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Organisms sometimes appear to use extravagant traits, or “handicaps”, to signal their quality to an interested receiver. Before

they were used as signals, many of these traits might have been selected to increase with individual quality for reasons apart

from conveying information, allowing receivers to use the traits as “cues” of quality. However, current theory does not explain

when and why cues of individual quality become exaggerated into costly handicaps. We address this here, using a game-theoretic

model of adaptive signalling. Our model predicts that: (1) signals will honestly reflect signaler quality whenever there is a positive

relationship between individual quality and the signalling trait’s naturally selected, non-informational optimum; and (2) the slope

of this relationship will determine the amount of costly signal exaggeration, with more exaggeration favored when the slope is

more shallow. A shallow slope means that a lower quality male would pay only a small fitness cost to have the same trait value as

a higher quality male, and this drives the exaggeration of signals as high-quality signalers are selected to distinguish themselves.

Our model reveals a simple and potentially widespread mechanism for ensuring signal honesty and predicts a natural continuum

of signalling strategies, from cost-free cues to costly handicaps.
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Impact Summary
Why do some organisms have such bizarre and extravagant

traits like the peacock’s tail? Our current understanding is

that these traits are probably used to signal an individual’s

quality to an interested receiver (e.g., a peacock’s quality to

a peahen). Yet other signals remain small and drab, so it is

not clear when and why natural selection favours highly ex-

aggerated signals. We use a mathematical model to explore

a potential explanation: the idea that most signalling traits

might have started out as naturally selected traits that were

positively related to the quality of the signaler, and this rela-

tionship may have been strong or weak (having a steep slope

∗These authors contributed equally to this work.

or shallow slope, respectively). When the relationship is weak,

it is initially not very costly for low-quality individuals to fake

a high-quality signal. In this case, our model predicts the evo-

lution of highly exaggerated signals, as high-quality signalers

try to distinguish themselves from low-quality ones. In con-

trast, when signaler quality is strongly related to a signalling

trait’s naturally selected optimum, it can be excessively costly

for a low-quality individual to fake a high-quality signal. As

a result, high-quality individuals do not need to try so hard to

distinguish themselves, and so signals do not become exagger-

ated. We conclude that all sorts of signaling traits–from costly,

exaggerated traits like the peacock’s tail to inconspicuous and

effectively cost-free signals–arise from the same general the-

ory. The crucial difference is how the traits started out, before

being used as signals.
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Biological signalling is famous for the extravagance of traits

used to convey information about the signaler’s quality (e.g., as

a mate, an opponent, or a symbiotic partner). A classic exam-

ple is the peacock’s tail because it seems so clearly exaggerated

beyond what could be useful for flight or any other function

beyond attracting mates (Darwin 1871). In such cases, the ex-

travagance of signals may convey honest information about male

quality because low-quality males would not ultimately benefit

from faking an extravagant signal (the handicap principle; Zahavi

1975; Grafen 1990a; Maynard Smith and Harper 2004; Searcy

and Nowicki 2005; Bradbury and Vehrencamp 2011). However,

not all signals are so obviously extravagant, and more recent mod-

els show that the stability of honest signalling need not involve

high costs paid by honest signalers (Hurd 1995; Lachmann et al.

2001; Számadó 2011; Holman 2012). We need a general theory

of biological signalling that can predict when signals will become

exaggerated and when they will not.

The problem of predicting signal exaggeration is particularly

relevant when signals originate from traits that already reflect in-

dividual quality. In the context of sexual selection, Fisher (1930)

suggested that female preferences originate as a response to pre-

existing, naturally selected male traits that were positively cor-

related with male quality. In this case, females could use those

male traits as cues of mate quality (where “cue” refers to a trait

that has not evolved for the purpose of conveying information;

Maynard Smith and Harper 2004). Signalling could then arise

if males co-opt the existing female preference for a particular

male trait, using it to “persuade” females to mate. Most sig-

nals presumably originated in a similar way (sometimes called

“ritualization”, Tinbergen 1952; see also Bergstrom et al. 2002;

Johnstone et al. 2009; Scott-Phillips et al. 2012). However, ex-

isting models of this scenario do not examine when and why

cues become exaggerated into costly signals. One relevant em-

pirical study suggests that the optimal tail length of male barn

swallows, in terms of maximizing aerodynamics, conveys almost

all of the information needed to assess their potential quality as

mates (Bro-Jørgensen et al. 2007). This underscores the basic

question: if signals evolve from traits that already reflect indi-

vidual quality, then when and why do they become exaggerated

at all?

