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SUMMARY

The transcriptional programs that govern hemato-
poiesis have been investigated primarily by popula-
tion-level analysis of hematopoietic stem and pro-
genitor cells, which cannot reveal the continuous
nature of the differentiation process. Here we applied
single-cell RNA-sequencing to a population of
hematopoietic cells in zebrafish as they undergo
thrombocyte lineage commitment. By reconstructing
their developmental chronology computationally, we
were able to place each cell along a continuum from
stem cell to mature cell, refining the traditional line-
age tree. The progression of cells along this contin-
uum is characterized by a highly coordinated
transcriptional program, displaying simultaneous
suppression of genes involved in cell proliferation
and ribosomal biogenesis as the expression of line-
age specific genes increases. Within this program,
there is substantial heterogeneity in the expression
of the key lineage regulators. Overall, the total num-
ber of genes expressed, as well as the total mRNA
content of the cell, decreases as the cells undergo
lineage commitment.

INTRODUCTION

Hematopoietic stem cells (HSCs) have the ability to self-renew

and produce cells that give rise to all different blood cell types

(Orkin and Zon, 2008). Our understanding of the functional prop-

erties of these various hematopoietic cell types has been

advanced mainly by population level analysis. Current methods

of purifying hematopoietic cells to relative homogeneity are

based on the expression of specific combinations of cell surface

markers. However, a homogeneous population of cells, as deter-
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mined by a well-defined set of cell surface markers, may include

many functionally distinct populations. This was nicely illustrated

in studies showing that within the HSC compartment, individual

HSCs may have different reconstitution patterns (e.g., balanced

production of myeloid and lymphoid cells or deficiency in

lymphoid potential) (Muller-Sieburg et al., 2012). More recently,

it was demonstrated that common myeloid progenitors (CMP)

are a mixed population of cells with distinct lineage potentials

(Notta et al., 2015). The lack of CMPs as a separate cell entity

with broad myeloid potential brings into question the traditional

model of hematopoietic lineage development and further under-

scores the importance of revising the current view of lineage

development in hematopoiesis. Therefore, there is a need to

address the exact composition of the stem and progenitor pop-

ulations in vivo, as well as the relationships between them. Single

cell transcriptome analysis might provide answers to these

outstanding questions (Cvejic, 2015).

Among vertebrate models, the zebrafish provides a unique

combination of advantages for the study of blood development

at the single cell level. Zebrafish blood contains cells of all

hematopoietic lineages and orthologs of most transcription fac-

tors involved in mammalian hematopoiesis (Hsia and Zon, 2005;

Song et al., 2004). Importantly, transcriptional mechanisms and

signaling pathways in hematopoiesis are well conserved be-

tween zebrafish and mammals, making them a clinically relevant

model system (Jagannathan-Bogdan and Zon, 2013).

Over the past few years, a number of transgenic zebrafish

lines were generated in which hematopoietic cell specific pro-

moters drive expression of fluorescent molecules (Carradice

and Lieschke, 2008). These reporter lines provide a valuable

resource of labeled cells ranging from HSCs to a wide range of

mature blood cell types. As in mammals, adult hematopoiesis

in zebrafish is both continuous and asynchronous. Thus, a single

sample of kidney marrow (the analogous tissue to mammalian

bone marrow) contains the full spectrum of hematopoietic cell

types at various stages of differentiation at any one time. As

this is the single site of hematopoiesis in zebrafish, and is easily
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Figure 1. cd41 Cells Transition through Five Transcriptional States during Thrombocyte Differentiation in Zebrafish

(A) A single kidney, from a heterozygote Tg(cd41:EGFP) reporter fish, was dissected and carefully passed through a strainer. Using flow cytometry, EGFPlow and

EGFPhigh cells were identified and 188 cells from each population were index sorted. Two wells (in red) per plate were left without cells. RNA from each cell was

isolated and used to construct a single mRNA-seq library per cell, which was then sequenced using Hi-seq.

(B) t-SNE plot of the RNA-seq data from 363 EGFPlow and EGFPhigh cells.

(C) The same t-SNE plot (as shown in B) but with points colored based on the cluster the cells belong to. Clusters are labeled as 1a, 1b, 2, 3, 4, and outlier cells.

See also Figures S1, S2, and S3.
accessible, the cells are minimally perturbed when sorted

ex vivo, making this an ideal system to study basic principles

of regulation of differentiation, both at the molecular and cellular

levels.

Here we used high-throughput single-cell RNA sequencing

combined with fluorescence-activated cell sorting index sorting

analysis of adult zebrafish marrow-derived hematopoietic cells.

We ordered cells by their progression through differentiation

based on gene expression profiles using no prior knowledge of

which cell population they belong to, as defined by surface

markers. Our analysis revealed the continuous nature of throm-

bocyte development and the coordinated transcriptional pro-

grams that govern differentiation progression. Interestingly,

thrombocytes in zebrafish remain transcriptionally active even

after leaving the kidney marrow and entering the circulation.

