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Abstract 
 
 

High levels of Salmonella Infantis have been identified in poultry globally; for several 

years it has been the serovar most frequently found in broilers in Europe. It is also one of 

the most common serovars causing infection in humans, although responsible for lower 

numbers of cases than other Salmonella serovars.  

Very little is known about the genetic diversity of S. Infantis, with previous 

research only comparing up to 264 genomes.  In this project a collection of 4,670 S. 

Infantis genomes was amassed. The aims of this thesis were to determine: the global 

population structure of the serovar; the levels of antimicrobial resistance (AMR) and 

plasmids and whether genetic differences between human and poultry S. Infantis could 

explain the difference in incidence seen between these sources. 

S. Infantis splits into two eBurstGroups (eBG), eBG31 and eBG297, the former 

comprising 96% of the global collection. However, the proportion of isolates belonging to 

either eBG varied geographically, with eBG297 strongly associated with isolation from 

Africa.  

High levels of AMR were present in the eBG31 population; 39% of the isolates 

were multidrug resistant. This was associated with the presence of plasmid of emerging S. 

Infantis, which was identified in 34% of the eBG31 genomes, in particular from 69% of the 

poultry isolates. 

Upon comparison of the eBG31 human and poultry genomes, a greater genetic 

diversity was observed amongst the human isolates. Furthermore, several thousand 

genes and intergenic regions were significantly associated with isolation source. This 

thesis concluded that the differences in the pathogenicity of S. Infantis between humans 

and poultry is due to either only a subgroup of poultry S. Infantis being capable of 

infecting humans; or that other sources are the cause of human infections.  Public health 

teams worldwide will benefit from the increased understanding this work provides on this 

emerging pathogen.   
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1. Chapter 1.  Introduction 
 

Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) is a bacterial 

pathogen which causes disease in humans. Although one of the serovars most frequently 

isolated in public health reference laboratories, often amongst the top six, little is known 

about transmission routes and reservoirs (National Center for Emerging and Zoonotic 

Infectious Diseases (NCEZID), 2018; European Food Safety Authority (EFSA) and European 

Centre for Disease Prevention and Control (ECDC), 2019a).  In chickens, S. Infantis 

infection is common, with the serovar being the most frequently identified from broilers 

in European Union (EU) member states (EFSA and ECDC, 2019a).  The genetic basis for the 

difference in pathogenicity between isolates causing infection in humans and poultry, 

which could explain why S. Infantis is not seen in higher numbers in humans, is not clear.    

 

1.1 Infectious Intestinal Disease 
 

Diarrhoea, or infectious intestinal disease (IID), is a very variable disease state ranging 

from chronic intestinal disorders to dramatic projectile vomiting after ingestion of a toxin; 

in order to study causation, definitions are needed.  IID is defined by the Food Standards 

Agency (FSA) of the United Kingdom (UK) as individuals suffering from:  

“loose stools or clinically significant vomiting lasting less than 2 weeks, in the 

absence of a known non-infectious cause, preceded by a symptom-free period 

of 3 weeks” (FSA, 2016). 

It can be caused by a diverse array of microorganisms including bacteria, viruses and 

protozoa and is the second most prevalent infectious disease occurring in humans after 

respiratory tract infection (Vos et al., 2016).  

 

1.1.1 Occurrence and Causes of IID  
 

IID can have serious consequences, with pathogens that cause diarrhoea accounting for 

10.5% of deaths of children under the age of 5 worldwide (Liu et al., 2012). In 2016 there 

was an estimated 4.5 billion episodes of diarrhoeal disease and 1.7 million deaths, with 

diarrhoea being the second greatest cause of years of life lost after cardiovascular 

diseases (Global Health Metrics, 2017; Troeger et al., 2018). The mortality associated with 
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diarrhoeal disease varies greatly by location, with 89% of deaths due to diarrhoea 

occurring in sub-Saharan Africa and South Asia (Troeger et al., 2018). 

The incidence of IID in the UK community is high, with 25% of the population 

having an episode each year (FSA, 2016).  There were approximately 16.9 million cases in 

2009, resulting in 1 million visits to a general practitioner for IID (Tam et al., 2012). This 

has an impact on the economy; it has been calculated that each year in the UK, 50% of 

those with IID take time off work/school, equating to 19 million work days lost, 11 million 

of those at working age (FSA, 2016). 

In England and Wales bacterial pathogens were the most common cause of 

gastrointestinal infection reported to Public Health England (PHE) in 2014, with 

Campylobacter spp., Salmonella enterica, Shigella sonnei and Escherichia coli (E. coli) 

being the most prevalent bacterial pathogens (PHE, 2015).  Norovirus and Rotavirus were 

the most common viral enteropathogens and the protozoa Cryptosporidium and Giardia 

were also frequently reported.  It is estimated that in the community viral 

enteropathogens are the most prevalent cause of IID (Tam et al., 2012).  

 

1.1.2 Transmission Routes 
 

IID can be spread via multiple routes including: from person-to-person via the faecal-oral 

route; by animal contact or contact with environmental contamination; or by contact 

with contaminated water or food (Fletcher, Stark and Ellis, 2011; Centers for Disease 

Control and Prevention (CDC), 2018).  

  Person-to-person transmission of IID usually occurs due to contamination of the 

hands with faeces (Rao, 1995). The risk of spreading IID via this route can be reduced by 

hand washing after possible contamination or before preparing or eating food (Ejemot-

Nwadiaro RI and Critchley, 2015).  Decontamination of the environment may also be 

helpful, for example, in hospitals door handles and other surfaces should be disinfected; 

the transfer of symptomatic patients or staff between wards in hospitals can also increase 

the spread of IID  (Rao, 1995).  Another source of person-to-person spread can be sexual 

contact, specifically oro-anal sex (Farthing and Kelly, 2007).  Pathogens that require a low 

infectious dose for transmission are more likely to be spread from person to person, such 

as Shigella. In the case of some pathogens, person-to-person contact can have an 

important role in transmission; for example, children with haemolytic uraemic syndrome 

(HUS), due to verotoxin-producing E. coli, are significantly more likely than controls to 
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have come into contact with someone with diarrhoea up to 2 weeks prior to the onset of 

infection (Rowe et al., 1993). 

  Animals are a reservoir for human enteropathogens, including Salmonella; direct 

contact with animals, or contamination of the environment due to animals, can lead to 

human IID (Zambrano et al., 2014). Domestic livestock or poultry being kept in or near the 

home increase the risk of the spread of faecal contamination and therefore transmission 

of pathogens. Household pets can also be a source of human IID as C. jejuni and S. 

enterica carriage has been observed in cats and dogs (Shimi and Barin, 1977; Svedhem 

and Kaijser, 1981; Leonard et al., 2011). For example, in a study of 138 dogs in Canada, 

23% of the dogs had a stool sample positive for Salmonella, with 87.5% of those dogs not 

having experienced diarrhoea in a month (Leonard et al., 2011). Human Salmonella 

infections have also been found to be associated with dry cat and dog food (Behravesh et 

al., 2010).  Petting farms have been connected with outbreaks of human IID, for example, 

in North Carolina 108 people fell ill after attending a state fair, 78% of which had visited 

the petting zoo at the fair (CDC, 2005). Shiga toxin-producing E. coli (STEC) was the 

confirmed cause in 41 of the cases and extensive STEC contamination was found at the 

petting zoo; 14% of patients developed HUS. 

  Enteropathogens have been identified in the environment, another route for IID 

transmission. A study in Tanzania identified enterovirus, pathogenic E. coli and rotavirus 

genes in soil samples, with higher levels of E. coli found in soil from house floors than 

latrine floors (Pickering et al., 2012). Clostridium difficile has been identified in the 

environment in Wales; of 104 soil samples taken, 21% were positive for the pathogen (Al 

Saif and Brazier, 1996).  

  Enteropathogens can also be transmitted in water; between 1974 and 2001 in 

Canada there were 288 outbreaks associated with drinking water, with the top three 

causative agents being Giardia, Campylobacter and Cryptosporidium (Schuster et al., 

2005). In England and Wales between 1992 and 2003 there were 89 waterborne IID 

outbreaks; 55% were associated with drinking water and 39% with swimming pools; the 

top three causative agents were Cryptosporidium, Campylobacter and Giardia (Smith et 

al., 2006). Cryptosporidium and Giardia are both protozoa which are capable of surviving 

for long periods in water and resisting disinfection, they also both cause low numbers of 

fatalities and hospitalisations (Medema and Schijven, 2001; Snel et al., 2009). 

  It is estimated that globally, 600 million people become ill after eating 

contaminated food each year; 420,000 of these die (World Health Organization (WHO), 
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2015). In the United States of America (USA) in 2011 there were approximately 48 million 

cases of foodborne illness, resulting in 128,000 hospitalisations and 3,000 fatalities (CDC, 

2018). Also, in Japan over 1,000 outbreaks of foodborne disease occur each year (Hara-

Kudo et al., 2013).  

 

1.1.3 Foodborne Infection 
 
 
A foodborne infection is an infection that results from ingesting food contaminated with a 

pathogen (Plaut, 2000). The WHO estimated that in 2010, approximately 92% of cases of 

foodborne illnesses were caused by diarrhoea causing infectious agents; bacterial 

pathogens causing 64% of these cases (Havelaar et al., 2015). The top three bacterial 

pathogens were Campylobacter spp., Enterotoxigenic E. coli and Salmonella enterica, 

causing in total 75% of the cases. Salmonella enterica was predicted to be the pathogen 

to cause the most fatalities, accounting for 32% of deaths caused by bacterial diarrhoeal 

foodborne infections. Other important bacterial foodborne pathogens include Shigella 

spp. and STEC which caused 51 million and 1 million cases respectively.  

Viral pathogens also have a significant foodborne infection burden; in 2010 an 

estimated 125 million cases of food-associated norovirus infection occurred (Havelaar et 

al., 2015). Protozoa such as Giardia spp. and Cryptosporidium spp. were also predicted to 

be responsible for 67 million cases of diarrhoea associated with foodborne infection.  

 

1.1.4 Sources of Bacterial Foodborne Infection 
 

Multiple different food groups have been identified as causes of bacterial foodborne 

infection.  In 2005 and 2006, 135,014 Salmonella outbreak-associated human cases, with 

a known source attributed to them, were identified in EU member states; higher than 

seen with Campylobacter (129,603) (Pires et al., 2010). Land animals were the source 

associated with the highest proportion of Salmonella and Campylobacter cases, causing 

94% and 92% of cases respectively. Of the Salmonella cases attributed to land animals, 

65% were associated with eggs and 24% with meat and poultry. 

In the USA between 1998 and 2008, products from land animals caused the 

majority, 64%, of bacterial foodborne infections.  Other sources included plants (32.1%) 

and aquatic animals (3.9%) (Painter et al., 2013). Of all land animal produce, meat and 

poultry caused the highest number of bacterial foodborne illnesses (41.1%); 17.9% were 
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attributed to poultry, 13.2% to beef, 9.8% to pork and 4.9% to eggs. Dairy products were 

also associated with a large number of cases (18%).  The largest contributor to death from 

foodborne illnesses was poultry, associated with 19% of all deaths, which were in most 

cases caused by Listeria or Salmonella. This demonstrates the need for research in 

reducing the levels of pathogenic bacteria in chickens. 

Using a combination of public health data and estimates of IID incidence in the 

community in the UK from 2009, Campylobacter was predicted to be the most frequently 

identified foodborne pathogen, causing 280,400 cases (O’Brien et al., 2016). However, 

although Salmonella was seen less frequently, it was predicted to cause the highest 

number of hospitalisations at 2,490, compared to 562 admissions due to Campylobacter 

infection. Also, in Canada between 2000-2010, Salmonella was the bacterial pathogen 

that caused the highest number of domestic foodborne hospitalisations (Thomas et al., 

2015). This suggests that Salmonella causes large numbers of foodborne infections but 

also causes more severe infections than other foodborne pathogens.   

     

 

1.2 Salmonella 
 
 
Salmonella is part of the Enterobacteriaceae family and is comprised of gram negative rod 

shaped bacteria; the majority of the genus is motile with several peritrichous flagella 

present on the cell surface (Sanderson and Nair, 2013; Jajere, 2019). 

 

1.2.1 Classification 
 

The Salmonella genus is split into two species, Salmonella enterica and Salmonella 

bongori; the former is further split into six subspecies (subsp.): enterica (subsp. I), 

salamae (subsp. II), arizonae (subsp. IIIa), diarizonae (subsp. IIIb), houtenae (subsp. IV) 

and indica (subsp. VI) (Fookes et al., 2011; Crump and Wain, 2017). Figure 1.1 shows the 

phylogenetic relationship between the Salmonella species and subspecies. 
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Figure 1.1 Salmonella subspecies evolution 

Phylogram of the Salmonella enterica subspecies, Salmonella bongori with an E. coli strain as an 

outgroup. Reconstructed from Desai et al., 2013.    
 

1.2.1.1 Salmonella enterica 

 

Of the six subspecies within Salmonella enterica, the host each is associated with varies 

(Crump and Wain, 2017). They have varying biochemical characteristics which can be 

used to differentiate between them; for example all but S. enterica subsp. enterica are 

gelatinase positive and only S. enterica subsp. houtenae is salicin positive (Lamas et al., 

2018). It is estimated that S. enterica subsp. salamae and indica are the closest related to 

S. enterica subsp. enterica; diverging 20 million years ago.  

S. enterica subsp. enterica contains 99% of the serovars that cause animal and 

human disease and is comprised of 2637 serovars; the majority of which can cause 

foodborne infection (Issenhuth-Jeanjean et al., 2014; Crump and Wain, 2017). 

Henceforth, all S. enterica subsp. enterica serovars will be referred to with the genus and 

serovar name.  The serovars are clustered based on their host specificity and the type of 

infection they cause; which can range from invasive systemic infection to asymptomatic 

carriage (Gal-Mor, Boyle and Grassl, 2014).  The serovars in this subspecies are often split 

into two groups dependent on their ability to cause typhoid fever; S. Typhi and S. 

Paratyphi A, B and C cause either typhoid fever or paratyphoid fever and are thus 

referred to as Typhoidal Salmonella. The other S. enterica subsp. enterica serovars, which 

cause gastroenteritis or extra-intestinal infection are called Non-Typhoidal Salmonella 

(NTS). 

Although S. enterica subspecies arizonae, diarizonae and salamae have been 

identified in warm-blooded animals, and all of the subspecies have caused human cases 

of salmonellosis, their presence in these hosts is rare (Lamas et al., 2018). A study in the 

Netherlands, between 1984 and 2014, determined that each of the S. enterica subsp. II-VI 
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caused between 0.02% and 0.06% of human Salmonella infections (Mughini-Gras, Heck 

and van Pelt, 2016). They are more commonly associated with reptiles, in the same study 

59% of reptile Salmonella samples were from S. enterica subsp. II-IV. Reptiles, whilst 

frequently carrying these subspecies, also carry S. enterica subsp. enterica as part of their 

intestinal microbiota, often asymptomatically (Silva, Calva and Maloy, 2014).  

Interestingly, very high levels of S. enterica subsp. salamae serovar Sofia have been 

observed in the Australian poultry industry, between 2005 and 2009 it was the dominant 

serovar isolated from broiler meat (Duffy, Dykes and Fegan, 2012).  This was not 

associated with high numbers of human cases.   

 

1.2.1.2 Salmonella bongori 

 

S. bongori is primarily associated with cold-blooded animals although cases have been 

seen in humans and other warm blooded animals (Giammanco et al., 2002; Fookes et al., 

2011). It is estimated that S. bongori diverged from S. enterica 40-63 million years ago 

(Lamas et al., 2018). All Salmonella contain Salmonella Pathogenicity Island (SPI)-1; 

however, whilst S. enterica isolates contain SPI-2, S. bongori does not; the acquisition of 

this SPI is predicted to be key in the divergence of these species (McQuiston et al., 2008).  

 

1.2.1.3 Serology 

 

The Salmonella genus is classified by serotyping against specific antibodies, which 

involves sorting strains by their antigenic structure (Grimont and Weill, 2007; Ryan, 

Dwyer and Adley, 2017). This is done with three of Salmonella’s surface antigens: Vi 

capsular antigens, flagellar H antigens and somatic O antigens.  

 The somatic antigen, a component of lipopolysaccharides in the outer cell 

membrane, is encoded for by the rfb genes (Luk et al., 1993).  The H antigen may be 

present in one of two phases, encoded by the fliC and fljB genes (McQuiston et al., 2008). 

Isolates that can only express one antigen are monophasic. For diphasic serovars, whilst 

these two phases can be detected within a culture at the same time, individual bacteria 

only express one at a time.   

Once the antigens present have been identified, the Kauffman-White scheme is 

used to determine the serovar, 67 O and 117 H antigens have been recognised (Grimont 
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and Weill, 2007; Sanderson and Nair, 2013). There are a total of 2,659 serovars in the 

Salmonella genus (Table 1.1), with the majority of those identified belonging to S. 

enterica subsp. enterica (Issenhuth-Jeanjean et al., 2014). Whilst serology is a well-

established method for characterising Salmonella strains globally, it is expensive, low-

throughput and prone to human error (Achtman et al., 2012). 

  

 

 

 

 

 

 

 

 

 

1.2.1.4 Other Typing Methods 

 

To allow for differentiation of isolates within serovars, other methods are being used 

alongside serotyping.  One method used to identify variants within serovars is phage 

typing; the bacterium’s susceptibility to a set of bacteriophages is determined, this 

information can then be used to determine whether a particular variant is being spread 

(Tizard, 2004). Pulsed-field electrophoresis is also used to identify variants of Salmonella; 

restriction endonucleases are used to digest the chromosomal deoxyribonucleic acid 

(DNA) into fragments that are separated using electrophoresis; the results of different 

strains are then compared to show to relatedness. Other methods of differentiating 

between variants of Salmonella include antimicrobial resistance (AMR) typing, plasmid 

typing, biochemical tests and single nucleotide polymorphism (SNP) detection in the 

flagellar antigens (Achtman et al., 2012; Sanderson and Nair, 2013; Crump and Wain, 

2017). 

Species and subspecies Number of serovars 

S. enterica 2637 

subsp. enterica 1586 

subsp. salamae 522 

subsp. arizonae 102 

subsp. diarizonae 338 

subsp. houtenae 76 

subsp. indica 13 

S. bongori 22 

 
Table 1.1 Number of serovars in each Salmonella species and subspecies 

Number of serovars from each Salmonella species and subspecies in the current Kauffman-White scheme 

(Issenhuth-Jeanjean et al., 2014). 
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Due to the expense, the need for animals to raise antibodies and the low 

throughput of serotyping, new techniques are being used to classify Salmonella (Achtman 

et al., 2012). Multi-locus sequence typing (MLST), identifies the variant of each of the 7 

housekeeping genes present in the genome; genes that are ubiquitous in Salmonella and 

involved in metabolism (Cooper and Feil, 2004; Achtman et al., 2012). The alleles are: 

purE, aroC, dnaN, hemD, hisD, sucA and thrA (Achtman et al., 2012).  Isolates with 

identical alleles are grouped into a Sequence Type (ST). STs are then clustered into an 

eBurstGroup (eBG) based on allelic similarity; resulting in groups of related organisms. All 

of the STs within an eBG are a separated from another ST in the eBG by a single-locus 

variant (SLV), an alternate version of one of the 7 housekeeping alleles used to define 

that ST. In some cases, when defining eBGs, singleton STs that were a double locus 

variant from an eBG and a common serovar were also included in that eBG.  As fliC and 

fljB can be horizontally transferred between strains, this results in isolates being 

serotyped as a serovar that they are genetically distinct to. MLST avoids this problem and 

is therefore believed to be a superior typing method.  

 

1.2.2 Salmonella Occurrence 
 
In 2010 there was an estimated 9 million cases globally of enteric fever caused by S. Typhi 

and S. Paratyphi A and 79 million cases of NTS foodborne infection (Havelaar et al., 2015).  

The economic cost of NTS is therefore extensive, NTS infections, which caused either 

diarrhoea or invasive infection, had the biggest economic burden in 2010 out of all 

foodborne diseases worldwide, resulting in 4.07 million disability adjusted life years, a 

measurement of overall disease burden and recording of the number of years lost due to 

ill health (Kirk et al., 2015).  In 2013, the estimated cost of human NTS infection in the 

United States in 2013 was $3.7 billion (Economic Research Service and U.S. Department 

of Agriculture, 2014).  

 

 
1.2.2.1 NTS Occurrence in Humans 

 
NTS are the most frequently identified causative agents of foodborne outbreaks in Europe 

and the second most common cause of reported bacterial gastrointestinal infection 

(Papadopoulos et al., 2017; EFSA and ECDC, 2019a).  After several years of declining levels 

of human cases of salmonellosis in EU member states, over the last five years the 
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numbers of cases have stabilised, with 91,857 cases confirmed in 2018 from 28 European 

countries (EFSA and ECDC, 2019a). In 2018, 1,229 outbreaks of Salmonella in humans 

occurred, with S. Enteritidis causing the majority.  Concerningly, in the USA the number of 

cases of salmonellosis in humans has significantly increased between 2015 and 2018; the 

authors attribute this partly to new non-culture based methods being used to diagnose 

cases, but this could represent a true increase (Tack et al., 2019). 

Children are more likely to get Salmonella infections than adults; in 2015 in the 

USA there were 7,719 laboratory confirmed cases of Salmonella, 38% of which were in 

people aged 0-19 years (CDC, 2017). The majority of these were under the age of 5. In 

Shanghai, China, between July 2010 and December 2011, 1,833 cases of children with 

suspected bacterial diarrhoea were recognised; 17.2% of the cases were due to NTS, 7.1% 

to Campylobacter and 5.7% to Shigella (Li et al., 2014). As children excrete Salmonella in 

their faeces for longer than adults post-infection, this increases this risk of transmission to 

others (Buchwald and Blaser, 1984).  

With large outbreaks it is often possible to attribute cases to a common cause, 

however, 60-80% of salmonellosis cases are not identified as part of an outbreak  and are 

either classed as sporadic cases or not classed at all (WHO, 2016). In 2015 in the USA, only 

6.9% of diagnosed human Salmonella cases were outbreak associated (CDC, 2017).  It is 

thought that for every identified Salmonella case, 28.3 cases occur in the community 

which are never reported, meaning the numbers of cases reported to public health teams 

are not an accurate representation of actual case numbers. (Scallan et al., 2011).  

 

 

1.2.2.2 NTS Occurrence in Poultry 

 

Salmonella is found at high levels in food animals globally. In EU member states in 2018, 

2% of the 14,000 Gallus gallus breeding flocks that were tested were positive for 

Salmonella; 4% of the 40,000 laying flocks and 3.5% of the 360,000 broiler flocks tested 

were also positive (EFSA and ECDC, 2019a). Salmonella in eggs also represents the highest 

risk of foodborne disease.  Additionally, Salmonella was present in other food animals; of 

the 35,524 cattle units tested, 4% were positive, furthermore, 41% of the 92,089 pig units 

that were tested were also positive. In 2017, of the 36,079 samples of fresh broiler meat 

tested across the European Member States, Salmonella was detected in 4.85% (EFSA and 

ECDC, 2018b).  



 27 

In Ghana, Salmonella was found in 47% of laying hen and broiler samples (Andoh 

et al., 2016). Between 1998-2008 in Japan, Salmonella was isolated in 33.5% of ground 

chicken samples; it was also found in chicken sold for raw consumption at 12.7% (Hara-

Kudo et al., 2013). This shows how Salmonella contamination of poultry produce remains 

a problem worldwide. 

As Salmonella is still a large cause of severe human infection there is clearly a 

need for further research in this area. With poultry products causing the highest number 

of hospitalisation and deaths from Salmonella cases; reducing the level of Salmonella 

colonisation in chickens could drastically reduce the numbers of human infection; making 

research in this area worthwhile (Painter et al., 2013).  

 

 

1.2.2.3 Serovar Distribution 

 

The serovars that are the most prevalent in humans vary depending on the country of 

isolation (Hendriksen et al., 2011). The most common serovars in humans from 37 

countries across the world between 2001 and 2007 were compared; in North America, 

Australia and New Zealand, S. Typhimurium was the most common serovar followed by S. 

Enteritidis.  In all other regions, S. Enteritidis was the dominant serovar. Figure 1.2 shows 

more recent data of the top 10 Salmonella serovars in the USA, EU and New Zealand. 

The most common serovar also varies by isolation source; in 2016 in the USA the 

serovars causing the most clinical infections in chickens, turkeys, pigs, and cattle were S. 

Enteritidis, S. Senftenberg, monophasic S. Typhimurium and S. Dublin respectively 

(Morningstar-Shaw et al., 2016). In routine flock screening and environmental sampling, 

the most common serovars differed from those causing infection; for chickens, turkeys, 

pigs and cattle they were S. Senftenberg, S. Hadar, monophasic S. Typhimurium and S. 

Cerro respectively.  
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Figure 1.2 Percentage of human salmonellosis cases caused by the top 10 serovars in the USA, EU and 
New Zealand 

a) USA in 2016, n = 46,623  

b) EU in 2018, n = 79,698  

c) New Zealand in 2019, n = 1153 
 

             Agona Bovismorbificans    Braenderup     Brandenburg           Derby Enteritidis 

          Infantis                  Javiana        Kentucky                Monophasic Typhimurium 1.4.[5].12:i:-  
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1.2.3 How Salmonella Causes Infection in Humans 
 

The infection Salmonella causes in humans varies depending on whether it is caused by 

typhoidal or NTS. Whilst NTS cases are seen more frequently, the consequences of 

typhoidal infection for the individual are more severe; 0.08% of NTS foodborne associated 

infections in 2010 resulted in death, compared to 0.7% of typhoidal infections (Havelaar 

et al., 2015). 

 

1.2.3.1 Non-Typhoidal Salmonellosis 

 

NTS typically causes localised gut infections, giving symptoms such as fever, diarrhoea, 

vomiting and gastroenteritis (Cherubin et al., 1974). The incubation period of the 

pathogen is usually 12 to 96 hours, although cases with longer periods have been 

identified, for example, an outbreak of S. Nienstedten was identified in a nursery with an 

incubation period of 7 to 18 days (Seals et al., 1983; Eikmeier, Medus and Smith, 2018).  

Figure 1.3 shows human host factors that are increased with susceptibility to NTS 

infection.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NTS can also cause invasive infection, hereafter referred to as iNTS (Gordon et al., 2008). 

It was estimated that between 1969 and 1983, 8% of patients admitted to hospital in 

Manchester (UK), with diarrhoea due to NTS, also had bacteraemia (Mandal and 

 

• High gastric pH (low acidity) a 

• Gastric and gastrointestinal surgery b 

• Antibiotic administration c 
• Haemoglobin abnormalities (e.g., sickle cell anaemia) 

• Cancers 

• Leukaemia and lymphoma 

• Diabetes mellitus 

• Immunosuppressive drugs 

• Acquired Immunodeficiency Syndrome (AIDS) 

Figure 1.3 Host factors that increase susceptibility to Salmonellosis 

a) Normal gastric acidity (pH<3.5) is lethal to Salmonella 

b) Surgery can inhibit normal gastric emptying and intestinal 

motility and can be undertaken to reduce gastric acidity 

c) Antibiotics alter normal intestinal microflora 

Reproduced from (CDC, 2013) 
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Brennand, 1988). iNTS infection is particularly common in low to middle income countries 

where it is linked to immunocompromised individuals, in association with human 

immunodeficiency virus (HIV), malnutrition or malaria (Ao et al., 2015).  Genetic defects, 

such as those affecting Interleukin (IL)-12 and Interferon gamma, also increase host 

susceptibility to iNTS infection (Fierer and Guiney, 2001).  Globally, in 2010, there was an 

estimated 3.4 million cases of invasive salmonellosis each year and 681,000 fatalities, 

with NTS causing up to 39% of community-acquired bacteraemia cases in sub-Saharan 

Africa (Ao et al., 2015; Uche, MacLennan and Saul, 2017).  More recent estimates have 

predicted that globally, in 2017, there were 535,000 cases of iNTS and 77,500 fatalities, of 

which 24% were associated with HIV (Stanaway, Parisi, et al., 2019).  Other 

manifestations of NTS infection include Salmonella osteomyelitis, systemic lupus 

erythematosus, septic arthritis, endarteritis and meningitis (Cherubin et al., 1974). 