Here, to address this question, we develop a general model

of signal evolution from pre-existing cues of individual quality.

Our approach extends a game-theoretic model of the handicap

principle (Grafen 1990a), by allowing signals to evolve from a

trait whose optimal value increases with individual quality. We

suppose that signallers benefit from using the trait as a signal

of quality (e.g., male birds start using tail length to persuade fe-

males), and our aim is to predict when such signals will require

exaggeration to remain informative. The model reveals a contin-

uum of potential signalling outcomes, including costly handicaps

and low-cost signals that are effectively equivalent to the pre-

existing cue.

Results
Our model is based on the game-theoretic approach of Grafen

(1990a). To ground the model in a concrete biological context,

we frame the signalling problem in terms of sexual selection and

mate choice in animals, where males are the signalers and fe-

males are the receivers. More generally, the model will apply to

analogous contexts, including offspring signalling their need to

parents (Godfray 1991; Wild et al. 2017) and plants signalling

their quality to pollinators or herbivores (Archetti and Brown

2004; Knauer and Schiestl 2015). In our approach, males have a

signalling strategy that matches their quality to a particular sig-

nal size, and females have a strategy that infers signaler quality

from signal size. We seek the joint evolutionarily stable strategy

(ESS; Maynard Smith and Price 1973), where no new signaler or

receiver strategies can invade the population. Our model there-

fore examines selection near evolutionary equilibria, and we use

comparisons among predicted equilibria (an approach known as

comparative statics) to gain insight about the origin and main-

tenance of signalling strategies. This approach avoids the extra

complications of a full population genetic model but is expected to

predict the same general features as the full model (see Appendix 5

of Grafen 1990b).

The following sections develop the model in two stages. We

first briefly outline the basic model from Grafen (1990a). We

then add the new assumption that the signalling trait is favoured

to increase with individual quality by natural selection in a non-

signalling context (i.e., the signalling trait originates as a cue).

The key difference between the models is that, in the basic model,

a non-signalling equilibrium means that the signalling trait is lost

altogether; in the extended model, a non-signalling equilibrium

is an optimal trait value that increases with individual quality.

In other words, we start with a positive relationship between

individual quality and a trait’s “non-informational” optimum. We

then ask: given that this relationship exists (and does not change),

how would selection for signalling exaggerate the trait beyond its

non-informational optimum?

BASIC MODEL

We first define the strategy set for males and females in the basic

model. Suppose that males differ in quality, a continuous trait q,

and that a male’s quality affects female fitness if she mates with

him, with higher quality males providing higher female fitness.

Our use of “quality” differs from other uses in animal biology

because the emphasis here is its effect on female fitness, rather

than male fitness—females may often prefer males with higher

fitness, but this need not be the case. We assume that females
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cannot directly observe male quality, but they are able to detect

another male trait, a, which may be correlated with quality. We

will refer to a as the “signalling trait”, while recognizing that the

trait can have a non-signalling function in the absence of signalling

selection. Males express the signalling trait on the basis of their

quality by the function A(q), so that for a given male, a = A(q). The

question for males is: how does the function A evolve, and what

might an equilibrium value be? Females treat a male with signal

level a as though his quality were P(a), so we can think of P as a

rule of inference (in our model, a completely sharp prediction of

the quality of a perfectly perceived male signal). The question for

females is: how does P evolve, and what are possible equilibrium

values? We make the assumptions that q, a, and p are all positive

numbers and that qmin � q � qmax. The probability distribution

function of quality among males is supposed to be G(q), and the

set of points of increase of G is the whole interval [qmin, qmax].

Next, we describe the fitness payoffs associated with male

and female strategies. We suppose that a male’s fitness w is a

function of his signalling trait, his quality as perceived by females,

and his true quality (w = w(a, p, q)). Crucially, male fitness

returns can depend on true quality because higher quality males

might benefit more from being perceived as a given quality or

they might pay a smaller cost for producing a given signal size

(as in our extended model below). A female’s fitness, on the

other hand, depends on how accurately she infers male quality:

underestimation can mean missing out on a high-quality mate,

and overestimation can mean being stuck with a low-quality mate.

