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Abstract

Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigat-
ing their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing 
associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that 
facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, 
often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presum-
ably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of 
facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may 
obtain. Finally, we review the biotechnological promise of these fascinating microbes.

THE GLOBAL METHANE BUDGET AND ITS 
SIGNIFICANCE FOR CLIMATE
Methane, the most abundant hydrocarbon in the atmosphere 
and a potent greenhouse gas, is one of the most significant 
contributors to climate change. The atmospheric concentra-
tion of methane increased to over 1800 ppb by 2012, 2.5 times 
the pre-industrial value [1]. Moreover, methane is a much 
more effective greenhouse gas than carbon dioxide, with 
a global warming potential 28 times that of CO2 (per unit 
mass) over 100 years. The short lifetime in the atmosphere 
(approximately 9 years [2]) and relatively minor source/
sink imbalance suggests that reduction in methane emis-
sions would have rapid and relatively achievable benefits for 
climate [3], but clearly prediction and mitigation of methane 
emissions requires a comprehensive understanding of global 
and regional-scale budgets, and of how the sources and 
sinks respond to changing conditions. Globally, 540–884 Tg 
of methane are emitted annually from various natural and 
anthropogenic sources [1] (Fig. 1). Apart from a minor abiotic 
(chemical) source [4], methane arises from the biological 

degradation of organic matter, either by the activity of meth-
anogenic archaea, or by the heat and pressure-mediated 
breakdown of subterranean organic material over geological 
timescales, or by the incomplete burning of biomass (termed 
biogenic, thermogenic or pyrogenic methane, respectively).

Biogenic methane is produced by methanogenic Archaea 
under anaerobic conditions, mainly in wetlands, landfill 
sites, rice paddies, the rumen of cattle and the hindgut of 
termites. Thermogenic methane, the other major source, is 
of geological origin, produced from the chemical decay of 
buried sedimentary organic material. Thermogenic methane 
emissions derive from both anthropogenic fossil fuel extrac-
tion and distribution (114–133 Tg y−1), and natural sources. 
The natural sources include macro- and micro-seeps, mud 
volcanoes, geothermal areas, volcanoes and submarine seeps 
(33–75 Tg y−1) [1]. This thermogenic ‘natural gas’ contains 
substantial amounts of other climate-active gases, mainly 
ethane (a photochemical pollutant) and propane (an ozone 
precursor), 2–4 and 1–2.4 Tg y−1 from natural sources, 
respectively [5, 6]. Visible seepage (macro-seeps) and diffuse 
but pervasive micro-seepage occurs over a considerable 
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proportion of the Earth’s surface, including much of Northern 
Europe and Russia, and many regions in the USA, including 
the Appalachian Basin [7], where the gas contains, in addition 
to methane, up to 35 vol% ethane and propane [8, 9].

A large proportion (over 50% [10]) of biogenic and thermo-
genic methane is subsequently consumed in both anoxic and 
oxic zones by methane-oxidizing microbes (methanotrophs) 
before its release to the atmosphere. The major sink for 
atmospheric methane (90 %) is photochemical oxidation by 
hydroxyl radicals, predominately in the troposphere but also 
in the stratosphere [11], although soil-dwelling methano-
trophs draw down approximately 30 Tg y−1 of atmospheric 
methane [12, 13].

MICROBIAL GROWTH ON METHANE AND 
SHORT-CHAIN ALKANES
Methanotrophs, which are widespread in freshwater, marine 
and terrestrial environments, are bacteria able to grow on 
methane as their sole source of carbon and energy and are 
a subset of methylotrophs, micro-organisms that grow on 
one-carbon compounds such as methanol and methylated 
amines. Anaerobic oxidation of methane plays an important 
role in mediating emissions in anoxic zones, principally in 
marine but also in freshwater environments [14, 15], but here 
we consider only the aerobes. All aerobic methanotrophs use 
a methane monooxygenase (MMO) to oxidize methane to 
methanol, which is further oxidized to formaldehyde by 
methanol dehydrogenase (MDH). There are two forms of 
MMO, a membrane-associated copper-containing enzyme 
(particulate methane monooxygenase, pMMO) and a cyto-
plasmic enzyme (soluble methane monooxygenase, sMMO). 
The sMMOs form one group of a large family of soluble 
diiron centre monooxygenases (SDIMOs), which bacteria 
use to grow on a wide range of hydrocarbons and which, 
based on DNA sequence, gene layout, subunit composition 
and substrate specificity, can be assigned to one of six major 
groups [16, 17]. The growth substrates of SDIMO groups 1 
and 2 are aromatic compounds or alkenes, group 3 comprises 

the sMMOs, group 4 contains alkene monooxygenase and 
groups 5 and 6 contain mainly propane monooxygenases. 
Nearly all methanotrophs possess the pMMO, and a minority 
also possess the sMMO. Methylocella spp. and two strains 
from the genera Methyloferula and Methyloceanibacter do 
not contain the pMMO and thus rely solely on the sMMO to 
oxidize methane. In strains that use both enzymes, the expres-
sion and activity of these enzymes is controlled by copper (the 
‘copper switch’), reviewed by Semrau et al. [18].