The factors causing salmonellosis to become invasive are not all host driven. Some 

Salmonella serovars are more often associated with invasive disease than others, 

suggesting some variation in virulence (Kazemi, Gumpert and Marks, 1974; Jones et al., 

2008).  For example, in humans in the USA between 1996 and 2006, 6% of S. 

Typhimurium cases were invasive whereas 57% of S. Choleraesuis and 64% of S. Dublin 

cases were invasive (Jones et al., 2008). Invasiveness can be measured by the invasive 

index, defined as the percentage of all cases that present as bacteraemia (Langridge, 

Wain and Nair, 2012).  S. Choleraesuis and S. Enteritidis represent the extremes of the 

NTS invasiveness spectrum; having an invasive index of 55.2% and 1.8% respectively 

(Langridge, Wain and Nair, 2012). For some serovars, a complex association with 

invasiveness exists as differences are reported for a single serovar depending upon where 

the infection occurs -  for example the invasive index of S. Dublin ranges from 14.3% in 

Canada to 71.4% in the USA (Langridge, Nair and Wain, 2009).  

 

 

1.2.3.2 Typhoid Fever 

 

A typical host adapted and restricted Salmonella is S. Typhi, the causal agent of typhoid 

fever (Crump and Wain, 2017). The incubation period is typically 10 to 20 days and 

symptoms initially include malaise, headache and loss of appetite (Stuart and Pullen, 

1946). Patients then progress to have a combination of the following symptoms: a fever 

of on average 40°C, rash, aches and pains, cough and abdominal tenderness. Due to its 
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multi-system nature the infection can be life threatening; causing delirium, intestinal 

perforation, gastrointestinal bleeding, encephalopathy, sepsis, myocarditis, peritonitis 

and meningitis (Crump and Wain, 2017; Stanaway, Reiner, et al., 2019).  Mortality in the 

absence of antibiotics is low, in Middlesex Hospital (UK) between 1915-1917, of 1,118 

cases of typhoid fever identified, the mortality rate was 7.51% (Webb-Johnson, 1917). 

 

 

1.2.3.3 Pathogenesis of Salmonella in Humans 

 

For Salmonella to cause infection it must be ingested and reach the small intestine. 

Initially NTS and typhoidal serovars both adhere to the epithelium of the small intestine 

and invade (Gal-Mor, Boyle and Grassl, 2014).  This is controlled by SPI-1 which codes for 

a type III secretion system (T3SS) that injects effector proteins into human epithelial cells; 

triggering host cell membrane rearrangement and allowing Salmonella uptake to occur 

(Francis, Starnbach and Falkow, 1992; Misselwitz et al., 2011).  SPI-1 is also essential for 

regulating the host immune response as it induces the recruitment of neutrophils and it’s 

T3SS suppresses the expression of proinflammatory cytokines in macrophages (Lou et al., 

2019). 

T3SSs, encoded by SPI-2, modify the phagosome containing the bacterium to form 

a Salmonella containing vacuole which is resistant to lysosome fusion, enabling 

intracellular survival (Garcia-Gutierrez et al., 2016).  Other T3SS effectors present on SPI-2 

include SifA which triggers lysosomal hydrolase secretion and SseL which controls cell 

death in macrophages (Jennings, Thurston and Holden, 2017). Most Salmonella also 

contain iroBCDE and iroN which encode a siderophore that supplies iron and is resistant 

to the host’s antimicrobial peptide lipocalin 2 (Fischbach et al., 2006). 

NTS gastroenteritis remains confined to the ileum and colon in immunocompetent 

patients (Gal-Mor, Boyle and Grassl, 2014). The human immune response to NTS is an 

increase in helper T cell 1 inducing cytokines; patients with a deficiency in IL-12 and IL-13 

have been identified as having a higher risk of invasive salmonellosis (MacLennan et al., 

2004; Gal-Mor, Boyle and Grassl, 2014). It is this inflammatory response that triggers the 

diarrhoea seen in cases of NTS (Galàn, 2001).  S. Typhimurium has been found to be able 

to utilise tetrathionate, a respiratory electron acceptor produced during inflammation, 

allowing it to outcompete the host microbiota (Winter et al., 2010). 
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In cases of iNTS the bacteria are phagocytosed into macrophages which then 

transports them to systemic sites (Haraga, Ohlson and Miller, 2008).  In S. Enteritidis, 

several genes were found to play a role in invasion of Caco-2 cells including the flagellar 

genes fljB and fljH and the lipopolysaccharide O antigen genes rfbM and rfbN (Shah et al., 

2012).   

While NTS initiates an inflammatory response during invasion, the typhoidal 

serovars avoid this (Gal-Mor, Boyle and Grassl, 2014). Typhoidal Salmonella colonises 

macrophages and avoids being destroyed by them (Gal-Mor, Boyle and Grassl, 2014). This 

leads to spreading to the liver, bone marrow, spleen and gallbladder.  NTS can be 

excreted in the faeces for on average 7 weeks after infection in children under the age of 

five and 3 to 4 weeks in adults and children over the age of 5 (Buchwald and Blaser, 

1984). Carriage of S. Typhi is seen for 3 months after infection in 10% of recovering, 

untreated patients; between 1 and 4% of patients carry and excrete S. Typhi in their 

faeces for over 12 months (Parry et al., 2002). 

 

 

1.2.3.4 Transmission of Salmonella in Humans 

 
 NTS is transmitted to humans through the ingestion of the pathogen via multiple routes 

(Figure 1.4) (Gal-Mor, Boyle and Grassl, 2014). Salmonella can be transmitted person to 

person through ingestion of infected faeces. It can also be transmitted from pets such as 

dogs, cats, rodents, amphibians and reptiles.  

 

 
Figure 1.4 Transmission routes of human NTS infection 
Reproduced from (Hald et al., 2016) 
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Foodborne transmission is the most common route of human infection, estimated to 

cause 95% of NTS cases in the USA (Mead et al., 1999). Poultry products are often the 

biggest source of human salmonellosis cases; between 1998-2003 in the USA, 48% of 

reported human salmonellosis cases were attributed to chicken and 6% to egg products 

(Guo et al., 2011). Between 2007 and 2009 in EU member states the largest source of 

human salmonellosis was eggs, causing 42.4% of cases (De Knegt, Pires and Hald, 2015). 

In 2018 eggs were still the largest cause of salmonellosis outbreaks, associated with 

45.6% of strong-evidence outbreaks in EU member states; broiler meat was associated 

with 2.4% (EFSA and ECDC, 2019a).   

 

1.2.4 How Salmonella Causes Infection in Domestic Fowl 
 

Salmonella infection and carriage in poultry is a major public health issue; although some 

serovars do cause disease in poultry, those that don’t are able to colonise the caeca of 

poultry and reside there for weeks (Barrow et al., 1987). As these birds don’t show any 

symptoms it is challenging to identify those infected within flocks. 

As seen in humans, the introduction of Salmonella to the chicken gastrointestinal 

tract provokes severe inflammation; this reduces invasion but does not provide enough of 

a response to remove the bacteria near the caecal lumen in the epithelial cells 

(Withanage et al., 2005; Kogut and Arsenault, 2017). Caecal pro-inflammatory signals are 

down-regulated 4 days post Salmonella infection allowing persistence for several weeks 

(Kogut et al., 2016).  

Differences in the mode of infection are also seen between the serovars that are 

less invasive to poultry; for example, infection of chicks with S. Enteritidis and S. 

Typhimurium resulted in changes of cytokine expression; however S. Infantis infection did 

not change cytokine expression (Setta et al., 2012). In poultry S. Pullorum and S. 

Gallinarum cause pullorum disease and fowl typhoid respectively (Shivaprasad, 2000). 

Both serovars cause systemic disease in poultry and avoid provoking a strong immune 

response to enable invasion of host tissues (Henderson, Bounous and Lee, 1999; Kaiser et 

al., 2000; Shivaprasad, 2000).  Manifestations of these infections include: anorexia, 

diarrhoea, droopy wings, depression, laboured breathing and dehydration. Both 

infections can be fatal in birds.  
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1.2.4.1 Transmission of Salmonella in Poultry 

 

Salmonella colonisation in chickens is affected by the genetic susceptibility of the host, 

infectious dose and bird stress (Foley et al., 2011).  In chickens Salmonella can be spread 

either by horizontal or vertical transmission (Lamont, 2010). If chicks are infected 

immediately after hatching they can be colonised all the way through to maturity; this 

may occur because of the low responsiveness of the chicks towards Salmonella (Gast and 

Holt, 1998; Holt et al., 1999). Salmonella is shed in the faeces of carrier birds and is 

released into the environment, enabling horizontal transmission. Vertical transmission 

occurs when the bacteria invade egg follicles and the ovaries; this is then transmitted into 

laid eggs (Haider, Chowdhury and Hossain, 2014). 

Compared to humans, whose gastrointestinal pH ranges from 1 to 8, the pH of the 

chicken gastrointestinal tract is lower, ranging between 2.5 and 7.7, a factor that may 

affect Salmonella virulence (Denbow, 2000; Koziolek et al., 2015). Additionally, there is a 

difference in core body temperature in humans and chickens, 37°C and 42°C respectively 

(Byrne, Clyne and Bourke, 2007). Consequently, a zoonotic Salmonella strain would have 

to be able to survive in both environments.  

While newly hatched chicks are vulnerable to Salmonella infection, the mature 

microbiota of the chicken gastrointestinal system is known to give resistance to 

Salmonella infection using competitive exclusion mechanisms such as nutrient 

competition and occupation of mucosal attachment sites (Schneitz, 2005; Chambers and 

Gong, 2011). For example, Salmonella increase epithelial oxygenation with virulence 

factors; the commensal Enterobacteriaceae compete with Salmonella for this (Litvak et 

al., 2019). Also, the chicken gut microbiota produces short-chain fatty acids such as 

acetate and butyrate which reduces the pH of the lumen, inhibiting microorganisms that 

are acid sensitive (Barua et al., 2002; Czerwiński et al., 2012). 

 

 

1.2.4.2 Poultry Industry 

 

Chickens are the main birds used in the poultry industry, others including ducks, geese 

and turkeys (Department for Environment, Food & Rural Affairs (DEFRA), 2019a). 

Chickens are split into three groups: broilers, hens laying eggs and the breeding flock. 

Broiler chickens are birds that have been reared specifically for the production of meat 
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(Kruchten, 2002). They have a lifespan of 6 to 7 weeks and are usually transported at least 

twice, as eggs and then again after hatching; this increases the likelihood of 

contamination occurring, either due to prior contamination of the transport coops or the 

stress that transport causes the birds (Mulder, 1995; Northcutt et al., 2003; Mitchell and 

Kettlewell, 2009; Vinueza-Burgos et al., 2016). Layers are reared for the production of 

eggs. They begin to lay eggs from the age of 18 weeks and the majority continue to do so 

until they are around 2 years old (Webster and Fletcher, 1996; Meunier and Latour, 

2005).  

As broiler chickens have a short lifespan, vaccination of them against Salmonella is 

ineffective due to their immune system not being fully developed (Desin, Köster and 

Potter, 2013). Vaccination of the breeding flock is therefore required as an alternative. 

The risks for Salmonella infection vary between broiler chickens and layer hens; in broiler 

chicken farms in Belgium, risks for Salmonella infection were found to be infection of 

other chicks in the flock and Salmonella infection in a previous flock (Namata et al., 2009). 

The main risks of S. Enteritidis infection in layer hens from the Netherlands were flock 

size, the housing system used and a farm containing hens of various ages (Mollenhorst et 

al., 2005). 

Globally, in 2017 it is estimated that approximately 23 billion Gallus gallus were 

bred for agriculture; the largest producer of chickens was China, producing approximately 

5 billion (Food and Agriculture Organization of the United Nations, 2019). In total, an 

estimated 109 million tonnes of chicken meat were produced globally, with the USA 

producing the most at 19 million tonnes. Furthermore, 1.4 trillion eggs were produced 

globally in 2017, with China producing 537 billion of these. In 2018 the total number of 

poultry birds in the UK was 188,442 million;  66% of these birds were broilers, also known 

as table chickens (DEFRA, 2019a). In 2014, approximately 1 billion broilers were 

slaughtered in the UK, a figure that has been increasing since the 1990s (DEFRA, 2019b). 

This illustrates the vastness of the global poultry industry. 
 

 

1.2.4.3 Salmonella Testing and Routes of Contamination 

 

In the UK it is compulsory for a flock of size greater than 2,000 birds to be tested for the 

presence of Salmonella within 3 weeks prior to the date of slaughter (DEFRA, 2016). If S. 

Enteritidis or S. Typhimurium is found to be present in a UK flock the holding must be 
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disinfected (DEFRA, 2016). This represents a major cost for farmers. Before slaughter the 

chickens are starved of food for up to 12 hours (DEFRA, 2018). They are then caught, 

transported to the abattoir where they are held until slaughter; the transportation and 

holding increases the likelihood of Salmonella contamination from external sources 

(Buncic and Sofos, 2012). Once the bird housing is empty it is recommended that it is dry 

cleaned, washed and then disinfected before the next flock is brought in (DEFRA, 2018). 

Chickens are required to have enough space to stand, turn and stretch their wings. This 

allows transmission of pathogens between flocks and their close proximity to one another 

increases the risk of horizontal transmission. 

The EU has targets for the levels of Salmonella in Gallus gallus in each member 

state (EFSA and ECDC, 2019a).  For breeders, less than 1% of flocks should be positive for 

S. Enteritidis, S. Typhimurium including monophasic S. Typhimurium, S. Virchow, S. 

Infantis, and S. Hadar (European Commission, 2011).  The targets change for birds bred 

for meat and egg production.  Less than 1% of broiler flocks and 2% of laying hens should 

be positive for S. Enteritidis and S. Typhimurium, including the monophasic variant (EFSA 

and ECDC, 2019a; European Commission, 2012). However, these are only targets and in 

2018 just 16 of the 27 reporting member states met all the poultry Salmonella targets. 

Research has been performed to identify whether there are differences in the 

prevalence of Salmonella depending on the type of farm; however, results from different 

studies are contradictory with one study reporting higher levels of Salmonella in 

conventional broiler farms and another in organically reared poultry (Cui et al., 2005; Alali 

et al., 2010).  Once Salmonella has been detected in a poultry house, its removal is 

challenging; it can be found in litter dust after the house has been cleansed; wild birds 

and rodents surrounding poultry houses have also been found positive for carrying 

Salmonella (Tizard, 2004; Davies and Wray, 1996). Multiple sources of Salmonella 

contamination exist in broiler farms; a study of 65 in Spain found that 32% of delivery box 

liners were positive for Salmonella, 25% of dust samples, 20% of farming boot samples 

and 16% of feed from feeders (Marin et al., 2011). 

 

 

1.2.4.4 Chicken Vaccination Programme 

 

S. Gallinarum and S. Pullorum cause clinical disease in poultry and were the dominant 

serovars in the UK poultry industry until the 1970’s, upon which slaughtering and 
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vaccination reduced their numbers (O’Brien, 2013).  This left an ecological niche which 

was filled by S. Enteritidis, associated with high levels of this serovar causing human 

salmonellosis; in 1993 S. Enteritidis phage type 4 levels peaked in the UK, causing over 

18,000 reported cases. A Salmonella vaccine was introduced in the poultry industry and a 

reduction in human Salmonella cases has been seen since 1997.  

  Vaccination of layer hens against S. Enteritidis and S. Typhimurium is implemented 

in EU member states with a Salmonella prevalence greater than 10% (European 

Commission, 2006).  Vaccination against S. Enteritidis and S. Typhimurium induces 

immunity against Salmonella belonging to groups 0:9 (D1) and 0:4 (B) respectively (Miller 

et al., 2010). As seen post S. Gallinarum and S. Pullorum vaccination, this leaves an 

ecological niche which Salmonella containing other somatic antigens can fill, such as 

group 0:7 (C1) containing serovars like S. Infantis.   

 

 

1.2.4.5 Antimicrobial Usage 

 

In the poultry industry, antibiotics are used to promote growth and prevent or treat 

disease (Roth et al., 2018). Whilst their use as growth promoters is prohibited in Europe 

and the USA, they are still being used for this application in countries like China, although 

China has plans to reduce the use of antimicrobials in animals by 2021 (Qu, Huang and Lv, 

2019). 

The antibiotics approved for use varies by country, for example, colistin is 

approved for use in the USA, UK, Brazil, China, Poland, Germany, France and Spain 

whereas fosfomycin is only approved in Brazil (Roth et al., 2018). In Denmark the 

antibiotics used in the poultry industry are aminoglycosides, sulphonamides, macrolides, 

penicillin’s, trimethoprim and tetracyclines, the antibiotic used most with broilers (Borck 

Høg et al., 2018). The use of antimicrobials in the poultry industry promotes the 

emergence and spread of AMR in Salmonella (Su et al., 2004). 

 

 

1.2.5 Host adaptation and Genetic Diversity in Salmonella 
 

The host range of Salmonella can be very broad; infecting insects, fish, reptiles, 

amphibians, birds and mammals (Briones et al., 2004; Millan et al., 2004; Nakadai et al., 
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2005; Musto et al., 2006; Wales et al., 2010) . It can also survive in plants, soil, water and 

protozoa (Thomason, Biddle and Cherry, 1975; Gaze et al., 2003; Barak and Liang, 2008).  

S. enterica subsp. enterica serovars can be split into 3 groups due to the range of 

hosts they infect: host generalist, host-adapted and host-restricted (Sanderson and Nair, 

2013).  Serovars that are generalists are capable of infecting a range of hosts. These 

serovars, such as S. Enteritidis, usually cause gastrointestinal disease but are also capable 

of causing infections in humans ranging from causing no symptoms to invasive infection 

(Crump and Wain, 2017). 

Host-adapted serovars can be found in a smaller number of hosts but are mainly 

associated with one host, in which they cause severe infection; for example S. Dublin and 

S. Choleraesuis can both infect humans, but cause systemic infection in bovine and swine 

animals respectively (Sanderson and Nair, 2013).  They are also able to persist in the host 

they are associated with by direct transmission (Kingsley and Bäumler, 2000).  

Host-restricted serovars only cause infection in one host and are usually 

associated with severe systemic infections (Sanderson and Nair, 2013). Examples of host 

restricted serovars include S. Gallinarum which is restricted to galliformes and causes fowl 

typhoid; S. Typhi and S. Paratyphi which causes typhoid and paratyphoid fever 

respectively in humans and S. Abortusovis which triggers abortions in sheep.  

Host adaptation initially occurs due to the occurrence of variation in the genome 

during infection, including genomic rearrangement, deletions, acquisition of genes 

through horizontal gene transfer and point mutations (Tanner and Kingsley, 2018). If 

these mutations are beneficial to survival, then they are maintained and transmitted. If 

these mutations enable colonisation of a novel niche, such as a new host, a novel site 

within the same host or survival in the presence of an antibiotic; then this mutation may 

become fixed in the population.  

Plasmids can be associated with host adaptation; the Salmonella plasmid virulence 

(SPV) gene cluster, spv, which contains several virulence determinants, has been found in 

the following S. enterica subsp. enterica serovars: Abortusequis, Abortusovis, 

Choleraesuis, Dublin, Enteritidis, Gallinarum, Paratyphi C, Sendai, and Typhimurium (Silva, 

Calva and Maloy, 2014). The majority of these serovars are host-adapted, the only host 

generalist serovars found with the plasmid are S. Enteritidis and S. Typhimurium.  The spv 

genes play a key role in host adaptation in S. Dublin; they were found to be essential for 

S. Dublin to cause severe diarrhoea and systemic infection in cattle (Libby et al., 1997). 
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1.2.5.1 Virulence Factors 

 

Salmonella have acquired many virulence factors, such as a capsule, flagella, fimbriae and 

adhesion systems; enabling them to colonise a wide variety of hosts and evade the host 

immune response (Jajere, 2019). With the notable exception of S. Gallinarum and S. 

Pullorum, Salmonella possess 5 to 10 peritrichous flagella over their surface, conferring 

motility (Asten and Dijk, 2005). 

SPIs are large chromosomal gene cassettes containing virulence genes needed for 

invasion and extraintestinal spread (Marcus et al., 2000; Thornbrough and Worley, 2012). 

They can either be found throughout the Salmonella genus or in specific serovars, for 

example SPI-1 has been identified across the genus whereas SPI-2 has been identified in 

all S. enterica subspecies but not in S. bongori (Ochman and Groisman, 1996). SPI-1 is 

needed for host cell internalisation and SPI-2 for intracellular growth (Jennings, Thurston 

and Holden, 2017).  Other examples of SPI’s include SPI-6, which encodes an antibacterial 

amidase that induces lysis of bacteria and SPI-3 which contains misL, which is needed for 

long-term colonisation (Ilyas, Tsai and Coombes, 2017). The evolution of Salmonella 

pathogenicity is strongly linked to acquisition of SPIs through horizontal gene transfer 

(Langridge et al., 2015).  Differential expression of SPIs between serovars and evolution of 

genes within the pathogenicity islands has also occurred, which may be linked with host 

specificity (Imre et al., 2013; Eswarappa et al., 2008). 

Several SPIs have been discovered; their presence varies between serovars 

(Crump and Wain, 2017). For example, SPI-7 has only been identified in S. Typhi, S. 

Paratyphi C and some S. Dublin strains (Seth-Smith et al., 2012).  It contains 

approximately 150 genes including those encoding the surface Vi polysaccharide antigen, 

a type IVb pili and the sopE virulence factor (Nieto et al., 2016). SPI-7 presence is thought 

to not be essential for human epithelial cell invasion but required for systemic infection.  

SPI-13, whilst present in many serovars of S. enterica subsp. enterica, is largely 

absent in S. Typhi, which has SPI-8 in its place (Espinoza et al., 2017). SPI-13 is important 

for Salmonella virulence as it plays a role in the nutritional fitness of the pathogen (Elder 

et al., 2018). It also was found to be needed for pathogen internalisation in murine 

macrophages but not human macrophages; conversely SPI-8 was not needed for 

macrophage internalisation in either human or murine macrophages, it’s maintenance 

within the typhoidal serovars suggests involvement in another phase of the human 

infection process. 
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 Another example, SPI-10, encodes the sefA-R chaperone-usher fimbrial operon 

and contains the prpZ gene cluster which is carried on a prophage and is involved in S. 

Typhi survival in macrophages (Faucher et al., 2008; Liaquat et al., 2018).  Whilst the prpZ 

gene cluster is thought to be restricted to S. Typhi (Liaquat et al., 2018), SPI-10 has been 

identified in S. Dublin, S. Enteritidis, S. Gallinarum and S. Paratyphi (Saroj et al., 2008).  

The number of virulence genes present vary between and within serovars, a study 

comparing selected virulence gene presence across 15 S. enterica subsp. enterica serovars 

found that whilst some genes were present in either 0% or 100% of strains from a 

serovar, several genes were present but not maintained in all strains (Cheng et al., 2015). 

Virulence gene presence also varied significantly between serovars.  As the presence of 

virulence genes can alter the organism’s ability to cause infection, understanding the 

population structure of S. enterica and how virulence factors differ between serovars is 

important.   

 

1.2.5.1.1 Genome-wide screens 
 
 
Alongside the well described SPIs, other virulence factors have been identified as 

important in Salmonella survival and pathogenesis.  Several different methods have been 

developed to identify the importance of genes in a Salmonella genome for survival in 

different environments.  

Signature tagged mutagenesis (STM) is polymerase chain reaction (PCR) based 

technique where transposons containing unique tags are used to create a pool of mutants 

(Andrews-Polymenis, Santiviago and McClelland, 2009).  The mutant pool is then exposed 

to a selective condition to identify genes that are essential for survival. Examples of 

virulence factors whose roles have been described using STM include envZ, which was 

found to play a role in S. Gallinarum infection of chickens (Shah et al., 2005) and fimbrial 

operons such as stbC and sthB which, when mutated reduced S. Typhimurium chick 

colonisation but not calf colonisation (Morgan et al., 2004). Also, manC in S. Dublin 

isolates, when attenuated, reduced the amount of lipopolysaccharide in the outer 

membrane, resulting in decreased virulence and stress tolerance (Thomsen et al., 2003). 

Transposon site hybridisation (TraSH) and transposon-mediated differential 

hybridisation (TMDH) are similar genomic screening methods that use microarrays to 

enable the analysis of greater numbers of insertions than STM. They involve transposon 

mutagenesis, identification of the location of the transposons in the genome; 
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amplification of the neighbouring regions to the transposon-insertions sites and 

transcription of these regions (Sassetti, Boyd and Rubin, 2001; Chaudhuri, Allen et al., 

2009).  To allow for quantification, DNA is acquired from organisms grown in selective 

conditions, labelled with fluorophores and hybridised to a DNA microarray in TraSH; in 

TMDH, transcription is induced and the RNA is hybridised to an RNA microarray. 

The use of TMDH with S. Typhimurium in a mouse model identified numerous 

genes associated with virulence including several present on SPIs or involved in aromatic 

amino acid or purine biosynthesis (Chaudhuri, Peters et al., 2009). Others that had not 

previously been associated with virulence were also found such as tolA and tolB, which 

are involved with membrane stability and ychK which codes for a lipolytic enzyme.  

Another mouse experiment assessing the competitive fitness of S. Typhimurium TraSH 

mutants against Enterobacter cloacae, a commensal which prevents Salmonella 

colonisation, identified genes which reduced fitness when mutated (Ali et al., 2014). 

Examples include sirA, which is involved in regulating the mRNA stability of numerous 

virulence and metabolic genes and the fra locus, which was associated with a severe 

fitness defect when mutated and is needed for utilisation of fructose-asparagine.  

 Transposon directed insertion-site sequencing (TraDIS) involves the random 

insertion of transposons into millions of cells; utilising next generation sequencing to 

allow for the investigation of considerably more insertions than STM and TraSH/TMDH 

(Langridge et al., 2009). The mutants are then challenged and the genes needed for 

survival identified.  Using TraDIS, the genes hupA and pagP were found to be essential for 

bile tolerance in S. Typhi, a trait that is important in S. Typhi carriage in the gallbladder.  

TraDIS has also been used to identify genes in S. Typhimurium that were key for causing 

infection in chickens, cattle and pigs as well as genes essential for infection in just one 

host (Chaudhuri et al., 2013).  For example, clpB, clpP and clpX, involved in rpoS 

regulation which contributes to resistance to environmental stresses, were needed for 

survival in chickens but not cattle or pigs.   

Tissue specific virulence factors have also been described using TraDIS. S. 

Typhimurium mutants in mesenteric lymph nodes from the distal ileum and the ileal wall 

of calves were compared (Vohra et al., 2019). Attenuation in both tissues was associated 

with insertions in 653 genes, indicating a conserved role in pathogenesis. Conversely, 30 

genes were identified that reduced fitness in mutants recovered from the ileal wall and 2 

genes which reduced fitness in mesenteric lymph nodes; suggesting that these genes are 

niche-specific virulence factors.  TraDIS has also been used to compare essential genes for 
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different Salmonella serovars; for example, in a comparison of S. Typhi and S. 