RESULTS

Profiling Individual Hematopoietic Cells Ex Vivo
Here, we used single-cell RNA-sequencing (RNA-seq) of zebra-

fish kidney cells to resolve the cellular hierarchy of lineage devel-

opment in themyeloid branch of hematopoiesis. To focus on this

lineage, we used expression of CD41 as a marker of HSCs and

the megakaryocyte equivalent in fish (‘‘thrombocytes’’). CD41

in human is highly regulated during hematopoietic development
C

(Debili et al., 2001; Robin et al., 2011), and in zebrafish, the

Tg(cd41:EGFP) reporter line labels two distinct populations

of cells that express the cd41-EGFP transgene. The weakly fluo-

rescent (EGFPlow) subset marks HSCs and progenitor cells (Ma

et al., 2011), and the brightly fluorescent (EGFPhigh) subset in-

cludes mature and differentiated thrombocytes (Ma et al., 2011).

Using flow cytometry, we identified EGFPlow and EGFPhigh

cells and sorted 188 cells from each population from a single kid-

ney from a Tg(cd41:EGFP) reporter fish (Figure 1A; Figures S1A–

S1I). Each EGFP+ cell was collected in a single well of a 96-well

plate, and for each cell, its size (FSC), granularity (SSC), and

EGFP fluorescence level were recorded. Single-cell mRNA-seq

libraries were constructed and sequenced to a depth of around

2.5 million reads per library. Of 376 cells, 13 cells failed our

quality control (QC) and were removed from further analysis

(Experimental Procedures; Figures S2A and S2B). For the re-

maining 363 cells, we accurately quantified between 1,000 and

6,000 genes per cell.

Ordering Hematopoietic Cells from a Single Kidney
across Lineage Development
To identify groups of cells and order them in terms of their devel-

opmental progression, we used a multi-step approach. First, we

used independent component analysis (ICA) to identify distinct

factors that describe the variability of EGFP cells. ICA revealed
ell Reports 14, 966–977, February 2, 2016 ª2016 The Authors 967



four latent factors (hidden variables) that explain (1) a progres-

sion among EGFPlow cells (‘‘within_small_component’’), (2) a

switch from EGFPlow cells toward EGFPhigh cells (‘‘difference_

component’’), and (3) progression among the EGFPhigh cells

(‘‘within_large_component’’). Finally, the fourth factor identified

three outlier cells (‘‘outlier_component’’) (Figure S3A).

To facilitate data depiction, we used non-linear dimensionality

reduction (t-distributed stochastic neighbor embedding [t-SNE];

Van der Maaten and Hinton, 2008) to represent the four latent

factors in two dimensions (Figure 1B). ICA revealed a clear

distinction between EGFPlow and EGFPhigh cells, implying sharp

divergence at the transcriptional level (Figure S3A; Figure 1B).

In addition, EGFPlow cells are a more heterogeneous group

compared to EGFPhigh cells. To explore this further, we used

hierarchical clustering to partition EGFP cells based on their

independent components (Figure S3B). Interestingly, whereas

EGFPlow cells were split into four distinct clusters (here named

1a, 1b, 2, and 3), EGFPhigh cells were all grouped into a single

cluster (here named 4), confirming the substantial heterogeneity

of the EGFPlow population of cells (Figure 1C).

Differentiation of hematopoietic cells involves the acquisition

of specific phenotypes that depend on the repression of genes

characteristic of a multipotent cell state and expression of line-

age-restricted genes (Seita and Weissman, 2010). Thus, the

whole process can be conceptualized as a temporal ordering

of a highly coordinated transcriptional program through which

each cell progresses. To examine the transcriptional transitions

undergone by cd41-EGFP cells during differentiation, we or-

dered cells based on the cluster they belonged to, the latent

factor that explains the variability of the cells within the cluster,

and the level of EGFP fluorescence (details provided in the

Experimental Procedures). Ourmodel assumes gradual changes

in gene expression during developmental progression of throm-

bocytes along a one-dimensional (i.e., non-branching) path.

(We could not detect any apparent branch point in the data.)

This ranking of cells through the entire process was treated as

‘‘pseudotime.’’

To ensure our pseudotime ordering was stable, we also

ordered the cells using an alternative method, a Bayesian

Gaussian process latent variable model (Titsias and Lawrence,

2010; see Experimental Procedures). Comparing the paths

these orderings take when regressed into the t-SNE depiction,

one can appreciate the similarity between them (Figure 2A).

The two pseudotime orderings agreed very strongly (Spearman

correlation 0.97; Figure 2B), giving us confidence in our method.

When presented in pseudotime, the expression of endoge-

nous cd41 (also known as itga2b) and EGFP, as well as EGFP

fluorescence, recorded during sorting, were highly correlated

and showed an expected increase through pseudotime

(Spearman rho 0.85, 0.80, and 0.82, respectively) (Figure 2C).

This supports our pseudotime ordering of the cells from the

HSC to the differentiated thrombocyte extracted from a single

kidney.