Microbes growing on other short-chain alkanes (e.g. ethane, 
propane or butane) have also been characterized. Many of 
these are Gram-positive Actinobacteria, including Rhodoc-
occus, Nocardioides and Mycobacterium but also Proteobac-
teria, for example Pseudomonas [19, 20]. The initial oxidation 
of short-chain alkanes is usually catalysed by a monooxyge-
nase, frequently an SDIMO related to the group 3 methane 
monooxygenases, but which is instead from group 5 or group 
6 of the SDIMO family [21], although the butane monooxy-
genase of Thauera butanivorans is more closely related to 
the sMMO [22]. These microbes are metabolically versatile 
compared to methanotrophs, and generally grow on a range 
of multicarbon compounds, but not methane [20].

Methanotrophs from approximately two dozen genera are 
in cultivation, and taxonomically they fall into the classes 
Alphaproteobacteria and Gammaproteobacteria, and the 
phylum Verrucomicrobia. In addition, members of the 
candidate phylum NC10 possess methane monooxygenase 
and oxidize methane coupled with oxygenic denitrification 
in anoxic conditions [15]. Historically, the proteobacterial 
methanotrophs were subdivided into type I and type II, based 
on physiological traits, including the arrangement of intra-
cytoplasmic membranes, which also corresponds with their 
taxonomy (Gammaproteobacteria or Alphaproteobacteria) 
and assimilation of carbon via the RuMP pathway or the serine 
cycle, respectively [23]. Subsequently, with the discovery of 
more strains including methanotrophs that assimilate carbon 
autotrophically via the Calvin–Benson–Bassham (CBB) cycle 
[24, 25], these categories had to be adjusted and additional 
subdivisions were added, making this distinction less clear-
cut [26].

FACULTATIVE METHANOTROPHS
Although in some cases methanotrophs were shown to assim-
ilate small amounts of carbon from multi-carbon compounds, 
including carboxylic and amino acids, supplemental to their 
primary metabolism while growing on methane [27–31], 
until recently methanotrophy was considered to be an obligate 
trait; despite several ultimately unconfirmed reports, by the 
turn of the last century no cultivated examples were known to 
grow on multi-carbon compounds (containing C–C bonds) 
as the sole source of carbon and energy, in the absence of 
methane [32]. In the past two decades, however, using novel 
media formulations and innovative techniques coupled with 
improved molecular methods for verification, several faculta-
tive methanotrophs have been isolated [33, 34]. These belong 
to the Alphaproteobacteria; Methylocystis (Methylocystaceae), 

Fig. 1. Summary of natural and anthropogenic methane sources to 
the atmosphere. A proportion of coal bed methane is of biogenic origin 
[179]. The magnitude of each source as a percentage of the total (736 
Tg CH

4
 y−1) is shown in parentheses. Data from reference [1].
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Methyloceanibacter (Rhizobia incertae sedis), or Methylocapsa 
and Methylocella (Beijerinckiaceae) (Table 1, Fig. 2) [35–39]. 
Crenothrix polyspora, a gammaproteobacterium, was reported 
to grow on glucose and acetate [40], although no example 
exists in pure culture. The first of these facultative metha-
notrophs to be discovered were the Methylocella strains, M. 
palustris, M. silvestris and M. tundrae [41–43]. Although 
initially described as only growing on C1 compounds, they 
were later shown to use a wide variety of C2 – C6 multi-carbon 
compounds including alcohols and organic acids [38, 44, 45] 
and also, for several of the strains at least, ethane and propane, 
typical components of thermogenic natural gas. Subsequently, 
additional facultative strains of Beijerinckia and Methylocystis 
were isolated (or identified as facultative), originating from 
forest, peat or aquifer ecosystems in northern Europe, Russia 
or the USA (Table 1) as well as a single marine strain, Methy-
loceanibacter methanicus R-67174. In contrast to the Methy-
locella strains, these are much more limited in their substrate 
utilization, able to use only acetate or ethanol. Their growth 
rates on these substrates are low compared to on methane, 
with published rates on acetate or ethanol in the range 7–42 % 
of the corresponding rate on methane [35–37, 39, 46], in 
contrast with Methylocella, which grows more rapidly on 
many multi-carbon compounds than on methane [38, 44, 45].

Recent efforts to obtain additional Methylocella strains 
resulted in isolation of Methylocella silvestris strain TVC, 
originating from stream sediment/soil from a permafrost 
location in N. Canada [47]. Next, the observation that 
Methylocella silvestris could grow on propane and methane 
concurrently [44], prompted sampling from environments 
where these gases co-occur, specifically natural gas seeps at 
sites including streams in northern New York State, where 
ethane and propane together comprise up to 35 % v/v [9, 48]. 
Two isolates, Methylocella tundrae strains PC1 and PC4, were 
obtained from these environments [45].