Typhimurium, 281 genes were required by both for competitive growth in a rich media 

(Barquist et al., 2013). Serovar-specific gene requirements were also identified; 29 genes 

were only required by S. Typhi and 56 by S. Typhimurium including SifB, a virulence 

effector protein, which was present in both serovars but was only essential for S. 

Typhimurium. 

This illustrates that, whilst the SPIs play essential roles in Salmonella pathogenesis, 

other virulence factors, which often vary between serovars, are also important in 

Salmonella survival, pathogenesis and host specificity.  

 

1.2.5.2 Population Structure of S. enterica subsp. enterica 

 
 
In 2011, a comparison of MLST results of 4,257 S. enterica subsp. enterica genomes from 

554 serovars identified 1092 STs, which clustered in 138 eBGs (Achtman et al., 2012). The 

population structure of these isolates is shown in Figure 1.5. Whilst the majority of the S. 

Typhimurium and S. Enteritidis sequences belonged to eBG 1 and 4 respectively; most of 

the other serovars did not cluster into one eBG and were present in several distinct eBGs. 

Additionally, the majority of the serovars were found in multiple eBGs and were therefore 

polyphyletic. Of the 42 serovars where 15 or more sequences were included, 25 of the 

serovars were located in multiple eBGs or STs and 17 were present in a single eBG. For 

example, whilst the majority of isolates in eBG1 were S. Typhimurium, monophasic S. 

Typhimurium variants and serovars Farsta and Hato were also present in that eBG.  

The diversity of the strains within a serovar varies considerably; S. Typhimurium 

was also found in another eBG and ST which both contained monophasic variants or 

other serovars (Achtman et al., 2012). Conversely all 50 S. Typhi sequences belonged to 

eBG13 and no other serovars were found in that eBG. By 2017 the number of defined STs 

had increased markedly; 118,391 Salmonella genomes on Enterobase divided into 3,929 

STs, which resided in 360 eBGs (Alikhan et al., 2018). 
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Figure 1.5 Population structure of S. enterica subsp. enterica 
Minimum spanning tree of MLST data of S. enterica subsp. enterica (n=4257). Each ST is represented by a 

circle of a size proportional to the number of isolates it contains. A thick black line indicates an SLV and a 

thin black line a double-locus variant (DLV); the eBGs are designated by grey shading. If the majority of 

the sequences in the ST or eBG belong to one of the 28 most numerous serovars it is colour coded. 
Reproduced from Achtman et al., 2012.  
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1.2.5.3 Pan and core-genome of Salmonella 

 

The pan genome is defined as all the genes present in a collection of genomes; the core 

genome is the genes shared by 99% of the collection and the accessory genome is all the 

genes in the pan genome that are not core genes (Page et al., 2015).  Multiple studies 

have identified the size of the pan-genome of Salmonella, S. enterica and individual 

serovars. A pan-genome analysis of 35 Salmonella strains identified 10,015 gene families, 

genes grouped due to sequence similarity, with a core genome of 2,811 gene families 

(Jacobsen and Hendriksen, 2011). When excluding the S. bongori strains, the pan-genome 

size decreased to 9,161 gene families and the core genome increased to 3,224 gene 

families. Gene families were identified that were unique to a serovar. Interestingly, whilst 

S. bongori had 315 unique gene families, the more recently diverged S. enterica subsp. 

arizonae had 504. Variation was also seen within S. enterica subsp. enterica; 10 of the 

serovars had fewer than 100 unique gene families, including S. Enteritidis (29), S. 

Typhimurium (43) and S. Dublin (71). Conversely, 11 of the serovars had 100 or greater 

unique gene families including S. Gallinarum (135), S. Newport (162) and S. Typhi (349). 

Another study comparing 72 S. enterica subsp. enterica isolates and an S. enterica 

subsp. arizonae isolate identified fewer core genes (2,882), despite the exclusion of other 

S. enterica subspecies, showing how the addition of more isolates decreases the number 

of core genes (Leekitcharoenphon et al., 2012). The variation within the core genes was 

calculated; the majority of the genes were conserved but approximately 5% of them were 

highly variable.  

A larger study described the pan-genome of 4,893 S. enterica isolates, including 

isolates from all six subspecies (Laing, Whiteside and Gannon, 2017). Assuming an 

average gene size of 1,000bp, approximately 1,500 genes were core and the pan-genome 

contained 25,300 genes. While genomic regions to unique each subspecies were 

identified; regions unique to a serovar were not, although some had significant 

associations with a serovar. 404 1,000bp regions were identified as being specific to S. 

enterica; S. Enteritidis had the largest number of these regions and S. Typhi the least, 

suggesting that S. Enteritidis is the most archetypal S. enterica genome and S. Typhi the 

most atypical.  

The core genome size varies between serovars; in a comparison of 21 S. Dublin, 32 

S. Newport and 37 S. Typhimurium isolates from humans and cattle in the USA, the 

overall core genome size was 3637 genes (Liao et al., 2019). When the serovars were 
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looked at individually the S. Typhimurium isolates had the lowest number of core genes 

at 4,003 and the S. Dublin isolates had the highest at 4,326; although the differences in 

size could again be due to differences in the number of sequences included. The overall 

pan-genome size was 7,077, ranging in size within serovars from 5,066 in S. Dublin to 

6,433 in S. Typhimurium. The S. Typhimurium isolates were found to have increased 

diversity in their gene composition and the S. Dublin isolates had the largest number of 

significantly over-represented genes. 

Understanding the pan genome, and how it varies within and between serovars, is 

important as it can provide genetic markers for serovars and sub-groups of serovars, 

associated with traits such as increased virulence.  

 
 
1.2.5.4 Intergenic Diversity of Salmonella 

 

Whilst many studies have explored the variation in genes in Salmonella, very little 

research has been done on non-coding regions. These intergenic regions (IGRs) typically 

comprise 10-15% of the bacterial genome and contain non-coding ribonucleic acids 

(ncRNAs), promoters, regulatory binding sites and terminators (Thorpe et al., 2017, 2018). 

Switching of regulatory regions to non-homologous alternatives has been found to occur 

throughout the bacterial domain, with horizontal regulatory transfer observed between 

species and genera (Oren et al., 2014). The rate of regulatory switching varies, with 10-

fold higher levels occurring in E. coli than in S. enterica.  Changes to the regulatory regions 

can have substantial phenotypic effects, for example, a promoter inversion in 

Photorhabdus luminescens changes it from a pathogen to a commensal (Somvanshi et al., 

2012).   

 IGRs have been found to play a role in stress tolerance. For example, 61 genes and 

6 IGRs are essential for S. Typhimurium to withstand desiccation stress (Mandal and 

Kwon, 2017).  The 6 IGRs varied in length from 132bp to 791bp; no known small ncRNAs 

were identified in these IGRs and a coding region was found in only one of them for a 

hypothetical protein.  

When examining 68 S. Typhimurium strains, 3,846 core genes and 1,576 core IGRs 

were identified; a further 281 IGRs were present in different numbers in the strains (Fu et 

al., 2015). The IGRs ranged in size from 101bp to 12,151bp. The location of SNPs within 

21 of the genomes were determined and an average of 21% of the SNPs were present on 

IGRs; similar substitution rates were seen between core IGRs and core genes. 
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Small ncRNAs in bacteria are typically located in IGRs and are involved in 

regulating gene expression (Raghavan et al., 2015). Several small ncRNAs have been 

identified in Salmonella, located in SPIs; one of these is IsrM, which contributes to 

Salmonella pathogenesis (Gong et al., 2011). IsrM regulates HilE and SopA protein 

expression and is involved in murine colonisation, epithelial cell invasion and replication 

within macrophages.  It has been found in several serovars including S. Typhimurium, S. 

Heidelberg and S. Saintpaul and is absent from S. Typhi and S. bongori which could 

indicate that it plays a role in host specificity.  As with the pan genome, defining IGRs 

shared or unique to serovars or sub-groups of serovars, could identify markers associated 

with traits of interest.   

 

 

1.2.6 Antimicrobial Resistance in Salmonella 
 

AMR in NTS is a public health concern; in 2016 the WHO added fluoroquinolone resistant 

Salmonella to the high-priority tier of antibiotic resistant bacteria requiring research and 

drug development (Tacconelli et al., 2018). In 2002 it was estimated that in the USA, 

29,379 extra cases of salmonellosis in humans occur annually due to AMR in NTS, 

resulting in 342 hospitalisations and 12 fatalities (Barza and Travers, 2002). 

 

 

1.2.6.1 AMR and the Treatment of Salmonellosis 

 

Human salmonellosis is an important economic burden in high income countries 

(McEntire et al., 2014) where the majority of cases result in gastrointestinal symptoms, 

and are primarily managed with oral rehydration therapy. However, cases can develop 

into invasive disease (Cuypers et al., 2018) which presents as febrile illness (Gordon, 

2011; Feasey et al., 2012), and requires specific antibiotic therapy (Figure 1.6) (Colobatiu 

et al., 2015).  Immunocompromised individuals are at a greater risk of developing iNTS; 

high endemic levels of HIV lead to the increased use of antimicrobials which, in turn, 

leads to an increase in AMR (Essack et al., 2017).   

Antibiotics commonly used include: chloramphenicol, ciprofloxacin, trimethoprim-

sulfamethoxazole, the third-generation cephalosporin ceftriaxone and penicillins such as 

amoxicillin and ampicillin (Su et al., 2004; Chen et al., 2013; Franco et al., 2015; 
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Hindermann et al., 2017; Kongsoi, Nakajima and Suzuki, 2017; Medalla et al., 2017; Brown 

et al., 2018). AMR to these drugs is a public health concern, particularly ceftriaxone, as it 

is used in the treatment of severe salmonellosis (Jajere, 2019).  

 

 

 
Figure 1.6 Treatment pathway for the management of NTS infection 
Reproduced from Zollner-Schwetz and Krause, 2015. 

 

 

1.2.6.2 AMR levels in Salmonella 

 

Levels of AMR in Salmonella vary by serovar, geography, and source.  In Australia, 

between 1975 and 2015, levels of AMR in human NTS were low, 83% of isolates were 

sensitive to all the antimicrobials tested (Williamson et al., 2018). The levels of AMR 

varied across the top 10 serovars, with 78% of 142 S. Panama isolates being resistant to 

one or more antimicrobial compared to 1% of 2,205 S. Mississippi isolates.   

High levels of AMR in Salmonella have been observed elsewhere across the 

planet. A study of AMR in food-producing livestock, including chickens, pigs and ducks, in 

the Shandong province of China between 2009 and 2012 found that over 99% of isolates 

had resistance to at least one antibiotic, with the number significantly increasing between 

2009 and 2012 (Lai et al., 2014). In Ghana, 60.6% of Salmonella strains isolated from 

poultry farms were resistant to at least one antimicrobial, as were 60% of Salmonella 

strains isolated from broiler chicken farms in Brazil (Voss-Rech et al., 2015; Andoh et al., 

2016).   
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The levels of AMR also vary between Salmonella isolated from humans and 

poultry. The trend in AMR in Salmonella from human and chicken samples in the USA is 

shown in Figure 1.7.  

 
Figure 1.7 The trend of AMR in Salmonella in the USA 

a) Percentage of isolates from retail chicken, caecal samples at slaughter and samples taken at 

slaughter with AMR 

b) Percentage of isolates causing clinical illness in humans with AMR 

 

Amoxicillin-Clavulanic Acid      Ampicillin      Azithromycin      Cefoxitin       Ceftriaxone                                        

Chloramphenicol      Ciprofloxacin      Gentamicin      Meropenem      Nalidixic Acid    

Streptomycin     Sulfamethoxazole-Sulfisoxazole     Tetracycline    Trimethoprim-Sulfamethoxazole                                                                                                                                                                                                   
Generated using data from Food and Drug Administration (FDA), 2019b. 

 

A difference was seen between the two isolation sources, with AMR in the chicken 

isolates gradually increasing over time and the Salmonella isolates from humans 

decreasing in AMR levels between 1996 and 2012; a slight increase in AMR in the human 

isolates is seen following 2012 for the following antibiotics: ampicillin, chloramphenicol, 

ciprofloxacin, nalidixic acid, streptomycin, sulphonamides and trimethoprim-

sulfamethoxazole. In the Salmonella isolates from chickens, an increase in the proportion 

of isolates with AMR between 2015 and 2017 was seen for all of the 14 antimicrobials 

tested, except for amoxicillin-clavulanic acid, azithromycin, cefoxitin and ciprofloxacin. 
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Figure 1.8 The trend of AMR in humans in NTS in EU member states 
 a) Percentage of NTS isolates from humans between 2010 and 2017 with AMR 
 b) Percentage of NTS isolates from Gallus gallus between 2009 and 2012 with AMR 
 
 
 
Generated using data from EFSA and ECDC, 2011, 2012, 2013a, 2014a, 2015a, 2016a, 2017a, 2018a, 2019b 
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The proportion of NTS isolates with AMR from humans and Gallus gallus in EU 

member states that collect this data is shown in Figure 1.8. As with the isolates from the 

USA, there is a general increase in AMR in Salmonella, with the occurrence of resistance 

to azithromycin, cefotaxime, ceftazidime, chloramphenicol, ciprofloxacin, colistin, co-

trimoxazole, sulfamethoxazole, tetracycline and tigecycline in NTS from humans 

increasing between 2010 and 2017. An increase in AMR was also identified in NTS 

isolated from domestic fowl between 2009 and 2012 across the EU member states that 

collect this data, all of the antimicrobials increased between this time period. High levels 

of AMR were also seen in NTS from broiler meat in EU member states, in 2014 42.6% of 

the samples tested were positive for ciprofloxacin resistance, 39.7% for nalidixic acid 

resistance and 27% for sulfamethoxazole resistance (EFSA and ECDC, 2016a).  

Differences are also seen between AMR in isolates from humans and cattle; a 

study comparing AMR in the top 20 serovars from Northwest USA between 2004 and 

2011 found a larger number of AMR profiles in the human Salmonella isolates than in 

those from cattle; which the authors hypothesised was due to either continuous 

evolution in the human samples or an increased diversity of sources associated with 

causing the human infections (Afema, Mather and Sischo, 2015).   

 

1.2.6.3 Antimicrobial Resistance Determinants 

 

Many different AMR genes have been identified in Salmonella chromosomes or extra-

chromosomal DNA, conferring resistance to different classes of antimicrobials (Su et al., 

2004). For example, resistance to extended-spectrum beta-lactams, a newer group of 

antimicrobials associated with higher mortality rates, is a public health concern (Su et al., 

2004; Dhillon, R, H and Clark, 2012). Salmonella have acquired resistance to these 

antimicrobials with the production of extended-spectrum beta-lactamases (ESBLs) which, 

as with other AMR genes, are present on plasmids, integrons and transposons (Su et al., 

2004).   

Another AMR method Salmonella have evolved is the resistance to 

fluoroquinolones through the acquisition of mutations in DNA gyrase genes (DNA gyrase 

encoded by gyrA, gyrB and topoisomerase IV by parC, parE) in the quinolone resistance 

determining regions (QRDRs) (Su et al., 2004). For example, amino acid substitutions in 

gyrA at Ser-83 or Asp-87 are often seen in isolates resistant to nalidixic acid (Michael et 

al., 2006). Analysis of 283 Salmonella strains from food, humans and animals between 
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1970 to 2009 in Malaysia found nalidixic acid resistance in 30.7% of strains (Thong et al., 

2015). 69.3% of the resistant isolates contained a missense mutation in the gyrA QRDR; 

silent mutations were identified in gyrB, parC and parE. 

Also present in S. enterica genomes are cryptic resistance genes, genes that 

appear to confer AMR but are present in phenotypically antimicrobial sensitive isolates 

(Salipante, Barlow and Hall, 2003). For example, the aac(6')-Iaa gene is commonly present 

in S. enterica and has been identified as a cryptic gene that has no phenotypic effect 

(Salipante, Barlow and Hall, 2003; Vetting, M et al., 2004). 

An alternative mechanism that can be used by Salmonella to enable survival in the 

presence of antimicrobials is the formation of persisters upon Salmonella macrophage 

internalisation (Helaine et al., 2014).  Persisters are a population of non-replicating cells 

that form due to nutrient deprivation and vacuolar acidification and are tolerant to 

antibiotics. Salmonella persisters have been observed resuming intracellular growth 

which could result in a relapse of infection after antibiotic treatment.   

 

1.2.6.4 Multidrug Resistance 

 

Multidrug resistance (MDR) is defined as resistance to three or more classes of antibiotic. 

High levels of MDR in Salmonella is a public health concern as MDR strains are associated 

with increased severity of infection (Eng et al., 2015); a study of NTS in Kenya identified 

an association with MDR NTS causing bacteraemia, even in patients that weren’t 

immunosuppressed (Akullian et al., 2018).  

 The levels of MDR fluctuate over time: in EU member states in 2013, MDR in 

Salmonella from humans was 31.8%, 26.0% in 2014, 29.3% in 2015, 26.5% in 2016 and 

28.6% in 2017 (EFSA and ECDC, 2015a, 2016a, 2017a, 2018a, 2019b). They also vary by 

geographical location. Figure 1.9 shows the proportion of isolates from humans from 14 

EU member states that were MDR. 52.6% of the isolates were susceptible to all 9 of the 

antimicrobial classes and 28.6% of the isolates were MDR, with Greece containing the 

highest proportion of MDR isolates at 81.4% (EFSA and ECDC, 2019b). 
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Differences in MDR are also seen between serovars, with some serovars associated with 

increased incidence; in the USA in 2017, 25% of human Salmonella infections with MDR 

were caused by monophasic S. Typhimurium (Food and Drug Administration (FDA), 

2019a).  In 2016 in EU member states 76.3% of S. Kentucky isolates from humans had 

MDR compared to 40% of S. Typhimurium and S. Infantis isolates (EFSA and ECDC, 2018a). 

Comparatively low levels of MDR were seen in S. Enteritidis isolates from humans, with 

an average of 1.6% of isolates from each member state having MDR.  In broilers the levels 

of MDR also varied by serovar, from 2.3% in S. Enteritidis, 62.5% in both S. Typhimurium 

and monophasic S. Typhimurium and 78.4% in both S. Infantis and S. Kentucky.  

Furthermore, the levels of MDR vary by isolation source; in 2013 MDR ranged 

from 8.1% to 70.8% in isolates from broiler meat in each EU member state, higher levels 

ranging between 27.2% and 81.8% were observed in isolates from fattening pigs (EFSA 

and ECDC, 2015a). A study looking at Salmonella AMR levels in China between 2016 and 

2017 identified that 81.1% of isolates from chicken meat and 73.2% from pork meat had 

MDR (Zhang et al., 2018). This variation in MDR requires monitoring, to determine which 

serovars and sources are becoming more resistant and therefore becoming more of a 

concern to public health. 

 

 

 

 

 
Figure 1.9 Proportion of European human Salmonella isolates that had MDR in 2017 

Distribution of Salmonella isolates from 14 EU member states that were resistant to up to 9 antimicrobial 
classes. 
sus: susceptible to all of the nine antimicrobial classes commonly tested across the EU 
res1-9: resistant to 1 to 9 of the antimicrobial classes                                                                                              
Reproduced from EFSA and ECDC, 2019  
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1.2.7 Mobile Genetic Elements in Salmonella 
 
Mobile genetic elements have played a role in the evolution of Salmonella, host 

adaptation and AMR (Silva, Wiesner and Calva, 2012). Notable self-transmissible 

examples associated with AMR are plasmids, integrons, transposons and insertion 

sequences. Other routes of horizontal gene transfer are transformation, the uptake of 

DNA from the surrounding environment, and transduction where a viral vector, such as a 

bacteriophage, inserts genes into the genome (Monte et al., 2019).  Bacteriophages, 

which have been associated with the spread of virulence genes and insertion sequences, 

can also carry AMR genes (Silva, Wiesner and Calva, 2012). They also play a role in 

Salmonella evolution and can be a cause of diversity between strains. Bacteriophages 

have been identified that can contribute to the spread of AMR genes, such as the 

spreading of penta-resistance genes in S. Typhimurium DT104 (Schmieger and 

Schicklmaier, 1999); however, their overall contribution to Salmonella AMR is not well 

understood (Colavecchio et al., 2017). 

 

1.2.7.1 Plasmids 

 
Plasmids are linear or circular strands of DNA that are independent to the chromosome 

(Shintani, Sanchez and Kimbara, 2015). They can be typed based on their incompatibility 

(Inc) to replicate in the same host as another related plasmid. Replicon (rep) typing is 

used to identify the replication initiation protein, this information is used to classify the 

plasmid into an Inc group.  

Plasmids can be transferred between isolates by horizontal gene transfer with 

conjugation, the transfer of genetic material between organisms using the type 4 

secretion system, being the dominant mechanism for the spread of plasmids (Cabezón et 

al., 2014; Tanner and Kingsley, 2018).  The rate of horizontal gene transfer is increased 

when Salmonella is stressed by the host immune response, bile and antibiotics; increasing 

the spread of genes linked to resisting these stresses (Tanner and Kingsley, 2018).  Many 

plasmids ensure the maintenance of the plasmid in the daughter cells with an addiction 

system, whereby the daughter cell that does not inherit the plasmid is killed with toxins 

(Carattoli and Elena, 2009). 

Mobile genetic elements, such as plasmids and integrons, often carry resistance 

determinants (Gupta et al., 2019). Virulence genes can also be found on plasmids.  

Plasmids can be transferred between bacteria belonging to different species, allowing the 
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spread of AMR between pathogens in the intestines (Su et al., 2004).  Plasmid acquisition 

can have a big impact on the virulence of Salmonella, for example, in the 1980’s in Japan, 

a plasmid was acquired by S. Dublin which encoded resistance for ampicillin, kanamycin 

and nalidixic acid (Akiba et al., 2007). Upon acquisition of the plasmid, the numbers of S. 

Dublin increased drastically in cattle, becoming one of the most prevalent disease-causing 

serovars in cattle.   

 
 
1.2.7.2 Common Plasmids in Salmonella 

 
The type and size of plasmid present in strains vary by serovar (Williams et al., 2013). A 

comparison of the plasmid types in serovars from a Salmonella reference collection 

identified that some of the serovars were more likely to have a particular plasmid type, 

for example 19 out of 22 S. Paratyphi B genomes had a large untypeable plasmid. 

However, multiple plasmid types were also identified within serovars; whilst 13 of the 20 

S. Typhimurium genomes had an IncFIIA plasmid, 6 other plasmid types were identified.  

A study comparing plasmid types across S. enterica, including sequences from 266 

serovars, identified that the most common type was IncFII plasmids (Worley et al., 2018). 

The majority of the plasmid types were found in a small number of isolates, with only 5 of 

the 28 types present in over 10 genomes. Another common plasmid type found amongst 

S. enterica is IncA/C plasmids (Han et al., 2018). These plasmids are commonly found with 

several resistance determinants including ESBLs. Carriage of multiple plasmids is 

commonly associated in isolates with IncA/C plasmids. 

Serotype specific plasmids are also present in S. enterica; SPV is found in several 

serovars, all contain the spv gene cluster but otherwise the content of the plasmid varies 

between serovars (Silva, Puente and Calva, 2017); for example it varies in size from 285kb 

in S. Sendai to 50kb in S. Choleraesuis (Feng et al., 2012). They also differ in the roles in 

pathogenicity they play; S. Typhimurium and S. Enteritidis SPVs were found enhance 

apoptosis in human monocytes whereas S. Choleraesuis SPV inhibited apoptosis (Huang 

et al., 2019). 
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1.2.7.3 Integrons 

 

Integrons are mobile genetic elements that can be located in the chromosome, plasmids 

and transposons and are capable of capturing genes using recombination; carrying 

several gene cassettes with resistance genes (Khaitsa and Doetkott, 2009; Deng et al., 

2015).   

An integron contains an integrase gene, a recombination site, a promoter for the 

integrase and a promoter for the gene cassettes (Figure 1.10) (Cury et al., 2016a). Gene 

cassettes usually lack their own promoter and are surrounded by two attC recombination 

sites.  Integrons are grouped into classes depending on the variant of the int gene present 

with class 1 being the most common. 

 

 

 

 

 

 

 

Integrons are not identified frequently, after screening all the bacterium genomes 

available at the time, researchers observed that 9% of the 603 genomes contained 

integrons (Boucher et al., 2007). A study of 95 Salmonella strains isolated from livestock 

and meat, representing 11 serovars, identified class 1 integrons in 14 isolates and class 2 

integrons in 3 (Card et al., 2016). 

 

 

 

 
 

Figure 1.10 The structure of an integron 
The gene cassettes can be excised (1) and integrated (2) by the integrase. 
Integrase gene (intI)              Recombination site (attI)               Gene cassettes   

attC = Gene cassette recombination sites 
PintI = promoter for the integrase  

Pc = promoter for the cassettes.                                  Reproduced from Cury et al., 2016 
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1.3 Salmonella Infantis 
 
S. Infantis is group C1 serovar of S. enterica subsp. enterica with the antigenic formula 

6,7,14: r: 1,5 (Grimont and Weill, 2007).  It has been isolated across the planet from 

multiple different sources. For example, a study analysing 36 Salmonella isolates from 

food in Brazil found, between 2009 and 2011, that S. Infantis was the most frequently 

identified serovar, present in both meat products, rice and chocolate (Miranda et al., 

2017). However, S. Typhimurium and S. Enteritidis were most frequently isolated from 

human samples.  

S. Infantis has been found in many asymptomatic chickens worldwide but also in 

asymptomatic humans, suggesting a reduced pathogenicity compared to, for example, S. 

Enteritidis (Yokoyama et al., 2014). Whilst research has shown that a live S. Enteritidis 

vaccine could provide some cross-protection for S. Infantis, no vaccines currently exist 

that are licensed against this serovar (Eeckhaut et al., 2018; Başak and Yardımcı, 2019). 

 
1.3.1 S. Infantis Occurrence in Humans 
 

The incidence of human S. Infantis infection varies geographically and temporally.  

Between 2001 and 2007, the proportion of human S. Infantis cases ranged from 1.5% to 

2.2% of infections caused by the top 20 Salmonella serovars in 37 countries associated 

with the WHO (Hendriksen et al., 2011). A difference was seen between developing and 

undeveloped countries, while in developing countries a decrease in the proportion of S. 

Infantis isolates was seen between 2005 and 2007, an increase was seen in developed 

countries.   

More recently, S. Infantis was the fourth most common serovar in EU member 

states between 2013 and 2018 (EFSA and ECDC, 2015b, 2015c, 2016b, 2017b, 2018b, 

2019a). It was also in the top five most common serovars identified causing human 

infection in South Africa in 2009, 2010, 2013 and 2016 (Group for Enteric Respiratory and 

Meningeal disease Surveillance in South Africa, 2009, 2010, 2013, 2016). S. Infantis is 

seen at higher frequencies in some countries; between 2008 and 2015 it was the most 

common serovar in Israel, accounting for 30% of human cases (Aviv, Rahav and Gal-Mor, 

2016). 

Whilst S. Infantis is rarely the most frequent cause of human salmonellosis, the 

number of cases it causes is increasing. Figure 1.11 shows the incidence of the top 

Salmonella serovars in the USA between 1970 and 2016. Whilst some of the rarer 
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serovars decreased in incidence, the incidence of S. Infantis has increased between 2001 

and 2016 by 167% (NCEZID, 2018). In 2016 it was the sixth most common serovar in the 

USA behind S. Enteritidis, S. Newport, S. Typhimurium, S. Javiana and monophasic S. 

Typhimurium.  

S. Infantis has been recognised as the cause of outbreaks, including one between 

January 2018 and January 2019 in the USA that had 129 human cases and was associated 

with chicken products (CDC, 2019). Another S. Infantis outbreak, also in the USA, occurred 

in May 2019, with 5 cases associated with vegetable trays (U.S. Food & Drug 

Administration, 2019). In 2018, in EU member states, S. Infantis was the cause of 1.1% of 

Salmonella outbreaks (EFSA and ECDC, 2019a). 