Inferring Cell States in the Myeloid Lineage
To define the identity of cell types within the five clusters, we

evaluated the expression of orthologs of transcription factors

and other genes known to be relevant in mammalian hematopoi-
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esis, including the expression of early (cd61, also known as

itgb3a/b) and late (cd42b, also known as gp1bb) markers of

megakaryocyte differentiation (Figure 3). The panel of genes

analyzed was representative of HSCs (Tal1, Lmo2, Lyl1, Gata2,

Runx1, Meis1, C-myb, and Erg; Capron et al., 2006; Greig

et al., 2008; Loughran et al., 2008; Orkin and Zon, 2008; Pineault

et al., 2002), megakaryocyte/erythroid (Fli1, Gfi1b, Gata1, Cd61,

Cd42b, Vwf, and Selp; Clay et al., 2001; Orkin and Zon, 2008;

Poirault-Chassac et al., 2010; Schick et al., 1993), and myeloid-

(Gfi1,Pu.1 also known as spi1a/b, andCebp1; Tenen et al., 1997;

Zeng et al., 2004) lineage-affiliated genes.

For each gene, we assessed the level of its expression in pseu-

dotime, as well as the fraction of cells that expressed the gene of

interest in each of the clusters (Figure 3). For example, c-myb

was highly expressed in cluster 1a, as well as in clusters 1b, 2,

and 3, but was downregulated in cluster 4. This is in line with pre-

vious reports thatC-myb is expressed in immature hematopoiet-

ic cells and is downregulated during differentiation (Greig et al.,

2008). Cells in cluster 1a had relatively high expression of

lmo2, tal1, and meis1. These genes, together with fli1, showed

a similar distribution of expression across pseudotime, whereas

gata2 was more restricted to cluster 1a. The mammalian HSC

genes runx1 and erg were expressed at a relatively low level

overall, and in a small fraction of cells within all clusters. Overall,

most of the mammalian HSC marker genes examined are ex-

pressed in cluster 1a, and to a lesser degree in 1b, 2, and 3.

In contrast, Gata1 and Gfi1b are known to be expressed at

high levels in the erythroid and megakaryocyte lineages (Orkin

and Zon, 2008; Vassen et al., 2007) but not in HSCs. In our data-

set, gata1a and gfi1b were expressed in all clusters except clus-

ter 1a. Furthermore, expression of both early (itgb3a/b) and late

(gp1bb) markers of megakaryocyte differentiation started very

early and peaked late in pseudotime, confirming that more

mature thrombocytes are largely confined to cluster 4.

We also assessed the expression of two well-known platelet

genes, vWf (von Willebrand factor) and selp (P-selectin), through

pseudotime (Figure 3). Our analysis revealed that, contrary to

previous reports (Carrillo et al., 2010), thrombocytes in zebrafish

do not express von Willebrand factor and P-selectin. This was

confirmed by qPCR analysis of cd41 EGFPhigh thrombocytes

from zebrafish kidney. We found, however, that vWf was ex-

pressed in the whole kidney sample and in fli1:GFP positive cells

sorted from Tg(fli:EGFP) fish, suggesting that the vWf expression

pattern differs somewhat in zebrafish compared to mammals.

Surprisingly, myeloid lineage-affiliated genes (e.g., spi1, gfi1,

and cebp1) were largely absent across all cells (Figure 3). This

suggests that there is no commonmyeloid progenitor population

in this dataset, which charts a continuous HSC to thrombocyte

pathway. Altogether, our data are consistent with the notion

that cells from cluster 1a belong to HSCs that transition directly

to erythroid-thrombocyte progenitor cells, possibly circumvent-

ing the CMP step. Although this is surprising, there are other

reports of direct, unconventional, HSC to megakaryocyte-

erythroid progenitor transitions, such as a recent report in mouse

(Guo et al., 2013).

Identification of these progenitor and differentiated cell types

prompted us to carry out additional analyses of the sets of genes

that strongly correlate with the individual cell types. We used a
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Figure 2. Ordering of Cells through the Developmental Trajectory

(A) We inferred a smooth progression over the developmental lineage, represented as pseudotime, using two different methods. Here we demonstrate the path of

both pseudotimes by regressing them into a t-SNE plot of the data. Points are colored based on the cluster the cells belong to.

(B) The pseudotime inferred with two different methods correlate very strongly (Spearman correlation 0.97).

(C) Expression of cd41 mRNA (top), GFP mRNA (middle), and GFP fluorescence (bottom) shown in pseudotime. Each point represents an individual cell; points

are colored based on the cluster the cells belong to.

See also Figure S3.
machine learning method, random forest feature importance, to

find genes whose expression ‘‘marks’’ distinct clusters of cells.

The unique sets of genes expressed in each of the cell types pro-

vide an opportunity to reveal novel markers of the identified cell

types, and at the same time, provide more insight into their bio-

logical function.

Among the numerous newly identified cell-typemarkers (Table

S1), we found several of particular interest (Figure 4A). Ccr9a is a

member of the beta chemokine receptor family and is known to
C

be expressed in HSCs (Wright et al., 2002); our data show that

ccr9a expression is highly correlated with cluster 1a (Figure 4B).