METHANE AND ALKANE MONOOXYGENASES 
OF FACULTATIVE METHANOTROPHS
So far, all known Methylocella strains differ from almost all 
other methanotrophs in possessing only the sMMO rather 
than the copper-dependent membrane-associated pMMO, 
the only other sMMO-only methanotrophs described being 
Methyloferula stellata AR4 and Methyloceanibacter meth-
anicus R-67174. Interestingly, the latter strain is facultative 
and grows to a low density on acetate, although it is the only 
methane-utilizing member of this genus, which otherwise 
contains facultative methylotrophs able to grow on several 

Table 1. Facultative methanotrophs

Taxon Strain Family Environment Location Multi-C substrates pH optimum Ref.

Methylocystis bryophila H2s Methylocystaceae Sphagnum peat Germany Acetate 6.0–6.5 [39]

Methylocystis bryophila S284 Methylocystaceae Sphagnum peat bog European N. 
Russia

Acetate 6.0–6.5 [35]

Methylocystis 
echinoides

IMET
10491

Methylocystaceae Sewage sludge Germany Acetate nr [180]

Methylocystis heyeri H2 Methylocystaceae Sphagnum peat Germany Acetate 5.8–6.2 [181]

Methylocystis hirsuta CSC1 Methylocystaceae Uncontaminated 
aquifer

CA, USA Acetate 7.0 [182]

Methylocystis sp. SB2 SB2 Methylocystaceae Spring bog MI, USA Acetate, ethanol 6.8 [37]

Methylocapsa aurea KYG Beijerinckiaceae Forest soil Germany Acetate 6.0–6.2 [36]

Methylocella silvestris BL2 Beijerinckiaceae Forest soil Germany Organic acids, alcohols, ethane, 
propane

5.5 [43]

Methylocella palustris K Beijerinckiaceae Sphagnum peat bog W.Siberia Organic acids, alcohols 5.5 [42]

Methylocella tundrae T4 Beijerinckiaceae Sphagnum peat N.Russia Organic acids, alcohols 5.5–6.0 [41]

Methylocella silvestris TVC Beijerinckiaceae Tundra soil N.Canada Organic acids, ethanol, propane 5.8 [47]

Methylocella tundrae PC1 Beijerinckiaceae Stream water and 
sediment

NY, USA Organic acids, alcohols, ethane, 
propane

5.8 [45]

Methylocella tundrae PC4 Beijerinckiaceae Stream water and 
sediment

NY, USA Organic acids, alcohols, ethane, 
propane

5.8 [45]

Methyloceanibacter 
methanicus

R-67174 Rhizobiales incertae 
sedis

Marine sediment North Sea Acetate 7.3 [49]

nr, not reported.
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multi-carbon compounds [49–51]. Of the other facultative 
methanotroph strains, Methylocapsa aurea and Methylocystis 
sp. SB2 contain only the pMMO, whereas the rest contain 
both forms of MMO (Fig. 3). M. tundrae PC4 contains two 
similar but not identical sMMO operons (96 % nucleotide 
identity between the operons mmoXYBZDCRG, 88–99% 
amino acid identity between polypeptides). Although many 
methanotrophs contain multiple copies of the pmoCAB 
operon, additional copies of the sMMO genes are hitherto 

unknown [52]. M. tundrae strains PC1 and PC4 also contain 
an additional SDIMO gene cluster with identical subunit 
layout to the sMMO [45]. These MmoX-like sequences form 
a small subgroup (described as BmoX in Figs 3 and 4), distinct 
from the MmoX sequences of characterized sMMOs, clus-
tering with a sequence from Sphingobium sp. SCG-1, isolated 
from soil associated with a major natural gas leak [53], and 
more distantly with BmoX from Thauera butanivorans, which 
grows on butane (but not methane) as the sole source of 

Fig. 2. Phylogeny, based on 16S rRNA genes, of alphaproteobacterial methanotrophs (in bold) together with other closely related non-
methanotrophic representatives. Facultative strains are identified with red diamonds. The tree was drawn using the maximum-likelihood 
method in mega7 [183], with bootstrap values (500 replications) greater than 90 or 50 % shown as circles or diamonds, respectively, at 
the nodes. The tree is drawn to scale and the scale bar indicates substitutions per site. There were a total of 1524 positions in the final 
dataset.
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carbon and energy [54] (Fig. 4). However, neither of these 
Methylocella strains can grow on butane [45], so the role of 
these genes remains unclear.

All the Methylocella strains contain a propane monooxygenase-
like (PrMO) sequence belonging to SDIMO group 5 [17], and 
several of them have been tested and can grow on propane 
[44, 45, 47, 55]. The hydroxylase alpha subunits (encoded by 
prmA) form a distinct cluster within group 5, distinct from 
the group 5 and 6 enzymes of characterized propanotrophs 
such as Gordonia sp. TY-5, Rhodococcus sp. RHA1 or Myco-
bacterium sp. TY-6, and instead cluster with sequences from 
a diverse range of organisms not known for growth on short-
chain alkanes (Fig. 5). Interestingly, this prm gene cluster, 
together with genes encoding propionyl-CoA carboxylase 
and methylmalonyl-CoA mutase and epimerase, involved 
in the subsequent metabolism of 1-propanol (the product of 
terminal propane oxidation), are located on a megaplasmid 
in M. tundrae T4, but chromosomally encoded in M. silvestris 
[55, 56]. In Methylocella silvestris BL2, while prmA was required 
for growth on propane at high concentrations (20 % v/v), 

it was not essential for growth at the lower concentrations 
typically found in the natural environment [44]. However, 
the propane monooxygenase was implicated in growth on 
2-propanol and acetone, as it was in other bacteria [57, 58], 
suggesting that the environmental role of this enzyme is not 
restricted to oxidation of short-chain alkanes.

