (Price, 2011). Deep
adiabatic radiation fogs are typically longer-lived, with
a greater potential to persist during the day and thus a
greater impact (Price, 2011). The stability transition is
sensitive to various conditions, including aerosol concen-
trations (Boutle et al., 2018; Poku et al., 2019), wind speed,
and humidity (Smith et al., 2018).

To mitigate against the socio-economic impacts of fog,
a reliable forecast is essential. Simulating fog accurately
in numerical weather prediction (NWP) models remains a

huge challenge, due to the complex feedbacks between key
processes, including radiative cooling, turbulence, micro-
physics, and surface interactions (e.g., Tudor,, 2010; Van
der Velde et al., 2010; Steeneveld et al., 2014; Pu et al.,
2016). Fog is influenced by many factors that NWP models
cannot resolve fully. Unfortunately, many of these pro-
cesses interact with each other and are highly sensitive,
often leading to unreliable and overly sensitive model
configurations. Compensating errors in parametrised pro-
cesses are commonplace (Steeneveld and de Bode, 2018).

Subkilometre (sub-km) scale models are becoming a
realistic possibility for fog forecasting, due to increas-
ing computational resources. At present, they are often
restricted to relatively small areas, where the population
density is large and the impact of fog is greatest, that is,
city-scale models. The high horizontal resolution of these
models allows them to partially resolve surface and topo-
graphic heterogeneities, and consequently processes that
impact the spatial variability of fog (Vosper et al., 2013),
including advection and turbulence caused by drainage
flows and cold-pool formation (Porson et al., 2011; Gul-
tepe et al., 2016; Hang et al., 2016; Price, 2019; Ducongé
et al., 2020). One of the earliest examples is the Lon-
don Model (Boutle et al., 2016), which has been running
semi-operationally since September 2013, with other ver-
sions being developed for additional locations (e.g., Delhi:
Jayakumar et al., 2018).

Representing the interaction between the atmosphere
and the surface correctly can be key to modelling the
formation and development of fog (Steeneveld and de
Bode, 2018). Land-surface properties, such as the land-use
dataset (Jayakumar et al., 2018), thermal roughness
(Weston et al., 2019), albedo, snow depth (Zhang and Pu,
2019), and soil properties (Bergot and Guedalia, 1994;
Guedalia and Bergot, 1994; Duynkerke, 1999; Maronga
and Bosveld, 2017; Steeneveld and de Bode, 2018), in addi-
tion to the land-surface model (Chachere and Pu, 2019;
Weston et al., 2019), are all critical. One key soil property
investigated in 1D models is the soil thermal conductiv-
ity (Bergot and Guedalia, 1994; Steeneveld and de Bode,
2018). Both Bergot and Guedalia (1994) and Steeneveld
and de Bode (2018) found that fog onset was sensitive to
the specification of the soil thermal conductivity. Indeed,
the latter found the soil thermal conductivity and tur-
bulent boundary-layer mixing to be the most influential
parameters affecting fog onset. These studies show the
impact that the surface component of models have on
simulations of fog, but many of these use 1D models with-
out advective processes. It is also necessary to understand
how sensitive the recently developed sub-km scale mod-
els are to aspects of the surface model such as the soil
thermal conductivity. Additionally, heterogeneities in the
soil may feed back on the near-surface dynamics and
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thus quantification of model sensitivities is crucial. The
removal of moisture at the surface via processes such as
dew deposition (Bergot et al., 2007), gravitational settling
of droplets (Müller et al., 2010), and the direct impaction
of droplets on vegetation (Von Glasow and Bott, 1999) is
crucial for the accurate prediction of fog events.

We use four cases from the Local And Non-local Fog
EXperiment (LANFEX), a recent field campaign under-
taken in the UK, to improve our understanding and mod-
elling of fog events (Price et al., 2018). Understanding
the sensitivity of sub-km NWP models to different pro-
cesses is crucial for their development. LANFEX provides
a bespoke set of high spatial resolution observations in two
locations, ideal for a detailed evaluation. Previous evalu-
ations have been limited by a single site or lower spatial
resolution observations. Using the LANFEX observations
and the Met Office Unified model (MetUM), we evaluate
the performance of three configurations of MetUM with
different horizontal grid lengths in simulating radiation
fog events. Specifically, we evaluate the performance of the
current operational version for the UK (Bush et al., 2020),
a sub-km scale NWP configuration similar to the London
Model (Boutle et al., 2016), and a research version with
100-m grid length similar to Vosper et al. (2013). We will
also assess the sensitivity of the simulated fog to the soil
thermal conductivity parametrisation in a sub-km scale
configuration.

2 MODEL, OBSERVATIONAL,
AND CASE STUDY DETAILS

2.1 Observations

We utilise data collected during the LANFEX field cam-
paign (Price et al., 2018). LANFEX ran from November
2014–April 2016 and was organised by the UK Met Office

Meteorological Research Unit, based at Cardington, Bed-
fordshire. The experiment was designed to investigate the
life cycle of radiation fog in two areas of contrasting orogra-
phy: one in Bedfordshire, which is relatively flat (Figure 1),
and one in Shropshire, which has more complex orography
(Figure 2). Over the study period, continuous measure-
ments were taken at various locations, with additional
measurements taken during intensive observation periods
(IOPs) via a tethered balloon, radiosondes, and an infrared
camera (see Price et al., 2018 for details).

Cardington, Bedfordshire (52◦06′N, 0◦25.5′W) is
located in a wide shallow valley surrounded by arable
fields with low hedges. The valley is approximately 10 km
wide at Cardington, rises at its sides by 30–40 m and has
a down-valley gradient of 1:375 or 0.15◦ (Figure 1). The
relatively homogeneous orography of the Cardington
area allows the study of fogs where advective effects are
believed to be relatively small, although they can still have
an impact (Porson et al., 2011).

The Shropshire region (centred on 52◦25.2′N, 3◦6′W)
was chosen for its array of moderate hills and valleys
(Figure 2). These range in width from 1–4 km and in val-
ley to hilltop height from 100–150 m. Land use is mostly
pasture, with low hedges and some forestry. The Shrop-
shire system of valleys provides conditions where both in
situ and advective processes, such as the formation of cold
pools and katabatic or anabatic flows, play an important
role in all stages of a fog event.