Transcription elongation factor A (SII), tcea3, was specifically ex-

pressed in cluster 1b (Figure 4B). Cells from cluster 1b can also

be sorted by combining expression of plasminogen receptor

gene (plgrkt) and ascc1 (Figure 4B). Goodmarker genes for clus-

ter 2 included e2f8, which encodes a protein involved in progres-

sion through the cell cycle (Deng et al., 2010) and top2a, a DNA

topoisomerase involved in processes such as chromosome
ell Reports 14, 966–977, February 2, 2016 ª2016 The Authors 969



Figure 3. Expression of Key Regulators of Hematopoiesis over Pseudotime

Expression (in TPM) of genes, relevant in hematopoiesis, over pseudotime. Points are colored based on the cluster the cells belong to. For each cluster, we show

the proportion of cells within the given cluster expressing the gene at TPM > 1. HSC, hematopoietic stem cells-affiliated genes; Meg-Erythroid, megakaryocyte-

erythroid progenitors-affiliated genes; Myeloid, myeloid lineage-affiliated genes.
condensation and chromatid separation (Downes et al., 1994)

(Figure 4B). Interestingly, the overrepresented gene ontology

(GO) enrichment terms for cluster 2 included cell division and

cell cycle (Figure 4A), suggesting that an expansion phase

precedes lineage commitment and terminal differentiation of

thrombocytes.

To experimentally validate the prediction of greater prolifera-

tion in this progenitor population, we sorted cells from clusters

1a/1b/2 versus 3 and 4, by distinguishing these three popula-

tions based on EGFP fluorescence, and SSC and FSC (Figures

S4A–S4G). We compared the cell cycle distributions of the

sorted populations using propidium iodide (PI) staining. The

combined cells from clusters 1a/1b/2 had a significantly higher

proportion of cells in S and G2/M phase compared to clusters

3 and 4 (Figure 4C), validating our finding that these cells prolif-

erate faster.

These results show that expression of EGFP together with

SSC and FSC values could be used to efficiently separate cells
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from clusters 3 and 4 from the early progenitor populations

(1a/1b/2) in the cd41 reporter line (Figures S4 and S5). Additional

markers for cluster 3 included combined high expression of

fzd8b and no expression of mibp (Figure 4B). For cluster 4, a

high level of cd41 uniquely marks this population.

Finally, we also assessed a unique set of genes expressed by

the three outlier cells. GO enrichment analysis of their marker

genes yielded only three statistically significant GO terms, all

linked with immunity (Figure 4A). One plausible explanation is

that these outlier cells represent macrophages that have en-

gulfed or are attached to thrombocytes and hence retained a

high level of EGFP fluorescence. Indeed, the outlier cells ex-

pressed an array of macrophage/monocyte affiliated genes

such as mpeg (macrophage expressed gene 1), csf1r (colony-

stimulating factor 1 receptor), csf3r (colony-stimulating factor 3

receptor) etc. Furthermore, compared to all other cells, the

outlier cells had remarkably high FSC and SSC values, charac-

teristic of macrophages (Figure 4D).
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Figure 4. Identification of New Cell-type Markers

(A) t-SNE plot of the RNA-seq data from 363 EGFP cells. Points are colored based on the cluster the cells belong to. Selected genes, whose expression is highly

correlated with individual clusters, are shown next to each cluster. Selected gene ontology terms associated with genes that are highly correlated with cluster 2

and the outlier cells are included.

(B) Expression of marker genes over pseudotime (left). Points are colored based on the cluster the cells belong to. For each cluster, we show the proportion of

cells expressing the gene at TPM > 1. Expression of pairs of genes is shown on the right. Points are colored based on the cluster the cells belong to. The side

diagrams show the proportion of cells within the cluster expressing the gene at the given level of expression.

(C) Cell cycle analysis of three different populations of EGFP cells. The GFPlowSSChigh cells are enriched for cells from clusters 1a/1b/2, GFPlowSSClow and

GFPhigh cells are enriched for cells from clusters 3 and 4, respectively. An average of two experiments is shown as a percentage of cells in G0 and G1 (G0/1) and S

and G2 phase (S/G2) ± SEM.

(D) Distribution of FSC (top) and SSC (bottom) values in the different clusters. In particular, one can see that the small population of outliers (cluster x, shaded gray)

has higher FSC and SSC values than cells from other clusters.

See also Figures S4 and S5.
Validation of Developmental Progression from the
Kidney and Circulation
Importantly, we validated many of our findings in a second set of

single cell transcriptomics experiments on kidney cells, as well

as circulating cells, from another fish. We sorted an additional

92 cells from cluster 1a/1b/2 (named here EarlyEnriched), 46

EGFPlow cells and 46 EFPhigh cells from the kidney of another

Tg(cd41:EGFP) fish.We also sorted 24 EGFPlow and 68 EGFPhigh

circulating cells from the same fish (Figure S6A). Our analysis

confirmed that the pattern of ICA follows the same structure as

observed in the previous experiment (Figure S6B). This means
C

that the cell populations and their relative relationships are

conserved in this biological replicate. Similarly, the pseudotime

ordering of EarlyEnriched, EGFPlow, and EGFPhigh cells in the

kidney recapitulated patterns we identified in the initial experi-

ment (Figures 5A–5F).

In addition, we discovered that EGFPhigh cells in circulation are

transcriptionally identical to EGFPhigh cells in the kidney, with no

significant change in the number of expressed genes (Figure 5B),

RNA content (Figure 5C), or any gene’s expression pattern (likeli-

hood ratio test, corrected for multiple testing with Holm-Sidak).