We describe these fitness losses by the function D(q, p), which

increases with increasing discrepancy between a male’s actual

quality q and perceived quality p. To find the average loss function

for females, we average over the distribution of male quality

within a population:∫
q

D(q, P(A(q)))dG(q), (1)

where we have assumed that all males follow the rule a = A(q). We

note that there is no explicit cost of female choice in the model;

instead, we simply assume that female choice occurs, implying

that the fitness benefit of choice must outweigh the cost.

We may now repeat the ESS conditions for male signalling

and female preferences given by Grafen (1990a), as follows. If

an equilibrium male strategy A
∗(q) and female strategy P

∗(a) are

universal, then they are evolutionarily stable if

w(A∗(q), P∗(A∗(q)), q) ≥ w(a, P∗(a), q) for all a, q; (2a)

and∫
q

D(q, P∗(A∗(q)))dG(q) ≤
∫
q

D(q, P(A∗(q)))dG(q) (2b)

for all functions P(a). In simple terms, the male signalling strategy

and female preferences for male signals are stable when there is

no other male or female strategy that yields higher fitness. To

facilitate analysis of the model, we assume sufficient continuity

and differentiability in the functions w and D (likewise for the

function n, introduced below) and measurability of the strategies

A and P.

EXTENDED MODEL: SIGNALS EVOLVE FROM A

PREEXISTING CUE OF QUALITY

To examine the evolution of signals from a preexisting cue of

male quality, we now assume that there is a quality-dependent

optimal level of the signalling trait, owing to natural selection

in a non-signalling context. We represent this non-informational

optimum as the function n(q) and assume for simplicity that the

optimum always increases with male quality. In Appendix I, we

present a general model and a method for finding the signalling

equilibrium without specifying a form for n(q). Here, to illustrate

key predictions from the model, we derive a specific model that

assumes a particular form for the non-informational optimum.

We first need a male fitness function that incorporates pay-

offs from female preferences and allows for a non-informational

optimum that increases with male quality. A simple function for

this scenario supposes that male fitness is given by the following

bell-shaped curve:

w(a, p, q) = exp(λp) · exp

(
−1

2

(
a − n(q)

σ

)2
)

. (3)

In this equation, the first term represents the effects of female

assessment, where λ scales the impact of female preference on

male fitness, and the second term represents the effects of the

male’s signalling trait a on his own fitness. Male fitness is reduced

whenever a deviates from the non-informational optimum (a =
n(q)), decreasing on either side of the optimum from a maximum

of exp(λp). This cost for deviating from the optimum is scaled

by σ, where decreasing values of σ result in larger costs. In the

context of male weaponry, for example, a small value for σ could

represent a scenario in which weapons are not free to evolve

exaggeration because they need to retain a biomechanical function

(McCullough et al. 2016). Finally, we suppose that the optimal

non-informational value of a increases linearly with male quality,

such that

n(q) = amin + β(q − qmin), (4)

where β is the slope of the relationship between male quality and

the non-informational optimum.

As an example, the slope (β) could describe the relationship

between tail length and an aerodynamic optimum for bird flight.

The steepness or shallowness of this slope is meaningful only
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A B

Figure 1. The evolution of exaggerated signals from preexisting cues of individual quality. (A) The male’s signalling rule as a function

of male quality, from our specific model in the main text. We set the strength of female preferences to λ = 1; the cost for departing from

the non-informational optimum to σ = 1 or 2 (where lower values imply higher cost); and the slope of the relationship between quality

and the non-informational optimum to β = 1, shown by the straight line. At the lowest quality, the signal takes its non-informational

optimal value. There is immediately an infinite slope, with consistent deceleration toward an asymptote at a distance λσ/β above the

non-informational optimum, with half-life (λσ/β2) ln(2). (B) The level of exaggeration as a function of male quality, for three values of β.

Making the scale-setting assumptions λ = σ = 1, this panel shows how the excess signalling over the non-informational optimum varies

with quality for β = 0.5, 1, 2 (top, middle, and bottom curves, respectively). Increasing β reduces exaggeration, including reducing the

asymptotic value eventually to zero. Decreasing β increases exaggeration, without bound, except for the fixed value of zero at q = qmin.

in relation to the scale of the quality (q) and signalling trait (a)

axes, so in empirical applications these scales would need to be

specified. In order to avoid the choice of measurement units (for

example, mm vs cm to measure tail length) affecting steepness, we

could agree in the model to set λ = σ = 1. Then, steepness would

relate to how much advantage is gained, via female preference for

longer tails as a cue of male quality, relative to how costly the trait

is in terms of moving away from the aerodynamic optimum. Note

that the range of qualities present in males, and its distribution,

does not affect the slope (β).