Two types of observing station were deployed: in total,
13 smaller fog-monitor stations and six more extensively
instrumented main sites. The fog monitor sites were sin-
gle weather stations, which measured screen temperature
and relative humidity, 2.5 m winds, surface pressure, and a
prototype fog-droplet spectrometer designed to capture the
microphysical properties of fog. The main sites had a vari-
ety of in situ and remote sensing equipment, such as lidars,
each site with a slightly different suite of instruments.

F I G U R E 1 Model orography shown as height above mean sea level (m), for (a) UM100, (b) UM333, and (c) UM1.5 in the UM100
Bedfordshire domain. Circles mark valley sites and triangles mark hill sites. Labelled sites are referred to in the text
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F I G U R E 2 Model orography shown as height above mean sea level (m), for (a) UM100, (b) UM333, and (c) UM1.5 in the centre of the
UM100 Shropshire domain. Circles mark valley sites and triangles mark hill sites. Labelled sites are referred to in the text

These sites were based around a mast (10, 16, or 50 m),
which was extensively instrumented. A breakdown of the
instrumentation and the uncertainty in the measurements
can be found in Price et al. (2018).

2.2 Selected case studies

We chose four out of the 19 IOPs from LANFEX as case
studies: IOPs, 1, 12, 17, and 18. IOPs 1, 17, and 18 were
at the Bedfordshire location and IOP12 at the Shropshire
location. The four cases were selected to be representative
of a variety of foggy events and have high data availabil-
ity. These four case studies were chosen to be distinct,
with a broad range of conditions and evolutions, as briefly
described here.

• IOP1: November 24/25, 2014, Cardington. A case of pro-
longed shallow stable radiation fog, which persisted
for 10 hr then transitioned to a deep adiabatic radia-
tion fog for an hour before dissipation. This case was
selected to test the model’s performance for fog in a sta-
ble boundary layer with clear skies. This case study was
the focus of Boutle et al. (2018), who used the LANFEX
data, the operational Met Office Unified Model, and the
UCLALES-SALSA LES model to investigate aerosol–fog
interactions. Here, we complement this work by inves-
tigating the impact of horizontal resolution and surface
interaction on fog representation.

• IOP12: October 1/2, 2015, Shropshire. A case of thin
spatially varying fog, followed by a cloudy interlude
and then a period of deeper fog constrained to the val-
leys. Limited observations from IOP12 were presented
in Price et al. (2018) to illustrate the heterogeneity of
fog in a complex valley system and to assess briefly
the performance of two different NWP models (MetUM
and Meso-NH) at 100-m horizontal resolution. The
Meso-NH model at 100-m horizontal resolution is anal-
ysed in detail by Ducongé et al. (2020). Here, we expand
this analysis to evaluate MetUM with grid lengths of

1.5 km and 333 and 100 m, as well as parametrisation
sensitivity.

• IOP17: Jan 20/21, 2016, Cardington. A case of patchy
fog for a short period during the night, which did not
develop into a persistent fog. This case enables the
assessment of the model for a fog case with variable
and relatively strong wind speeds, which were observed
to be key to the patchy nature of the fog and its short
duration.

• IOP18: March 10/11, 2016, Cardington. A shallow sta-
ble radiation fog case with a rapid transition into a
deep adiabatic radiation fog. This case will be used to
assess the model’s performance in simulating fog within
a well-mixed boundary layer.

2.3 The Met Office unified model

MetUM solves the nonhydrostatic, deep-atmosphere
equations of motion using a semi-implicit,
semi-Lagrangian numerical scheme (Wood et al., 2014).
The model is run on an Arakawa C staggered grid
(Arakawa and Lamb, 1977) with rotated latitude/lon-
gitude coordinates and a Charney–Phillips staggered
hybrid-height terrain-following coordinate system in the
vertical (Charney and Phillips, 1953). The main prognos-
tic variables are potential temperature, pressure, density,
five moisture variables (vapour, liquid, rain, ice, and
graupel), and the three components of wind. MetUM con-
tains a set of physical parametrisations to represent the
effect of subgrid-scale processes. MetUM is designed to be
somewhat “scale aware” and, as such, some parametri-
sations have been designed so it is not necessary to
change them manually when altering the resolution (e.g.,
boundary-layer scheme: Boutle et al., 2014b; microphysics
scheme: Boutle et al., 2014a). MetUM parametrisations
include radiation (based on Edwards and Slingo, 1996),
a blended boundary-layer scheme for turbulent mixing
(Boutle et al., 2014b), a subgrid cloud parametrisation
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(based on Smith, 1990), and a mixed-phase cloud micro-
physics parametrisation (based on Wilson and Ballard,
1999, with various adjustments: for example, Boutle et al.,
2014a; 2018). The blended boundary-layer scheme (Boutle
et al., 2014b) is used, which blends the 1D scheme of Lock
et al. (2000) with the 3D Smagorinsky scheme, dependent
on the resolution and flow regime, allowing for a seamless
transition at higher resolutions. In stable boundary lay-
ers, the 1D scheme uses the “Sharpest” stability function
(Lock et al., 2000).

MetUM is coupled to the Joint UK Land Environment
simulator (JULES: Best et al., 2011). JULES contains infor-
mation about the properties of the land surface, such as
albedo and surface roughness. It models the soil moisture
and temperature, providing the surface boundary condi-
tions to MetUM. The soil model has four vertical levels and
calculates the fluxes of temperature and moisture between
the vertical levels. JULES uses a tile scheme approach,
with each grid point containing a fraction of nine different
land-surface tiles, each with their own roughness length
and albedo as well as other properties: five for vegetation
and four for nonvegetation.

MetUM has a broad range of uses across multiple
scales, from global (Walters et al., 2019) to regional (Bush
et al., 2020) to city scale (Boutle et al., 2016). At regional
scales, there are two configurations: for the midlatitudes
and for the Tropics (Bush et al., 2019). We use the midlati-
tude configuration.