ALCOHOL OXIDATION AND ONE-CARBON 
ASSIMILATION
Methanol dehydrogenase (MDH), the second essential 
enzyme for methane metabolism, catalyses the conversion 
of methanol to formaldehyde. The classical MDH is a soluble 
periplasmic pyrroloquinoline quinone (PQQ)-containing 
enzyme, with an α2β2 structure, consisting of two large subu-
nits (MxaF) and two small subunits (MxaI) and containing 
a Ca2+ ion at the active site [59]. MDH passes electrons to 
a specific cytochrome cL (MxaG), and the mxa operon also 
encodes several genes responsible for Ca insertion and enzyme 
maturation, including periplasmic solute-binding protein 
MxaJ, of unknown function. Relatively recently a homolo-
gous MDH (Xox-MDH) dependent on a lanthanide (Ln) 
rare-earth element, rather than calcium, was identified [60]. 
Although xoxF genes (encoding the lanthanide-dependent 
subunit) were detected in methanotrophs many years ago, 
their function was not established until the discovery of the 
role of lanthanides as co-factors [61]. Many methylotrophs 
and methanotrophs contain both forms of MDH and recently 
several studies have shown that lanthanides regulate their rela-
tive expression and activity [62–64]. The fact that rare-earth 
elements are not actually rare, but occur in the Earth’s crust in 
similar amounts to other metals with biological importance 
(e.g. copper or zinc [65]), and that Xox genes and enzymes are 
highly active and abundant, suggests that Xox-MDHs may be 
at least as important as Mxa-MDHs [66, 67]. The xox operons 
are less complex than mxa operons; Xox seems not to require 
the accessory genes required by the calcium-containing MDH 
and, in addition, most characterized examples lack the small 
subunit. Xox-type MDHs can be subdivided into five clades, 
XoxF1–XoxF5, with additional lanthanide-dependent homo-
logues with non-methanol substrates [68]. Of the Xox-MDHs, 
clade XoxF5 appears to be the most abundant, except that 
XoxF4 is present to the exclusion of XoxF5 in the order Meth-
ylophilales. The structures of examples from clade 2 and clade 
5 have been determined [61, 69–71] and several enzymes have 
been purified [68]. The Ln-dependent enzymes can be identi-
fied by the presence of an Ln-coordinating Asp residue two 
positions from the catalytic Asp residue (highly conserved 
in both MxaF and XoxF proteins), which is occupied by Ala 
in MxaF proteins [68, 71, 72]. Virtually all methanotrophs 
that contain Mxa-MDH also contain Xox-MDH, often more 
than one copy and sometimes from different clades [73, 74]. 
The advantage to a methanotroph of this methanol-oxidizing 
flexibility is unclear, but it may be important as a response to 
changing environmental conditions or for controlling symbi-
otic transfer of metabolites (e.g. methanol) to other members 
of the microbial community [75, 76].

Fig. 3. Genetic potential of facultative methanotrophs with determined 
genome sequences. The presence of a gene or genes encoding a 
reaction or pathway is shown as black squares. Whole-genome 
nucleotide sequences were searched with representative protein 
query sequences using TBLASTN [184]. BL2, Methylocella silvestris BL2; 
TVC, Methylocella silvestris TVC; PC1, Methylocella tundrae PC1; PC4, 
Methylocella tundrae PC4; T4, Methylocella tundrae T4; H2, Methylocystis 
heyeri H2; S285, Methylocystis bryophila S285; SB2, Methylocystis sp. 
SB2; CSC1, Methylocystis hirsuta CSC1; KYG, Methylocapsa aurea KYG; 
R-67164, Methyloceanibacter methanicus R-67174. MmoX, soluble 
methane monooxygenase; PmoA, particulate methane monooxygenase; 
BmoX, butane monooxygenase; PrmA, propane monooxygenase; 
MxaF, Ca-dependent methanol dehydrogenase; XoxF, lanthanide-
dependent methanol dehydrogenase; ExaF, lanthanide-dependent 
ethanol dehydrogenase; MauA, methylamine dehydrogenase; NMG, 
N-methylglutamate pathway; Serine, serine cycle; RuMP, ribulose 
monophosphate pathway; CBB, Calvin–Benson–Bassham pathway; 
ActP, acetate-specific permease; ICL, isocitrate lyase; MS, malate 
synthase; ECM, ethylmalonyl-CoA pathway; NarGHJI, respiratory 
nitrate reductase; NapAB, periplasmic nitrate reductase; NirK, copper-
containing nitrite reductase; NirS, multi-haem nitrite reductase; cNorB, 
cytochrome c-dependent nitric oxide reductase; NosZ, nitrous oxide 
reductase; Nif, nitrogenase; PufLM, photosynthetic reaction centre; 
Hhy-5, high-affinity group 5 hydrogenase; CODH, carbon monoxide 
dehydrogenase.