In Appendix II, we find the ESS (A∗(q), P
∗(a)) for our spe-

cific model described by equations (3) and (4). We define the “sig-

nalling gap” as the amount by which the equilibrium male trait

is exaggerated from its non-informational optimum by signalling

selection, and we present an explicit formula for the signalling

costs paid at equilibrium due to this exaggeration. Here, we fo-

cus on two key results about how the parameters of our model

affect the size of the signalling gap, or the extent of costly signal

exaggeration.

Result 1. As long as there is some male fitness benefit of ex-

aggerating the signalling trait beyond the non-informational

optimum (λ > 0, σ > 0), the ESS always involves honest sig-

nalling of male quality (Fig. 1A). Formally, the equilibrium

signalling strategy A
∗(q) is positive, and signal size is exag-

gerated beyond the non-informational optimum for all values

of quality above the minimum (qmin). The initial slope of this

signalling gap (i.e., A
∗ʹ(qmin)) is infinite, and then the slope

consistently declines with increasing male quality, eventu-

ally approaching the slope of the non-informational optimum

(β). Stronger female preferences (increasing λ) and/or smaller

costs for departing from the non-informational optimum (in-

creasing σ) cause greater exaggeration of the signalling trait.

Result 2. The extent of costly signal exaggeration will depend

on the slope of the relationship between individual quality and

the non-informational optimum (Fig. 1B). A steeper slope

(higher β) causes less exaggeration of the signalling trait, and

a more shallow slope (lower β) causes more exaggeration.

This is because a steep slope means that a low-quality male

would pay a high fitness cost to have the same trait value

as a higher quality male. In other words, increasing β makes

it more costly for a low-quality male to fake a high-quality

signal, given that doing so requires a larger deviation from his

non-informational optimum. As a result, high-quality males

do not experience strong selection to distinguish themselves

from lower quality males (they do not need to “try so hard”

to stand out). In contrast, decreasing β makes it less costly for

low-quality males to fake a high-quality signal and therefore

selects for high-quality males that exaggerate their signals to
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distinguish themselves from lower quality rivals. As the slope

declines in our model (β approaches zero), exaggeration above

the non-informational optimum becomes greater and greater,

without bound, for all qualities above the minimum.

Discussion
We asked how biological signals will evolve from traits with a

non-informational optimum that increases with individual qual-

ity. The main predictions from our model are that: (1) signals will

honestly reflect signaler quality whenever there is a positive rela-

tionship between individual quality and the signalling trait’s non-

informational optimum; and (2) the slope of this relationship will

crucially affect how much signal exaggeration evolves. A steeper

relationship, where high-quality individuals produce much bigger

traits because they are favoured to do so through natural selection,

leads to a higher potential cost of faking a high-quality signal and

means that less exaggeration is needed to maintain honest sig-

nalling. In contrast, a more shallow relationship between individ-

ual quality and the non-informational optimum leads to a lower

potential cost of faking a high-quality signal and means that more

exaggeration is needed to keep signals informative. Hence, our

model suggests that signals can become highly exaggerated when

they start off as weak cues of individual quality but not when they

start off as strong cues of quality. More generally, the model pre-

dicts a natural continuum of adaptive signal exaggeration, from

cost-free cues to costly handicaps, all within the same theoretical

framework.

A SIMPLE MECHANISM FOR HONEST SIGNALLING

We found that, in our model, signalling is always honest at equi-

librium. Previous theory shows that for stable honest signaling,

the cost for a higher investment in signalling must be greater

for low-quality signallers than for high-quality signallers (e.g.,

Grafen 1990a; Lachmann et al. 2001; Bergstrom et al. 2002; Hol-

man 2012; Biernaskie et al. 2014), or the benefit must be greater

for high-quality signallers (e.g., Godfray 1991; Holman 2012).