We concluded, therefore, that the thrombocytes exit the kidney
ell Reports 14, 966–977, February 2, 2016 ª2016 The Authors 971
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Figure 5. Validation of Identified Early Clusters, and Terminal State of Late Cluster

(A–C) In a second experiment, cells only belonging to the early clusters were sorted. The distributions of (A) cd41 expression, (B) number of expressed genes, and

(C) endogenous mRNA content of cells, are as expected in the populations of cells sorted from kidney.

(D) mRNA expression of cd41 in the sorted populations of cells. We see the expected increase from Kidney EarlyEnriched through Kidney EGFPlow to finally

Kidney EGFPhigh. Expression of cd41 did not change between Kidney EGFPhigh and EGFPhigh cells in circulation (likelihood ratio test, p = 1 after correcting for

multiple testing.)

(E and F) When developing from EarlyEnriched through EGFPlow to EGFPhigh, the cells express fewer genes and contain less mRNA, confirming the pseudotime

ordering we observed in the initial experiment. There was no change in the number of expressed genes and RNA content between kidney- and circulation-derived

EGFPhigh cells.

See also Figures S6 and S7.
in a fully mature state and are maintained in a transcriptionally

active state in circulation.

In both datasets, the total number of genes and total mRNA

content expressed per cell were correlated with its differentiation

state (Figure S7). This was not due to a difference in the

sequencing depth or cell size (Figure S7). Instead, it represents

a biological difference between cells during development. This

supports the idea that more differentiated, post-mitotic cells

(clusters 3 and 4) have a specialized transcriptional program

with expression of a small, focused set of genes (Figure S7).

Transcriptional Modules Related to Growth and
Proliferation in the Thrombocyte Developmental Gene
Expression Program
To find genes with similar trends in expression across pseudo-

time, we used a mixtures of hierarchical Gaussian processes

model to cluster the pseudotime series (Hensman et al., 2015).

We identified 130 genes that are dynamically expressed through

pseudotime.Clusteringof thesegenes revealed threedistinctpat-

terns of their progression during differentiation (Figure 6A; Table

S2). Genes upregulated early in pseudotime and then downregu-

lated later (group I) were significantly enriched with the GO term

‘‘nucleic acid binding’’ and ‘‘chromosomemaintenance’’ (Figures
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6B and 6C; Table S2), possibly reflecting the increased prolifera-

tionof cells earlier in pseudotime.Genesgradually downregulated

through pseudotime (group II) were highly enriched with the GO

terms ‘‘eukaryotic translation elongation,’’ ‘‘ribosomes’’ etc. (Fig-

ures 6B and 6C; Table S2). Expression of these genes was highly

correlated with the general trend of decreased RNA content

over pseudotime (Spearman rho = 0.85), therefore suggesting a

regulatory loop between the total RNA content in the cell and

expression of genes that encode proteins relevant for ribosome

synthesis. Finally, genes upregulated early and then maintained

at a high level (group III) were highly enriched with the GO terms

‘‘ECM-receptor interaction,’’ ‘‘platelet aggregation,’’ and ‘‘hemo-

stasis,’’ pointing to the genes important for thrombocyte function

(Figures 6B and 6C; Table S2). Taken together, our analysis sug-

gests that differentiation of thrombocytes is governed by coordi-

nated transcriptional programs that limit the proliferation of cells

and their translational capacity while simultaneously promoting

genes relevant for thrombocyte function.

Single Cell Gene Expression Patterns of Whole-Genome
Duplicated Genes
Gene duplication is a common event in eukaryotic genomes

(Meyer and Schartl, 1999) and due to the teleost-specific
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Figure 6. Identification of Genes that Are Dynamically Regulated over Pseudotime

(A) Pseudotime expression patterns of genes (rows) that significantly vary over pseudotime progression (x axis). Every row is the Z score scaled Gaussian process

representing the expression pattern.

(B) The gene expression pattern for the underlying function explaining the expression pattern in each group is shown as a black line (95%confidence interval in the

gray area). Below, selected gene ontology terms associated with the genes in each group are shown.

(C) Expression (in TPM) of an example gene from each group through pseudotime. Points are colored based on the cluster the cells belong to.
genome duplication around 26% (i.e., 3,440) (Howe et al., 2013)

of zebrafish genes are duplicated. Gene duplicates that originate

from genome duplication are called ohnologs. To assess the

use of duplicated genes during thrombopoiesis in zebrafish,

we examined the expression of ohnologs in each of the 363

cd41:EGFP cells. Of �8,000 ohnolog categories (Howe et al.,

2013), we looked at 3,034 ohnolog categories that have only

been duplicated once (ohnolog gene pairs). Of these 3,034 ohno-

logs (Howe et al., 2013), 2,107 were not expressed in our data-

set. However the remaining 927 pairs can be divided into the

following threemajor groups: (1) expression of ohnologs ismutu-

ally exclusive in individual cells (n = 177) (Figures 7A and 7B;

Table S3). In this group, the expression of any one ohnolog

appeared to be an independent event with an equal probability

of happening. This suggests selective activation or silencing of

these ohnologs in individual cells; (2) only one of the ohnologs

is expressed in all cells (n = 430), Figures 7A and 7B; Table

S3), and (3) both ohnologs are equally expressed in all cells

(n = 218), (Figures 7A and 7B; Table S3). No patterns of ohnolog

use over pseudotime were observed.