899

Farhan Ul Haque et al., Microbiology 2020;166:894–908

All the facultative methanotroph strains except for Methyloce-
anibacter (which encodes XoxF1) encode one or two copies 
of XoxF5 (Fig. 3). The Methylocella strains also encode one 
or both of clade 1 and clade 3 enzymes. All also encode an 
Mxa-MDH, except for M. tundrae strains PC1 and PC4, 
which contain only Xox-MDHs [45]. These two strains were 
unable to grow on methanol in the absence of a rare-earth 

element, in common with a relatively small number of other 
methylotrophs [61, 77–79], which require these elements for 
methylotrophic growth. Subsequent to the isolation of these 
Xox-only Methylocella strains, additional methylotrophic (not 
methanotrophic) Xox-only members of the Beijerinckiaceae 
have been discovered [80]. Some of the facultative metha-
notrophs can grow on ethane or ethanol and so the identity 

Fig. 4. Relationship of the α-subunits of the sMMOs and sMMO-like proteins from facultative methanotrophs (indicated with red diamonds) 
and other representative strains. The sequences at the bottom of the figure, which form a group with BmoX (butane monooxygenase) 
of Thauera butanivorans, are from non-methanotrophs, except for those from Methylocella tundrae strains PC1 and PC4. The tree was 
drawn using the maximum-likelihood method in mega7 [183], with bootstrap values (500 replications) greater than 75 % shown as solid 
circles at the nodes. The tree is drawn to scale and the scale bar indicates substitutions per site. There were a total of 540 amino acid 
residues in the final dataset.
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Fig. 5. The Methylocella PrmA (propane monooxygenase α-subunit) sequences (shown in bold), group with those of diverse strains 
not known for propane oxidation, distinct from the propanotrophs in SDIMO groups 5 and 6. The tree was drawn using the maximum-
likelihood method in mega7 [183], with bootstrap values (500 replications) greater than 75 % shown as solid circles at the nodes. The tree 
is drawn to scale and the scale bar indicates substitutions per site. There were a total of 440 amino acid residues in the final dataset.
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of the enzyme(s) responsible for ethanol oxidation is of 
interest. Methylorubrum extorquens and Pseudomonas putida 
express lanthanide- and PQQ-dependent dehydrogenases 
with good ethanol compared to methanol-oxidizing activity, 
termed ExaF or PedH, respectively [81, 82]. However, in M. 
extorquens both forms of MDH can also efficiently use ethanol 
as substrate [81, 83], and it required deletion of all three 
MDHs as well as ExaF to prevent growth on either methanol 
or ethanol [81]. In contrast, analysis of the Methylocystis 
sp. SB2 transcriptome (grown without added lanthanide) 
showed that expression of Mxa-MDH was downregulated 
50-fold during growth on ethanol in comparison to growth 
on methane, and expression of an NAD(P)-dependent short-
chain dehydrogenase was fivefold upregulated [84] suggesting 
that the MDH is not primarily responsible for ethanol oxida-
tion under these conditions in this strain. Since, of the faculta-
tive methanotrophs, only Methylocella tundrae PC4 encodes 
a PQQ-dependent ethanol dehydrogenase homologous to 
ExaF/PedH (Fig. 3) and since Methylocella spp. can grow on 
a range of alcohols [44, 45, 47], more research is needed to 
identify the enzymes responsible.

Methylated amines are present in many soils and aquatic envi-
ronments [85] and many bacteria have evolved to metabolize 
these compounds, using one of a number of pathways [86]. 
Methylocella silvestris BL2 can grow on mono-, di- or tri-
methylamine using the N-methylglutamate pathway [87–89] 
and the required genes (gmas and associated genes) are 
present in all the Methylocella isolates, but not in the other 
facultative strains, although Methyloceanibacter methanicus 
R-67174 appears to contain remnants of this gene cluster, but 
did not grow on methylamine [49]. Interestingly, none of the 
facultative methanotroph strains encode the key enzyme of 
the alternative proteobacterial pathway, methylamine dehy-
drogenase (MauAB), suggesting that the Methylocystis and 
Methylocapsa strains cannot utilize this source of carbon and, 
perhaps equally important in oligotrophic habitats, nitrogen, 
thus emphasizing the metabolic versatility of Methylocella.

All of the facultative methanotrophs assimilate carbon using 
the serine cycle (Fig. 3); none of the isolates possesses genes for 
the key enzymes of the RuMP cycle, 3-hexulose-6-phosphate 
synthase or 6-phospho-3-hexuloisomerase. However, the 
Methylocella and Methylocapsa strains possess CBB cycle 
genes, of which the deduced RubisCO large subunits (CbbL) 
share 88–90% amino acid identity with the form I enzyme 
from Bradyrhizobium diazoefficiens [90] and 92–94% identity 
with CbbL from closely related Beijerinckia mobilis, which was 
reported to grow autotrophically on methanol [91], raising 
the possibility that the CBB cycle may contribute to carbon 
fixation in some facultative strains under as-yet undefined 
conditions.