To allow for these differential fitness returns, modellers usually

design cost/benefit functions that can vary with both signal in-

vestment and individual quality. In contrast, a greater differential

cost for low-quality signallers arises naturally in our model. This

is because a high-quality signal is always a larger deviation from

the non-informational optimum of a low-quality individual than

from the optimum of a higher quality individual. There has been

much interest in the various mechanisms that could lead to higher

signalling costs paid by lower quality signallers (reviewed by

Fraser 2012). However, it has not been widely appreciated that a

positive relationship between signaller quality and the signalling

trait’s non-informational optimum is all that is needed.

Type of signalling trait
Cue-like                                  Handicap

Relationship between 
individual quality and non-
informational optimum

Signalling costs paid at 
equilbrium

Low                                                 High

Amount of exaggeration at 
equilibrium

What maintains honesty? Too costly to fake a high-quality signal

Low                                                 High

Steep slope                      Shallow slope

(high )                                    (low ) 

Figure 2. A natural continuum of signal exaggeration, from cost-

free cues to costly handicaps.

HOW COSTLY IS HONEST SIGNALLING?

Our model extends Grafen’s (1990a) model of the handicap prin-

ciple, making it consistent with more recent updates to costly sig-

nalling theory. In particular, whereas Grafen’s model predicted

that honest signals were always costly at equilibrium, several

models have since shown that honest signals need not be costly

to remain honest (Hurd 1995; Lachmann et al. 2001; Bergstrom

et al. 2002; Számadó 2011; Holman 2012). Instead, these models

show that low-cost honest signalling can be stable as long as the

potential cost for faking a dishonest signal is sufficiently high

(or the potential benefit is sufficiently low). In our model, the

potential cost of dishonesty is greatest when the cost of deviat-

ing from the non-informational optimum is high (σ approaches

zero), and/or the non-informational optimum steeply increases

with quality (β is large). Under these conditions, the signalling

trait becomes arbitrarily close to the non-informational optimum,

and the signalling costs paid at equilibrium do indeed approach

zero.

We conclude that two seemingly distinct kinds of traits in sig-

nalling theory—costly handicaps and cost-free cues of individual

quality—fit naturally within a general theory of costly signalling.

Cues are typically classified as non-signalling traits because, by

definition, they have not evolved for the purpose of conveying

information to receivers (Maynard Smith and Harper 2004; Wild

et al. 2017). However, cues of quality do experience signalling

selection: they vary with signaller quality, receivers respond to

that variation, and receiver responses affect signaller fitness. Our

model predicts that a truly non-informational cue will exist if

there is no net fitness benefit of exaggerating the cue into a signal

of quality. As soon as there is any fitness benefit of exaggeration,

however—and assuming that genetic variation can arise—the cue

will evolve into a signal that ultimately fits somewhere along a

continuum of exaggeration (Fig. 2). At one end of the continuum

will be costly handicaps, and at the other end will be low-cost

signals that are effectively equivalent to a non-informational cue.

These signals will differ in the costs paid at equilibrium, but they
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will be honest for the same fundamental reason: that it is too

costly to fake a dishonest signal.

Other models with variation in the strength of costs or bene-

fits of dishonesty have made similar conclusions about a contin-

uum from low- to high-cost signals (Lachmann et al. 2001; Hol-

man 2012). In one example, Holman (2012) found that low-cost

signalling persists when low-quality individuals are constrained

to produce only a minimal signal (because, as in our model, high-

quality males would not need not distinguish themselves). Based

on this, Holman (2012) predicted a continuum from costly handi-

caps to low-cost “index” signals—where low-quality individuals

are unable to signal dishonestly, owing to a causal link between

quality and signal size (Maynard Smith and Harper 2004). We

have argued elsewhere that such causal links will be favoured by

natural selection in both cheap and costly signaling systems, as

a mechanism to avoid the cost of dishonesty (Biernaskie et al.

2014). Hence, in our view, index-like signaling could be found

anywhere along the continuum in Figure 2, and it is the continuum

from handicaps to cues that is particularly significant.

EMPIRICAL IMPLICATIONS

Our results suggest novel hypotheses for when and why signals

evolve to be highly exaggerated or not. For example, before being

used as a signal, barn swallow tail length might have had a strongly

positive relationship with male quality (large β), explaining why

barn swallow tails are not so obviously exaggerated for signalling

(Evans 1998; Rowe et al. 2001; Bro-Jørgensen et al. 2007). In

contrast, the extreme exaggeration of the peacock’s tail might

have started with a weak relationship between tail length and

male quality (small β) before being used as a signal. We note that

our model assumes that females have perfect perception of male

signaling traits, whereas females in the real world might make

more mistakes if the original trait was only weakly correlated with

male quality. If this makes female choice less likely to be favoured

than when male traits are strongly correlated with quality, then

costly handicap signals may have a smaller chance of evolving

than cheaper, cue-like signals.