 

 

 

 

 

 
Figure 1.11 USA Human Salmonella incidence between 1970-2016 
Incidence of human Salmonella cases by year of the serovars that caused over 1,000 cases in 2016.   All 
cases were culture-confirmed. 
 

 
Reproduced from NCEZID, 2018 
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1.3.2 S. Infantis Occurrence in Domestic Fowl 
 

Historically, levels of S. Infantis in poultry have not been high, although in recent years 

they have been increasing; between 2004 and 2012, S. Infantis and S. Enteritidis were the 

serovars most frequently identified in Gallus gallus, broiler meat and eggs with S. Infantis 

levels increasing during that period (EFSA and ECDC, 2013b, 2014b). It was also the only 

serovar of the top five causing human infection with a significantly increasing presence in 

poultry. In 2013, S. Infantis was the serovar most frequently isolated from Gallus gallus 

and the second most dominant serovar in broiler meat (EFSA and ECDC, 2015b). Between 

2014 and 2018 S. Infantis became the dominant serovar isolated from both Gallus gallus 

and broiler meat in EU member states, accounting for 56.7% of isolates from broiler meat 

in 2018 (EFSA and ECDC, 2015c, 2016b, 2017b, 2018b, 2019a). It was also present in 6.6% 

of isolates from turkey meat and 6.3% of those from cattle meat. 

It is worth noting that the high proportion of S. Infantis isolates from Gallus gallus 

is often due to one of the EU member states having a particularly high result; for 

example, in 2013, 50% of the S. Infantis isolates from Gallus gallus were found in Romania 

and in 2018, 50.1% of the S. Infantis isolates from broilers originated from Italy (EFSA and 

ECDC, 2015b, 2019a). Concerningly it was reported that, dissimilar from previous years, in 

2018 S. Infantis presence in Gallus gallus was widespread in the majority of the reporting 

member states; suggesting that S. Infantis is being disseminated from those countries 

with higher prevalence, across Europe. 

The incidence of S. Infantis in poultry varies across the rest of the globe. In Japan 

S. Infantis accounted for 72.2% of isolates from ground chicken and in Iran 75% of isolates 

from broiler farms were S. Infantis (Hara-Kudo et al., 2013; Rahmani et al., 2013). This 

decreased in Pakistan where 36% of isolates from poultry carcasses were S. Infantis 

(Wajid et al., 2019). S. Infantis was also the most common serovar in egg laying farms in 

New Zealand and in Ecuador 84% of isolates from broilers were S. Infantis (Vinueza-

Burgos et al., 2016; Kingsbury et al., 2019).  Interestingly, high levels of S. Infantis are not 

seen in food animals in the USA, in 2016 it was not among the top five serovars 

associated with chickens, turkeys and cattle; it was the fourth most common serovar 

causing infection in pigs (Morningstar-Shaw et al., 2016).  
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1.3.3 Manifestations of S. Infantis Infection 
 

In humans S. Infantis causes gastroenteritis, however, it has also been noted to have 

several other manifestations including: spondylitis, reactive arthritis, cellulitis, 

osteomyelitis and has been isolated in blood, showing it can causing iNTS (Kohler, 1964; 

Blaser and Feldman, 1981; Dembski, Patynski and Ciesla, 1995; Ekman et al., 1999; Patil et 

al., 2013; Muranaka et al., 2015). 

S. Infantis is also capable of asymptomatically infecting humans; a rehabilitation 

centre in Germany experienced multiple outbreaks of the serovar between 2002 and 

2009, it was determined that these outbreaks were due to carriers in the kitchen staff and 

contamination in the kitchen (Miller et al., 2018).  

Like many other Salmonella serovars, S. Infantis is capable of colonising the 

chicken intestinal tract without causing clinical infection in the bird (Shahada et al., 2010). 

However, S. Infantis has been identified in extra-intestinal sites in broiler chickens, such 

as the liver and spleen, suggesting that it is capable of causing invasive infection in poultry 

(Yokoyama et al., 2015). It has also been reported in causing the abortion of a bovine 

foetus, indicating that it can also cause invasive infection in cattle (Mortelmans, Huygelen 

and Pinckers, 1958). 

 
 
1.3.4 S. Infantis Population Structure 
 

Despite the prevalence of S. Infantis in poultry and the obvious public health concern this 

presents, very little is known about the population structure of S. Infantis.  Two eBGs 

have been identified within the S. Infantis population, eBG31 and eBG297, with the vast 

majority of isolates belonging to eBG31 (M.A. Chattaway, personal communication, 26th 

May, 2017).  

A paper published recently identified the population structure of 105 S. Infantis 

strains, 100 belonging to eBG31 and 5 to eBG297 (Gymoese et al., 2019). The majority of 

the sequences were isolated from Denmark, with isolates associated with travel to Asia, 

North America, South America and Africa included; five strains from humans in Japan 

were also included. Overall strains from 10 different isolation sources were used, 

including 56 strains from humans, 12 from swine and 8 from avian samples.  The eBG31 

strains were found to be polyphyletic, splitting into three lineages that separated 150 

years ago, with one containing the majority of the sequences (Gymoese et al., 2019). 
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Clustering was seen by isolation source in the lineage containing the majority of 

sequences; a cluster containing mainly isolates from poultry and human sources was 

present and was also associated with plasmid presence. The authors hypothesised that 

this cluster had evolved to establish itself in poultry and highlighted the need to 

determine host relatedness. In one of the smaller lineages the majority of sequences 

were of animal origin which they hypothesised was due to this lineage being less 

infectious or less sampled.  The eBG31 and eBG297 isolates in this paper were separated 

on a phylogeny by a long branch, with the eBG297 STs sharing 0-2 alleles with the 

dominant ST in eBG31, ST32. It was hypothesised that the presence of strains serotyped 

as S. Infantis, but not belonging to eBG31, was due to recombination and that prophages 

had played a key role in the evolution of the population structure of S. Infantis.  ST32 has 

also been identified as the dominant ST in isolates from Iran and Switzerland 

(Hindermann et al., 2017; Ranjbar, Rahmati and Shokoohizadeh, 2018). 

Other studies with smaller numbers of sequences have also observed clustering 

within phylogenies. Clustering by isolation source was seen in Japanese S. Infantis isolates 

from chicken meat and human samples (Yokoyama et al., 2014), by plasmid presence in 

Switzerland (Hindermann et al., 2017), and by blaCTX-M-65 presence in isolates from Italy 

and the USA (Tate et al., 2017). The Japanese study found that strains from humans did 

not cluster exclusively in one group, suggesting that no cluster was more virulent for 

humans (Yokoyama et al., 2014).  

Conversely, little evidence of clustering by country of isolation has been observed 

in the S. Infantis population, with no geographic signal observed in the recent paper 

comparing isolates from five continents (Gymoese et al., 2019). Currently the paper 

comparing whole genome sequence data of the largest number of S. Infantis isolates 

included 264 strains from Asia, North America, Africa and South America; clustering of 

isolates from chickens was observed as was clustering by country of isolation, but as 63% 

of the sequences came from the USA this could be due to multiple sequences coming 

from one chicken farm (Acar et al., 2019).  

 

 

1.3.5 Antimicrobial Resistance in S. Infantis 
 

Levels of AMR in Salmonella fluctuate globally; this also true for S. Infantis (Ozdemir and 

Acar, 2014; Velhner et al., 2014; Papadopoulos et al., 2017).  S. Infantis AMR levels are 



 61 

often higher than seen in other serovars, with higher levels of MDR than S. Enteritidis 

seen in Turkey and Iran (Rahmani et al., 2013; Ozdemir and Acar, 2014). In the USA 

between 2016 and 2017, S. Infantis was the serovar with the most ceftriaxone resistance, 

isolated from humans, chicken and turkey (Food and Drug Administration (FDA), 2019a). 

Also, in 2011 in EU member states, S. Infantis had higher levels of resistance to 

sulphonamides, ciprofloxacin, nalidixic acid and tetracycline than any other NTS (EFSA 

and ECDC, 2013a). 

Historically, levels of AMR in S. Infantis in Europe have been high. Of 93 

epidemiologically unrelated S. Infantis strains, isolated from humans, broilers and pigs in 

Germany between 2005 and 2008, 66% of the isolates were susceptible to the 17 

antimicrobials that were tested; 31% had MDR (Hauser et al., 2012). Similarly, 48% of 

isolates from humans in Greece between 2007 and 2010 were resistant to streptomycin 

(Papadopoulos et al., 2017). Moreover, in Slovenia between 2007 and 2013, 88.5% of 87 

S. Infantis isolates from broiler faeces had MDR, with the majority of isolates resistant to 

ciprofloxacin, nalidixic acid, streptomycin, sulfamethoxazole and tetracycline (Pate et al., 

2019).  

Concerningly the levels of AMR in S. Infantis in Europe are rising; the proportion of 

S. Infantis isolates with AMR causing human infection in EU member states is shown in 

Figure 1.12. In Hungary between 2011 and 2013, 186 S. Infantis isolates were identified 

from broilers and humans; 75.8% of the broiler isolates and 60% of the human isolates 

had MDR (Szmolka et al., 2018). The predominant AMR profile in the isolates with MDR 

was nalidixic acid, sulphonamides and tetracyclines.  An upward trend was observed with 

the percentage with MDR increasing each year.   

Higher levels of AMR in S. Infantis are present in Gallus gallus across the EU 

member states; S. Infantis from broilers are a large contributor as in 2014, 92.7% of 

isolates tested were ciprofloxacin resistant, 92.1% to nalidixic acid, 82.7% to 

sulphonamides and 81.3% to tetracycline (EFSA and ECDC, 2015a, 2016a).  S. Infantis has 

become a significant contributor to Salmonella MDR in Europe, 31% of the isolates from 

broilers had MDR in 2014 and 2016, with 70% of isolates from broiler meat having MDR in 

2016 (EFSA and ECDC, 2016a, 2018a).  Due to its high prevalence within the European 

broiler population, clones of MDR S. Infantis have spread into the food chain (EFSA and 

ECDC, 2017a; Hindermann et al., 2017).  
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A similar upward trend in the identification of AMR in S. Infantis is seen in the USA (Figure 

1.13). In the human isolates collected between 1996 and 2017 the levels of AMR fluctuate 

drastically, despite this, the highest proportion of isolates with resistance to ampicillin, 

ceftriaxone, chloramphenicol, nalidixic acid, streptomycin, tetracycline, trimethoprim-

sulfamethoxazole was seen in the latest data point, 2017.   

Unlike the human isolated S. Infantis strains from the USA, the AMR seen in the 

isolates from chickens appears to decrease between 1997 and 2007; from 2009 onwards, 

the levels then increase to higher levels than seen in the isolates from humans. 50% of 

the antimicrobials tested peaked in 2017: ampicillin, ceftriaxone, chloramphenicol, 

nalidixic acid, streptomycin, streptomycin, sulfamethoxazole-sulfisoxazole and 

tetracycline. The highest levels of resistance in 2017 was seen for nalidixic acid where 

84.31% of the 408 isolates tested for it were resistant. Unlike the S. Infantis isolated from 

broilers in Europe, no ciprofloxacin resistance was reported in the S. Infantis isolates from 

the USA.  

 

 
Figure 1.12 Trends in AMR in S. Infantis in Europe 

Percentage of S. Infantis isolates from humans in EU member states that were resistant to antimicrobials 
in 2013, 2014 and 2016. 

 

Generated using data from EFSA and ECDC, 2015a, 2016a, 2018a. 

0

10

20

30

40

50

60

2013 2014 2016

Pe
rc

en
ta

ge
 (%

)

Year



 63 

 

High levels of AMR in S. Infantis have also been identified elsewhere. In Japan, in strains 

isolated from broiler caecal samples between 2004 and 2006; 100% of the 120 isolates 

were resistant to streptomycin, sulfamethoxazole and oxytetracycline (Shahada, Chuma 

and Dahshan, 2010). In Pakistan, 54 S. Infantis isolates from poultry carcasses between 

2015 and 2016 were tested for antimicrobial susceptibility (Wajid et al., 2019). All of the 

 
Figure 1.13 The trend of antibiotic resistance in S. Infantis in the USA 

a) Percentage of isolates from retail chicken from 19 states and samples taken at slaughter 

throughout the USA  with resistance to each antimicrobial between 1997 and 2017 

b) Percentage of isolates causing clinical illness in humans with resistance to each antimicrobial 

between 1996 and 2017 

Amoxicillin-Clavulanic Acid      Ampicillin      Azithromycin      Cefoxitin      Ceftriaxone           

Chloramphenicol      Ciprofloxacin      Gentamicin      Meropenem      Nalidixic Acid    

Streptomycin     Sulfamethoxazole-Sulfisoxazole     Tetracycline     Trimethoprim-Sulfamethoxazole   

Generated using data from Food and Drug Administration (FDA), 2019b 
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isolates had MDR, with pefloxacin resistance the most common AMR profile present. 

Mutations were observed in the four QRDRs of gyrAB and parCE with the highest level in 

parE at 62.5%. Also, 38 S. Infantis isolates were identified in hospitals in Tehran, Iran 

between 2008 and 2010, over 80% had MDR (Ranjbar, Rahmati and Shokoohizadeh, 

2018).  

Several papers have identified different ESBLs in S. Infantis; strains harbouring the 

blaCTX-M-65 gene have been found in the UK, USA, Ecuador, Peru and Switzerland (Burke et 

al., 2013; Cartelle Gestal et al., 2016; Hindermann et al., 2017; Tate et al., 2017; Granda 

et al., 2019). S. Infantis strains containing blaTEM-52 and blaTEM-1 have been identified in 

Japan between 2004 and 2006 from broiler caecal samples (Shahada, Chuma and 

Dahshan, 2010). The blaTEM-52 gene has also been found on an IncI1 plasmid in S. Infantis 

isolates from humans and poultry in Belgium (Cloeckaert et al., 2007). More recently 

blaTEM-70, blaTEM-148 and blaTEM-198 have been identified on plasmids in S. Infantis isolates 

from chicken meat in Turkey (Acar et al., 2019). S. Infantis isolates containing an ESBL 

gene commonly also have resistance to nalidixic acid, sulfamethoxazole or tetracyclines 

(Vinueza-Burgos et al., 2016; Hindermann et al., 2017; Granda et al., 2019) . 

The incidence of ESBLs in S. Infantis varies; in 2015, ESBLs were present in 5.3% of 

S. Infantis isolates across half of the EU member states (EFSA and ECDC, 2017a). 

Investigation of broiler farms in Ecuador between 2013 and 2014 isolated 62 S. Infantis 

strains, of which 55% were ESBL positive (Vinueza-Burgos et al., 2016).  

 

 

1.3.6 Mobile Genetic Elements in S. Infantis 
 
Several studies have identified the presence of different mobile genetic elements in S. 

Infantis.  Of 23 S. Infantis isolates from chicken meat in Turkey, 91.3% of the isolates 

contained plasmids (Acar et al., 2019). AMR genes and virulence factors such as 

bacteriocins were on the plasmids, with most of the AMR genes carried in transposons or 

insertion elements. 

Between 2007 and 2008, 2 S. Infantis isolates were isolated from pig faecal 

samples in Japan; they had MDR and, in particular, had extended-spectrum cephalosporin 

resistance due to the presence of a plasmid containing blaCMY-2 (Dahshan et al., 2010).  S. 

Infantis isolates containing plasmids with ESBLs have also been found in the USA; 29 of 34 



 65 

isolates from humans in 2015 carried the blaCTX-M-65 gene on a plasmid (Brown et al., 

2018).  

A study in Iran looked at the presence of integrons in S. Infantis strains isolated 

between 2009 and 2011 from chickens (Asgharpour et al., 2014). 16% of the 50 isolates 

had resistance to at least 4 antimicrobials and int1 was identified in 36% of the isolates, 

associated with resistance to nalidixic acid, streptomycin and tetracycline. Class 1 

integrons were also present in 34 of 54 S. Infantis isolates from poultry samples in 

Pakistan (Wajid et al., 2019). Another study in Japan, analysed integron presence in 120 S. 

Infantis isolates from broiler caecal samples isolated between 2004 and 2006 (Shahada et 

al., 2010). All of the isolates contained a class 1 integron; they also all had MDR and 

carried either a 180kb plasmid or this plasmid plus another 50kb plasmid. 91% of the 

isolates with the extra 50kb plasmid were found to contain the blaTEM gene.  

 

 

1.3.6.1 Plasmid of Emerging S. Infantis (pESI) 

 

A study elucidating the cause of the emergence of S. Infantis in Israel between 2006 and 

2007 compared strains isolated pre and post 2006 (Aviv et al., 2014).  Whilst the strain 

isolated pre 2006 was susceptible to the antibiotics tested, the emergent strain had MDR 

to the 12 antimicrobial classes tested. A unique megaplasmid conferring MDR was 

identified in the emergent strain and was named plasmid of emerging S. Infantis (pESI). 

pESI was not present in strains isolated before 2007 but 82% of strains isolated between 

2007 and 2009 were positive for pESI (Gal-Mor et al., 2010; Aviv, Rahav and Gal-Mor, 

2016).  

pESI has an IncP-1a origin of replication but is able to co-exist with other IncP 

plasmids and was found to be incompatible with Inc1 plasmids; suggesting that it evolved 

from recombination of other plasmid types (Aviv et al., 2014).  It is approximately 280kb 

in size and carries aadA1, sul1 on a transposon; the tetAR operon on a transposon and 

dfrA1 on a class 1 integron; conferring resistance to streptomycin, sulfamethoxazole, 

tetracycline and trimethoprim respectively.  Emergent strains tested also had resistance 

to nalidixic acid and nitrofurantoin, but these were found to not be pESI mediated and 

instead located on the chromosome. The nalidixic acid resistance was due to an amino 

acid substitution in the QRDR of gyrA and the nitrofurantoin resistance due to a nonsense 
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mutation in nfsA. The mer operon which encodes mercury resistance was also present, as 

was a yersiniabactin iron uptake system.  

 pESI also increases the virulence of S. Infantis (Aviv et al., 2014). A mouse model 

was infected with S. Infantis isolates with or without pESI. pESI presence increased caecal 

colonisation, inflammation and tissue damage. It was also found to enable growth in the 

presence of mercury and hydrogen peroxide and increase biofilm formation.  A more 

recent study identified that pESI is not restricted to S. Infantis; in a mouse model pESI was 

transferred to E. coli strains and gram-positive organisms in the microbiota; it persisted in 

the E. coli strains but not in the gram-positive species (Aviv, Rahav and Gal-Mor, 2016). 

Since the first description of pESI, pESI-like plasmids have also been identified in S. 

Infantis from Denmark, Italy, Switzerland, Hungary, Peru, Turkey and the USA; suggesting 

that pESI confers a selective advantage to certain S. Infantis strains and could be 

associated with the increased incidence of S. Infantis (Franco et al., 2015; Hindermann et 

al., 2017; Iriarte et al., 2017; Tate et al., 2017; Szmolka et al., 2018; Acar et al., 2019; 

Gymoese et al., 2019).  

Concerningly, variants of pESI have been found containing ESBLs. The blaCTX-M-65 

gene was found in isolates with pESI from cattle, chicken and humans in the USA and 

from poultry meat and humans in Switzerland (Hindermann et al., 2017; Tate et al., 

2017). Also, the blaCTX-M-1 or blaCTX-M-65 gene was found in pESI positive isolates from 

broilers, broiler meat and humans from Italy (Franco et al., 2015). More recently, S. 

Infantis isolates have been identified from broilers in Italy which contained both pESI with 

the blaCTX-M-1 gene and an IncX1 plasmid with mcr-1.1 which encodes colistin resistance 

(Carfora et al., 2018).  

 

 

1.3.7 Virulence Factors 
 

Virulence factors, have been found in varying levels in different S. enterica subsp. enterica 

serovars, enabling colonisation of different hosts and causing different kinds of infection 

(Cheng et al., 2015).  The virulence markers present in 35 S. Infantis strains from humans 

or food in Brazil, isolated between 1984 and 2009 were compared; although several 

virulence genes were identified, spvB, which is commonly found on plasmids associated 

with virulence, was not present in any of the isolates (Almeida et al., 2013). 
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Virulence gene presence varies by country, a study from Israel reported that SopE 

is not present in S. Infantis (Aviv et al., 2019). Conversely, in Pakistan the virulence gene 

most frequently identified from S. Infantis isolates from poultry carcasses was SopE 

(Wajid et al., 2019). Also, S. Infantis isolates from Turkey contained higher levels of SopE2 

than S. Typhimurium and S. Kentucky strains; different virulence gene patterns were 

identified in the samples from broilers and breeders, suggesting that Salmonella 

contamination of the broilers was not occurring through the breeders (Sever and Akan, 

2019). 

An experiment using mice as an in vivo model for infection determined that, in 

comparison to S. Typhimurium, S. Infantis performed better than S. Typhimurium at 

adhering to the host epithelial cells but was significantly less invasive, regardless of pESI 

presence, inducing less inflammation (Aviv et al., 2019). This was found to be associated 

with a reduction in the expression of SPI-1 genes in the S. Infantis isolates.  S. Infantis 

isolates from poultry have also been identified as being weak to moderate biofilm 

formers (Pate et al., 2019). 
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1.4 Aims and Objectives 
 
S. Infantis is causing increasing numbers of human infection globally and is identified 

frequently in poultry. Despite this, very little is known about the genetic diversity of S. 

Infantis, with published research including small numbers of sequences from a limited 

number of locations and sources. S. Infantis has also been reported as being associated 

with high levels of AMR. Whilst all the available information of AMR in S. Infantis is 

undoubtably useful, it does not provide evidence on what AMR determinants are 

responsible for the increase in AMR seen in S. Infantis isolates globally, and if the increase 

in AMR is occurring worldwide.  Also, pESI has been identified in S. Infantis isolates from 

multiple countries; however, the levels of pESI in S. Infantis and how the plasmid varies is 

unknown; such information would determine the public health risk pESI presents. 

Despite the large difference in incidence of S. Infantis in humans and poultry it is 

not known why this pathogen is so successful in one host and less so in the other.  A 

hypothesis that would explain this disparity is that there are genetic differences between 

the S. Infantis isolates that cause infection in humans and poultry.  Ascertaining if this was 

the case would be beneficial for public health surveillance as it could identify 

characteristics that have a greater risk of causing human infection. 

 

Therefore, the objectives of this project were to: 

 

1. Determine the population structure of a global collection of S. Infantis. 

 

2. Identify the global levels of AMR in S. Infantis and whether resistance 

determinants vary by geography and source. 

 

3. Identify the global levels of pESI in S. Infantis and the association of pESI presence 

with geography, source and the increase in AMR. 

 

4. Establish whether there are genetic differences between S. Infantis isolates from 

human and poultry sources that explain the difference in incidence between these 

sources. 
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2. Chapter 2.  Overall Methods 
 

2.1 Sequences and Strains Used in this Study  
 

S. Infantis sequence data or DNA was collected from as many online databases and 

collaborators as possible, to capture the greatest diversity in time and space.  

 

2.1.1 Sources of Sequence Data 
 

Sequence data were downloaded from online databases and shared by collaborators. 

 

2.1.1.1 GenBank and the European Nucleotide Archive (ENA)  

 

A literature search was carried out in August 2017 to identify papers containing S. Infantis 

sequence data. GenBank and the ENA were also searched; sequence data for 270 isolates 

was found from the GenBank search and 25 from the ENA search (Benson et al., 2005; 

Leinonen, Akhtar, et al., 2011). As the input for the bioinformatics pipeline was paired 

fastq files, all papers containing only whole genome assemblies were excluded; resulting 

in 182 S. Infantis strains with fastq files being included and downloaded from the 

Sequence Read Archive (SRA), GenBank, the ENA or the DNA Data Bank of Japan 

(Leinonen, Sugawara, et al., 2011; Mashima et al., 2017). 

 

2.1.1.2 Enterobase 

 

The Enterobase database was searched, up until 19th February 2018, using the qualifiers 

S. Infantis, S. Infantis (Predicted), Infantis and eBG31 (Alikhan et al., 2018). The 

Enterobase database was searched for eBG297 sequences on 28.05.19 using the qualifier 

eBG297. Sequences that had been sequence typed by Enterobase as eBG31 or eBG297, 

but serotyped by the uploader as another serotype, were included. All sequences that 

were duplicated from the GenBank search or had been uploaded by PHE were at this 

point removed.   
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2.1.1.3 Public Health England (PHE) 

 

The Gastrointestinal Bacterial Reference Unit (GBRU) began to trial whole genome 

sequencing on isolates from 2012, 2013 and 2014 and implemented it as routine for all 

pathogens they received in 2015. All of the eBG31 sequences available on 02.08.2017 

were included. All eBG297 sequences available on 28.05.2019 were included. 

 

2.1.1.4 Animal and Plant Health Agency (APHA) 

 

The metadata for 62 S. Infantis isolates that had been sequenced, some of which were 

available on the SRA, was provided by Dr Liljana Petrovska-Holmes (APHA). 

 

2.1.2 Accessing and Downloading the Sequence Data 
 

The sequences from the ENA were downloaded directly from the web browser.  All 

GenBank sequences and those on Enterobase which were present on the SRA were 

downloaded using fastq-dump from the sra toolkit with the split-3 option to output 

paired end fastqs (National Center for Biotechnology Information, 2014).  

Some Enterobase sequences had been uploaded as an assembly to RefSeq or the Trace 

archive.  The accession numbers for each of these were searched on GenBank and the 

ENA to identify any associated fastqs. These were downloaded either directly from the 

web browser or using fastq-dump. 

Many samples downloaded from Enterobase did not have metadata associated 

with them at the time of download.  Metadata can take several months to be associated 

with samples on Enterobase, so metadata was downloaded again on 13.02.19 and those 

that had acquired metadata were updated. GenBank was also searched for isolates still 

missing metadata using edirect, linking the SRA accession number to metadata in 

BioSample (Kans, 2019). 

APHA sequences on GenBank were searched for using edirect, linking the strain 

name in the BioSample database to the SRA accession number. Again, sequences found 

to be associated with APHA metadata were downloaded using fastq-dump.  Any 

sequences not available on GenBank were securely shared with me by Dr Liljana 

Petrovska-Holmes. 
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PHE sequence data was shared by Dr Hassan Hartman via Secure File Transfer 

Protocol (SFTP). Some were sent in duplicate, for those samples, the version of the 

sequence that had been completed most recently was included. Several of the PHE fastqs 

sent via SFTP were smaller than expected. I plotted the size distribution of all of the PHE 

sequences and any smaller than the peak of sequences (cut-off set at 40 megabytes per 

fastq) were investigated. All the affected isolates had been sequenced more than once by 

PHE and incorrect versions had been sent. The correct versions were sent and run 

through the pipeline again. 

Following this, I investigated the size of the downloaded Enterobase fastqs. I 

plotted the distribution of these sizes and all those smaller than the cut-off of 60 

megabytes per fastq were downloaded again. If the new download was larger than the 

original download it was used instead. 

 

2.1.3 Sources of Strains 
 

DNA of S. Infantis isolates that had not yet been sequenced was shared by the APHA, PHE 

and the National Institute for Communicable Diseases (NICD), South Africa. 

 

2.1.3.1 APHA 

 

The APHA collect Salmonella isolates either for surveillance or for research projects. All S. 

Infantis isolates that had not been sequenced by March 2018 from the surveillance group 

were selected for inclusion.  