Certain parametrisations are particularly relevant for
radiation fog. Droplet settling, for example, is the process
of cloud droplets falling under gravity and it is calcu-
lated using Stoke’s law. Another aspect of the microphysics
scheme that impacts fog liquid water content directly
is the prescribed reduction in the number of droplets
near the surface; this “droplet taper” was introduced into
MetUM by Wilkinson et al. (2013) and has recently been
developed further (Boutle et al., 2018). Current opera-
tional versions of MetUM use a fixed droplet number of
50 cm−1 from the surface up to 50 m and then taper to an
aerosol-dependent value at 150 m altitude. Other LANFEX
studies have focused on fog microphysics (Boutle et al.,
2018; Poku et al., 2019; Ducongé et al., 2020). The micro-
physics scheme used here was evaluated for fog against the
LANFEX observations and large-eddy simulations (Boutle
et al., 2018). The reduced droplet number offered a statis-
tical improvement in evaluation against an independent
data set.

MetUM contains a prognostic single-species aerosol,
which is used to calculate visibility and droplet num-
ber above the fixed droplet taper-height threshold, 150 m.
The current visibility diagnostic (Clark et al., 2008) uses
a single monodisperse dry aerosol concentration, which
is hydrated, based on screen temperature and humidity,

using a Köhler curve. Given sufficient moisture, the
scheme forms fog, with the size and number of particles
used to calculate the extinction coefficient, which is used
(in a version of Koschmieder’s Law) to calculate visibility
such that

Visibility = − ln(𝜖)
Nr2

m𝛽0 + 𝛽air
, (1)

where 𝜖 is the liminal contrast given a value of 0.02, N
is aerosol number density, rm is the mean droplet radius,
𝛽0 is a constant to account for the complexities of size
spectra and scattering, and 𝛽air is the extinction coeffi-
cient of clean air. The scheme’s aerosol is a single size
and has a fixed hygroscopy value, resulting in single-sized
droplets.

We run MetUM with three grid lengths, 1.5 km and 333
and 100 m, for the selected LANFEX case studies, referred
to as UM1.5, UM333, and UM100, respectively. UM1.5 is
currently the operational configuration and resolution of
MetUM for the UK (Bush et al., 2020), UM333 is simi-
lar to the London Model (Boutle et al., 2016) but with the
domain moved to the LANFEX sites, and UM100 is sim-
ilar to the version discussed by Vosper et al. (2013; 2014)
and Price et al.(2018). All simulations are initialised at
1200 UTC to capture the prefog cooling period. An exam-
ination of a 1500 UTC initialisation for IOP1 found that
MetUM was unable to cool sufficiently and had a warm
bias of 2 K by 1600 UTC. This result is similar to that shown
recently using other NWP models such as Román-Cascón
et al. (2016), Lin et al. (2017), and Chachere and Pu (2019).
For example, Lin et al. (2017) found there was a trade-off
between using a shorter lead time, which has more accu-
rate initial conditions, and using a longer lead time, which
has less accurate initial conditions but longer spin-up time.
Considering the results of Lin et al. (2017) and the results
from the IOP1 simulations, an initialisation time of 1200
UTC is a good compromise between ensuring accurate ini-
tial conditions and sufficient spin-up of the prefog cooling
period.

There are other differences between the three config-
urations with different grid lengths (Table 1). As the grid
length decreases, it is also necessary to reduce the time step
to ensure numerical stability. UM100 is run with 140 ver-
tical levels, as Vosper et al. (2013) showed that increasing
the vertical resolution improved the simulations of cold
pools. The other key difference between simulations is the
critical relative humidity (RHCrit) parameter, the grid-box
mean relative humidity at which condensation begins to
occur in a grid box. This parameter is designed to allow for
the subgrid-scale variability of relative humidity and thus
partial cloudiness within a grid box. At higher resolutions,
some of the subgrid humidity variability is resolved and
thus a higher RHCrit is appropriate.
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T A B L E 1 Model configuration differences between simulations

UM100 UM333 UM1.5

Horizontal grid length 100 m 333 m 1.5 km

Domain size Bedfordshire 40 km × 40 km 80 km × 80 km 1116 km × 1392 km

Domain size Shropshire 46 km × 35 km 80 km × 80 km 1116 km × 1392 km

Time step 4 s 12 s 60 s

RHCrit 0.99 at surface decreasing
to 0.9 at 3.5 km, constant
above

0.97 at surface decreasing
to 0.9 at 3.5 km, constant
above

0.96 at surface decreasing
to 0.8 at 1 km, constant
above

Number of vertical levels 140 70 70

Lowest model level 2 m 5 m 5 m

UM1.5 is initialised from its own analysis with a full 3D
VAR data assimilation and forced at its lateral boundary by
the global version of MetUM (Walters et al., 2017). UM100
and UM333 are initialised from the UM1.5 analysis,
including subsurface parameters, and are one-way nested
within UM1.5, with the boundary conditions updated
every 15 min. The initialisation and nesting configuration
are identical to those used in the London Model (Boutle
et al., 2016). In the Bedfordshire domain (Figure 1), the
main valley is resolved by UM1.5, with the other two reso-
lutions producing a lot more detail in the tributary valleys.
The orography in the Shropshire domain (Figure 2) is more
complex, with UM1.5 only resolving the widest most east-
erly valley. Both the UM100 and UM333 orography are
resolved in greater detail; UM333 captures the main val-
leys and ridges, but the detail in the narrowest valleys and
ridges is lost.

The specification of land use is at the same resolution
as the grid length of the atmospheric model. The land-use
dataset uses the Institute of Terrestrial Ecology (now part
of the Centre for Ecology and Hydrology) dataset (Bunce
et al., 1990), which has a resolution of 25 m and is recon-
figured to the model grid. Both domains are located in
generally rural areas and are dominated by the midlatitude
grass surface type. Boutle et al. (2016) performed a sen-
sitivity test using UM333 with the UM1.5 orography and
found that the fog in their simulation was spatially simi-
lar to the control UM1.5 simulation, that is, the orography
resolutions dominated the simulations of fog.

3 RESULTS

3.1 Horizontal resolution investigation

Here we discuss the performance of UM1.5, UM333, and
UM100 for the selected LANFEX case studies. In general,
MetUM produces valleys that are too warm after 1800 UTC

and hills that are too cold after 1500 UTC (Figure 3). For
the Bedfordshire simulations, the valley nocturnal warm
bias improves with resolution. UM1.5 has a valley warm
bias of 2 K at 0000 UTC, compared with a 1 K bias for
UM333 and a 0.5 K bias for the UM100 configuration. The
difference in the temperature bias for the hill sites is very
small, indicating that the benefit of the smaller grid length
in prefog temperature evolution is within the valleys in the
Bedfordshire domain.

