Genetic variation in resistance and high fecundity impede viral biocontrol of invasive fish

Mintram, Kate S., van Oosterhout, Cock ORCID: and Lighten, Jackie (2021) Genetic variation in resistance and high fecundity impede viral biocontrol of invasive fish. Journal of Applied Ecology, 58 (1). pp. 148-157. ISSN 0021-8901

[thumbnail of Published_Version]
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview


Common carp Cyprinus carpio is one of the top global invasive vertebrates and can cause significant ecological damage. The Australian Government's National Carp Control Program (NCCP) proposes to release Koi herpesvirus (KHV) to eradicate feral carp in one of the largest ecological interventions ever attempted. Ecological and human health risks have been highlighted regarding the release of a highly pathogenic viral biocontrol for an aquatic species. The efficacy of KHV has also been questioned, and it has not been demonstrated to produce lasting population reductions. We developed an individual-based model (IBM) to examine the ecological and evolutionary response of a carp population after KHV release. This simulated the interaction between fish life history, viral epidemiology, host genetic resistance and population demography to critically evaluate the impact of KHV release under optimal conditions and a ‘best-case scenario’ for disease transmission. KHV will rarely result in prolonged reductions or population extinctions. Crucially, realistic scenarios result in a rapidly rebounding population of resistant individuals. Additional measures aimed to reduce carp population recovery rate (e.g. with genetic engineering) require rapid efficacy to significantly reduce carp numbers alongside KHV. Fish fecundity has an overwhelming influence on viral efficacy as a biocontrol agent when combined with genetic resistance within a population. A high probability of population extinction is only met when carp fecundity is reduced to 1% of biological observations. Synthesis and applications. We use an individual-based model to evaluate the efficacy of Koi herpesvirus biocontrol in Common Carp, and find that high host fecundity combined with genetic resistance results in rapid population rebound after initial large fish kills. Biocontrol approaches relying on natural selection lose efficacy over successive generations as resistance genes increase in frequency. Given the intense logistical effort and risks to ecosystems and human health associated with large fish kills after viral release, we suggest that sustained manual removal, alongside ecological restoration to favour recovery of native species, provides a risk-free approach to reducing populations.

Item Type: Article
Uncontrolled Keywords: koi herpesvirus,biocontrol,carp,disease ecology,invasive,pest,population control,virus,ecology,sdg 3 - good health and well-being ,/dk/atira/pure/subjectarea/asjc/2300/2303
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Centres > Centre for Ecology, Evolution and Conservation
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 20 Oct 2020 23:58
Last Modified: 22 Oct 2022 07:20
DOI: 10.1111/1365-2664.13762

Actions (login required)

View Item View Item