 

2.1.3.2 Historical PHE (hPHE) Isolates 

 

The metadata for all unsequenced S. Infantis reported to PHE, between 2000 and 2014, 

was assessed and a list of isolates to sequence was generated. Those associated with 

foreign travel or isolated from blood, urine or chickens were given preference; ensuring 

that the isolates selected were evenly distributed by time and if there was foreign travel, 

by continent. If multiple samples came from the same source, location and time, then one 

isolate was chosen to represent that group. I searched for these samples in the PHE 

culture stores, with the assistance of Tracey Dealey and Dr Martin Day; all that were 

found and successfully cultured were included.  
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2.1.3.3 NICD, South Africa 

 

A list of all S. Infantis reported to the NICD between January 2003 and October 2017 was 

provided by Dr Anthony Smith. Isolates associated with any of the following metadata 

were given top priority for sequencing: high levels of antibiotic resistance; associated with 

an outbreak; sourced from blood, pus, cerebrospinal fluid (CSF), urine and rectal swabs or 

non-human sources. Isolates were also selected from the smaller provinces to ensure a 

distribution of isolates across the whole country. This resulted in a list of 285 high priority 

isolates to be sequenced.  

A mid priority list was created to capture isolates across each year, to ensure a 

distribution of strains by time. Ten isolates from the beginning, middle and end of each 

year were included. This list also included all isolates from infants under 1 year of age.  A 

low priority list of 50 strains was prepared which included one isolate from 2013 and 49 

from 2009.  With the help of Tina Duze, Shannon Williams and Nomsa Tau, the NICD 

culture stores were searched and all those on the three priority lists that were found and 

were culturable were included, with more time being dedicated to finding those on the 

higher priority lists. 

 

2.1.4 Anonymising Sequence Data 
 

All isolates to be sequenced in-house were given a coded name, to allow both for the 

anonymisation of codes that could be not made publicly available and for the 

differentiation of data from different collaborators. All the NICD isolates were given a 

number and either preceded by ‘SA’ or followed by ‘southafrica’. The PHE, hPHE and 

APHA isolates were given a number which was preceded by ‘PHE’, ‘hPHE’ and ‘APHA’ 

respectively.  

 

2.1.5 Metadata Handling 
 

The metadata for isolation source was stratified into smaller groups to enable plotting of 

source on the phylogenies. Appendix II Table II.1 lists the keywords used to sort the 

isolates into human, poultry or environmental source groups.  Information about gender 

and age were also used as an indication that the sample was from a human. Isolates were 
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classed as having an unknown source if that information was missing or if there was 

insufficient information to determine the source group. 

The same process was applied to the geographic location of isolation, with all 

countries being categorised by continent; Appendix II Table II.2 lists the countries 

included in each of the categories.  PHE isolates that had foreign travel information were 

classed as originating from that continent and isolates that did not, as originating from 

the UK. The year of isolation results were grouped into date ranges of varying lengths 

depending on the number of strains present in the group; comprising S. Infantis strains 

from 1989, 1995-1997 and in every year between 1999-2019. 

 

2.2 DNA Extraction for Whole Genome Sequencing 
 

All but one of the genomes in this project were short read sequenced, using Illumina 

whole genome sequencing. A different method was used to extract high molecular weight 

DNA for the long-read sequencing of the eBG31 reference isolate. 

 

2.2.1 Short Read Sequencing 
 

Different methods were used to extract DNA by each of the collaborators in this project. 

 

2.2.1.1 NICD Isolates 

 

I performed the DNA extraction of the NICD isolates, with the assistance of Shannon 

Williams, Nomsa Tau and Tina Duze. The Qiagen QIAmp DNA Mini kit (Qiagen, Germany) 

was used to extract the DNA directly from an overnight culture on an agar plate, following 

the protocol except for an incubation period of 60 minutes with proteinase K and the 

addition of 100μl of nuclease free water in the elution step (Qiagen Sample & Assay 

Technologies, 2016). 475 samples were extracted but upon receipt of the DNA at the 

University of East Anglia (UEA), only 450 were suitable for sequencing. 

 

2.2.1.2 hPHE Isolates 

 

The agar slopes or Dorset egg slopes containing the isolates were located in the PHE 

culture stores. If the agar slope was extremely dehydrated it was suspended in Difco 
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nutrient broth and incubated, whilst shaken, at 37°C overnight. A small loop of culture 

from the agar slope or Dorset egg slope was inoculated in 1ml of Difco nutrient broth and 

another loop was used to streak a MacConkey agar plate. Both were incubated overnight 

at 37°C, the broth whilst shaken. Growth on the agar plate was checked for purity by Dr 

Martin Day and Dr Claire Maguire; if purity was confirmed, the broth was taken to the 

DNA extraction facility. If no growth was present the above was repeated with the 

addition of a blood agar plate. 

Broths were taken to the GBRU DNA extraction team who, using the QiaSymphony 

platform (Qiagen), extracted the DNA (Walle et al., 2019). They also performed DNA 

quantification using GloMax (Promega, USA) with Quant-iT reagents (ThermoFisher, USA) 

(Thermo Fisher, 2015b). Fourteen of the samples had had DNA extracted twice, those 

with the highest concentration from the GloMax results were carried forward. 

 

2.2.1.3 APHA Isolates 

 

DNA extraction of APHA isolates was carried out by APHA staff, in particular Dr Carmen 

Garcia-Pelayo. DNA was extracted using a MagMAX CORE Nucleic Acid Purification Kit 

(ThermoFisher) on a KingFisher Flex Purification System (ThermoFisher), following 

manufacturer’s instructions (De Lucia et al., 2018). 

 

2.2.2 Long Read Sequencing 
 

The reference eBG31 isolate was grown in 2ml of BHI broth at 37°C and 3mg/ml lysozyme 

was prepared. The next day DNA was extracted using the FireMonkey DNA extraction kit 

(RevoluGen, UK); following the DNA extraction for bacteria protocol, except for the 

incubation length with lysozyme, which was increased to 1 hour (Revolugen, 2017). 

RNase was added for the extraction of DNA alone.  

 

2.3 DNA Quality Control and Quantification 
 

Per batch, DNA quality was checked by looking at the absorbance with a 

spectrophotometer. All DNA was quantified by fluorescence, using a Qubit fluorometer 

(ThermoFisher). 
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2.3.1 Measuring DNA by Absorbance 
 

For the first sequencing run, the DNA of 151 S. Infantis isolates was tested for purity using 

a NanoDrop Spectrophotometer (ThermoFisher). Briefly, the NanoDrop was cleaned with 

DNase/RNase free distilled water, 1μl of this was used as a blank and 1μl of DNA for each 

sample was measured, with cleaning being carried out between each measurement. The 

desired absorbance values were approximately 1.8 for 260:280 and 2 for 260:230.  

For all other samples that were diluted, at least five from each DNA extraction 

batch were checked on the NanoDrop for consistent results. This was not carried out for 

the DNA from the APHA, as they shared their absorbance results.  

 

2.3.2 Measuring DNA by Fluorescence 
 

The DNA for the first 151 isolates was quantified with the assistance of Dr Emma Manners 

(UEA) using Qubit Broad-Range and High Sensitivity assay kits, following the kit protocols 

(Thermo Fisher, 2015c, 2015d).  

 

2.3.2.1 Trial Methods 

 

With the aim of speeding up quantification, a method using the Qubit reagents in a 

microplate reader was employed (Tanny, 2014). 1x TE buffer was made by mixing 1ml 

10mM Tris (Qiagen) and 2μl EDTA. The 100ng/μl standard that came with the Qubit 

Broad-Range assay kit was then diluted to make standards at 5, 10, 20, 40, 60 and 

80ng/μl. The 0 ng/μl and 100 ng/μl standards that came with the Qubit kit were also 

used.  Qubit High Sensitivity reagent was mixed with High Sensitivity buffer at a ratio of 

1:200. 198μl of the working solution was pipetted into each well of a black 96 well plate. 

2μl of each standard was added to three wells and 2μl of DNA for each sample was added 

to a well after vortexing. The plate was vortexed, incubated for 2 minutes and the 

fluorescence was read on a FLUOstar Omega microplate reader (BMG Labtech, Germany), 

using the 485/520 setting for excitation/emission.  

Subsequently, the method suggested by BMG Labtech was followed and only the 

standards provided in the Qubit Broad-Range assay kit were used to make the standard 

curve (Krumm, Gröne and Maurer, 2017). Quant-iT High Sensitivity and Broad-Range kits 
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were then used with the prepared standards; the kit protocol was followed (Thermo 

Fisher, 2015b, 2015a). 

 

2.3.2.2 Final Method 

 

Any aliquots of DNA quantified with Quant-iT were requantified with Qubit and Qubit, 

using the 96 well format, was used exclusively for the remaining samples. If the 

concentration of any of the stock DNA was too low to be quantified, it was excluded. 

 

2.3.3 Dilution of DNA for Illumina Sequencing 
 

Stock DNA was stored in a -80°C freezer. It was diluted to 10ng/μl with DNase/RNase free 

distilled water, unless the concentration was close to 10ng/μl. Diluted DNA was then 

further diluted to the concentration required for library preparation. The majority were 

diluted to 0.2ng/μl; when the Quadram Institute Bioscience (QIB) Sequencing Facility was 

used this was amended to 0.5ng/μl. Initially the DNA was diluted into Eppendorf tubes 

but later into 96 well plates. Dilutions were stored at -20°C. 

 

2.4 Whole Genome Sequencing 
 

The DNA was checked for quality, diluted, library prepped and whole genome sequenced. 

 

2.4.1 Illumina Whole Genome Sequencing 
 

All of the NICD, hPHE and APHA DNA was sequenced within UEA or QIB.  

 

2.4.1.1 Illumina Library Prep – Standard Protocol 

 

The first 136 DNA samples were tagmented, indexed, amplified and cleaned up, with the 

assistance of Dr Emma Manners, following Nextera XT DNA Library Prep Kit protocol 

version 3 (Illumina, Great Chesterford) (Illumina, 2018a). After library prep, the quality of 

at least 2 isolates from each batch was assessed using the TapeStation (Agilent 

Technologies, USA). 10μl of sample buffer was aliquoted into each PCR tube, 1μl of ladder 

into the first tube and 1μl of DNA into the others. The TapeStation electropherogram was 
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used to check for a defined peak. At least one of the samples from each batch had a 

corresponding sample containing pre-amplification DNA. The peaks of these were 

compared to confirm that amplification had taken place. 

Libraries were quantified using the Qubit High Sensitivity assay kit and normalised 

to 4nM, using both the modal peak height for that batch calculated from the TapeStation 

and the concentration of each library to identify the amount of DNase/RNase free 

distilled water to add. 5μl of 128 of the libraries were pooled and the sections Denature a 

4nM Library and Dilute a Denatured 20pM Library in the MiSeq System Denature and 

Dilute Libraries Guide were followed (Illumina, 2017). 6μl of denatured and diluted PhiX 

was added and the libraries were loaded onto the reagent cartridge, which was run with a 

mid-output flow cell on an Illumina NextSeq 500 (Illumina). 

The next 152 isolates were library prepped, again following the Nextera XT DNA 

Library Prep Kit protocol version 3 (Illumina, 2018a). The TapeStation was again used to 

check for amplification. These libraries and 8 omitted from the first sequencing run were 

then submitted to the QIB Sequencing Facility, run by David Baker, who normalised, 

pooled and sequenced the libraries on a mid-output flowcell on an Illumina NextSeq 500. 

 

2.4.1.2 Illumina Library Prep – Amended Protocol 

 
The remaining 495 isolates were submitted to the QIB Sequencing Facility as DNA, diluted 

to either 0.2ng/μl or 0.5ng/μl.  David Baker performed the following: a tagmentation mix 

was created for each sample using 0.9μl Illumina Tagment DNA Buffer, 0.09μl Illumina 

Tagment DNA Enzyme and 2.01μl PCR grade water. 3μl of this mix was mixed with 2μl of 

the 0.5ng/μl DNA in a chilled 96 well plate and then heated in a PCR block for 10 minutes 

at 55⁰C, these proportions were adjusted for the DNA that had been diluted to 0.2ng/μl. 

A PCR mastermix using reagents from the Sigma-Aldrich Kap2G Robust PCR kit 

(Sigma-Aldrich, USA), containing 4μl kapa2G buffer, 0.4µl deoxyribonucleotide 

triphosphate, 0.08µl polymerase and 6.52µl PCR grade water, was added to each well. 2μl 

of Illumina Nextera XT Index Kit primers (Illumina) were added to each well, followed by 

5μl of the tagmentation mix. This was mixed and heated in a PCR block at 72⁰C for 3 

minutes, 95⁰C for 1 minute and 14 cycles of 95⁰C for 10 seconds, 55⁰C for 20s and 72⁰C 

for 3 minutes.  

The libraries were quantified using either a Quant-iT High Sensitivity kit or a 

QuantiFluor dsDNA System kit (Promega) on a FLUOstar Optima plate reader (BMG 
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Labtech) (Thermo Fisher, 2015b; Promega Corporation, 2018). They were then pooled, 

cleaned up and double-SPRI size selected between 0.5 and 0.7X bead volumes with KAPA 

Pure Beads (Roche, Switzerland) (KAPA Biosystems, 2017). 

The final pool was quantified using Qubit or QuantiFluor reagents with a Qubit 3.0 

instrument (Thermo Fisher, 2015d; Promega Corporation, 2018). The molarity was 

calculated using the Agilent Tapestation 4200 (Chapter 2.4.1.1). Following the Illumina 

protocol, the pool was denatured and loaded at a final concentration of 1.5pM with a 1% 

PhiX spike (Illumina, 2018b). 

These libraries, including those that needed resequencing, were spread across 5 

sequencing runs, using mid and high output flow cells and an Illumina NextSeq 500. 

 

2.4.2 MinION Whole Genome Sequencing 
 

To long-read sequence the DNA for the eBG31 reference isolate, a Nanopore Rapid 

Barcoding Kit (Oxford Nanopore Technologies, UK) was used, with the assistance of Dr 

Gemma Langridge and Dr Emma Ainsworth, following the protocol (Oxford Nanopore 

Technologies, 2018) except for the following:  

• A concentration of 600ng of high-molecular weight DNA was used as input instead 

of 400ng  

• The pooled barcoded sample and AMPure beads were vortexed for 2 minutes at 

1800rpm before a 5 minute incubation at room temperature 

• The beads were washed with 80% ethanol 

 

The priming and loading of the flow cell were done solely by Dr Gemma Langridge and Dr 

Emma Ainsworth. The running parameters for the experiment were left as default. 

 

2.4.3  Resequencing of Failed Genomes 
 

As the sequences passed through the analysis pipeline (Chapter 2.6), several had to be 

excluded due to poor quality. For those strains with DNA at QIB, resequencing took place. 

A poor quality genome was resequenced for one or more of the following reasons:  

• It did not pass into SnapperDB due to low coverage (Chapter 2.6.5) 

• It had poor assembly quality (Chapter 2.6.7) 
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• It was sequence typed as eBG31 or eBG297 but had too high QC max percentage 

non consensus base values for all loci to be included (Chapter 2.6.3) 

• It did not have a close SLV, DLV or multiple-locus variant (MLV) when sequence 

typed and had high maximum consensus values; those that did not have a close 

SLV, DLV or MLV but had acceptable maximum consensus scores were not 

resequenced (Chapter 2.6.3). 

 

All resequencing was carried out by the QIB Sequencing Facility, who either resequenced 

the already prepared libraries or remade the libraries. 20 had to be diluted again from 

stock concentration to 0.5ng/μl using a QuantiFluor dsDNA System kit (Promega 

Corporation, 2018).  Any sequences that were still poor quality after the final sequencing 

run were not resequenced again due to time constraints. 

 

2.5 Selection of Reference Sequences 
 

Reference genomes for eBG31 and eBG297 were required for the bioinformatic analyses. 

 

2.5.1 eBG31 
 

The reference selected for eBG31 was SRR1968494, the reference used by PHE, to allow 

for continuity with their work. They chose this sequence as it was the highest quality 

assembly in their collection; it had the smallest number of contigs and the highest N50. 

We chose to long-read sequence this isolate to generate an even higher quality reference. 

 

2.5.2 eBG297 
 

As PHE did not have a reference for eBG297, I used their methods for reference selection, 

with all the eBG297 sequences available on 29.05.2019. The genomes were all assembled 

and quality checked (Chapter 2.6.7), the sequence with the highest N50 and smallest 

number of contigs was chosen to be the eBG297 reference, PHE_709. 
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2.5.3 Identifying Prophages in the eBG31 and eBG297 References 
 

PHASTER (accessed 17.07.2019), with the metagenomic contigs option, was run on the 

references for eBG31 and eBG297 to identify putative prophages present in the reference 

genomes (Arndt et al., 2016).  For confirmation, the following key words were searched 

for in each putative prophage: capsid, head, integrase, plate, tail, fiber, coat, transposase, 

portal, terminase, protease, lysin using the gff output of Prokka (version 1.11) (Chapter 

2.6.8) and Artemis (version 17.0.1) (Carver et al., 2012; Seemann, 2014). The confirmed 

prophages that PHASTER reported as intact were then masked during phylogeny creation 

(Table 2.1). 

 
 

eBG Prophage Position Length 

31 1 2551266-2583308 32Kb 

31 2 3082238-3130649 48.4Kb 

31 3 3387764-3415196 27.4Kb 

31 4 3951065-3987469 36.4Kb 

297 1 Node 26, 2405-45901 43.5Kb 

Table 2.1 Prophages masked from eBG31 and eBG297 alignments 
Prophages identified in the eBG31 and eBG297 reference genomes by PHASTER and chosen to be 
masked from the eBG31 and eBG297 soft-core alignments. 

 

2.6 Bioinformatics Analysis Pipeline 
 

All sequence data were put through a bioinformatics pipeline, illustrated in Figure 2.1. 

 

2.6.1 Demultiplexing Illumina Output 
 

For the first sequencing run, BaseSpace was unable to correctly demultiplex the sequence 

data (Illumina, 2019a). bcl2fastq was installed on CLIMB and successfully run with an 

edited version of the Sample Sheet created by BaseSpace (Connor et al., 2016; Illumina, 

2019b).  For all other sequencing runs performed by the QIB Sequencing Facility, 

BaseSpace was used to demultiplex the Illumina output, generating 4 read 1 fastqs and 4 

read 2 fastqs for each sample. 
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Figure 2.1 Flowchart of bioinformatics pipeline 
A flowchart illustrating the pipeline that all sequence data were run through.  Steps marked with an 
asterisk are those that resulted in sequence exclusion from the next step, due to poor quality. 

 

2.6.2 Sequence Data Quality Control 
 

For all sequencing runs carried out locally, at least three sequences from each run were 

quality checked using FastQC (version 0.11.5) prior to trimming (Andrews, 2010).  Poor 

quality data was trimmed using Trimmomatic (version 0.36) (Bolger, Lohse and Usadel, 

2014). Initially trimming parameters were selected based on scripts used by Dr Lisa 

Crossman (UEA), PHE and from literature searches. FastQC was used to determine 

whether the more relaxed options (Dr Lisa Crossman) could be used or the stricter PHE 

options were needed. Trimmomatic was run with different combinations of the 
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parameters they used, and the graphs produced by FastQC compared to determine the 

ideal parameters. 

All sequences that had been downloaded or sequenced, as of November 2018, 

were trimmed using Trimmomatic with these parameters: ILLUMINACLIP:2:30:10 

LEADING:30 TRAILING:30 SLIDINGWINDOW:4:15 MINLEN:50. ILLUMINACLIP trims the 

Illumina adaptors off the reads; LEADING trims bases at the start of reads that are below 

a certain quality; TRAILING does the same for the end of the read; SLIDING WINDOW 

trims once the average quality of the reads, in a defined window, falls below a quality 

threshold and MINLEN removes the read if it’s under a specified length. 

At this point, new trimming parameters had been validated at PHE: 

ILLUMINACLIP:2:30:10:8:true LEADING:30 TRAILING:30 SLIDINGWINDOW:10:20 

MINLEN:50. All sequences were subsequently retrimmed with these new parameters 

except for the processed fastqs from PHE; these parameters were also used for new 

sequence data.  For all the downloaded sequences, the paired output of Trimmomatic 

was used as the input for all software downstream in the pipeline. For any sequencing 

carried out locally, Trimmomatic was performed separately on the reads from each lane 

and the paired outputs for each read and lane were concatenated as the input for the 

next stage of the pipeline.  

 

 

2.6.3 Sequence Typing 
 

All of the isolates sequenced as part of my project had previously been serotyped and 

identified as S. Infantis. MOST (installed August 2017) was used in conjunction with the 

PHE Salmonella MLST database on all sequences to confirm that the isolates were S. 

Infantis and to determine their ST and eBG (Tewolde et al., 2016; PubMLST, 2018). 

Originally the 2017 PHE database was used, but as all sequences needed retrimming and 

therefore the whole pipeline was to be re-run, an updated PHE Salmonella MLST 

database was acquired and used with MOST on all sequences (PubMLST, 2017; PubMLST, 

2018). I wrote two bash scripts to filter and concatenate the results.xml files to easily 

compile the results for large numbers of sequences (Appendix I.1, I.2).  
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eBG Included STs 
31 32, 2283, 3277, 3756, 2146, 2780, 2937, 3815, 4196, 3870, 3854, 4366, 7759, 7760, 7761, novel1, 

novel2 
297 603, 1823, 7731, 7732, novel3 

 

Table 2.2 STs included in eBG31 and eBG297                                                                                                              

STs that were defined by PHE or by Enterobase as belonging to eBG31 or eBG297 

 
Table 2.2 lists the STs that were classed as belonging to eBG31 or eBG297.  Any 

alternative STs identified were checked on Enterobase and then excluded from further 

analysis.  Novel alleles were identified in 23 isolates; their sequences were uploaded to 

Enterobase to define the ST (ST7731, ST7732, ST7759, ST7760, ST7761).  MOST also 

identified novel STs in both eBG31 and eBG297. These sequences were already in 

Enterobase and had been typed there as either ST32, ST2181 or ST1823; they were 

therefore classified as belonging to eBG31 or eBG297 but noted as belonging to a novel 

ST. The novel ST an SLV from ST32 was named novel1; the ST an SLV from ST2181 (eBG31) 

novel2 and the ST an SLV from ST603 novel3. 

The MOST results were also used as a measure of quality; sequences that weren’t 

of sufficient quality to pass through MOST were excluded. The traffic light parameter in 

the MOST results output was used initially to determine whether a sequence was good 

enough quality, green was marked as passed and red as failed. The QC max percentage 

non consensus base of each locus, an output of MOST that showed the highest 

percentage of non-consensus bases in each allele, was used to determine whether the 

sequences that came back as amber needed further checking or had passed. Sequences 

that had several alleles with a max percentage non consensus base score of over 15 were 

checked further. The mapping of the sequence to the alleles it had been typed as having 

was assessed using Tablet (version 1.19.05.28) (Milne et al., 2013). Those with poor 

quality mapping were excluded. 

 

2.6.4 Variant Calling 
 

The software PHE use in their bioinformatics pipeline, PHEnix (version 1.3), was used to 

call the variants (Jironkin et al., 2017). PHEnix mapped sequences to the relevant 

reference using BWA (version 0.7.12), called variants with GATK (version 3.8-0-

ge9d806836) and filtered the VCF output with the following cut-offs: minimum depth of 
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10, mq score of 30 and ad ratio of 0.9 (Li, 2013; Van der Auwera et al., 2013). Sequences 

that could not be variant called were excluded. 

 

2.6.5 SnapperDB 
 

SnapperDB was installed on a MacBook Pro and an eBG31 database was made using the 

PHE Illumina sequenced reference genome (Ashton et al., 2017). The same filtering values 

as used in PHEnix were included in the config file, with the addition of average depth cut-

off, 25. Again, BWA and GATK were used in the creation of the database with both given 

access to 4 threads. 

Once the PHE reference isolate had been sequenced using long-read sequencing 

and polished (Chapter 2.7.1), it was used as the reference for a new eBG31 SnapperDB 

(version 1.0.6). The polished assembly was annotated using Prokka (version 1.13.3) 

(Chapter 2.5.7) and the filters and parameters used in the generation of the previous 

database were used in the creation of this database. With the initial database, Illumina 

fastqs were provided to the software to prevent ambiguous mapping; however, Dr Tim 

Dallman (PHE) advised that, for this version of the database, it would be better to not 

provide any fastqs, so the database was remade without fastqs.  The eBG297 sequence 

that had been selected as reference, PHE_709, was used as the reference for the eBG297 

database; the same filters and parameters were again used in creation of this SnapperDB. 

The S. Infantis filtered variant call files were then added to their relevant eBG 

database. This step acted as another quality check as those with insufficient coverage did 

not successfully pass into the database. After sequences had been added to the database 

the update distance matrix function of SnapperDB, was run. In a database populated with 

a large number of sequences this became a very time-consuming process, with one 

particular update taking three weeks. Due to the time this was taking and the lack of 

back-up available during this time, SnapperDB was installed on CLIMB and a duplicate 

eBG31 database was created there. 

The update clusters function was then run and any outliers identified were 

investigated by creating soft-core SNP alignments and comparing the placement of 

undetermined bases, which appeared as N’s. Big blocks of N’s were judged to be 

deletions or potential recombinations and sequences containing those were allowed into 

the database. Sequences with large numbers of N’s dotted sporadically throughout the 

alignment were considered mixed samples and were excluded from the database. Any 
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sequences that had over 10,000 variants from the reference were judged not to belong to 

that eBG and were excluded. 

 

2.6.6 Whole Genome Assembly  
 

SPAdes allows you to choose the length of the k-mers used to assemble the genome 

(Bankevich et al., 2012). To determine the best k-mer combination, I trialled several 

different combinations: the default, no k-mer value specified; values used by Dr Gemma 

Langridge and PHE, 21, 33, 55 and 77; and variations of these k-mer sizes, 33, 55, 77, 99; 

21, 33, 55, 77, 89; 21, 33, 55, 69. The contigs.fasta files were run through the QUAST 

website and the N50, Number of contigs and GC% were compared (Center for Algorithmic 

Biotechnology, 2013). The SPAdes fastg output for assemblies with the best quality scores 

were visualised using Bandage (installed March 2017) (Wick et al., 2015). 

The final method chosen to assemble the S. Infantis collection was SPAdes 

(version 3.13.0) with default parameters except for the k-mer selection of 21, 33, 55, 77 

and the careful option to reduce mismatches and short indels. 

 

2.6.7 Whole Genome Assembly Quality Assessment 
 

Several different methods were used to assess the quality of the assemblies. QUAST 

(version 4.6.3) was run on all the assemblies as default but for no creation of plots 

(Gurevich et al., 2013). As the quality of the whole assembly was of interest the minimum 

contig length was set to 1 and the scaffolds flag was not used as it breaks off every block 

of over 10 Ns’s and treats that as another contig. The N50, number of contigs, longest 

contig and overall length were extracted from the report.  

The percentages of mapped reads and properly paired reads were calculated by 

indexing the fasta outputs of SPAdes with BWA and mapping the trimmed reads to the 

assembly using BWA-MEM.  The SAM output was sorted using SAMtools sort (version 1.5) 

and SAMtools flagstat was used to print the desired values (Li et al., 2009). The coverage 

of the assembly was calculated using SAMtools depth on the output of SAMtools sort. 