Using IOP12 to assess MetUM at the orographi-
cally more complex location in Shropshire, the general
behaviour is similar to that in the Bedfordshire area, with
the valleys too warm and hills too cold after 1800 UTC.
UM1.5 is too cold overnight on the hills by more than 2 K
by 0000 UTC, and too warm in the valleys by around 1.5 K,
as it is not resolving the orographically driven flows in the
Shropshire area. UM333 represents the near-surface tem-
perature closest to the observations, with a valley warm
bias of around 1 K at 0000 UTC and hill cold bias of 0.5 K.
Surprisingly, UM100 is warmer than UM333 in the valleys,
with an average bias of 3 K by 0000 UTC and a trend very
similar to the UM1.5 configuration. UM100 on the hills
also has a cold bias, and is particularly cold between 2000
UTC and 2200 UTC, with a bias of approximately −2.5 K.

To investigate the relatively poor performance of
UM100 for temperature, we performed sensitivity tests by
reducing the domain size of UM333 to the same size as
UM100 (Table 1). The smaller domain resulted in a bias,
up to 3 K in the valleys, similar to that seen in UM100
and UM1.5. The influence of the boundary conditions
was clear throughout the entire domain. This implies that
UM100 is run over a domain that is heavily influenced by
the boundary conditions even over relatively short peri-
ods of time. Part of the benefit of using UM100 is to
improve the near-surface cooling through a better repre-
sentation of the surface, but this potential improvement is
partially negated by advection from the boundaries. Lean
et al. (2019) also ran MetUM with 100-m grid length for
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F I G U R E 3 Temperature bias (K), 1.5-m model temperature − 1.5-m observed temperature, for UM100 (blue triangles), UM333 (green
squares), and UM1.5 (red circles) simulations averaged for the valley (solid) and hill (dashed) sites, for (a) the average of all three
Bedfordshire cases and (b) the IOP12 Shropshire case

a domain size of 80× 80 km2 and 30× 30 km2, similar to
the two domain sizes used in our sensitivity experiments.
They found that it was necessary to use a larger domain
to avoid spin-up effects penetrating into the area of inter-
est in clear-sky convective boundary-layer situations. We
find that the domain size also has an influence on screen
temperature even in low-wind situations, so this will be a
contributing factor to the bias seen in the LANFEX cases
using 100-m grid length.

The spatial features of the temperature evolution sim-
ulated by the three configurations during the early night of
IOP12 can be compared (Figure 4). At 1800 UTC, all three
configurations have a similar temperature pattern, with
warmer air to the east. By 2100 UTC the difference between
simulations is pronounced. UM333 is coldest across the
whole domain. UM1.5 does not resolve the spatial vari-
ability in temperature, not capturing the hill–valley tem-
perature difference observed. Despite the larger bias in
the UM100 simulation, the contrast between the hill and
valley temperatures is more apparent than in the other
simulations, but these do not verify as well as UM333 when
compared with the point observations (Figure 3b). This is
partly because the UM333 simulation is generally colder,
which matches the observations better.

In short, all three configurations of MetUM evolve val-
leys that are too warm and hills that are too cold for
these radiation fog cases. This is also evident for each
Bedfordshire IOP separately, as well as averaged together
(Figure 3a). The sub-km scale simulations outperform
UM1.5 in terms of the nocturnal cooling within the valleys
in both locations, except for UM100 in Shropshire, which
is very similar to UM1.5. On the hills, the temperature
evolution is very similar between all three configurations,

with UM333 slightly outperforming the other two configu-
rations and comparing well with the observed temperature
in the Shropshire area. Our results here are contrary to
those of Hughes et al. (2015), who found that a version of
UM100 had a cold bias in the daily minimum tempera-
ture, particularly at a valley site, due to a lack of cloud in
UM100. Here, only IOP12 was influenced by cloud, and
this is discussed further in Section 4.

The prefog temperature biases seen in these four cases
are expected to impact the timing of fog formation. All
three simulations produce fog for all the events at all the
sites, except for IOP17, where the lower resolutions have
no fog (Figure 5). In IOP12, fog is simulated for the hilltop
site (Springhill), where none was observed. In most com-
parisons the simulated fog duration is too short. In general,
UM100 forms fog earlier than the other two resolutions,
particularly for the Bedfordshire cases, consistent with the
prefog cooling in UM100 being closer to the observations
(Figure 3). However, UM333 forms fog the latest, which
is generally less accurate compared with the observations,
despite having a smaller warm bias than UM1.5. The delay
in fog onset in UM333 compared with UM1.5 appears
to be caused by subtle differences in specific humidity,
∼ 0.1 g⋅kg−1 drier in the lowest 100 m in UM333.

Looking at IOP12 and the spatial variation in the time
fog forms, UM1.5 is unable to simulate the spatial dis-
tribution of fog correctly (Figure 5). For example, UM1.5
does not produce fog at the Jaybarns site, despite the com-
paratively prolonged fog observed, while, conversely, it
overproduces fog at the Springhill site. Given the tempera-
ture biases in UM1.5, this is the expected result: the valleys
are not foggy enough and the hills are too foggy. UM100
and UM333 simulate fog onset times more realistically
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F I G U R E 4 Screen-level
temperature (K) for IOP12 at (a,c,e)
1800 UTC and (b,d,f) 2100 UTC, for
(a,b) UM100, (c,d) UM333, and (e,f)
UM1.5. Observations are overlaid as
squares for the main sites and circles
for the fog monitor sites. The black
contours are orography in 100-m
intervals

than UM1.5 (e.g., IOP12 at Jaybarns) but they also have
similar issues: forming too much fog on the hills and
delaying formation in the valleys. IOP17 emphasises the
benefit of using the UM100 configuration, as this is the
only simulation able to reproduce the very shallow tran-
sient fog observed during this case study. In IOP18, all of
the simulations form fog late, but UM100 is closest to the
observations.