DISCUSSION

Here we show the power of single cell transcriptome analysis to

decipher the kinetics of hematopoietic lineage development. We

ordered cd41 cells by their progression through differentiation

based on gene expression profiles. Our analysis illustrates the

continual nature of this process, where cells progressively transit

through five transcriptional states that result in the generation of

mature thrombocytes.
C

Interestingly, myeloid lineage-affiliated genes were largely

absent across all cells, suggesting direct HSC to thrombo-

cyte-erythroid progenitor transition. The model of hematopoi-

esis generated recently, using single cells from over

ten hematopoietic populations in mouse, implies that the

megakaryocyte-erythroid lineage is closely linked to long-

term repopulating HSCs and separates early from the lym-

pho-myeloid lineage (Guo et al., 2013). The identification of

platelet-primed stem cells within vWf-expressing long-term

HSCs further confirmed that commitment to the megakaryo-

cyte lineage starts in the most primitive stem cell compartment

(Sanjuan-Pla et al., 2013). Although in our dataset vWf was not

expressed in any of the identified cell populations, the low

expression of some of the thrombocyte lineage-affiliated

genes in cluster 1a suggests that using our sorting strategy

we are possibly capturing thrombocyte-primed stem cells.

Therefore, HSCs in cluster 1a may represent a biased subpop-

ulation within the wider pool of hematopoietic stem/progenitor

cells present in the zebrafish kidney. Nevertheless, the gradual

transition of cells during thrombocyte lineage development

that we see in our dataset (e.g., gradual changes in the total

number of genes as well as the total mRNA content) suggest

that we do capture a continuous spectra of cells and that

the common myeloid stage is not an obligatory step during

thrombopoiesis.

We also show that although each of the identified transcrip-

tional states was characterized by substantial heterogeneity

in the expression of the key lineage regulators, the underlying

transcriptional program was highly coordinated. It included

the simultaneous increase in the expression of genes important
ell Reports 14, 966–977, February 2, 2016 ª2016 The Authors 973
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Figure 7. Single Cell Analysis Reveals Three Main Patterns of Usage of Duplicated Genes during Thrombopoiesis in Zebrafish

(A) Ohnolog gene pairs were divided into four classes based on thresholds in a decision tree.

(B) Expression (in TPM) of example ohnologs, randomly selected from each class, in individual cells. Points are colored based on the cluster the cells belong to.

XOR ohnolog: both ohnologs are expressed but never in the same cell. Single ohnolog: just one ohnolog is expressed. Mixed ohnologs: both ohnologs are

expressed in individual cells.
for thrombocyte function and suppression of genes relevant

in cell proliferation and ribosomal biogenesis. Interestingly,

although the maturation of thrombocytes was completed in

the kidney, they maintained a transcriptionally active state in

circulation. We did not, however, detect any qualitative or quan-

titative difference in the gene expression between circulating

and kidney-based EGFPhigh thrombocytes. Surprisingly, unlike

mammalian platelets, which have abundant expression of vWf,

thrombocytes in zebrafish do not express vWf. Instead, our

analysis suggests that other cells within the kidney marrow,

such as endothelial cells (fli1:GFP positive cells), express vWf

in zebrafish. Finally, we assessed use of duplicated genes dur-

ing thrombopoiesis in zebrafish and identified patterns of their

expression that would not be possible using a bulk transcrip-

tomics approach.

We used single-cell RNA-seq of zebrafish kidney cells to

resolve the cellular hierarchy of lineage development in the

myeloid branch of hematopoiesis and propose a refined model

of developmental progression of hematopoietic cells.

Our study addresses some of the basic questions of regulation

of differentiation, both at the molecular and cellular levels. In this

study, we focused on zebrafish thrombocyte development; how-
974 Cell Reports 14, 966–977, February 2, 2016 ª2016 The Authors
ever, a similar approach could be used in other systems and cell

types.
EXPERIMENTAL PROCEDURES

Zebrafish Strains and Maintenance

The maintenance of wild-type (Tubingen Long Fin) and transgenic zebrafish

Tg(cd41:GFP) lines were performed in accordance with EU regulations on lab-

oratory animals, as previously described (Bielczyk-Maczy�nska et al., 2014).

Single-Cell Sorting and Whole Transcriptome Amplification

A single kidney from heterozygote Tg(cd41:EGFP) or wild-type fish was

dissected and carefully passed through a strainer using the plunger of a 1 ml

syringe. In the follow-up experiment, circulating GFP-positive cells were

collected from the dissected heart of the same fish. Cells were collected in

cold 13 PBS/5% fetal bovine serum. The kidney of a non-transgenic line

was used to set up the gating and exclude autofluorescent cells. Dead cells

were excluded based on PI staining. Individual cells were sorted using a Bec-

ton Dickinson Influx sorter with 488- and 561-nm lasers (Schulte et al., 2015)

and collected in a single well of a 96-well plate containing 2.3 ml of 0.2% Triton

X-100 supplemented with 1 U/ml SUPERase In RNase inhibitor (Ambion). At the

same time, information about cell size and granularity and the level of the fluo-

rescence were recorded. Whole transcriptome amplification and library prep-

aration was performed using the Smart-seq2 protocol (Picelli et al., 2014,



2013), with ERCC spike-in controls added at the same time as the oligo-dT

and dNTP mixture. Twenty-five PCR cycles were performed during the

amplification.