In addition to insights about the origin of exaggerated signals,

our model makes predictions about the maintenance of present-

day signals. Hence, if the key parameters of our model (β, λ, and

σ) could be estimated from existing signaling systems, then it may

be possible to test the predictions—for example, that that species

with high β values, all else equal, will have less signal exaggera-

tion than species with low β values. The barn swallow experiments

of Bro-Jørgensen et al. (2007) show how it is possible to partition

the variation in observed signals into a non-informational com-

ponent and a signaling component, owing to female preferences.

This suggests that future studies may indeed test whether varia-

tion in the underlying, non-informational component of signaling

traits can explain variation in the extravagance of present-day

signals.
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Bergstrom, C. T., S. Számadó, and M. Lachmann. 2002. Separating equilibria

in continuous signalling games. Phil. Trans. Roy. Soc. 357:1595–1606.
Biernaskie, J. M., A. Grafen, and J. C. Perry. 2014. The evolution of index

signals to avoid the cost of dishonesty. Proc. Roy. Soc. B 281:20140876.
Bradbury, J. W., and S. L. Vehrencamp. 2011. Principles of animal communi-

cation. 2nd edn. Sinauer, Sunderland, MA.
Bro-Jørgensen, J., R. A. Johnstone, and M. R. Evans. 2007. Uninformative

exaggeration of male sexual ornaments in barn swallows. Curr. Biol.
17:850–855.

Darwin, C. 1871. The descent of man, and selection in relation to sex. John
Murray, London.

Evans, M. R. 1998. Selection on swallow tail streamers. Nature 394, 233–234.
Fisher, R. 1930. The genetical theory of natural selection. The Clarendon

Press, United Kingdom.
Fraser, B. (2012). Costly signalling theories: beyond the handicap principle.

Biol. Philos. 27:263–278.
Godfray, H. C. J. (1991). Signalling of need by offspring to their parents.

Nature 25:328–330.
Grafen, A. 1990a. Biological signals as handicaps. J. Theor. Biol. 144:517–

546.
Grafen, A. 1990b. Sexual selection unhandicapped by the Fisher process. J.

Theor. Biol. 144, 473–516.
Holman, L. 2012. Costs and constraints conspire to produce honest signaling:

insights from an ant queen pheromone. Evolution 66:2094–2105.
Hurd, P. K. 1995. Communication in discrete action—response games. J.

Theor. Biol. 174:217–222.
Johnstone, R. A., S. A. Rands, and M. R. Evans. 2009. Sexual selection and

condition-dependence. J. Evol. Biol. 22:2387–2394.
Knauer, A. C., and F. P. Schiestl. 2015. Bees use honest floral signals as

indicators of reward when visiting flowers. Ecol. Lett. 18:135–143.
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Appendix I
GENERAL MODEL

Here, we analyze a general model that extends Grafen’s (1990a)

model of handicap signalling. We consider the scenario described

in the main text, where males signal their quality to females, and

we assume a “non-informational” optimal level of the signalling

trait that varies with individual quality, owing to natural selection

in a non-signalling context. To represent the new assumption here,

we use the standard notation of applying a numerical subscript

to a variable to indicate that a partial derivative will be taken

with respect to that variable. We suppose that male fitness w is

maximized when the signalling trait is at its non-informational

optimum, a = n(q), with fitness decreasing on both sides of the

optimum. Formally, we write this as

sign(w1(a, p, q)) = − sign(a − n(q)) (A1)

where w1 indicates that a partial derivative is taken with respect

to a (the first argument in the male fitness function). For example,

when the signalling trait is below the non-informational optimum

(a < n(q)), the derivative w1 is positive, meaning that selection

favours a larger trait value.

Our aim is to find an evolutionarily stable strategy (ESS) un-

der the new assumption. The first step is to take the first derivative

of male fitness with respect to the signalling trait, evaluated at a

candidate equilibrium (A∗(q), P
∗(a)). At the candidate ESS, the

slope of this first-order fitness gradient must equal zero, for other-

wise a male of some quality could increase his fitness by slightly

increasing or decreasing a from A∗(q). Hence, for evolutionary

stability, we must have

w1(a, P∗(a), q) + P∗′(a)w2(a, P∗(a), q) = 0, (A2)

where a = A(q) for all q.