Another important aspect of the fog life cycle is the
boundary-layer stability transition, which is illustrated by
the change in hatching in Figure 5. Following Price (2011),
modified to account for different instrument heights, we
define this transition as when the screen and 25-m temper-
atures are within 0.1 K. Where the highest tower observa-
tion is lower than 25 m, the temperature from the highest
observation and the closest model level are used. Note

that this gives a discrete time for the stability transition,
whereas in reality this processes takes 2 hr on average
(Price, 2011). In general, the simulated stability transi-
tion is similar to that observed. For IOP1, all three sim-
ulations produce shallow stable radiation fog but do not
reproduce the short period of deep adiabatic radiation fog.
Overall, UM100 for IOP12 performs better than the other
simulations for the stability transition process, particu-
larly at Jaybarns and Pentre. For IOP18 at Cardington,
MetUM is unable to reproduce the shallow stable radia-
tion fog period from 2200 UTC until 0400 UTC. However,
all configurations produce the deep adiabatic radiation
fog, with UM100 the only configuration that produces a
short period of shallow stable radiation fog. In summary,
UM100 appears to have the best fog formation and stability
transition timing, but the overall accuracy is limited.
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F I G U R E 5 The duration of fog for all four case studies at
selected sites for the observations (black), UM1.5 (red), UM333
(green), and UM100 (blue). Bars with hatching indicate shallow
stable radiation fog and those without hatching indicate deep
adiabatic radiation fog. For the Blunham site, boundary-layer
stability cannot be assessed, as only one temperature measurement
is available. If no bar is plotted, then no fog is present. The V
indicates a valley site and H indicates a hill site

If MetUM produces fog, the subsequent timing of dis-
sipation appears relatively insensitive to the configuration
used—differences in dissipation time between the resolu-
tions are 1 hr 15 min at most. MetUM generally dissipates
fog earlier than observed, typically by 1 hr, as is seen at
nearly all sites and cases. This result is similar to that
found by Price et al. (2015), who found that no members
of a MetUM ensemble forecast were able to reproduce fog
that persisted during the day. This early dissipation of fog
in MetUM is a cause for concern, but is not investigated
further here and instead is reserved for future studies.

The spatial distribution of liquid water content (LWC)
is another key difference between the three MetUM simu-
lations (Figure 6). For IOP1, the spatial distribution of fog
in the UM1.5 simulation is very similar to the UM100 run,
with a similar area of fog located to the southwest and
the centre of the domain. The similarity between UM1.5
and UM100 can be partly attributed to the domain size,
as mentioned in relation to the near-surface temperature.
The sensitivity test using UM333 with a reduced domain
also produces a similar spatial distribution of LWC to
UM1.5 and UM100 for IOP1. In the UM333 simulation,
the fog to the centre of the domain is not present and the
fog area to the southwest covers a smaller area. For IOP12,
the fog is generally constrained to the valleys and is much
denser in UM100 than UM333. Indeed UM100 and UM1.5
generally produce more fog than UM333, which simulates
patchier fog.

Given the deficiency in the representation of valley
cooling, it is vital to assess the model representation of val-
ley dynamics to see whether these flows lead to excessive

mixing in the boundary layer, which would prevent cool-
ing near the surface. In general, UM100 does resolve
near-surface flows better than UM333 and UM1.5 (not
shown). Given the good representation of the valley flow
in UM100 and the reasonable representation in UM333,
errors in the valley winds are unlikely to be the cause of
the valley temperature biases. These results here are sim-
ilar to those found by Vosper et al. (2013), who showed
that MetUM with 100-m grid length, a very similar set-up
to UM100 used here, was in good agreement with the
observed winds in a valley system and an improvement
compared with the operational MetUM with 1.5-km grid
length.

In summary, the sub-km versions of MetUM outper-
form UM1.5. However, temperature biases remain: the
valleys are too warm and the hills too cold, leading to
valleys that are not foggy enough and hills that are too
foggy. The following section investigates potential causes
for these biases through sensitivity experiments that high-
light improvement opportunities.

3.2 Soil thermal conductivity
investigation

The interaction between fog and the underlying surface
has a key role in the life cycle of fog events, and so the
modelling of fog is sensitive to the land-surface model
(Chachere and Pu, 2019; Weston et al., 2019). In particular,
the soil thermal conductivity has been shown to be crucial
in simulating fog onset accurately (Bergot and Guedalia,
1994; Steeneveld and de Bode, 2018). Here we assess the
ability of MetUM to simulate the soil heat flux realistically
and examine the sensitivity to the soil thermal conductiv-
ity parametrisation.

The initial soil temperature simulated is very similar
to the observed soil temperature and within 1 K for all the
sites and cases shown (Figure 7). However, the soil cools
too quickly in the simulations. The temperature of the sur-
face is too warm overnight, by up to 4 K for the Skyborry
site for IOP12, for all simulated cases, with the exception
of IOP1. During IOP18, MetUM is too warm at Cardington
between 2100 UTC and 0400 UTC, the period of shallow
stable radiation fog, which is observed but not reproduced
by MetUM. The observed warming at 0300 UTC is caused
by optically thick fog, which is not simulated until 0600
UTC (Figure 5). The behaviour described here is, at least
in part, a result of a soil heat flux that is significantly larger
than observed, by up to 50 W⋅m−2 (Figure 8). Note that
here a positive soil heat flux is an upward flux towards the
surface, so MetUM transfers heat to the surface more read-
ily than observed. This additional flux of heat contributes
to the surface temperature bias seen for all cases and sites,
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F I G U R E 6 Liquid water content
(g kg−1) at 5 m for (a,c,e) IOP1 at 2230
and (b,d,f) IOP12 at 0500, for (a,b)
UM100, (c,d) UM333, and (e,f) UM1.5.
The black contours are orography in
(a,c,e) 25-m intervals and (b,d,f) 100-m
intervals

with the exception of IOP1 at Cardington. The surface tem-
perature bias will also contribute to the near-surface air
temperature bias discussed in Section 3.1, as the simulated
screen temperature is calculated using the surface tem-
perature. Note that the other components of the surface
energy budget are modelled very closely to those observed
(not shown). In clear skies, the net radiation flux is sim-
ilar to the observed value, but differences occur due to
cloud cover and fog optical thickness. IOP12 is a prime
example of this, with the large increase in surface temper-
ature at 0000 UTC caused by cloud that was observed but
not simulated by MetUM.