The results for all of these parameters were compared for the first 4,438 eBG31 

scaffolded assemblies. Values for N50, longest contig, number of contigs, coverage, 

percentage mapped reads and percentage properly paired reads were plotted as 

individual histograms to determine their distribution. All of these graphs contained clear 
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peaks containing the majority of the sequences; graphs of the distribution of the N50 and 

the number of contigs are provided as an example (Appendix II Figure II.1,  II.2). The 

sequences that were included in this peak and in the direction that indicated good quality 

were identified; for N50, longest contig, coverage, percentage mapped reads and 

percentage properly paired reads the values higher than the peak were indicative of good 

quality. For the number of contigs, the values lower than the peak were good. For all 

graphs the peak and trailing end contained approximately 95% of the genomes. A 

sequence being amongst this 95% of sequences was therefore marked as good for that 

parameter.  Table 2.3 shows the cut-offs for good quality. All scaffolded assemblies that 

were quality checked after the first 4,438 (which included all of those belonging to 

eBG297) were marked with these cut-offs.  This process was repeated for all the 

contigs.fasta outputs of SPAdes; histograms were generated including all of the 

contigs.fasta quality results to identify cut-offs for these assembly files.  

 

Quality Parameter 
Range that indicated poor quality 

scaffolds.fasta contigs.fasta 
N50 Less than 125,966 Less than 112,042 
Longest contig Less than 393,573 Less 349,737 
Number of contigs More than 358 More than 366 
Coverage Less than 35.2512 Less than 34.9924 
Percentage mapped reads Less than 99.86% Less than 99.87% 
Percentage properly paired reads Less than 98.38% Less than 98.34% 

 

Table 2.3 Genome assembly quality cut-offs                                                                                                     

Genome assembly quality parameters that were used to distinguish initially between the scaffolds.fasta 
and contigs.fasta assemblies that were good and poor quality. 

 

As sequences that didn’t have enough depth when mapped to the reference had already 

been excluded by SnapperDB, it was not expected that there would be any genomes that 

had poor coverage when the trimmed reads were mapped to the assembly.  None of the 

sequences had a coverage of less than 25, the cut-off used by PHE, so coverage was no 

longer used as a quality parameter that could determine inclusion or exclusion of 

assemblies.   

Many of the sequences had one ‘bad’ parameter, making it challenging to 

determine if that value was more indicative of poor quality than the five other ‘good’ 

values. Therefore, the values that weren’t in the good 95% were further broken down for 

each parameter, with those just below the cut-off being graded less harshly. The results 

were compiled again and sequences with one ‘bad’ parameter that had been far from the 
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cut-off were immediately excluded. Those that were close to the cut-off were included 

and those in between were judged on an individual basis. 

 

2.6.8 Genome Annotation 
 

Whole genome assemblies were annotated using Prokka (version 1.13.3). Firstly, the 

contig names were shortened using a Perl script provided by Dr Gemma Langridge 

(Appendix VI.1). Prokka was then run using 16 threads, with the genus specified as 

Salmonella and the options to use genus specific blast databases and searching for 

ncRNAs selected.  

 

2.7 Further Bioinformatics Analyses 
 

Alongside the bioinformatics pipeline, several other pieces of software were utilised. 

Those that were associated with a single chapter are described in the individual methods 

for each chapter; those that were used in more than one chapter are described here. 

 

2.7.1 MinION Data Processing of the eBG31 Reference 
 

Once the MinION run of the eBG31 reference was complete, basecalling and 

demultiplexing was performed using Albacore (Oxford Nanopore Technologies, version 

2.0.1) with the MinION fast5 output and a fastq output. 

Dr Gemma Langridge processed the raw fastq output. The fastq outputs were 

concatenated into one fastq file. NanoFilt (version 2.2.0) was used to trim and keep reads 

with a length of at least 10,000 bases and quality of 10; headcrop was also set to trim the 

first 50 bases (De Coster et al., 2018). The quality statistics before and after trimming 

were compared using NanoStat (version 1.1.2). 

 

2.7.1.1 Assembly 

 

I assembled the trimmed fastq using Canu and Unicycler on CLIMB (Koren et al., 2017; 

Wick et al., 2017). Canu (version 1.7) was run with default settings except for 

useGrid=false which restricts it to running on the current machine.  Unicycler (version 

0.4.4) was run with default settings and the Illumina reads (SRR1968494) to generate a 
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hybrid assembly. Both of these assembly methods resulted in an assembly with one 

contig, a marked improvement on the 105 contigs in the Illumina assembly. MegaBLAST 

(version 2.6.0) was used as default but for the parameter outfmt set to 6 to generate 

tabular crunch files; these were used as input for ACT (version 1.0) to compare the 

assemblies (McGinnis and Madden, 2004). Using the Circlator (version 1.5.3) all command 

to run the whole programme with 4 threads identified that the Canu assembly could be 

further processed to produce a single circular DNA sequence (Hunt et al., 2015). 

 

2.7.1.2 Nanopolish 

 

Nanopolish (version 0.11.0) was installed on CLIMB and run on the Canu assembly using 

the Oxford Nanopore fastq and fast5 files (Loman, Quick and Simpson, 2015). The data 

was pre-processed using the Nanopolish index function, with the 

sequencing_summary.txt file generated during the MinION run. BWA was used to index 

the Canu assembly; the basecalled reads were aligned to the Canu assembly using BWA-

MEM (version 0.7.17) with the flag -x ont2d for MinION data and SAMtools (version 1.8) 

was used to sort the reads.  The nanopolish_makerange.py script broke the sequence into 

50 kilobyte chunks to enable parallelisation.  The output of this was used in Nanopolish 

consensus, with the methylation aware dcm option to account for the possibility that the 

sequence contained Dcm methylation motifs and the flag min-candidate-frequency 0.5, 

which gave the frequency a variant must be present to be extracted. The 50kb polished 

segment VCF files were converted into a single polished assembly with Nanopolish 

vcf2fasta. 

 

2.7.1.3 Pilon 

 

The polished assembly was polished again with the Illumina fastqs using Pilon (version 

1.22) on CLIMB (Walker et al., 2014). BWA (version 0.7.17) was used to index the 

assembly and BWA-MEM to align the Illumina reads to the assembly.  SAMtools (version 

1.8) was used to sort and index the aligned reads and SAMtools faidx to further index the 

assembly. Initial attempts to run Pilon resulted in failure, this was due to java using an 

excess of memory and solved by limiting the memory java had access to, to 16GB. Pilon 

was then successfully run with default settings. 
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2.7.1.4 Racon 

 

The Pilon polished assembly was further polished using Racon (version 1.3.2) with the 

Illumina fastqs (Vaser et al., 2017). BWA (version 0.7.17) and SAMtools (version 1.8) were 

again used to index the draft Pilon polished assembly.  The Illumina read 1 was aligned to 

the draft assembly using BWA-MEM and Racon was run with default settings, polishing 

the assembly with the Illumina read 1.  The output of this was indexed with BWA and 

SAMtools and the Illumina read 2 was aligned to it.  Racon was then run again, polishing 

the assembly with the Illumina read 2. 

Running Circlator with 4 threads and the all flag on the polished genome identified 

that it could no longer be processed to produce a single circular DNA sequence. The 

quality of the assemblies were evaluated using MUMmer dnadiff with default settings 

(version 1.3), with the value of interest in the report file being average identity of 1-to-1 

alignment blocks (Kurtz et al., 2004). 

 

2.7.2 Phylogeny Creation using SnapperDB 
 

Phylogenies of SNPs against the appropriate reference were generated using SnapperDB.  

All strains that successfully passed into each database were represented in the 

phylogenies. As the eBG297 database was much smaller than eBG31, all sequences were 

included in phylogenies generated.  For all eBG297 alignments created, isolates up to 

10,000 SNPs from the reference were included. For eBG31 alignments, isolates with 8,000 

SNPs were included.  

Approximately 200 sequences were required to generate whole genome 

assemblies. Due to the size of the eBG31 databases, representatives of clusters were 

used; a PHE Python script was amended and used to select a representative from the SNP 

cluster level that contained approximately 200 clusters (Appendix VI.2). Whole genome 

alignments were created of these cluster representatives or all eBG297 isolates. The 

alignments were used as input for Gubbins (version 2.3.1) which was run using 8 threads 

and the option to give the output a time-stamp and prefix (Nicholas J. Croucher et al., 

2015).  

For the eBG31 databases the aforementioned PHE Python script was used to 

select a representative for each cluster from every SNP cluster level. An alignment was 

then made using the SNP cluster level that included the highest number of sequences 
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that SnapperDB could successfully align.  Soft-core SNP alignments of these sequences, 

and in the cases of smaller databases all the sequences, were then generated using 

SnapperDB, masking recombination and prophages using the output of Gubbins and the 

coordinates showing prophage presence from PHASTER respectively.  

RAxML (version 8.2.12) was used to generate a maximum likelihood phylogeny of 

the soft-core SNP alignments using 8 threads (Stamatakis, 2014).  The nucleotide 

substitution model, GTRCAT, was selected with parsimony inferences enabled and rapid 

bootstrapping to produce a best scoring maximum likelihood phylogeny in one program 

run, which was detected by the autoMRE option. The integers used as the random seed 

for the rapid bootstrapping and parsimony inferences option were 12345. For alignments 

with an outgroup sequence included, the outgroup name was given to RAxML. 

 

2.7.3 Phylogeny Annotation 
 

eBG297 phylogenies were annotated using the iToL colored strip file (Letunic and 

Bork, 2016).  For eBG31 phylogenies, I used a Python script provided by Gemma 

Langridge, as a basis to write a script to identify which cluster each sequence belonged to 

so the number of isolates from each metadata group that were present in each cluster 

could be calculated (Appendix I.3). This information was converted to a percentage and 

then inputted into the iToL multi value bar chart annotation. The number of sequences 

within each eBG31 cluster and the fastbaps clusters for both phylogenies were added to 

the phylogenies using the iToL colored strip file.  Clades on the phylogenies were rotated 

so clades in the same fastbaps clusters appeared together. 

 

2.7.4 ARIBA Installation and Use 
 

ARIBA (version 2.13.5) was installed on a MacBook Pro and the ResFinder, PlasmidFinder 

and vfdb_full databases were downloaded on 11.04.2019 using this version of the 

software (Zankari et al., 2012; Carattoli et al., 2014; Chen et al., 2016; Hunt et al., 2017). 

An additional database of the gyrase genes from S. Typhimurium LT2 was obtained from 

Dr Alison Mather.  ARIBA (version 2.10.1) was installed on the UEA High Performance 

Cluster and all further ARIBA analyses were carried out on this platform. All ARIBA runs 

were performed with default parameters. 
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2.7.5 Genome Association Software Installation 
 

Scoary (version 1.6.16) was installed and used on CLIMB (Brynildsrud et al., 2016).  The 

recursions depth was increased to 10,000 in the Scoary methods.py script to enable large 

numbers of sequences to be compared.  
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3. Chapter 3.  Global Population Structure of S. Infantis 
 
 
3.1 Introduction 
 
Identifying the population structure of an S. enterica serovar can be beneficial as it 

provides information on the diversity within the serovar, and whether particular 

subgroups present a greater risk to human or animal health.  For example, novel clades 

have been identified in S. Enteritidis, restricted to Africa and associated with invasive 

infection (Feasey et al., 2016).  

The S. Infantis population is comprised of two eBGs, eBG31 and eBG297, which 

are separated by 5 to 7 MLST alleles (Gymoese et al., 2019).  eBG31 is the dominant eBG, 

making up the majority of cases (M.A. Chattaway, personal communication, 26th May, 

2017).  

Some comparisons of small numbers of S. Infantis sequences have been 

performed. Clustering by geography has been reported in S. Infantis, the largest study 

compared 21 S. Infantis isolates from chicken meat in Turkey and 243 sequences from 

other continents including North America, Africa, South America and identified that the 

Turkish sequences formed a distinct clade (Acar et al., 2019).  However, a paper published 

more recently, including 100 strains from five continents, found no evidence of clustering 

by geography (Gymoese et al., 2019). One cluster in this phylogeny was mainly comprised 

of human and poultry isolates, the authors concluded that this was a clone of S. Infantis 

that was adapted to humans and poultry.  Clustering by isolation source has also been 

identified in S. Infantis; one study included 67 strains from Japanese broilers, eggs and 

humans and found that the phylogeny split into 5 clusters that were associated with the 

source of infection (Yokoyama et al., 2014).  

 
 
3.1.1 Collaborators in this Project 
 

The strains and sequences used in this project were collected from several different data 

sources and collaborators.  

The GBRU is the PHE Salmonella reference laboratory for England and Wales. All 

Salmonella that are identified from patients reporting to their general practitioners or to 

hospitals are sent to the GBRU. All the isolates are serotyped and as of 2015 every 

Salmonella they receive is whole genome sequenced.  



 93 

APHA is the government agency that protects the health of animals and plants in 

Great Britain (Animal and Plant Health Agency, 2017). Upon detection of threat to the 

health of animals, including Salmonella, their role is to characterise and assess the threat, 

which includes visits to farms and testing samples, and to communicate this information 

to policy makers.  Any Salmonella that are reported are serotyped; whole genome 

sequencing is currently only carried out for research projects.      

The NICD is a public health institute in South Africa that monitors threats to public 

health due to communicable diseases. Salmonella samples are sent from regional 

laboratories across South Africa to the Centre of Enteric Diseases department which acts 

as a reference laboratory. All sequences are serotyped but currently whole genome 

sequencing is not carried out routinely.   

Due to the collaboration with PHE in this project, several of their bioinformatic 

pipelines were used to enable PHE to use the project outputs. It was for this reason that 

SnapperDB was used, along with the PHE sequence read quality cut-offs (Ashton et al., 

2017).  SnapperDB calculates and stores the distances between all sequences added to 

the database (Ashton et al., 2017). It clusters the sequences on seven levels of SNP 

distance: 250, 100, 50, 25, 10, 5 and 0. For a sequence to be added to a cluster it needs to 

be within that SNP distance of any isolate in the cluster. The clusters that each sequence 

belongs to are used to give it a seven-digit code. This SNP address is then used to provide 

real-time clustering of sequences and identify outbreaks. The GBRU team have, after 

validation, defined a Salmonella outbreak as sequences belonging to the same 5SNP 

cluster. 
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3.1.2 Aims and Objectives 
 

Previous research has shown instances of clustering by source or geographical location 

within S. Infantis. However, the global diversity of S. Infantis is currently unknown, as is 

whether clustering by geography, source or year of isolation is seen in large groups of 

sequences.   

 

The aims and objectives of this chapter were therefore to: 

 

• Determine the genetic diversity within S. Infantis and how it varies by isolation 

source, year and origin 

• Identify any difference in population structure between eBG31 and eBG297 

• Calculate the genetic distance between sub-groups of S. Infantis 
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3.2 Specific Methods for Determining Population Structure 
 

3.2.1 Metadata Distribution of S. Infantis  
 

The classification of the different metadata categories is detailed in Chapter 2.1.5.  The 

percentage of isolates belonging to each metadata group was calculated using all 

sequences in the eBG31 and eBG297 collections. In figures North America is referred to as 

N.America and South America as S.America. 

 

3.2.1.1 Isolation Source Distribution 

 

The sequences belonging to the human, poultry and environmental source groups were 

stratified into sub-groups of interest. The human isolates were grouped into faeces, blood 

and urine; the poultry isolates into chickens, chicken meat, eggs, duck, turkey and quail; 

and the environmental group into cattle, pigs and animal feed. Appendix II Table II.3 

contains the key words used to stratify isolates into subgroups. 

 

3.2.1.2 ST Distribution 

 

The allelic profiles for all sequences in the S. Infantis collection were imported into 

PHYLOViZ, generating a minimum spanning tree of MLST alleles within S. Infantis (Ribeiro-

Gonçalves et al., 2016). 

Some STs within eBG31 were grouped, allowing clearer annotation of the 

phylogenies. ST32, ST2146 and ST2283 were maintained as individual ST’s. The following 

STs were grouped and named Other: ST2780, ST2937, ST3277, ST3756, ST3815, ST3854, 

ST3870, ST4196, ST4366, ST7759, ST7760, ST7761, novel1 and novel2.  The STs within 

eBG297 were not grouped. 

 

3.2.1.3 Phylogeny Creation for eBG31 and eBG297 

 

The reference sequences for each eBGs SnapperDB were added to the other eBG 

database to be used as an outgroup; in the case of the eBG31 reference, the Illumina 

short-read sequenced version of the genome was used. 
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The method used to generate the phylogenies is detailed in Chapter 2.7.2. 

Representatives of each 50SNP and 25SNP cluster were used when generating the eBG31 

whole and soft-core genome alignments respectively.  The soft-core alignments for both 

eBGs were made twice, with the inclusion of the outgroup in one, requiring the permitted 

number of SNPs from the reference to be increased to 30,000. 

The phylogenies containing the outgroup were each rooted to the outgroup. The 

most ancestral node in those phylogenies was identified and used as the root in the 

phylogenies generated without the outgroup. 

 

3.2.1.4 Identifying Clusters Within the Phylogenies 

 

Initially hierBAPS (installed 30.07.2019) with MATLAB (version 8.4) and rhierBAPS (version 

1.1.2) with R (version 3.4.4) and ape (version 5.3) were used on CLIMB (Cheng et al., 

2013; MathWorks, 2014; Connor et al., 2016; Paradis and Schliep, 2018; R Core Team, 

2018; Tonkin-Hill et al., 2018). While the eBG297 phylogeny was successfully analysed 

with both hierBAPS and rhierBAPS, the eBG31 phylogeny was too large for both pieces of 

software. 

An alternative R package, fastbaps (version 1.0.0) was installed using the package 

devtools (version 2.0.1) and used with R (version 3.5.1) and ape through R Studio (version 

1.1.463) (RStudio, 2018; Wickham et al., 2018). This was run with the eBG31 and eBG297 

soft-core alignments, with default settings and with the variance of the Dirichlet prior 

determined by fastbaps at 0.009. Fastbaps was also used to calculate and produce a 

heatmap of the bootstrap results of the clustering. These results were exported and the 

location of the sequences with low bootstrap values identified on the phylogeny using 

iToL’s colored strip file utility.  

 

3.2.1.5 Calculating the Distance Across the Phylogenies 

 

The median pairwise SNP distances were calculated within and between the sequences in 

each phylogeny when grouped by continent, source, year, ST and fastbaps cluster. For the 

eBG31 phylogeny, a representative sequence was labelled with the metadata of all of the 

sequences it represented, for example, if a 25SNP cluster contained African and European 

sequences it was labelled as ‘AfricaEurope’ and was included in the comparisons for both 
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of those continents. When calculating the distance between different metadata samples 

the clusters that contained both states were included with a distance of 0. 

MEGA7 (version 7180411-i386) was used with the soft-core alignment used to 

create the phylogeny; the pairwise distances matrices were created with default settings 

but for the Model/Method which was changed to ‘No. of differences’ (Kumar, Stecher 

and Tamura, 2016). The distance matrices were exported and the median and range 

calculated within and between each metadata type. Box plots of the results were 

generated using R and RStudio.  

 

3.2.2 SNP Cluster Analysis 
 

The SNP clustering results were downloaded from SnapperDB (version 1.0.6) for eBG31 

and eBG297 (Ashton et al., 2017). The number of clusters in each SNP cluster level, 

number of isolates in each cluster and the frequency of each cluster size were calculated. 

Sequences belonging to outbreaks were defined as members of 5SNP clusters that 

contained more than 1 sequence. Sporadic cases were sequences that were the only 

member of a 5SNP cluster. 

All sequences belonging to low frequency 100SNP clusters were annotated on the 

relevant eBGs soft-core SNP phylogeny to identify their location using iToL and the iToL 

color strip annotation file.  

 

3.2.3 Non-Alignment Based Distance Calculation 
 

The contigs.fasta output of SPAdes (Chapter 2.6.6) was uploaded to CLIMB for all good 

quality eBG31 and eBG297 sequences (Chapter 2.6.7) (Bankevich et al., 2012). The 

Illumina short-read version of the eBG31 reference was used. The assemblies were 

renamed to include either their eBG, isolation source or continent of isolation. Mash 

(version 2.1.1) sketch was run on the assemblies using 4 threads and with a sketch size of 

10,000 (Ondov et al., 2016). Mash dist was run on the output of this with 4 threads, 

outputting the distances between all of the assemblies in the comparison. 

Awk and sed commands were used to pull out the sequence name, metadata type 

and Mash distance from the Mash output. RStudio (version 1.2.1335) and R was used 

with the R package data.table (version 1.11.8) to import the distance matrices, ensuring 

that the correct number of results were in the output file (Dowle and Srinivasan, 2018). 
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Summary statistics for each file were then exported from R. Box plots were generated 

using R, RStudio and the package ggplot2 (version 3.1.0) (Wickham, 2016).  Significance 

between the Mash distances of the human/poultry and human/environmental 

comparisons and the comparisons between and within eBG31 and eBG297 were tested 

for using the Mann-Whitney U test with R, RStudio and the package data.table. 
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3.3 Results 
 

S. Infantis sequence data was downloaded from GenBank, Enterobase, DDBJ and ENA. 

Data was also shared by PHE and the APHA. DNA was extracted from S. Infantis isolates 

by the NICD, the APHA and PHE. 

 

3.3.1 Metadata of S. Infantis 
 

The number of S. Infantis isolates from different continents, sources, and year groups was 

calculated and the results for each eBG compared (Appendix VI Table VI.1). 

 

3.3.1.1 Overall Number of S. Infantis Included in This Study 

 

All DNA extracted and sequenced for this project was from isolates that had been 

serotyped as S. Infantis; however, many were sequence typed and found not  

to belong to either eBG31 or eBG297.  Of the 4,739 sequences that were S. Infantis, 69 

were not of sufficient quality to pass into SnapperDB and were excluded from the 

phylogenies and SNP-based clustering analyses (Table 3.1). A further 100 had low quality 

assemblies and were excluded from the non-alignment based distance calculations.  

 
 
 
 
 
 

Collaborator No. 
sequenced 

No. 
Infantis 

No. 
eBG31 

No. 
eBG31 in 
db 

No. 
eBG297 

No. 
eBG297 in 
db 

PHE 653 653 620 620 33 31 
hPHE 192 181 173 173 8 8 
APHA 128 124 122 122 2 2 
APHA online 62 56 56 54 0 0 

NICD 450 403 273 273 130 129 
eBG31 Enterobase 3400 3301 3301 3244 0 0 

eBG297 enterobase 21 21 0 0 21 14 

 

 

Table 3.1 Number of S. Infantis strains and sequences from each data source and collaborator. 
The number of isolates that had DNA extracted; the number of sequences shared, downloaded or 
generated; the number of these that were S. Infantis from each of the collaborators/data sources and 
the number that belonged to either eBG and successfully passed into either eBGs SnapperDB (db). 
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3.3.1.2 Global distribution of S. Infantis 

 

The strains included in this study originated from 70 different countries which were 

grouped by continent (Figure 3.1).  

The number of strains included from each continent is represented in Figure 3.2. 

Thousands of sequences were uploaded to Enterobase by the United States government: 

43.2% (1207/2795) of the North American sequences were uploaded by the Centre for 

Disease Control and 25.2% (703/2795) by the Food and Drug Administration.  

 

 
Figure 3.1 S. Infantis countries of isolation 
S. Infantis sequence data from 70 countries were included.  Generated using Microsoft Excel’s map 
function.   

 
 

 
Figure 3.2 Number of S. Infantis isolates from each continent. 
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3.3.1.3 Isolation Source Distribution of S. Infantis 

 
S. Infantis was isolated from a wide variety of different sources. These were grouped into 

four categories: human, poultry, environmental and unknown (Figure 3.3).  

Of the S. Infantis isolates from a human source, 74.9% (1264/1687) were found in 

faeces or rectal swabs, 3.7% (63/1687) in blood and 5.0% (84/1687) in urine. 

 

 
Figure 3.3 Distribution of isolation sources. 

 

 

The isolates from poultry sources, when stratified, included 21.6% (205/947) from 

chickens, 70.8% (671/947) from chicken meat, 1.2% (11/947) from eggs, 2.3% (22/947) 

from duck, 1.8% (17/947) from turkey and 0.4% (4/947) from quail.  

The isolates from environmental sources represented all non-human and non-

poultry sources. S. Infantis was frequently identified in livestock, food and animal food. 

30.9% (295/956) of the environmental isolates were found in pigs, 14.1% (72/956) in 

cattle and 7.2% (69/956) in animal food. S. Infantis was also identified in several other 

animals including horses, dogs, camels and lizards. 
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3.3.1.4 Year Distribution of S. Infantis 

 

Strains were isolated over three decades; the oldest in 1989 and the most recent in 2019. 

Figure 3.4 shows the number of strains isolated from each year. Due to the range of years 

covered, isolates were grouped into time periods that would represent at least 3% of the 

total number of sequences.  

 

The number of isolates sequenced each year increased in-line with the decreased cost of 

whole genome sequencing. The number dropped post 2017 as eBG31 sequences were no 

longer included from online databases after February 2018.  The temporal distribution of 

S. Infantis isolates from each source and continent was determined (Appendix III Figure 

III.1,III.2).  A small peak in human cases was observed in 2000 and 2009, associated with a 

group of cases from Japan and South Africa respectively. 

 
3.3.1.5 Sequence Type Distribution of S. Infantis 
 

A minimum spanning tree of all the STs identified in the S. Infantis sequences was 

generated, illustrating the number of SLVs between each ST (Figure 3.5). The predicted 

founder STs of eBG31 and eBG297, ST32 and ST603 respectively, share no alleles, with 

the closest related STs, ST32 and ST1823 sharing only 1. 

 
Figure 3.4 Number of S. Infantis isolates per year  
• Between 1 and 15 sequences were isolated from that year group 
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Figure 3.5 Minimum spanning tree of S. Infantis MLST alleles. 
The number of locus variants between the S. Infantis STs are plotted. 6 of the 7 MLST alleles were 
different between ST32 and the closest eBG297 ST, ST1823. 
eBG31                eBG297  

 
The majority of the S. Infantis sequences, 96.1% (4486/4670), belonged to eBG31; 

eBG297 only accounted for 3.9% (184/4670).  The distribution of the STs in eBG31 and 

eBG297 was calculated (Appendix III Figure III.3).  In the eBG31 population ST32 was the 

dominant ST, accounting for 98.2% (4406/4486) of the sequences. ST2283 and ST2146 

were the next most frequently identified, responsible for 33 and 26 of the cases 

respectively. The other STs were all identified less than 5 times.  

In eBG297 there was also a dominant ST, ST603, which comprised 85.9% 

(158/184) of the sequences.  Two novel alleles were discovered, which when typed were 

named ST7731 and ST7732; they were identified 8 and 12 times respectively, all from 

South Africa.  

The years of isolation of eBG31, eBG297 and the STs within both were plotted 

(Appendix III Figure III.4, III.5). The earliest eBG31 isolate was from 1989 and the earliest 

eBG297 isolate from 2003. Both ST32 and ST603 were present in all year groups; ST7731 

and ST7732 were identified in every year group but 2017-2019, correlating with when the 

South African strains were isolated. The majority of the other eBG31 STs were only 

identified in one year group. 
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3.3.1.6 Association between Geography, Source and eBG 

 
The proportion of isolates from each source group varied between continents (Figure 

3.6). 
 

 
Figure 3.6 Source distribution within each continent 
Percentage of S. Infantis isolates from each continent that were isolated from each source. 

 
 

In all continents but North America, the majority of S. Infantis strains were isolated from 

humans. In North America, poultry and environmental sources accounted for the majority 

of the isolates. However, in Europe, Africa and South America, more isolates had been 

sequenced from environmental sources than poultry sources. 
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Figure 3.7 Distribution of eBG per continent 
Africa n=452, Asia n=241, Europe n=979, N.America n=2795, S.America n=122, Unknown n=81.  •  Values 
are greater than 0 and less than 3% 
eBG31           eBG297  
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Figure 3.7 demonstrates a clear difference in continent distribution by eBG. Whilst eBG31 

was present in high numbers in every continent, eBG297 was more common in Africa, 

with 84.2% (154/183) of all eBG297 isolates being either isolated from there or from 

someone who had travelled there. Converse to the overall global eBG distribution, in 

Africa 34.1% (154/451) of the sequences belonged to eBG297. 