The next step is to find a form for P
∗ ʹ(a) that satisfies the

first-order condition above. Let amin be the male signalling trait

at the non-informational optimum for the lowest quality male, so

amin = n(qmin). Then the simplest form of P
∗ ʹ(a) that reduces the

left-hand side of the equation to zero is

P∗(amin) = qmin (A3a)

P∗′(a) = −w1(a, P∗(a), P∗(a))

w2(a, P∗(a), P∗(a))
. (A3b)

This solution assumes that females infer that a male with

minimal signal will have minimal quality. We replace q with P
∗(a)

because we are pursuing an honest equilibrium, at which females

correctly perceive male quality (i.e., where p = q): formally,

the minimization of equation (1) by females ensures that, at any

separating equilibrium, q = P
∗(A∗(q)).

Our strategy now is to find solutions to (A3) that are one-

to-one over some initial range, relying on our assumptions in the

main text of sufficient continuity and differentiability. If we have

a solution to (A3), then we can invert that solution for P
∗ to find

A
∗ over the range of the solution. We then consider under what

circumstances that initial range will extend to qmax and so give

us an ESS.

We begin by showing that the monotonic section at the be-

ginning of P
∗ must be increasing. The initial slope of P

∗ is zero

because the numerator, w1(amin, p, qmin), is zero by equation (A1).

This implies that immediately above amin, the slope of P
∗(a) is

positive, as a increases while the third argument representing q is

P
∗(a), which has initially zero slope. This gives the slope of the

signalling trait against quality (i.e., A
∗(q), the inverse of function

P
∗(a)) effectively an infinite value, so that a > n(q). This in turn

leads to a negative value for w1 by our assumption, and so P
∗(a)

also has a positive slope (at least initially), as they are inverse

functions. Thus, the slope of P
∗(a) remains positive for at least

some interval of values above amin. We can therefore invert it,

over at least some interval of q above qmin, to obtain an at least

partial male signalling rule as

P∗(A∗(q)) = q, (A4)

where the male signalling rule is implicitly defined. The properties

of A
∗ include that A

∗(qmin) = n(qmin), the initial slope at qmin is

infinite, and the slope is everywhere positive.
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Is the solution general and unique?
Some earlier criticism of Grafen’s (1990a) model by Siller (1998)

would suggest that the solution to our model above may not be

fully general. First, Siller (1998) raised the question of whether

a signalling equilibrium is shown to exist. Taking account of

this criticism, we may say that the example presented above will

define a unique signalling equilibrium only under some further

assumptions. If the cost of signalling rises too quickly (i.e., the

derivative w1 becomes too large and negative) or the advantage of

being perceived of higher quality is not very great (w2 is positive

but close to zero), then P
∗(a) may tend toward infinity at a finite

level of a, say â. This case means we have no definition of P
∗(a)

after a = â. Yet this still gives us a signalling level for each q, and

so the signalling equilibrium exists.

It is also possible that, although P
∗ʹ(a) goes to infinity be-

cause – w1/w2 does, P
∗(a) itself reaches a finite value, q̂ , as P

∗ʹ(a)

reaches infinity. Here the question is whether q̂ > qmax, in which

case the inversion of the function will still work and the candidate

signalling equilibrium assigns a signalling strategy to males of all

qualities; alternatively, q̂ < qmax, in which case the candidate sig-

nalling equilibrium does not assign a signal value to a range of the

highest quality males. The latter case is similar to the problematic

case where the cost of signalling becomes very low (w1 though

remaining negative becomes very small) or the advantage of being

perceived as of high quality becomes very great (w2 becomes very

large). A similar situation arises if there is a maximum signal level

amax, and the quality of males assigned by P
∗(amax) is less than

qmax. In these cases, a range of the highest quality males are not

assigned a signal by our candidate equilibrium. From a biological

point of view, this destroys the equilibrium, because that range of

high quality males must have some signal level, and they will alter

the appropriate response by females to males playing any of those

signal levels. There is a natural biological interpretation of these

cases. The signalling equilibrium depends on the cost of faking

a dishonest signal. If the cost is not great enough, or runs out by

the maximum possible signal level, then the signalling trait is just

not costly enough to be stably informative about the particular

quality.