One possible reason for these differences could be
biases in soil moisture leading to a bias in the soil thermal

conductivity. However, an assessment of the soil moisture
showed no systematic bias: some cases and sites were too
moist and others too dry, whereas all cases had a soil heat
flux bias. Previous studies have focused on the impact of
soil thermal conductivity on fog simulations in 1D mod-
els (Bergot and Guedalia, 1994; Guedalia and Bergot, 1994;
Steeneveld and de Bode, 2018). These demonstrate a sen-
sitivity to soil thermal conductivity, either by perturbing
a fixed value or by perturbing soil moisture. However, the
JULES land-surface model offers an alternative approach,
enabling an assessment to the sensitivity from uncertain-
ties in the parametrisation of the relationship between soil
thermal conductivity and soil moisture. Other parame-
ters that may influence the soil heat flux are discussed in
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F I G U R E 7 Soil temperature at 1 cm (K, green) and surface temperature (K, blue) for (a) IOP1 Cardington, (b) IOP18 Cardington, (c)
IOP12 Jaybarns, and (d) IOP12 Skyborry. Lines show observations (solid), control UM333 (dashed), and UM333 with the alternative soil
thermal conductivity simulation based on Cox et al., (1999) (dot–dashed)

Section 4. The sensitivity to the soil thermal conductivity
parametrisation is now examined.

JULES calculates the soil heat flux (G, W⋅m−2) via the
following equation;

G = 𝜈[𝜎𝜖𝜖s(T∗)4 − 𝜎𝜖𝜖s(Ts1)4 +
𝜌cp

racan

(T∗ − Ts1)]

+ (1 − 𝜈)𝜆soil(T∗ − Ts1), (2)

where 𝜎 is the Stefan–Boltzmann constant, 𝜖 the emissivity
of the vegetation, 𝜖s the emissivity of the soil, T* the sur-
face temperature, Ts1 the soil level 1 temperature, 𝜌 the air
density, cp the specific heat capacity of air, racan the aerody-
namic resistance between the surface canopy of vegetation
and the underlying soil, and 𝜆soil the soil thermal conduc-
tivity (Best et al., 2011). Every JULES vegetation surface
tile contains a fraction of bare soil and 𝜈 is the fraction

of a tile that is vegetation, with the remaining fraction
being bare soil. 𝜈 is a function of leaf area index and rep-
resents the direct interaction of the atmosphere with soil
over an area of vegetation. JULES contains options for two
methods of calculating the soil thermal conductivity (Best
et al., 2011). The control simulations use the Dharssi et al.
(2009) method, which is a simplified version of Johansen
(1975), which relates soil thermal conductivity and soil
moisture:

𝜆 = (𝜆s − 𝜆dry)Ke + 𝜆dry, (3)

where Ke is the Kersten number:

Ke =

{
log(𝜃∕𝜃s) + 1 if (𝜃∕𝜃s) ≥ 0.1,
0 otherwise,

(4)
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F I G U R E 8 Observed (solid black), control UM333 (dashed cyan), and UM333 with with the alternative soil thermal conductivity
simulation based on Cox et al., (1999) (dot-dashed magenta) soil heat fluxes (W m−2), for (a) IOP1 Cardington, (b) IOP18 Cardington, (c)
IOP12 Jaybarns, and (d) IOP12 Skyborry. The dotted black line show the heat flux measured by an alternative Hukseflux HFP01SC-10
instrument. The error bars show the 20% uncertainty in the soil heat flux measurements

𝜆s =
𝜆
𝜃s

u
water𝜆

𝜃s
f

ice

𝜆
𝜃s
water

𝜆u
s , (5)

𝜆u
s = 1.58 + 12.4(𝜆dry − 0.25), (6)

where 𝜆 is the thermal conductivity of soil, 𝜆s is the ther-
mal conductivity of saturated soil, 𝜆water is the thermal
conductivity of water, 𝜆ice is the thermal conductivity of
ice, 𝜆dry is the thermal conductivity of dry soil, 𝜃 is the
soil moisture concentration, 𝜃s is the soil moisture concen-
tration at saturation, and 𝜆u

s is the unfrozen saturated soil
thermal conductivity, which is constrained to 1.58 ≤ 𝜆u

s ≤

2.2. 𝜃s
f = 𝜃s[Sf∕(Su + Sf)], 𝜃s

u = 𝜃s − 𝜃s
f , where Su and Sf are

the unfrozen and frozen water contents as a fraction of
saturation.

An alternative scheme, described in Cox et al. (1999),
relates soil thermal conductivity and soil moisture as

𝜆 = (𝜆s − 𝜆dry)𝜃∕𝜃s + 𝜆dry, (7)

𝜆s = 𝜆
𝜃s

u
water𝜆

𝜃s
f

ice𝜆dry∕𝜆
𝜃s
air. (8)

Best et al. (2011) state that the Cox et al. (1999) scheme
generally gives smaller values of soil thermal conductivity,
so it is expected to lead to smaller heat fluxes and lower sur-
face temperatures. To assess the sensitivity of fog forecasts
in the sub-km scale MetUM to the soil thermal conduc-
tivity parametrisation, UM333 was rerun for all cases with
the Cox et al. (1999) scheme; these sensitivity simulations
are referred to as C99 hereafter.
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F I G U R E 9 The duration of fog for all four selected case
studies at selected sites for the observations (black), UM333 control
(cyan), and UM333 with Cox et al., (1999) (magenta). The V marks
valley sites and H marks hill sites

For C99, there is a reduction in the soil heat flux of
up to 10 W⋅m−2 in all cases and locations, although the
soil heat fluxes are still larger than observed (30–60 W⋅m−2

compared with 10–30 W⋅m−2, Figure 8). The reduction in
soil heat flux impacts the other components of the surface
energy budget. Both the sensible and latent heat fluxes,
when the boundary layer is stable, are reduced by less
than 1 W⋅m−2. The remaining energy reduction is in the
upwelling long-wave flux, due to a decrease in surface tem-
perature of approximately 2 K (Figure 7). The reduction
in surface temperature is generally in better agreement
with the observations (over all IOPs, six out of seven times
C99 is in better agreement with the observations). IOP1
is the case when the surface temperature is not in better
agreement with the observations; here, there is an ini-
tial cold bias in the soil temperature of 1 K and thus the
poorer surface temperature evolution in C99 can in part be
apportioned to the soil temperature bias.