The percentage of isolates from each eBG that had been isolated from each 

source group was calculated (Figure 3.8). Whilst similar numbers of sequences were 

present for each source type in the eBG31 population this was not seen in eBG297. The 

majority, 91.3% (168/184), of sequences were isolated from humans, with no sequences 

being isolated from poultry.  

 

 

The distribution of STs across each continent and source was also assessed to determine 

whether some were more prevalent in different locations (Appendix III Figure III.6, III.7).  

Whilst the predominant ST in eBG31, ST32, was identified from every continent, all other 

STs, excluding those with an unknown origin, were isolated from a single continent. In 

eBG297, ST603 was identified in all continents but South America.  ST1823, despite its low 

frequency, was also identified in both North America and Africa.  A similar pattern was 

observed in ST distribution across isolation sources; ST32 was identified in all source 

groups and ST603 in human and environmental sources. The majority of the other STs 

from both eBGs were identified exclusively from one source group, although in low 

numbers, with humans being the most common source.   

 

 
Figure 3.8 Distribution of eBG by source  
eBG31 n=4486, eBG297 n=184 
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3.3.2 Phylogenetic Structure of the eBG31 Population 
 

In order to identify the genetic diversity within eBG31, a soft-core SNP phylogeny was 

generated masking recombination and prophages, including a representative from each 

25SNP cluster in eBG31 (Figure 3.9).  Fastbaps was then used to determine the structure 

of the phylogeny. 

Single representatives of clusters were used as SnapperDB could not handle the 

entire set of eBG31 sequences. When determining associations across the phylogeny, 

data for all isolates within the representative clusters were taken into account.  

831 25SNP cluster representatives were present in the phylogeny. The inner ring 

on Figure 3.9 displays the number of sequences represented by each leaf on the tree. 

64.5% (n=536) of the leaves were the only member of the 25SNP cluster they 

represented, 15.9% (n=132) represented clusters containing two sequences and 10.6% 

(n=88) represented clusters containing between 3 and 5 sequences. However, there were 

also clusters containing large number of sequences, with 7 containing over 50 sequences. 

The two largest clusters contained 709 and 874 sequences.  
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Figure 3.9 eBG31 phylogeny annotated with fastbaps cluster 
Soft-core SNP Maximum Likelihood phylogeny of 831 25SNP cluster representatives of eBG31.  
 
 
Inner ring, Number of sequences in 25SNP cluster:  
  
Outer ring, fastbaps cluster:  1           2           3           4           5            6 

An electronic version of the figure is available in Appendix VI Figure VI.1 
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3.3.2.1 Clusters within the eBG31 phylogeny 

 

6 clusters were identified within the eBG31 phylogeny using fastbaps (outer ring of Figure 

3.9), containing varying numbers of sequences (Table 3.2) (Appendix VI Table VI.2). 

 
 

Cluster  Number of 25SNP clusters Total number of sequences 

1 60 207 

2 40 121 

3 60 187 

4 232 1298 

5 194 1209 

6 245 1463 

Table 3.2 Number of sequences in each eBG31 fastbaps cluster  
The number of 25SNP cluster representatives in each fastbaps cluster and the total 
number of sequences they represented. 
 

 

The bootstrap values of the identified clusters were viewed to check the stability of the 

clusters (Appendix III Figure III.8). Clusters 1, 2 and 3 had bootstrap values of 100%. 

Clusters 4, 5 and 6 had the majority of their bootstrapping results at 100% but also 

contained sequences with lower values. For Clusters 4 and 5 these sequences were either 

on very long branches or closely related to sequences in other clusters; however, upon 

measuring branch length they were more closely related to the node they had been 

assigned by the software. Cluster 6 contained 2 large monophyletic clades and all the low 

bootstrapping results for this cluster were between these two clades. The clusters 

predicted by fastbaps were therefore deemed robust. 

The median pairwise SNP distances within and between fastbaps clusters were 

calculated (Appendix III Figure III.10).  The lowest distance was observed within Cluster 4 

(78, range 15-256) and the highest within Cluster 3 (160, range 13-275).  The distance 

between the fastbaps clusters was in general larger than the distance within the clusters, 

with the largest seen between Cluster 1 and 3 (301, range, 251-429). 

Appendix III Figure III.11 depicts the phylogeny as a cladogram to allow for 

visualisation of the structure of the tree. The tree is rooted to the most ancestral node. 

Closely related to this are two other ancestral groups, one of which shares a common 

ancestor to the rest of the S. Infantis population (Figure 3.9, Cluster 2 and 3).  The 
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majority of the sequences are closely related to other sequences in the phylogeny; 

however present in each cluster is at least one sequence with a noticeably long branch 

length. 

 

3.3.2.2 Sequence Type Distribution Across the eBG31 Phylogeny 

 

The ST distribution across the eBG31 soft-core phylogeny was identified (Appendix III 

Figure III.12).  ST32, the most prevalent ST in eBG31, was distributed throughout the 

phylogeny. All of the sequences belonging to the next most prevalent STs, ST2146 and 

ST2283, were within a single representative sequence for either ST. The other STs were 

distributed throughout the phylogeny, making up 50% of a cluster with ST32 in 2 cases. 

Where there was more than one instance of an ST from the ‘other’ group, they also were 

within a single representative cluster on the phylogeny, either alone or with ST32 isolates. 

 

3.3.2.3 Year Distribution Across the eBG31 Phylogeny 

 

The eBG31 soft-core SNP phylogeny was annotated with the year group of isolation to 

identify any temporal correlation with the structure of the phylogeny (Figure 3.10).  

Every fastbaps cluster contained sequences from every year group but for 1989-

2005, which was not present in Cluster 1 (Appendix III Figure III.9). The most common 

year group did vary by cluster; Clusters 1 and 2 were mainly comprised of sequences from 

2015-2016 making up 48.8% (101/207) and 35.5% (43/121) of sequences in Clusters 1 and 

2 respectively. Also, the majority of sequences (46%, 557/1209) in Cluster 5 were isolated 

in 2017-2018. 

The median pairwise SNP distance within and between year groups was calculated 

to determine whether strains isolated from a year group were distinct from strains from 

other time points (Appendix III Figure III.13).  The distance within the year groups did not 

vary greatly, the medians all fell between a range of 125-181. There was also little 

variation of distance between year groups. 
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Figure 3.10 eBG31 phylogeny annotated with year 
Soft-core SNP Maximum Likelihood Phylogeny of 831 25SNP cluster representatives of eBG31.  The 
outer ring is annotated with the percentage of isolates in each 25SNP cluster that were isolated 
from each year group. 
 
Inner ring, Number of sequences in 25SNP cluster:  

Middle ring, fastbaps cluster:  
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3.3.2.4 Source Distribution Across the eBG31 Phylogeny 

 

In order to identify how isolates from different sources were distributed over the eBG31 

soft-core phylogeny it was annotated with source group (Figure 3.11).  There were many 

25SNP clusters containing sequences that were isolated from different sources.  

However, there was also several examples of sequences clustering by isolation source. 

Small clusters of isolates from poultry or environmental sources were seen but the most 

striking clustering was seen with the human isolates.  
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Figure 3.11 eBG31 phylogeny annotated with source 
Soft-core SNP Maximum Likelihood Phylogeny of 831 25SNP cluster representatives of                  
eBG31.  The outer ring is annotated with the percentage of isolates in each 25SNP cluster that were 
isolated from each source group. 
 

 
                 Inner ring, Number of sequences in 25SNP cluster:   

                 Middle ring, fastbaps cluster:   
 
Outer ring, Isolation Source:  
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The most common source group varied between fastbaps clusters (Figure 3.12). In both 

Clusters 1 and 3 the majority of sequences were isolated from humans, at 64.7% 

(134/207) and 80.2% (150/187) respectively. Conversely, in Cluster 5 the most prevalent 

isolation source was poultry (48.1%, 582/1209).   

 

 

To identify the distance of isolates from different sources on the phylogeny the median 

pairwise SNP distance within and between each isolation source was calculated 

(Appendix III Figure III.14).  Surprisingly, considering the clustering that is apparent upon 

looking at the phylogeny, there was very little variation in the median distance either 

within or between the isolation sources.  The median distance between source groups 

ranged from 157 to 162.  

 

3.3.2.5  Continent Distribution Across the eBG31 Phylogeny 

 

The geographical distribution of eBG31 across the phylogeny was determined (Figure 

3.13).  There did appear to be some clustering by the continent of isolation on the 

phylogeny; Clusters 4 and 6 were largely composed of sequences from North America and 

Clusters 1 and 5 from Europe or Asia. 

 
Figure 3.12 Source distribution within each eBG31 fastbaps cluster 
Percentage of isolates from each eBG31 fastbaps cluster that were isolated from each isolation source. 
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Figure 3.13 eBG31 phylogeny annotated with origin 
Soft-core SNP Maximum Likelihood Phylogeny of 831 25SNP cluster representatives of eBG31.  The outer 
ring is annotated with the percentage of isolates in each 25SNP cluster that were isolated from each 
continent group. 
 

 
Inner ring, Number of sequences in 25SNP cluster:   
 
Middle ring, fastbaps cluster:    
 
Outer ring, Continent of Isolation:  Africa           Asia            Europe            N. America           S. America                           
                                                              Unknown          
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The percentage of sequences in each cluster from each continent is shown in Figure 3.14.  

Cluster 1 was almost entirely composed of sequences that were isolated from across 

Europe (98.6%, 204/207). The majority of the sequences in Cluster 2 were also isolated in 

Europe at 62.8% (76/121). However, the predominant continent changed for the other 

clusters; 80.2% (150/187) of the sequences in Cluster 3 were isolated from Africa, of 

which 1 originated from Ethiopia, 1 from Tunisia and the remaining 148 from South 

Africa. North American isolates dominated Clusters 4, 5 and 6. The high North American 

percentage in Cluster 5 can be attributed to a 25SNP cluster which contained 771 North 

American, 9 European, 90 South American and 4 Unknown isolates. Excluding this cluster, 

the percentages from each continent are as would be expected when looking at the 

phylogeny of representatives, with 45.7% (153/335) of the sequences isolated in Europe 

and 36.1% (121/335) of the sequences isolated from Asia.  

 

 
Figure 3.14 Continent distribution within eBG31 fastbaps clusters 
Percentage of isolates from each eBG31 fastbaps cluster that were isolated from each year group. 

Africa           Asia            Europe            N. America           S. America           Unknown          
 

To determine how distant isolates from each continent were to each other, the median 

pairwise SNP distance within and between each continent was investigated (Appendix III 

Figure III.15). The distance varied within the continents, ranging from 118 amongst the 

North American isolates to 189 in the African isolates.  When comparing the distance 

between continents the North American isolates were frequently the isolates most 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Pe
rc

en
ta

ge
 (%

)

eBG31 Fastbaps Cluster



 116 

closely related to isolates from other continents and the African sequences were 

consistently the most distantly related. 

 

3.3.3 Phylogenetic Structure of the eBG297 Population 
 
To ascertain the genetic diversity within eBG297, a soft-core SNP phylogeny was 

generated, masking recombination and prophages (Figure 3.15). 

The phylogeny was rooted to its most ancestral node (Figure 3.15, Cluster 2). All 

other sequences in the eBG297 population shared a common ancestor, splitting into 2 

clades, one smaller (Figure 3.15, Cluster 1) and the other containing the majority of the 

eBG297 sequences (Figure 3.15, Clusters 3, 4, and 5). Unlike the eBG31 phylogeny there 

were no clear outliers on long branches. 

Five clusters were identified within the eBG297 phylogeny using fastbaps (Table 

3.3) (Appendix VI Table VI.2). All clusters were monophyletic clades, with Clusters 3, 4 and 

5 sharing a common ancestor (Figure 3.15).  

 

 

 

 

 

 

 

The bootstrap results were assessed for cluster stability (Appendix III Figure III.16). 

Clusters 1, 2 and 3 all had perfect bootstrap results. Clusters 4 and 5 had lower bootstrap 

results, this was due to sequences being closely related to other clusters or, in the case of 

Cluster 5, due to two distinct clades being present within the cluster.  

The eBG297 soft-core SNP phylogeny contained 2,943 SNPs. The median pairwise 

SNP distance within each fastbaps predicted cluster was calculated (Appendix III Figure 

III.18). Compared to the eBG31 median pairwise SNP distances there was less variation 

within the clusters in the eBG297 phylogeny, with only Cluster 3 having a higher median 

pairwise SNP distance within the cluster at 103.5 (range, 0-116) than the eBG31 cluster 

with the lowest distance (Figure 3.9 Cluster 4). Whilst Clusters 3, 4 and 5 were closely 

related to one another, Clusters 1 and 2 had a higher distance from other clusters than 

seen in the eBG31 phylogeny.  

Cluster  Number of sequences 
1 6 
2 33 
3 16 
4 71 
5 57 

 

 
         Table 3.3 Number of sequences in each eBG297 fastbaps cluster  
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             Figure 3.15 eBG297 phylogeny 
             Soft-core SNP Maximum Likelihood Phylogeny of 183 eBG297 isolates  
              
             Inner ring, fastbaps cluster:  1           2           3           4           5      

           Second ring, year group: 
 
 
             Third ring, source:  Environmental         Human            Unknown         
 
           Outer ring, continent:   Africa           Asia            Europe            N. America           Unknown          
 
             The phylogeny annotated with individual rings is available in Appendix III Figures III.19, III.20,  

III.21. 
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3.3.3.1 ST Distribution Across the eBG297 Phylogeny 

 

The eBG297 soft-core SNP phylogeny was annotated to determine the ST distribution 

(Appendix III Figure III.22).  The dominant ST, ST603, was present in all clusters except 

Cluster 1. The STs novel to this project, ST7731 and ST7732, were present only in Cluster 

4.  Both ST1823 and novel3 were found exclusively in Cluster 1. 

 

3.3.3.2 Year Distribution Across the eBG297 Phylogeny 

 

To determine whether there was a temporal association with phylogeny structure, the 

eBG297 phylogeny was annotated with year group (Figure 3.15).  Each year group was 

distributed across the tree, every year group being present in at least 3 of the 5 clusters. 

The majority of strains (65.3%, 32/49) isolated between 2006 and 2010 were found in 

Cluster 4. Also, 80% (12/15) of the strains isolated between 2017-2019 were found in 

Cluster 2. 

A minimal difference in the median pairwise SNP distance was seen within or 

between year groups; however, the median distance was very high for all year group 

comparisons with 2017-2019 (Appendix III Figure III.23). 

 

3.3.3.3 Source Distribution Across the eBG297 Phylogeny 

 

The eBG297 phylogeny was annotated with isolation source to determine how isolates 

from different sources were distributed across the phylogeny (Figure 3.15). 

As 91% (167/183) of the isolates in the eBG297 phylogeny were isolated from 

humans, the phylogeny was dominated by that isolation source. Despite this, none of the 

clusters were comprised completely of sequences from human sources. Isolates from 

environmental sources were present in 3 of the clusters, most noticeably in Cluster 3 

where they made up 31.3% (5/16) of the sources in the cluster.   

A higher median pairwise SNP distance was observed between human and 

environmental isolates (133, range 15 to 422) and within environmental isolates than 

seen within human isolates (Appendix III Figure III.17).  
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3.3.3.4 Continent Distribution Across the eBG297 Phylogeny 

 

With a view to identify the geographical distribution across the phylogeny, it was 

annotated with the continent of isolation (Figure 3.15).  Similar to the eBG31 population, 

all of the clusters contained isolates from more than one continent. As the majority of the 

eBG297 sequences (84.2%) were isolated from Africa, that continent dominated the 

phylogeny, with African sequences present in every fastbaps cluster.  

As shown in Figure 3.16, although in much fewer numbers, sequences isolated from 

Europe were also present in each fastbaps cluster, accounting for 30.3% (10/33) of 

isolates in Cluster 2 and 37.5% (6/16) in Cluster 3.  

 

 

Whilst both African and European sequences were distributed throughout the phylogeny, 

the median pairwise SNP distance within the African isolates (85, range 0-431) was lower 

than within the European isolates (358.5, range 0-390) (Appendix III Figure III.24).  When 

compared to isolates from other continents, the African isolates had a consistently high 

median pairwise SNP distance, between 350.5 and 368.5. The isolates from other 

continents were less distant from each other, although in the case of Europe vs. North 

America only slightly less at 319. 

 

 
Figure 3.16 Continent distribution within eBG297 fastbaps clusters 
Percentage of isolates from each eBG297 fastbaps cluster that were isolated from each year group.  
 
Outer ring, continent:   Africa           Asia            Europe            N. America           Unknown          
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3.3.4 SNP-based Clustering Within eBG31 
 

To establish the number and size of clusters within the eBG31 population, the SNP 

addresses of the 4486 sequences in the database, including the reference, were exported 

from SnapperDB and the number of clusters within each of the seven SNP thresholds 

compared.   

Every sequence fell into the same 250SNP cluster, meaning all the sequences in 

the eBG31 population were a maximum of 250 SNPs distant from another sequence. 

There were 22 100SNP clusters, 1 containing 99.2% (4448/4486) of the sequences. 14 of 

the 100SNP clusters contained only 1 isolate. Each of the fastbaps clusters in the eBG31 

phylogeny contained at least one sequence with a very long branch length between it and 

its most recent common ancestor (MRCA) to another sequence. The long outlier in Figure 

3.9 Cluster 5 was one of the isolates belonging to a unique 100SNP cluster, potentially 

explaining its long branch length. The other 100SNP clusters either represented some of 

the outliers in the other clusters or didn’t look especially distant from others on the tree. 

At the 50SNP cluster level there were 208 clusters, 2 containing the majority of 

sequences with 2,709 and 897 sequences in them; 120 of these clusters contained only 1 

sequence. 831 25SNP clusters were present, described above in greater in detail (Chapter 

3.3.2). There were 1831 10SNP clusters, 74.9% (1371/1831) of which were single 

sequence clusters. The largest 10SNP cluster contained 483 sequences.  

 

 
Figure 3.17 Distribution of 5SNP cluster sizes in eBG31 
The number of occurrences of each 5SNP cluster size is plotted, with the majority of clusters containing 
only one isolate. 
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At the 5SNP cluster level, the level PHE define as an outbreak for S. enterica, there were 

2536 clusters. 80.2% (2035/2536) of these clusters contained 1 isolate and were 

therefore sporadic cases. The 501 “outbreak” clusters, containing 2 or more cases, 

accounted for 54.6% (2451/4486) of cases. Figure 3.17 shows the variation in the number 

of isolates belonging to outbreaks; 3 of the clusters contained over 100 sequences.  

At the 0SNP cluster level there were 3806 clusters; 92.2% (3508/3806) of these 

contained 1 sequence. Several clusters contained multiple isolates that were identical to 

each other; the size of the remaining clusters varied, with the majority, 65.8% (196/298) 

containing 2 sequences but the largest containing 82 sequences.  

 

3.3.5 SNP-based Clustering Within eBG297 
 

To identify the number and size of clusters within the eBG297 population, the SNP 

addresses for all 184 sequences, including the reference, in the eBG297 SnapperDB were 

compared. Unlike the eBG31 population, there were 6 different 250SNP clusters in the 

eBG297 population.  

There were 14 100SNP clusters with 66.3% (122/184) of sequences belonging to 

one of the clusters; 4 of the clusters contained only 1 isolate. The more ancestral groups 

within eBG297 (Figure 3.15, Cluster 1, 2, 3), were comprised entirely of sequences that 

didn’t belong to the dominant 100SNP cluster. At the 50SNP cluster level there were 37 

clusters of sequences. The largest cluster contained 33.7% (62/184) of the sequences and 

21 of the clusters contained 1 sequence.  

At the 25SNP cluster level the number of clusters increased to 95, with the largest 

containing only 16 of the sequences. 71.2% (68/95) of these clusters contained only 1 

sequence. The proportion of clusters containing 1 sequence increased at the 10SNP 

cluster level; 120 of the 144 clusters (83.3%) contained a single sequence. 

At the 5SNP cluster level, 85.9% of the 149 clusters contained 1 sequence and 

were therefore considered to be sporadic cases. 37.6% of the sequences were in the 

remaining 21 outbreak clusters, which contained between 2 and 10 sequences. At the 

0SNP cluster level there were 163 clusters, 17 of which contained more than 1 sequence.  
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3.3.6 Whole Genome Distances with S. Infantis 
 
A non-alignment based method, Mash, was used to compare the distance within and 

between the metadata groups in both the S. Infantis eBGs.  This allowed for the distance 

between the whole genomes to be compared as opposed to the soft-core genome. 

Furthermore, it enabled comparison between the eBGs.  The input for this method was 

assembled sequences; the sequences were assembled and assessed for quality. 95/4486 

eBG31 and 5/184 eBG297 sequences that had been included in the phylogenies were 

excluded from this analysis.  

 

3.3.6.1 Distances within S. Infantis based on Isolation Source 

 

The Mash distance within and between eBG31 and eBG297 sequences isolated from 

human, poultry and environmental sources was calculated (Figure 3.18).  

For all of the comparisons within and between isolates based on metadata group, 

the minimum Mash distance was 0, except for the distance between eBG31 

environmental and poultry sources, which was just above at 2.4x10-6. The median Mash 

distances were higher in the comparisons amongst source groups in the eBG31 

population when compared to the eBG297 results.  

The eBG31 human isolates appeared to be more closely related to environmental 

isolates, with a significantly lower Mash distance seen between these groups (0.0016) 

than between human and poultry isolates (0.0021) (p-value < 2.2x10-16). Furthermore, a 

higher median Mash distance was seen between eBG31 human and poultry isolates than 

observed within isolates from humans (0.0018).  

 



 123 

 

Figure 3.18 Genetic variation within and between S. Infantis isolated from 
different sources 
Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile 
and maximum Mash distances across each eBG31 and eBG297 isolation source. 

a) Distance between isolates within each source 
b) Distance between isolates from different sources 

 
 

3.3.6.2 Distances within S. Infantis based on Continent of Isolation 

 

The distance within and between strains that had been isolated from each continent was 

calculated using Mash (Figure 3.19).  The median distances within the African isolates 

from either eBG were comparable.  The median Mash distance was higher within eBG31 

Asian and European isolates than observed in eBG297 isolates. Conversely, a higher 

median Mash distance was seen in eBG297 North American isolates than in eBG31, but 

only 2 isolates were in the eBG297 comparison.   

a) 

b) 
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The median Mash distance between eBG31 continents did not vary greatly, with 

the smallest distance seen between isolates from Asia and South America at 0.0010 and 

the largest distance between Africa and South America at 0.0023. A similar variation in 

distance was seen between eBG297 isolates from different continents, the smallest was 

between Asia and Europe at 0.0010 and the largest between Africa and North America at 

0.0024.  

 

 

 
 

 

b) 

a) 

Figure 3.19 Genetic variation within and between S. Infantis isolated from 
different continents 
Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile 
and maximum Mash distances across each eBG31 and eBG297 continent of 
isolation. 

a) Distance between isolates within each continent 
b) Distance between isolates from different continents 
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3.3.6.3 Distances within S. Infantis based on eBurstGroup 

 
The overall distance within and between each eBG was calculated to identify the genetic 

distance between isolates from eBG31 and eBG297 (Figure 3.20). The median Mash 

distances within eBG31 and eBG297 were comparable at 0.00174065 and 0.00099543 

respectively. The median Mash distance between isolates belong to eBG31 and eBG297 

was 0.00713482, 4.1x the distance within eBG31 and 7.2x the distance within eBG297. 

The distribution of both the eBG31 and eBG297 Mash distances were significantly 

different to the distribution of the distances between the eBGs (p-value < 2.2x10-16).  

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.20 Genetic variation within and between eBG31 and eBG297 
Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum Mash 
distances within and between each S. Infantis eBG. 
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3.4 Discussion 
 

Whilst globally the proportion of S. Infantis isolates that belonged to eBG297 was 3.9%, 

this increased substantially to 34.1% in Africa. As the majority of eBG297 sequences were 

from Africa this indicates that, similar to clades observed in S. Enteritidis, this eBG is a 

distinct lineage of S. Infantis that is associated with this continent (Feasey et al., 2016). 

However, the median Mash distance between eBG31 and eBG297 was 4.1x greater than 

the distance within the eBG31 population and 7.2x greater than the distance within the 

eBG297 population.  This suggests that these two eBGs are too genetically distinct to 

belong to the same serovar; to resolve this hypothesis the distance within and between 

other Salmonella serovars would need to be analysed for comparison. 

Unlike previous reports, there was a strong geographical signal within the eBG31 

soft-core SNP phylogeny (Gymoese et al., 2019). Each of the six clusters in the phylogeny 

was dominated by sequences from a specific continent. Whilst none of them exclusively 

contained isolates from one continent, this information would be of use for 

epidemiologists during outbreak investigations as it would indicate the potential 

continent of origin. 

The median pairwise distances across the phylogeny indicate that whilst the North 

American sequences were the closest related to the isolates from other continents, the 

African isolates were consistently the most distant. This could suggest that there are 

lineages within the eBG31 population that are associated with Africa.  When looking at 

whole genome comparisons the African sequences joined the South American sequences 

as having the lowest median Mash distance. This indicates that isolates from these 

continents had a smaller accessory genome than seen in isolates from the other 

continents. As similar distances were seen between continents across the eBG297 

phylogeny and when compared using Mash, this suggests that the eBG297 isolates also 

have a smaller accessory genome than seen in eBG31. 

In EU member states in 2018, S. Infantis was most frequently identified in broilers 

and broiler meat (EFSA and ECDC, 2019a).  Concordantly, in this S. Infantis collection, 

broiler meat was the animal product associated with the highest number of isolates. 

Whilst S. Infantis is very common in poultry, none of the eBG297 sequences were 

isolated from poultry. Furthermore, none of the eBG31 African sequences were isolated 

from poultry; as eBG297 is most prevalent in Africa it is possible that it is found in poultry, 

but this was not captured by the samples included. However, although unlikely, it is 
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possible that the reason eBG297 was not found in poultry is that it is not capable of 

colonising domestic fowl and has adapted to other niches.   

Previous research has identified evidence of clustering by isolation source, with 

human and poultry isolates clustering together (Yokoyama et al., 2015). Concordantly, 

clustering by isolation source was visible in the eBG31 phylogeny for human, poultry and 

environmental sources. In particular, clustering of human isolates was most apparent; the 

majority of the sequences in 2 of the 6 fastbaps clusters were isolated from humans. It is 

possible that there are strains, including those in these human dominant clusters, that 

have adapted to become more virulent to humans. However, the median pairwise SNP 

distances between isolates from humans and the other sources did not support this 

hypothesis as there was very little difference between the distance within isolates from 

humans and between these isolates and isolates from other sources.   

  When the accessory genome was included in the comparison, there was more 

variation in the distances between sources. The isolates that caused infection in humans 

were found to be more diverse than those infecting poultry.  Unlike the other source 

types, there were no sequences isolated from poultry that were identical to sequences 

from environmental sources, suggesting a lack of direct transmission between these 

source types.  Interestingly, despite there being a large amount of variation amongst the 

human isolates, the distance between human and poultry isolates was greater. This 

concurs with the interpretation of the clustering within the phylogeny and could indicate 

that different members of the S. Infantis population cause infection in poultry and human 

hosts. 

As not all of this data was collected by public health teams as part of surveillance 

it cannot be used to estimate the global prevalence of S. Infantis; the increase in S. 

Infantis sequences available with time just indicates that more sequencing is occurring.  

Small clusters were seen of more current sequences within the eBG31 phylogeny, which 

could indicate that lineages of S. Infantis have evolved recently that are more successful. 

However, it is probable that their appearance is due to the increased sequencing being 

performed by public health institutes.  