A second criticism from Siller (1998) concerned uniqueness.

When a differential equation assigns an infinite value to a slope

at some value of the abscissa, it is generically the case that there

are multiple solutions. This might arise if w2 became zero, or if

w1 became infinite, at some point. This is important to consider in

applications, though often, as in our specific model (Appendix II

and main text), these situations will not arise.

Given our assumption in this study that male trait expression

is under natural selection to increase with male quality, there is

a new way that the candidate solution P
∗ might not provide an

equilibrium. This can occur if at some higher quality, the signal

again equals the non-informational trait level for that quality. This

would be an opportunity for the lines to cross, leading to a zone

in which the sign of w1 becomes positive. Such a zone would

destroy a separating equilibrium by reversing the direction of P
∗

so that more than one quality of male produced the same signal.

This recrossing of the lines is made less likely when we realize

that as the lines approach each other, a becomes close to n(q),

and so w1 approaches zero. This tends to make P
∗(a) decrease to

zero. Mathematical assumptions that would prevent this situation

are that w2/w1 and nʹ(q) are bounded for p, q � [qmin, qmax].

Appendix II
SPECIFIC MODEL

Here, we use the general method from Appendix I to solve a more

specific model, defined by the male fitness function in equations

(3) and (4) in the main text. We first find that the evolutionarily

stable female inference rule is given by

P∗(a) = qmin + a − amin

β
− λσ2

β2

(
1 − exp

(
−(a − amin)

β

λσ2

))
. (A5)

The first two terms in this equation would give the qual-

ity of a male for whom a is the non-informational optimum.

The third term therefore represents the “quality-gap” for a given

signalling level between the quality that would produce it non-

informationally and the quality that produces it under signalling.

It will be seen that this gap begins at zero, corresponding to P
∗

(amin) = qmin, and then approaches exponentially an asymptote of

λσ2/β2 as a increases, with a half-life of (λσ2/β) ln (2) (i.e., the

distance on the a axis for the quality gap to halve). It is natural that

the gap is negative, as this shows a given signal is expressed by

a lower quality male under the signalling equilibrium than under

the non-informational optimum.

In contrast to the female preference strategy (eq. (A5)), there

is no simple expression for the male signalling strategy A
∗. How-

ever, we may use the simple geometry of parallel lines to infer that

A
∗ equals the non-informational level of the signalling trait plus

a positive “signalling-gap”–the amount by which the male trait

is exaggerated from its non-informational optimum by signalling

selection. The signalling gap begins at zero and asymptotically

becomes λσ2/β, with a half-life of (λσ2/β2) ln (2).

Signalling costs at equilibrium
To evaluate signalling costs paid at equilibrium, we measure costs

as the amount by which a male trait is increased from its natu-

rally selected optimum through signalling selection, for a given

male quality, scaled by the costs of deviating from the naturally

selected optimum. Formally, we denote the signalling costs, x(q),

as follows:

x(q)= A∗(q)−n(q)

σ
= λσ

β
exp

(
−(A∗(q) − amin)

β

λσ2

)
, (A6)
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which captures the signalling and quality elements of male fitness

(note that the second term in the male fitness function, eq. (3) in

the main text, can be expressed as exp(– x(q)2/2)). A value of zero

for x(q) means no cost (zero signalling costs), whereas as x(q)

approaches infinity, fitness goes down to zero (suicidal signalling

costs).

Taking derivatives shows how signalling costs change with

the key parameters β, λ, and σ. Increasing β reduces signalling

costs toward zero, whereas taking β toward zero increases them

to suicidal levels (except for the fixed value A
∗(qmin) = amin with

deviate equal to zero). Increasing λ increases signalling costs, as

it is worth paying higher costs for higher benefits, and equally

taking it down to zero reduces signalling costs toward zero.

Changes in the fitness penalty for deviating from the optimum

(changing σ) has a more complicated effect. As σ approaches

zero, signalling costs become zero. As σ increases from zero,

the initial slope of x(q) is high and reduces as σ increases. We

have already seen that signalling costs approach an asymptote,

and we learn now that the asymptote is low for low σ and in-

creases as σ increases. Thus, for any two values of σ, signalling

costs begin with higher values for the lower value of σ, but

there is a single crossing point after which signalling costs are

higher for the higher value of σ as they approach the asymptote

of λσ/β.
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