In all scenarios, the C99 simulations produce fog ear-
lier (Figure 9). For example, in IOP1 the C99 scheme
results in fog formation 4 hr earlier than the control, closer
to the observed onset time. C99 also allows UM333 to pro-
duce fog at both sites during IOP17. For valley sites in
IOP12, the C99 scheme is able to form fog within two dis-
tinct periods, as observed—although the break in the fog
is not at the correct time (which is related to the transient
cloud layer). The hill site, Springhill, now produces fog for
a longer duration, which is in poor agreement with the
observations, despite the Springhill surface temperature
and ground heat flux coming closer to the observed values
before the cloud layer advects over Springhill. However,
the difference between the model and observations after
midnight appears to be caused by differences in the cloud
layer and how the model responds to this feature. Finally,
despite C99 producing surface temperatures closer to those
observed between 2100 UTC and 0400 UTC at Cardington
during IOP18, it is still unable to capture the shallow stable
fog observed at this time.

In summary, UM333 produces fog earlier with the
Cox et al. (1999) scheme than with the Dharssi et al.
(2009) scheme, which is generally in better agreement
with the observations. Other model issues, for example
the transient cloud layer, appear to be responsible for
the periods where there is a degradation in the forecast
arising from this change in the soil thermal conductiv-
ity scheme. Furthermore, the Cox et al. (1999) scheme
produces surface temperatures and a lower soil heat flux
in better agreement with the observations. In situations
when the surface temperature is in worse agreement, the
duration of the fog is still in better agreement with the
observations.

4 DISCUSSION

We have shown that biases in the soil heat flux lead to a
degradation in the skill of simulations of fog in a sub-km
scale NWP model. Using an alternative soil thermal con-
ductivity parametrisation reduces the bias in the soil heat
flux and typically improves the surface temperature and
fog evolution. Previous studies have highlighted the sensi-
tivity of fog simulations in a 1D context that do not include
advection and any heterogeneity in soil properties (Bergot
and Guedalia, 1994; Steeneveld and de Bode, 2018). We
have shown for our four cases and various locations that
the specification of the soil thermal conductivity can lead
to a change in fog onset time of between 30 min and 5 hr,
depending on the case. This is broadly in agreement with
the change in fog onset time of up to 8 hr found by Bergot
and Guedalia (1994). We have demonstrated the critical
importance of the soil parametrisations in recently devel-
oped sub-km scale models, as well as in the 1D context
found in previous studies.

Other aspects of the model may also impact the soil
heat flux. One aspect that impacts the soil thermal conduc-
tivity and can impact fog simulations is the soil moisture
(Guedalia and Bergot, 1994; Maronga and Bosveld, 2017).
We examined the MetUM soil moisture and found no sys-
tematic biases. A negative soil moisture bias, which was
seen in IOP17 and IOP18 and half the sites for IOP12,
would result in a smaller soil thermal conductivity and
smaller soil heat flux. As the soil heat flux is systemat-
ically too large, the soil moisture errors were concluded
not to be the cause. Additionally, IOP1 with the Cox et al.
(1999) scheme produced a surface temperature lower than
observed and it was the only case with an initial soil tem-
perature bias, indicating that in some cases the use of the
Dharssi et al. (2009) scheme could be compensating for
errors in the initial soil temperature. This highlights the
need for accurate and representative soil measurements
for data assimilation (Rémy and Bergot, 2009).
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The LANFEX sites were all located over grass and, as
such, all the model surface tiles are grass type. JULES rep-
resents the thermal resistance of the grass canopy with
the (𝜌cp∕racan)(T∗ − Ts1) term of Equation 2. Maronga and
Bosveld (2017) found that perturbing the soil moisture in
a large-eddy simulator, and consequently the soil thermal
conductivity, did not impact the fog onset time. However,
they used a parametrisation that only accounted for the
interaction of the atmosphere with the surface canopy and
included no direct interaction with the soil. They stated
that this caused the lack of sensitivity, compared with
previous studies that did not have canopy insulation and
only modelled the interaction with bare soil (Guedalia and
Bergot, 1994). Every JULES vegetation surface tile con-
tains a fraction of bare soil and 𝜈 is the fraction of a tile
that is vegetation, with the remaining fraction being bare
soil. 𝜈 is a function of leaf area index (LAI), where 𝜈 =
1 − e−K∗LAI and K is 1 (Bush et al., 2020). Even though the
sites examined here are fully grass covered, that does not
mean the grass fully insulates the surface from the soil
in the manner of Maronga and Bosveld (2017). However,
the extent to which a grass canopy insulates the soil from
the atmosphere should be investigated further. Unlike pre-
vious studies, we have demonstrated the impact of soil
thermal conductivity on simulations of fog using a sur-
face scheme that represents both canopy resistance and
the direct interaction of the atmosphere with the soil. The
model used here allows for heterogeneities in the surface
temperature over a few grid lengths. The degree to which
surface property heterogeneities impact fog simulations
is not known and would be an interesting component of
future research.

Whilst previous studies have shown that fog simula-
tions are sensitive to the soil thermal conductivity either by
perturbing the soil thermal conductivity directly (Bergot
and Guedalia, 1994; Steeneveld and de Bode, 2018) or by
perturbing the soil moisture (Guedalia and Bergot, 1994;
Maronga and Bosveld, 2017), we have shown that simula-
tions of fog are sensitive to the choice of parametrisation
used to calculate soil thermal conductivity from soil mois-
ture, emphasising the need to constrain these parametri-
sations better.

We have shown that all our fog cases are impacted
by biases in the soil heat flux. However, each case has its
own weaknesses that impact fog simulation. A compar-
ison of the three different grid-length simulations with
the radiosondes during IOP1 revealed a specific humidity
bias of −1 g⋅kg−1 in the lowest 1000 m of the atmo-
sphere. Adding an additional 1 g⋅kg−1 within the lowest
1000 m resulted in UM100 reproducing a fog depth closer
to the observed depth measured by the cloud droplet
probe attached to the tethered balloon. Only IOP1 had
a humidity bias of this nature. The IOP1 humidity bias

and sensitivity test highlights the need for accurate and
representative observations for data assimilation into fog
forecasts.