GROWTH ON MULTI-CARBON COMPOUNDS
As mentioned above, the ability to grow on acetate and/or 
ethanol (and, in the case of Methylocella, a range of other 
multi-C compounds) in addition to methane is the defining 
feature of all so-far discovered facultative methanotrophs. 

However, Methylocella grows much better on two-carbon 
compounds than the other strains and it has been suggested 
that the inability of obligate methanotrophs to grow on 
multi-carbon compounds, such as acetate, is due to the lack of 
appropriate membrane transporter mechanisms [34, 92, 93]. 
In this context, it is interesting to note that whereas all the 
facultative strains contain a number of relatively uncharacter-
ized membrane transporters, which possibly allow organic 
acids to enter the cell, only the Methylocella strains possess 
close homologues of actP, an acetate-specific permease 
(67–71% amino acid identity with ActP characterized in 
Escherichia coli [94] and 68–70% identity with META1p2533 
from Methylorubrum extorquens AM1 [95, 96]).

When two-carbon compounds enter the cell, their assimila-
tion presents another difficulty, since the TCA cycle oxidizes 
acetyl-CoA to two molecules of CO2, generating energy 
but not supplying carbon for assimilation. For many years, 
assimilation of acetate was considered to require the activity 
of the two enzymes of the glyoxylate shunt, isocitrate lyase 
(ICL) and malate synthase (MS), which together bypass the 
decarboxylation reactions of the TCA cycle, forming four-
carbon molecules from two acetyl-CoA [97]. During one-
carbon growth of serine cycle methylotrophs, the formation of 
glyoxylate (the substrate of the essential serine cycle enzyme 
serine-glyoxylate aminotransferase), from acetyl-CoA, can be 
catalysed by ICL together with non-decarboxylating enzymes 
of the TCA cycle. However, the lack of ICL genes and activity 
in many methylotrophs prompted researchers to seek an alter-
native pathway, which was finally resolved with the discovery 
of the ethylmalonyl-CoA (EMC) pathway (reviewed by 
Anthony [98]). Interestingly, whereas the Methylocystis and 
Methyloceanibacter strains encode the EMC pathway genes, 
all the Methylocella strains and Methylocapsa aurea KYG 
encode the glyoxylate pathway enzymes (Fig. 3), which are 
comparatively uncommon in serine cycle methanotrophs. 
Deletion of ICL or MS in M. silvestris BL2 resulted in severe 
growth defects on C1 and C2 compounds [99, 100], confirming 
the operation of the glyoxylate shunt in Methylocella.

ADDITIONAL METABOLIC CAPABILITIES
Methanotrophs use a variety of survival strategies to persist 
in conditions of varying substrate availability and under 
the influence of environmental stress. Where resources are 
scarce, these strategies may include energy supplementa-
tion by oxidation of other soil or atmospheric trace gases, 
or by mechanisms such as phototrophy [101–104]. Utiliza-
tion of hydrogen by methanotrophs has previously been 
observed, together with the ability to use this energy source to 
provide the reducing power required for methane oxidation 
[105, 106]. For example, Methylocystis sp. SC2, grown in batch 
culture, was able to oxidize comparatively high concentrations 
of supplied hydrogen under moderately limiting methane 
and oxygen concentrations, using a low affinity group 1d 
hydrogenase (also encoded by Methylocystis strains H2 and 
285), achieving increased biomass yield from methane and 
depleting hydrogen to below the limits of detection [107]. 
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Methylocystis strains 285 and SB2 and Methylocapsa aurea 
KYG encode a high-affinity group 5 NiFe uptake hydrogenase 
[108], similar to that used by other methanotrophs such as 
Verrucomicrobia to grow on low concentrations of hydrogen 
[101, 109], potentially allowing these strains to obtain energy 
from hydrogen in the atmosphere (<1 ppmv) under oligo-
trophic conditions [110]. Methylocella silvestris strains BL2 
and TVC and Methylocapsa aurea KYG encode a group 2a 
enzyme, perhaps involved in recycling hydrogen produced 
as a bi-product of nitrogen fixation, although an enzyme 
from the same group can oxidize atmospheric hydrogen in 
Mycolicobacterium smegmatis (which also expresses a group 5 
enzyme) [111]. Interestingly, the Methylocella tundrae strains 
appear to lack hydrogenases, despite possessing nitrogen fixa-
tion genes, suggesting that they are unable to use exogenous 
or internally produced hydrogen. Moreover, none of the 
facultative methanotrophs encode a carbon monoxide dehy-
drogenase, an enzyme used by many soil bacteria to enhance 
survival in oligotrophic conditions [112].