Cell Cycle Analysis

GFP-positive cells from Tg(cd41:EGFP) kidney suspension were sorted using

a Mo-Flo XDP (Beckman Coulter) with 488-, 561-, and 640-nm lasers. Cells

were centrifuged at 1,200 rpm for 10 min at 4�C, resuspended in 100 ml 13

PBS and fixed by adding 300 ml ethanol. Cells were fixed overnight at 4�C,
washed twice in 13 PBS, and re-suspended in 500 ml PI solution (25 mg/ml

PI, 0.1% Triton X-100, 0.1% sodium citrate). Cells were incubated for 3 hr

with RNase A (Sigma) and analyzed by BD LSR Fortessa (Becton Dickinson).

Data were analyzed using FlowJo software.

Cytology

Sorted EGFP-positive cells were concentrated by cytocentrifugation at

350 rpm for 5 min onto SuperFrostPlus slides using a Shandon Cytospin

3 cytocentrifuge. Slides were fixed for 3 min in methanol and stained with

May-Gr€unwald Giemsa (Sigma) as described elsewhere (Stachura et al.,

2009). Images were captured as described elsewhere (Bielczyk-Maczy�nska

et al., 2014).

Verification of RNA-Seq Data with qPCR

GFP-positive cells from Tg(cd41:EGFP) and Tg(fli1:EGFP) kidney suspensions

were sorted using a Mo-Flo XDP (Beckman Coulter), along with an equal num-

ber of viable cells from the whole kidney, into 75 ml RLT buffer (QIAGEN) con-

taining 1% b-mercaptoethanol. mRNA was extracted using Oligo (dT)25 Dyna-

beads (Ambion) and cDNA was prepared using SuperScript VILO (Invitrogen),

according to the manufacturers’ instructions. qPCR reactions were performed

using the 7900HT Real Time system (Life Technologies) with primers for vWf

(F: CGGCAGCACATACACACATT and R: CGTTCCATCCACAGAGAGGT)

and two housekeeping genes (eif1a F: GAGAAGTTCGAGAAGGAAGC and

R: CGTAGTATTTGCTGGTCTCG, and b-actin F: CGAGCAGGAGATGGG

AACC and R: CAACGGAAACGCTCATTGC). The DDCt method was used for

data analysis.

Single-Cell RNA-Seq Data Processing

Reads from RNA-seq were aligned to the zebrafish genome (Zv9.77) com-

bined with sequences for eGFP and ERCC spike-ins as artificial chromo-

somes, using STAR (version 2.3; (Dobin et al., 2013). The Ensembl Genes

annotation track from UCSC was used with the read_distribution.py tool

from the RSeQC tool suite (Wang et al., 2012) to generate quality control infor-

mation. Gene expression was quantified using the Salmon (Patro et al., 2015)

reads mode of Sailfish (Patro et al., 2014; parameter -l IU) using Zv9 cDNA

sequences from Ensembl version 77 as transcript sequences, together with

ERCC spike-in and eGFP sequences as artificial transcripts. Based on com-

parison with empty control wells, samples with less than 50,000 paired reads

and 1,000 expressed genes were considered unfit and were excluded from

further analysis (Figure S2).

For the follow-up experiment, expression was quantified the same way. We

used a different stock and concentration of ERCC spike-ins, which changed

the scales of the QC values. For these samples, we excluded cells with less

than 200,000 paired reads and less than 150 expressed genes (Figure S6).

Downstream analysis was performed using Transcripts per million (TPM)

values reported by Salmon. The TPM unit is a measure of relative abundance

of a gene, which is stable across samples (Li and Dewey, 2011; Wagner et al.,

2012). Before analysis expression for endogenous spike-ins were filtered out

for each cell, and the TPM for each cell was rescaled to sum to a million.

This gives us the interpretation that TPM of a gene will correspond to the

concentration of mRNAs from a gene in a given cell.

Unless stated otherwise, for all analyses, we filtered out genes expressed at

a level higher than 1 TPM in only less than three cells, which leaves 20,556

genes.

Identifying Processes and Ordering Cells by Hidden Factors

We used ICA (Hyvärinen and Oja, 2000) to identify four latent factors (hidden

variables modeling the data), as implemented in scikit-learn (with parameter
C

random_state = 3,984 for the sake of reproducibility). The choice of four com-

ponents was based on testing between one and ten components, and seeing

diminishing returns on the Frobenius norm reconstruction error past four

components. One latent factor explains a progression among EGFPlow cells;

another factor explains a switch from EGFPlow cells toward the population of

EGFPhigh cells. A third factor explains progression among EGFPhigh cells.