The transient stratocumulus cloud layer during IOP12
was a challenge for MetUM to reproduce, with the sub-km
configurations not producing any cloud between 0000
UTC and 0300 UTC and the UM1.5 simulation producing
too little. Fog simulations can be sensitive to the subgrid
cloud scheme (Tudor, 2010; Boutle et al., 2016). The sub-
grid cloud scheme represents the impact of subgrid-scale
variability in humidity and thus partial cloudiness within
a grid box. Erroneous partial cloudiness caused by the sub-
grid cloud scheme impacts the surface radiation budget,
and consequently near-surface temperature and humid-
ity and thus fog. The specification of RHCrit (recall that
RHCrit is the grid-box mean relative humidity at which
condensation begins to occur) has been shown to be case-
and grid-length dependent (Boutle et al., 2016). Running
UM100 with the RHCrit value for UM1.5 (see Table 1)
reproduced a transient cloud layer closer to the observed
cloud layer measured by ceilometers at the main sites.
This delayed fog formation at Skyborry from 0100 UTC
(Figure 5) until 0400 UTC, in better agreement with the
onset time of the second period of fog at 0300 UTC.
The fog onset times at the other sites were almost unaf-
fected by this change. However, at the Springhill site the
reduction in RHCrit resulted in a greater liquid water
content value within the fog layer, despite no fog being
observed. This case study is a prime example of the
case- and location-dependent pitfalls of current subgrid
cloud schemes. The development and implementation of
schemes such as those of Furtado et al. (2016), which
removes the need to specify RHCrit but instead diag-
noses the subgrid-scale humidity variability from other
model variables, may be of use in fog prediction and
should be investigated. Ducongé et al. (2020) also found
this transient cloud layer to be a challenge to simu-
late using the Meso-NH model with a grid length of
100 m and found a sensitivity to the large-scale forcing
applied.

Identifying the cause of the case-dependent issues for
IOP17 and IOP18 is less clear-cut. IOP17 highlights how
a sub-km scale model can capture very thin transient fog
patches, which cannot be reproduced in lower resolution
configurations, as it reproduces additional variability in
near-surface temperature and humidity. The IOP18 fog
simulations are the least skilful of all cases, with UM100
performing best, producing fog at 0500 UTC instead of at
2200 UTC as observed at Cardington. All IOP18 simula-
tions contain a warm bias at screen level between 2200
UTC and 0400 UTC of approximately 1–2 K and a rela-
tive humidity bias of up to 8%, independent of the res-
olution and soil thermal conductivity used. Thus other
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parametrisations, for example turbulent mixing, may be
responsible for the performance.

5 CONCLUSIONS

We have performed an assessment of three NWP model
configurations with three different grid lengths, 1.5 km
and 333 and 100 m, of MetUM for four selected LANFEX
case studies. We present compelling evidence of the bene-
fit of using models at the sub-km scale for the numerical
weather prediction of fog. UM100 compared best with the
observations for wind and fog duration. At sites and for
cases when UM1.5 was unable to reproduce the observed
fog, the sub-km scale configurations are able to, with
UM100 coming closest to the observed duration of fog.
However, a warm bias within the valleys and a cold bias on
the hills at night remain in the sub-km scale models. The
temperature bias is reduced compared with UM1.5, with
UM1.5 producing a bias of 2 K at 0000 UTC in the valleys
and UM100 a bias of 0.5 K for cases and sites in an area of
less complex orography. Similarly, in the more orographi-
cally complex location, the sub-km versions perform better
in terms of the hill and valley temperature biases. UM1.5
produced a valley warm bias of 1.5 K and a hill cold bias
of 2 K, whereas UM333 produced a valley warm bias of
1 K and a hill cold bias of 0.5 K. We have demonstrated
that the sub-km scale configurations offer an improve-
ment compared with the kilometre-scale configuration,
reproducing the valley–hill temperature contrast better
and consequently producing a spatial variability in the fog
life cycle closer to observations. Previous work (e.g., Boutle
et al., 2016; Jayakumar et al., 2018) has focused on fog in
cities, where the urban surface heterogeneity has a large
influence; however, our findings show that there is also a
benefit for more rural locations.

Biases in the surface temperature and soil heat flux
were identified, which contributed to the valley warm bias.
Rerunning UM333 with an alternative soil thermal con-
ductivity parametrisation (Cox et al., 1999: C99) reduced
the soil heat flux bias and, in most cases, the improved
surface temperature improved the timing of fog onset, sug-
gesting that this scheme should be tested further for km-
and sub-km scale versions of MetUM designed to fore-
cast fog, such as the London Model (Boutle et al., 2016)
and the Delhi Model (Jayakumar et al., 2018). The Cox
et al. (1999) scheme appears to perform better than the
Dharssi et al. (2009) scheme for foggy situations (although
the Cox et al. (1999) scheme still produces substantially
higher soil heat fluxes compared with those observed).
However, this does not mean it would produce better
forecasts in general. A more complex scheme such as

the Johansen (1975) scheme, which includes the impact
of soil texture on soil thermal conductivity, could also
offer improvements over the simpler schemes currently
available in JULES. Other models may also benefit from
an investigation of their land-surface model, given the
sensitivity found here and the results of Steeneveld and
de Bode (2018), who also found soil thermal conductiv-
ity to be one of the most influential parameters on fog
formation.

The experiments presented here illustrate how sen-
sitive MetUM fog forecasts are to small changes in the
land-surface model; fog formation up to 5 hr earlier arises
from changing the method by which soil thermal con-
ductivity is calculated. To mitigate against this sensitiv-
ity, a perturbed physics approach could be employed. For
example, McCabe et al. (2016) perturbed aspects of the
microphysics and boundary-layer schemes for a MetUM
simulated fog event. They found that this approach gave
a greater ensemble spread and an improvement in the
probabilistic skill scores of visibility and temperature com-
pared with a control ensemble. We suggest that their
approach could be extended to include perturbations to
the land-surface model: for example, the soil thermal con-
ductivity. Recently, Wang et al. (2019) implemented pertur-
bations to the land surface initial conditions and physics
for a regional-scale ensemble with a resolution of 11 km,
which improved ensemble spread and reduced the mean
ensemble bias for surface variables. Here, we have high-
lighted the key role of the land-surface model on the
numerical weather prediction of radiation fog, and we
would emphasise that the development and evaluation of
sub-km models is crucial for future improvements of fog
forecasts.
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