Aerobic anoxygenic phototrophs are abundant in aquatic 
ecosystems where the additional energy derived from light 
may give them a competitive advantage [113–115]. Some 
phototrophs are methylotrophs, and it is interesting to note 
that the Methylocella silvestris and Methylocystis sp. SB2 
genomes contain the required pufLM and bacteriochlorophyll 
biosynthesis genes [116, 117] (Fig. 3), although the signifi-
cance of this is currently unknown.

Where methane is abundant and oxygen may be limiting, 
some methanotrophs thrive at low-oxygen tensions. At the 
extreme, Candidatus Methylomirabilis oxyfera uses nitric 
oxide dismutation to generate its own molecular oxygen 
for use by methane monooxygenase, while other methano-
trophs economize on oxygen consumption by denitrification 
[118–121], iron reduction [122, 123], or by fermentation 
[124, 125], maintaining a supply of molecular oxygen for 
methane activation. While the denitrification enzymes are 
also important for detoxification [126], the use of nitrogen 
compounds as electron acceptor may be significant in 
methane oxidation [127]. Of the facultative methanotrophs, 
only the Methylocella strains encode enzymes of the denitri-
fication pathway, with M. silvestris BL2 containing all genes 
required for denitrification as far as nitrous oxide, but lacking 
nosZ, encoding the enzyme catalysing the final reduction step 
to dinitrogen. This gene is present in Methylocella tundrae T4, 
together with a copy of norB, (nitric oxide reductase) although 
this latter gene contains an internal stop codon, suggesting 
that it is not functional in M. tundrae T4. In common with 
many methanotrophs, the facultative isolates all contain the 
genetic requirements for nitrogen fixation (Fig. 3).

ENVIRONMENTAL OCCURRENCE AND 
ECOLOGY
Methanotrophs from the Methylocystaceae (Methylocystis 
and Methylosinus) and Beijerinckiaceae (Methylocapsa and 
Methylocella) have mostly been isolated from wetlands and 

forest soils in the Northern hemisphere [128] and in these 
and similar environments they are frequently among the most 
abundant methanotrophs [129–136]. Methylocystis and, to a 
lesser extent Methylocella, are also frequently found in rice 
paddies [137–139], another major source of methane to the 
atmosphere. In fact, Methylocella-related 16S rRNA gene 
sequences have been found in many diverse environments, 
ranging from moderately acidic to alkaline (summarized by 
Rahman et. al. [140]), although we should bear in mind that 
whereas all members of the Methylocystaceae (and of the 
gammaproteobacterial methanotroph families) are methano-
trophs, the same is not true for the Methylocella family, Beijer-
inckiaceae, which contains methanotrophs, methylotrophs 
and heterotrophs, nor for the genus Methyloceanibacter, which 
contains non-methane-oxidizing facultative methylotrophs 
[51, 92]. The difficulty of distinguishing methanotrophs of the 
Beijerinckiaceae from heterotrophic members of this family is 
compounded since, before the discovery of Methylocella, the 
pMMO was thought to be diagnostic for all methanotrophs 
and so gene probes were developed using this gene. These 
have been extensively used to characterize methanotroph 
communities [128] but cannot detect Methylocella or Methy-
loceanibacter. Therefore, the identification of Methylocella-
like DNA sequences in environmental DNA does not prove 
methanotrophy, and further confirmation is required. This 
can be obtained by methods which identify the community, 
active in response to methane, such as transcriptomics, prot-
eomics or DNA-stable isotope probing. These methods have 
identified active Methylocella in methane-exposed material 
from, for example, peatlands, forest soil, landfill cover soil, 
alkaline coal mine, warm springs, acidic aquifers and natural 
gas seeps [45, 131, 141–147]. However, a consequence of the 
frequent reliance on pmoA gene probes is that Methylocella 
and other sMMO-only methanotrophs must frequently have 
been (and still are) overlooked in cultivation-independent 
studies.

Multi-carbon compounds, such as aliphatic, cyclic and 
aromatic organic acids including acetate, are frequently 
detectable in the oxic soil horizons and surface sediments 
which comprise the habitats of methanotrophs, sometimes 
reaching millimolar concentrations [148–150]. The impact of 
alternative carbon sources on methanotrophic activity is not 
clear; some reports have suggested that organic acids inhibit 
methane oxidation [151–153] while others showed methane 
oxidation still occurring in the presence of alternative carbon 
sources [39, 154, 155], or that acetate stimulated the activity of 
methanotrophs [156–158]. It was suggested that use of acetate 
by facultative methanotrophs might be a survival strategy 
when the supply of methane is intermittent, and reports 
have shown that transcription of the pMMO genes continues 
under these conditions [39, 153–155]. In Methylocella silves-
tris, acetate repressed sMMO gene transcription, at least at 
the concentration tested (5 mM) [159, 160], although this was 
not the case for propane [44]. Recently, with the availability 
of additional genome sequences, Farhan Ul Haque et al. [161] 
designed improved Methylocella-specific mmoX primers, 
which could be used to quantify Methylocella-like sMMO 
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gene sequences in environmental samples. When environ-
ments exposed to short-chain-alkane-containing natural gas 
were examined, Methylocella were found to be extraordinarily 
abundant and active, in some cases making up 85 % of the 
methanotroph community, or 12 % of the total bacterial popu-
lation [45, 161]. In these environments Methylocella may have 
benefited from the additional ethane and propane, and/or 
obligate methanotrophs might have been inhibited by these 
gases or by the products of their co-oxidation [162].

