Photophysics of Isolated Rose Bengal Anions

Stockett, Mark H., Kjaer, Christina, Daly, Steven, Bieske, Evan J., Verlet, Jan R. R., Nielsen, Steen Brøndsted and Bull, James (2020) Photophysics of Isolated Rose Bengal Anions. The Journal of Physical Chemistry A, 124 (41). 8429–8438. ISSN 1089-5639

[img] PDF (Accepted_Manuscript) - Submitted Version
Restricted to Repository staff only until 23 September 2021.

Download (3MB) | Request a copy

Abstract

Dye molecules based on the xanthene moiety are widely used as fluorescent probes in bioimaging and technological applications due to their large absorption cross-section for visible light and high fluorescence quantum yield. These applications require a clear understanding of the dye’s inherent photophysics and the effect of a condensed-phase environment. Here, the gas-phase photophysics of the rose bengal doubly deprotonated dianion [RB – 2H]2–, deprotonated monoanion [RB – H]−, and doubly deprotonated radical anion [RB – 2H]•– is investigated using photodetachment, photoelectron, and dispersed fluorescence action spectroscopies, and tandem ion mobility spectrometry (IMS) coupled with laser excitation. For [RB – 2H]2–, photodetachment action spectroscopy reveals a clear band in the visible (450–580 nm) with vibronic structure. Electron affinity and repulsive Coulomb barrier (RCB) properties of the dianion are characterized using frequency-resolved photoelectron spectroscopy, revealing a decreased RCB compared with that of fluorescein dianions due to electron delocalization over halogen atoms. Monoanions [RB – H]− and [RB – 2H]•– differ in nominal mass by 1 Da but are difficult to study individually using action spectroscopies that isolate target ions using low-resolution mass spectrometry. This work shows that the two monoanions are readily distinguished and probed using the IMS-photo-IMS and photo-IMS-photo-IMS strategies, providing distinct but overlapping photodissociation action spectra in the visible spectral range. Gas-phase fluorescence was not detected from photoexcited [RB – 2H]2– due to rapid electron ejection. However, both [RB – H]− and [RB – 2H]•– show a weak fluorescence signal. The [RB – H]− action spectra show a large Stokes shift of ∼1700 cm–1, while the [RB – 2H]•– action spectra show no appreciable Stokes shift. This difference is explained by considering geometries of the ground and fluorescing states.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry
Depositing User: LivePure Connector
Date Deposited: 16 Oct 2020 23:58
Last Modified: 16 Oct 2020 23:58
URI: https://ueaeprints.uea.ac.uk/id/eprint/77319
DOI: 10.1021/acs.jpca.0c07123

Actions (login required)

View Item View Item