The fourth factor identifies three outlier cells. We used the fluorescence levels

of GFP to flip the orientation of the latent factors so that a higher factor value

always corresponded to a higher GFP value. Because these factors are

orthogonal, they are statistically independent. In other words, there are three

distinct processes happening sequentially. We performed hierarchical Ward

clustering (Ward, 1963) of the cells in the four-dimensional ICA space, and as-

signed the cells to six clusters. (For exact commands, see Notebook 1 in Data

S2.) Based on which cluster the cells belonged to, and which factor explains

the variability of the cells of that cluster, we ordered cells along this three-stage

progression. This ranking of cells through the entire process was treated as

pseudotime. (For exact commands, see Notebook 3 in Data S2.)

As an alternative way to estimate a pseudotime, we applied a Bayesian

Gaussian process latent variable model with a one-dimensional latent variable

(Titsias and Lawrence, 2010). Briefly, the BayesianGPLVMwill infer a nonlinear

function from an unobserved latent space to an observed high-dimensional

space, using inducing inputs that are variationally inferred, which helps smooth

the data and speed up computation. In our case, the latent space is the one-

dimensional pseudotime, and the non-linear function will be a mapping from

pseudotime to gene expression values. We used the BayesianGPLVM imple-

mentation in the GPy package (The GPy authors, n.d.) using a Radial

Basis Function (RBF) kernel on the log-transformed TPM values, all other

parameters default. Without any information about the EGFP expression, the

BayesianGPLVM recovers our original ordering, up to orientation (Spearman

correlation 0.97; Figure 2B) (Notebook 7 in Data S2).

To depict the structure of the data in a friendly way, we performed t-distrib-

uted stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton,

2008) of the four latent factors into two dimensions. The goal of the t-SNE

algorithm is to attempt to preserve both global and local structures of higher

dimensional data in two dimensions. It additionally tries to not crowd areas

with too many points, making them hard to see. We set the perplexity param-

eter to 75 and used a fixed random seed to make sure the t-SNE plot would be

reproducible (parameter random_state = 254 in the scikit-learn implementa-

tion of t-SNE).

We can depict the inferred pseudotime by regressing it into the two-dimen-

sional tSNE space (Figure 2A) and can see how well the two methods of con-

structing pseudotime agrees.

Marker Gene Discovery

To discover marker genes for the clusters of cells, we trained a random forest

model for each cluster versus the rest of the cells. We used the Gini feature

importance scores for each gene to order genes by how well they can distin-

guish a cluster from the rest of the cells. We used the ExtraTreesClassifier

(Geurts et al., 2006) implementation in the Python machine learning package

scikit-learn (Pedregosa et al., 2011), with the parameter n_estimators =

100,000. (For the exact commands, see Notebook 2 in Data S2.)

Pseudotime Analysis

We treated the pseudotime progression order of the cells as a time series, and

for each gene trained two Gaussian processes (GPs): one with a radial basis

function (RBF) kernel (which can model change over time) and one with a con-

stant kernel (which assumes that the expression of a gene does not change

over time). After optimizing parameters for both models, we filtered the genes

by the ratios of the likelihoods of the models. If the RBF kernel GP has a higher

likelihood than the constant kernel GP, we can conclude that the gene in ques-

tion has expression that is dynamic in time. Once we had identified genes that

were pseudotime-dependent, we applied the mixtures of hierarchical

Gaussian processesmodel to identify groupings of genes with similar pseudo-

time expression patterns (Hensman et al., 2015). All functional enrichment

analysis was performed with the gProfiler (Reimand et al., 2011) web service

with the standard gene list as background (see Notebook 4 in Data S2 for exact

commands).
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Classification of Ohnolog Gene Pairs

We obtained the list of duplicated genes arising from the teleost-specific

genome duplication event from (Howe et al., 2013). We filtered the list to

only retain pairs of genes whose IDs were present in version 77 of Ensembl.

For these genes, we binarized the expression to ‘‘expressed’’ or ‘‘not ex-

pressed’’ in each cell based on whether the TPM was greater than 1. Using

these binary values, for each Ohnolog pair we counted cells expressing either

member of the pair, both members of the pair, or none of the members in the

pair. Ohnolog pairs in which none of the members were expressed in more

than 300 cells and were annotated as ‘‘Not expressed.’’ We defined a value

‘‘both_min_diff’’ as the difference between the smallest number of cells ex-

pressing only one of the members in a pair, and the number of cells expressing

both members of the pair. Ohnolog pairs with a ‘‘both_min_diff’’-value larger

than 15 were annotated as ‘‘XOR Ohnologs.’’ To identify Ohnolog pairs in

which only one member was used, we looked at the difference between the

largest number of cells using one member compared to the largest number

of cells using the other member. If this difference was larger than 60 cells,

the Ohnolog pair was considered a ‘‘Single Ohnolog.’’ The remaining cells

were dubbed ‘‘Mixed Ohnologs,’’ meaning cells with a mixture of both mem-

bers of a pair. (See Notebook 5 in Data S2 for exact commands.)

All analysis scripts are provided as IPython notebooks in the supplemental

information (Data S1, Sample Information) together with a table of detailed

information of each sample (Data S2, Analysis Files).
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