BIOTECHNOLOGICAL POTENTIAL OF 
FACULTATIVE METHANOTROPHS
Methanotrophs, which are ubiquitous, have potential for 
bioremediation of polluted sites. For example, it was shown 
that introduction of methane enhanced aerobic degradation 
of halogenated hydrocarbons (reviewed by Semrau [163]). 
Both forms of the MMO can transform these halogenated 
compounds, although the data suggested that despite its 
slower degradation rate, the pMMO was ultimately the more 
effective system. This being the case, the use of facultative 
Methylocystis strains is attractive. In these strains, the pMMO 
is expressed in the presence of acetate or ethanol [39, 154], 
which could be used to provide the reductant required by the 
MMO. This would both be easier to introduce into polluted 
sites than methane and would also avoid competition for 
binding to the monooxygenase. As another example of biore-
mediation, Methylocella, was among bacteria associated with 
degradation of plastics in landfill lysimeters [164, 165].

Obligate methanotrophs such as Methylococcus capsulatus, 
which can grow relatively quickly and to high cell densities, 
have been exploited for production of single-cell protein [166]. 
While Methylocella, which grows more slowly, may not offer 
the same potential for the production of low value, bulk chem-
icals, it can still be grown to high cell densities in fermenter 
culture [44, 159] and due to its metabolic versatility it should 
be examined further in this respect. Large-scale production 
of methanol from methane is an attractive proposition and 
promising results have been obtained in several studies [167]. 
For example, co-cultures of Methylomonas methanica with 
Methylocella tundrae, immobilized in silica gel, were fed with 
simulated biogas. Interestingly, methanol production was 
enhanced (nearly 100 %) by addition of hydrogen, achieving 
approximately 0.32 g l−1 and 66 % conversion efficiency [168]. 
An obstacle to the use of the MMO to produce methanol is 
the requirement to supply a costly electron donor (formate) 
to enable methane oxidation, but facultative methanotrophs 
may offer an attractive solution since they can instead use 
compounds, for example acetate, frequently present in the 
waste stream [169].

The biocatalytic potential of Methylocella spp. has not so 
far been exploited, despite their metabolic versatility when 
compared to obligate methanotrophs. The sMMO has long 
been regarded as a highly versatile biocatalyst, catalysing 
the oxidation of a wide range of alkanes, alkenes and even 
aromatic compounds as large as naphthalene [163, 166, 170]. 

It is possible to use whole cells of methanotrophs such as 
Methylococcus capsulatus to produce chemicals such as 
propylene oxide (from propylene), although the toxic nature 
of this product requires a recycling system to regenerate the 
whole-cell biocatalyst [171, 172]. If Methylocella is less suscep-
tible to the toxic effects of propylene epoxide, it could offer an 
advantage over M. capsulatus for production of this chemical 
since it could be supplied with alternative energy sources to 
drive the oxidation of propylene by sMMO. In addition to 
the metabolic versatility of Methylocella, these strains have an 
advantage over obligate methanotrophs since expression of 
the sMMO is not repressed by copper [173]. The prospect of 
using the sMMO as a biocatalyst while using a multi-carbon 
compound such as succinate or acetate, as carbon and energy 
source, suggests that Methylocella might be useful as a cell 
platform for production of high value commodities, for 
example chiral alcohols and epoxides.

FINAL CONCLUSIONS
It was nearly one hundred years after the first description of 
a methanotroph [174] before facultative methanotrophs were 
isolated, which highlights the difficulty of identifying this trait 
in environmental samples [33] but suggests that more faculta-
tive strains await discovery. As mentioned above, phylogeny 
alone cannot identify facultative methanotrophs from any of the 
currently identified genera, and it is not easy to devise experi-
ments to identify facultative methanotrophs in the environ-
ment with methods used, to good effect, for obligate strains, for 
example using labelled substrates. Where identifiable genetic 
markers exist for specific metabolic traits, this can be used to 
screen (meta)genomic libraries derived from labelled nucleic 
acids (for example in DNA- or RNA-SIP or single-cell labelling 
experiments [175–177]), followed by targeted isolation tech-
niques [45], but such traits may not always be easy to identify 
in genomes. This underlines the crucial importance of isolating 
and characterizing strains in the laboratory, now possible using 
several innovative techniques [178]. Facultative methanotrophs 
are clearly competitive in several environments, and research 
effort should be directed towards describing their behaviour 
in synthetic and natural communities and identifying the 
environmental conditions in which their role is important 
to the wider methane-oxidizing community. For example, is 
their facultative ability important in competition with obligate 
methanotrophs in methane-rich environments and how does 
oxygen availability affect this? What are the conditions where a 
denitrifying capability is important, and when is the potential 
to extract energy from alternative sources useful? In biotech-
nology and bioremediation their unique metabolic potential 
also justifies investigation.
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