The number of clusters within the eBG31 and eBG297 SnapperDB’s were different. 

Whilst all of the sequences in the eBG31 population clustered into the same 250SNP 

cluster, there were 6 250SNP clusters within the eBG297 population. This could be 

indicative of a greater diversity within eBG297 but could also be explained by the smaller 

number of sequences in the database. As more sequences are added to the database, 
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clusters merge if, upon the addition of a new sequence, they are now within that cluster 

threshold of one another. As there are fewer sequences in the eBG297 database the 

likelihood of a related sequence already being in the database is reduced, increasing the 

number of clusters.  

Historically S. Infantis has been associated with outbreaks in humans, for example, 

one was investigated between January 2018 to January 2019 in the United States that 

had 129 cases and was associated with chicken products (CDC, 2019).  In eBG31, 54.6% of 

the sequences were outbreak associated, however fewer of the eBG297 sequences were 

outbreak associated at 37.6%. eBG31 is therefore more outbreak driven than eBG297.   

 It was identified that in an S. Enteritidis eBG SnapperDB, 50% of the cases fell into 

58 of the 2,302 5SNP clusters (Dallman, 2018). It was deemed that targeting those 

clusters would be an effective strategy to reduce the number of infections.  Whilst 

targeting specific 5SNP clusters is a good strategy for some S. enterica serovars, it would 

not work for eBG31 as 54.6% of the cases fell into 501/2536 of the 5SNP clusters. 

Targeting specific 10SNP clusters would be more effective for eBG31 as 50.1% of the 

cases fell into 126/1831 of the 10SNP clusters. The strategy could be more successful in 

the eBG297 population as 37.6% of the cases fell into 21/149 5SNP clusters; however, due 

to the low number of cases associated with this eBG this is not currently necessary. 

 

 

3.4.1 Conclusions 
 

To conclude, eBG31 is the most prevalent eBG in S. Infantis globally although higher levels 

of eBG297 are seen in Africa. The sequence data also indicates that there is a distinct 

lineage of African sequences within the eBG31 population. Further evidence of a strong 

geographical signal was observed in the eBG31 with clustering by continent present. 

Clustering by source was also observed, particularly for human isolates.  

 eBG31 was found to be more diverse and outbreak driven than eBG297. As the 

Mash distance between the eBGs was greater than the distance within either eBG, I 

propose that both eBG31 and eBG297 should not be classified as S. Infantis. 
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4. Chapter 4.  Antimicrobial Resistance and Mobile Genetic 
Elements in S. Infantis 

 
4.1 Introduction 
 

AMR is a public health concern in Salmonella; the WHO reports fluroquinolone-resistant 

Salmonella as being high priority for research (Tacconelli et al., 2018). Increasing levels of 

MDR are also concerning as S. enterica with MDR are associated with causing infection 

with an increased severity; in Kenya, iNTS infection was found to be associated with MDR 

in NTS (Eng et al., 2015; Akullian et al., 2018).    

Worryingly, S. Infantis is associated with higher levels of AMR and MDR, often 

higher than seen in other serovars (EFSA and ECDC, 2013a; Food and Drug Administration 

(FDA), 2019a). For example, in 2017, a higher percentage of S. Infantis isolates from 

humans had high level resistance to ciprofloxacin (minimum inhibitory concentration ³ 

4mg/L) than S. Derby, S. Enteritidis, S. Typhimurium and monophasic S. Typhimurium 

isolates in 5 EU member states (EFSA and ECDC, 2019b).  The levels of AMR in S. Infantis 

are also increasing, in S. Infantis isolates collected from humans in the United States 

between 1996 and 2017, the levels of resistance to the following antimicrobials was 

highest in the latest date point: ampicillin, ceftriaxone, chloramphenicol, nalidixic acid, 

streptomycin, tetracycline, trimethoprim-sulfamethoxazole (FDA, 2019b). 

High levels of MDR have been found in S. Infantis in EU member states, with 

isolates from broilers being a large contributor; in 2016, 31% of S. Infantis strains from 

broilers and 70% of isolates from broiler meat had MDR (EFSA and ECDC, 2018a).  Higher 

levels of MDR are also observed with S. Infantis; in Japan between 2004 and 2006, 120 

isolates from broilers were isolated, all of which had MDR (Shahada et al., 2010). This was 

associated with integron and plasmid presence as all isolates had an 180kb plasmid and a 

class 1 integron. Integrons are not always as frequently identified in S. Infantis, in Iran 

only 36% of isolates from chickens contained a class 1 integron (Asgharpour et al., 2014). 

Also of concern is that several different ESBLs have been identified in S. Infantis, 

with blaCTX-M-65 being the most frequently reported, present in strains from Ecuador, Peru, 

Switzerland, the UK and USA (Burke et al., 2013; Cartelle Gestal et al., 2016; Hindermann 

et al., 2017; Tate et al., 2017; Granda et al., 2019).  Mutations in the QRDRs of gyrA, gyrB, 

parC and parE, predicted to confer resistance to quinolones, have also been identified in 

S. Infantis isolated from poultry carcasses in Pakistan; 62.5% of isolates had a mutation in 

the QRDR of parE (Wajid et al., 2019).  
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S. Infantis used to be viewed as a serovar associated with an absence of plasmids 

(Rychlik, Gregorova and Hradecka, 2006), however, in the past 6 years several papers 

have reported the presence of a novel megaplasmid in S. Infantis isolates. This 

megaplasmid, pESI, was first described in isolates from Israel in 2008; currently the oldest 

isolate known to contain pESI was identified in Japan in 2000 (Aviv et al., 2014; Gymoese 

et al., 2019).  

The Israeli pESI is approximately 280kb long and contains several mobile genetic 

elements with resistance genes for aminoglycosides, trimethoprim, sulphonamides and 

tetracyclines conferred by aadA1, dfrA, sul1, tetA respectively.  pESI has also been 

associated with ESBLs in both humans and broilers, in particular with blaCTX-M-65 in isolates 

from Switzerland and blaCTX-M-1 from Italy (Franco et al., 2015; Hindermann et al., 2017). 

 

4.1.1 Aims and Objectives 
 

Whilst high levels of AMR in S. Infantis have been described globally, little is known about 

the genes conferring this resistance and how they vary globally and between hosts.  The 

occurrence and variation of pESI and other mobile genetic elements in S. Infantis is also 

not well understood.  

 

This chapter therefore had the following aims: 

 

• Identify the occurrence of AMR and MDR in the S. Infantis population 

• Identify the occurrence of plasmids, in particular pESI, in the S. Infantis population 

• Determine the genetic diversity of pESI 

• Identify the occurrence of integrons in the S. Infantis population 
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4.2 Specific Methods for AMR, Plasmid, and Integron Detection 
 

The S. Infantis sequence collection was assessed for the presence of genes or mutations 

encoding AMR resistance, plasmids, pESI plasmid variant and integrons.  The Illumina 

sequenced eBG31 reference was used in all analyses. 

 

4.2.1 Using ARIBA to detect AMR, Plasmids and Gyrase Mutations 
 
ARIBA (version 2.10.1) was run on the S. Infantis collection with the ResFinder, 

PlasmidFinder and gyrase databases (Chapter 2.7.4) (Zankari et al., 2012; Carattoli et al., 

2014; Hunt et al., 2017).  For the gyrase database, ARIBA summary was run with the 

preset all option to output all results; for the ResFinder and PlasmidFinder databases the 

cluster_cols match option was used to output only the match column. 

 

4.2.2 Analysing the ResFinder Output 
 
The AMR determinants were grouped into the classes of antibiotic resistance they 

conferred, with the cryptic resistance gene aac6 ignored for all calculations of AMR or 

MDR. The ARIBA refquery command was used with the ResFinder database and each of 

the AMR gene clusters identified, to confirm that every gene in each cluster conferred 

resistance to the same antibiotic class.  Table 4.1 lists the different genes identified and 

Antimicrobial Class ARIBA gene cluster 

Aminoglycosides aac_3__II-, aac_3__IV-, aac_3__VIa, aac_6___Iaa, aadA-, aadA-_1, 
aadA1+, aadA13, ant_2____Ia, ant_9__Ia, aph_3___IIa, aph_3___Ia, 
aph_3____Ib, aph_4__Ia, aph_6__Ic, aph_6__Id,  

Beta-lactams bla-, bla-_3, bla-_7, blaCARB_-_1, blaCTX_M_-, blaCTX_M_-_2, 
blaCTX_M_-_5, blaSHV_-, blaTEM_- 

Chloramphenicols catA1, catA2, cat_1, cat_pC194_, cml-, floR, mdf_A_ 

Fosfomycins fosA3, fosA7 

Lincosamides lnu_C_, lnu_F_, lnu_G_ 

Macrolides erm_B_, mef_B_, mph_A_ 

Polymyxins mcr_1 

Quinolones/Fluoroquinolones oqxA, oqxB, qnrB-, qnrD-, qnrS- 

Sulfonamides sul1, sul2, sul3 

Tetracyclines tet_A_, tet_B_, tet_C_, tet_D_, tet_G_ 

Trimethoprims dfrA-, dfrA-_2, dfrA10, dfrA12, dfrA14, dfrA15, dfrA1_1, dfrA8, dfrB3 

 

Table 4.1 AMR genes and classes 
Gene clusters identified by ARIBA in the S. Infantis isolates and the antimicrobial class they encode 
resistance for. 
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the class that they belonged to. MDR was defined as resistance to three or more 

antibiotic classes. 

 

4.2.3 Analysing the PlasmidFinder Output 
 

31 of the 46 plasmid clusters found by ARIBA were grouped by incompatibility type (Table 

4.2).  The other 15 were kept as single plasmid types. The ARIBA refquery command was 

used to confirm that every plasmid group contained plasmid types that belonged to that 

group. All did with the exception of pSL483 which contained two: pSL483.1 and 

pXuzhou21.1.  

 
 

Plasmid 
Group 

Plasmid Cluster 

IncF IncFIA, IncFI-, IncFIB_-, IncFIB_AP001918_, IncFIB_K_, IncFIB_pHCM2_, IncFII_-, 
IncFII_SARC14_, IncFII_S_, IncFII_p-, IncFII_p96A_, IncFII_pECLA_ 

IncH IncHI1A, IncHI1B_-, IncHI2, IncHI2A 

IncI IncI-, IncI.Gamma_1_AP011954, IncI1.1_Alpha_AP005147, IncI2, 
IncI2.1_Delta_AP002527, IncI2.1__KP347127 

IncL/M IncL_M-, IncL_M_pMU407_ 

IncN IncN, IncN- 

IncX IncX1 IncX1_1, IncX3, IncX4, IncX4_1 

Table 4.2 ARIBA plasmid clusters 

31 of the 46 plasmid clusters identified by ARIBA, grouped by incompatibility type. 

 

4.2.4 Analysing the Gyrase Mutations 
 
From the literature, the QRDRs of the Salmonella gyrase genes (DNA gyrase encoded by 

gyrA and gyrB and topoisomerase IV by parC and parE) were defined as mutations found 

between amino acids 67 to 106 in gyrA, 415 to 470 in gyrB, 47 to 133 in parC and 450 to 

528 in parE (Eaves et al., 2004; Michael et al., 2006). A mutation in parC, T57S, was 

present in every isolate but previous research has shown this mutation is not associated 

with quinolone resistance so it was not investigated further (Lunn et al., 2010). 

As the four gyrase genes are essential for Salmonella, any sequences that came 

back as negative for their presence were investigated as a quality control step. The ARIBA 

report files for gyrA, gyrB, parC and parE were looked at individually to determine if the 

gene was present but fragmented or interrupted. These sequences were also mapped to 

the eBG31 reference genome with BWA-MEM (version 0.7.12) and sorted using SAMtools 

sort (version 1.5) (Li et al., 2009; Li, 2013). Artemis (version 17.0.1) was then used with 



 133 

the BAM file output and the Prokka gff output (Chapter 2.6.8) to visualise the location 

and coverage of the missing gyrase gene (Carver et al., 2012; Seemann, 2014). 

All had coverage so the report file for each sequence was checked to see what 

numbered flag ARIBA reported; the ARIBA flag function was used to identify what each 

flag meant.  Those reported as missing gyrase all had an interrupted or fragmented copy 

of the gene; the results for all sequences were used. 

 

4.2.5 Identification of pESI presence 
 

All S. Infantis sequences were screened to determine whether they contained pESI and 

how the plasmid varied. 

 

4.2.5.1 Pipeline Development for the Identification of pESI 

 

As pESI is not present in the PlasmidFinder database, several methods were trialled to 

identify pESI in the isolates (Carattoli et al., 2014). Attempts using ARIBA were 

unsuccessful as the software was developed for genes and so couldn’t handle this data 

type.  

The eBG31 reference and the Israeli pESI reference (ASRF01000099-

ASRF01000108) were concatenated to prevent common genetic motifs mapping to the 

pESI reference when the plasmid was not present. This will henceforth be referred to as 

the pESI pseudomolecule.  In trials the Illumina sequenced eBG31 reference was used, 

once the method had been finalised the long-read sequenced reference was used.   

Sequences were mapped to the pESI pseudomolecule using BWA-MEM (version 

0.7.12) and SMALT (version 0.76) and the average coverage for each contig was 

determined (Li, 2013; Ponstingl and Ning, 2014).  The presence of other plasmids 

confounded these results, with high levels of mapping occurring in small areas of pESI. It 

was therefore decided that the coverage needed to be visualised using a heatmap.  

SMALT was selected as the mapping software with seed set to 5 to enable random 

mapping; reducing mapping to conserved regions.   
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4.2.5.2 Heatmap Generation for eBG31 isolates 

 

To facilitate the identification of pESI across all the genomes, nine were initially chosen: 

three that had pESI, three that had high coverage at some points but did not have pESI, 

and three without pESI. Initially the mean and total coverage of the pESI reference was 

calculated for these sequences, but it was not possible to distinguish between presence 

and absence with these results. The number of zeros in the coverage output was 

calculated and this did allow for differentiation; therefore, a bash script was written 

which counted the number of zeros in the eBG31 collection (Appendix I.4). Sequences 

with 50,000 bases with zero coverage or less were predicted to contain pESI; those with 

between 50,000 and 150,000 bases with zero coverage were marked as maybes and 

those with 150,000 or higher were marked as negative for pESI.  These predictions were 

used to group sequences when making heatmaps. 

I wrote a bash script (Appendix I.5) to produce a pESI coverage matrix for each 

sequence using SMALT (version 0.7.6) and SAMtools (version 1.5), which was then 

transposed (Appendix I.6).  Separate lists of the yeses, maybes and nos were made in the 

format ‘(genome_1, genome_2, … genome_n);’ containing approximately 200 genomes, 

to be imported as trees for the heatmaps into R (version 3.5) using the ape package 

(version 5.2) and R Studio (version 1.1.463) (Paradis and Schliep, 2018; R Core Team, 

2018; RStudio, 2018). Each set of approximately 200 genomes also had their 

corresponding coverage matrices merged using the Unix join command.  

I wrote a bash script to generate R scripts for each of the heatmaps. R (version 

3.5), with the packages data.table (version 1.11.8) and phytools (version 0.6-63), was 

then used to generate heatmaps for each of the lists (Revell, 2012; Dowle and Srinivasan, 

2018) (Appendix I.7).  Due to the large range of values for coverage the heatmap was not 

decipherable; a value that signified presence was chosen. The mapping for one genome 

was visualised using Artemis (version 17.0.1) to observe what depth values signified 

presence or absence of pESI (Carver et al., 2012). Heatmaps were made with presence 

being read coverage higher than 10, 15, 20 and 30. The value of 20 was chosen to 

determine presence of a read. 

pESI presence/absence in all the heatmaps was judged by eye, with coverage of 

the majority of the plasmid needed for a positive result. Those that had a questionable 

result were visualised on a smaller heatmaps containing approximately 100 sequences, 

this time sandwiched between pESI negative sequences.  The script used to calculate the 
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number of zeros (Appendix I.4) was amended to count the number of bases which had a 

coverage below 20, the cut-off used in the heatmap generation, for the sequences that 

could still not be resolved. If the number below 20 was greater than 50% of the total 

length of the plasmid then pESI was classified as not present. 

 

4.2.5.3 pESI Presence in eBG297 

 

The eBG297 reference, PHE_709, was concatenated with the Israeli pESI reference to 

create a pseudomolecule for eBG297. This was indexed with SMALT (version 0.76) and 

the script used to generate coverage matrices for the eBG31 sequences (Appendix I.5) 

was amended to use the new pseudomolecule (Ponstingl and Ning, 2014). The heatmap 

was then judged by eye to determine eBG297 pESI presence/absence. 

 

4.2.5.4 Annotating the pESI Reference 

 

The concatenated pESI reference was run through ResFinder to identify the location of 

any AMR genes. Prokka (version 1.11) was used with the parameters described in Chapter 

2.6.8 to annotate the individual contigs of the pESI reference; the gff output was then 

viewed with Artemis to verify resistance gene location (Carver et al., 2012; Seemann, 

2014). The contig names and the ‘>’ contig identifier were removed from the pESI 

reference to make it a concatenated sequence. Integron Finder on the Galaxy Pasteur 

website was then used on this concatenated sequence with local detection to identify the 

location and class of any integrons (Hyatt et al., 2010; Eddy, 2011; Nawrocki and Eddy, 

2013; Cury et al., 2016a). The ResFinder results were used to identify the location of AMR 

genes in the integrons detected. 

 

4.2.5.5 Integron A and Integron B Presence in pESI 

 

The presence/absence of the two integrons in the Israeli pESI reference was determined 

in the pESI positive isolates. The integron identified on the ASRF01000104.1_contig_55 

contig of the pESI assembly is referred to as Integron A and the integron on 

ASRF01000099.1_contig_4 as Integron B.  The script used to calculate the number of 

zeros (Appendix I.4) was amended to count the coverage of the integrons. Another 
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version was created which counted the number of bases which had a coverage below 20, 

the cut-off used in the heatmap generation. 

These numbers were compiled; sequences that had fewer zero’s than 25% of the 

total length of the integron and those where every base in the integron had less than 20 

reads coverage were marked as containing and not containing the integron respectively. 

For sequences that were between these cut-offs, heatmaps were made using the scripts 

described in Chapter 4.2.5.2, but pulling out ‘ASRF01000104’, bases 1,384 to 3,246 for 

Integron A and ‘ASRF01000099’, bases 255 to 2719 for Integron B. The sequences were 

then judged by eye for integron presence. For those that were difficult to judge, absence 

was defined as sequences with high numbers of zeros or 50% of the length of the 

integron having a read depth below 20. 

 

4.2.5.6 Extended-Spectrum Beta-Lactamase (ESBL) Containing pESI 

 

The ESBL blaCTX-M-65, previously found on pESI, was searched for in the pESI positive and 

blaCTX-M-65 positive isolates. 

To identify if the ARIBA-identified blaCTX-M-65 genes were located on the pESI 

plasmid, the Israeli pESI reference could not be used as it was not positive for blaCTX-M-65 

(Hunt et al., 2017).  Assemblies of pESI containing an ESBL were published by Tate et al., 

2017 (Tate et al., 2017). I downloaded the four plasmid assemblies (CP016407, CP016409, 

CP016411, CP016413) and used BRIG (version 0.95) to compare them to the Israeli pESI 

reference and each other (Alikhan et al., 2011). CP016407 was chosen as the ESBL-

containing pESI reference as it had the least missing from the original pESI reference, the 

least missing from the other American sequences and also the other American sequences 

were missing more from it. ResFinder confirmed that it contained blaCTX-M-65 (Zankari et 

al., 2012). Integron finder on the Galaxy Pasteur website was used with the ESBL-

containing pESI reference, using the local detection parameter, which identified that 

blaCTX-M-65 was not on an integron (Cury et al., 2016b). 

Initially heatmaps were made using the ESBL-containing pESI as the reference 

(Chapter 4.2.5.2), these heatmaps did not provide sufficient evidence as they didn’t show 

the location of the gene and the coverage seen either side of it in the heatmap, so 

therefore didn’t show that the gene was on pESI. The method used by Franco et al., 2015 

to identify whether blaCTX-M-1 was on pESI was then trialled (Franco et al., 2015). I 

downloaded an E. coli blaCTX-M-1 gene (DQ915955) and used Nucleotide BLAST (version 
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2.9.0+) to blast one of the genomes in their paper (ERR1014108) against blaCTX-M-1. The 

contig that contained the gene was then blasted against the Israeli pESI reference. There 

were three hits to the pESI reference which were 86, 76 and 55 bases long. I did not 

believe that this was sufficient evidence that blaCTX-M-1 was on pESI in this isolate. 

Furthermore, this method was not suitable for large numbers of sequences. 

To overcome these issues, I took an alternative approach.  The eBG31 long-read 

sequenced reference was concatenated with the ESBL-containing pESI reference. I wrote 

a script which blasted the scaffolded assembly of each sequence against this new 

reference using Nucleotide BLAST (version 2.9.0+) and identified any regions of the query 

genome that matched against the area in the reference that contained blaCTX-M-65 

(Appendix I.8) (McGinnis and Madden, 2004).  The lengths of these matched areas were 

then compiled; blaCTX-M-65 was 876 bases long, any that were over double the length of 

the gene were classified as being on pESI. Sequences that were below this cut-off or did 

not have a match for blaCTX-M-65 were checked further to ensure the gene was not on pESI. 

They were blasted against both the pESI pseudomolecule and a pseudomolecule 

containing pESI and blaCTX-M-65 using Nucleotide BLAST (version 2.9.0+), using the 

megaBLAST option and the parameter outfmt 6 to generate crunch files. The assemblies 

of these sequences were also uploaded to the ResFinder website (accessed 11.09.19) to 

identify the location of blaCTX-M-65 (Zankari et al., 2012). ACT (version 17.0.1) was then 

used to visualise where the areas surrounding blaCTX-M-65 in the query genome mapped to 

in the reference; if large portions of the surrounding area mapped to pESI then blaCTX-M-65 

was defined as being on pESI (Carver et al., 2005).   

 

4.2.5.7 Determining the Phylogenetic Structure of pESI 

 

In order for the new eBG31 pESI pseudomolecule to be used as the reference, a new 

SnapperDB was generated; the creation of the database and the VCFs was done with the 

same parameters as in Chapter 2.6.5 (Ashton et al., 2017). Prophages were detected in 

pESI using the method described in Chapter 2.5.3. The coordinates of the only intact 

prophage were: ASRF01000101.1_contig_16: 49072-58872. 

A soft-core SNP alignment was generated using the method described in Chapter 

2.7.2. Representatives of each 25SNP cluster were used in the whole genome alignment 

generation and of each 5SNP cluster for the soft-core SNP alignment.  The prophage was 

masked alongside recombination and the eBG31 reference, resulting in an alignment of 
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pESI variation. The resulting soft-core SNP phylogeny was rooted to its most ancestral 

node. The scripts used to annotate the eBG31 phylogeny (Chapter 2.7.3) were amended 

and used to create multi value bar chart annotation files for use with iToL (Letunic and 

Bork, 2016).  They were also used to annotate the eBG31 soft-core SNP phylogeny (Figure 

3.9) with pESI presence and pESI variant. 

 

4.2.6 Integron Presence 
 
To identify the number of integrons found in the S. Infantis collection, Integron Finder 

(version 2) was installed on the UEA HPC (Cury et al., 2016a). It was run using the 

scaffolds.fasta output of SPAdes (Chapter 2.6.6) with the local detection and promotor-

attI parameters selected (Bankevich et al., 2012). Only sequences that had been 

determined to have good assembly quality were included (Chapter 2.6.7). As the number 

of complete integrons present in each genome was of interest, I wrote a bash script to 

extract this number from each summary file (Appendix I.9). The int gene for each integron 

was pulled out using grep and awk commands to identify the class of each integron. 

 

4.2.7 Analysis and Presentation of the Results 
 
Comma-separated value (CSV) files were generated for eBG, origin, source, year group 

and ST. CSV files were also generated for: the presence of resistance determinants to 

each antibiotic class; complete antibiotic sensitivity; MDR; presence of each plasmid 

group, including each variant of pESI and number of integrons.  Scoary (version 1.6.16) 

(Chapter 2.7.5) was used on CLIMB with the CSV files, the --no_pairwise option to not 

perform pairwise comparisons and the option --p 1.0 to not exclude by p-value and report 

all genes (Brynildsrud et al., 2016). The results that were of interest were 

Number_pos_present_in and Number_pos_not_present_in. The two population 

proportions z test calculator was used calculate whether proportions were significantly 

different (Stangroom, 2019). 

An alternative to Venn diagrams, the UpSet plot, was chosen to represent the 

number of shared and unique AMR and plasmid clusters. R (version 3.5.1) was used with 

RStudio (version 1.1.463) and the package UpSetR (version 1.4.0) (Lex et al., 2014). The 

original ARIBA output, not grouped by class or type, was used as input; the variants of 

pESI were not included in the plasmid UpSet plots created. 
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4.3 Results 
 

4.3.1 Antimicrobial Resistance 
 

In order to investigate the presence of antibiotic resistance in S. Infantis, the S. Infantis 

collection was screened for AMR gene presence. ARIBA was run on the sequences with 

the ResFinder database to identify AMR gene presence and with a database of gyrA, gyrB, 

parC and parE genes to identify mutations within the QRDRs. 

 

4.3.1.1 Overall AMR Statistics 

 

Across S. Infantis 62 clusters of AMR genes were identified, encoding resistance to 11 

different classes of antibiotics: aminoglycosides, beta-lactams, chloramphenicols, 

fosfomycins, lincosamides, macrolides, polymyxins, quinolones, sulphonamides, 

tetracyclines and trimethoprims (Appendix VI Table VI.3). 25 different mutations were 

also identified in the QRDRs of gyrA, gyrB, parC or parE. 

60.2% (2810/4670) of the sequences did not contain any currently known AMR 

genes. 51 of these sequences were predicted to be resistant to quinolones due to 

mutations in the DNA gyrase and topoisomerase IV genes, resulting in 59.1% (2759/4670) 

of the S. Infantis isolates being predicted to be putatively susceptible to all known classes 

of antibiotic.  

Whilst observed in both eBGs, resistance to macrolides was low, with 2% of 

eBG297 and 0.3% of eBG31 isolates containing resistance genes for the class. Resistance 

to lincosamides and polymyxins was only seen in 0.4% and 0.02% of eBG31 isolates 

respectively. The percentage of isolates resistant to macrolides, lincosamides or 

polymyxins were therefore not included in comparisons of resistance in antimicrobial 

classes but are shown in Appendix IV Table IV.1. 

MDR, defined as resistance to 3 or more classes of antibiotic, was identified in the 

S. Infantis population. 37.3% (1740/4670) of the isolates had MDR; 19.1% (332/1740) of 

these sharing a common antibiotic resistance class profile with resistance to 

aminoglycosides, quinolones, sulphonamides, tetracyclines and trimethoprims. 
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4.3.1.2 AMR Variation by eBG 

 
To identify whether there was a difference in AMR occurrence between eBG31 and 

eBG297 the presence of resistance to antibiotic classes was determined and plotted in 

Figure 4.1. 

 

 
 

Figure 4.1 Difference in AMR between eBG31 and eBG297  
eBG31 (n = 4486)              eBG297 (n = 184)                  

 

A significant difference was seen in the number of sensitive isolates; 57.5% (2579/4486) 

of eBG31 isolates compared to 97.8% (180/184) of eBG297 isolates were putatively 

susceptible to all known antimicrobials (p < 0.00001). 

MDR was significantly more common in eBG31 with 38.7% (1737/4486) of the 

isolates positive versus 1.6% (3/184) of eBG297 isolates (p < 0.00001).  Genes involved in 

resistance to aminoglycosides, quinolones, sulphonamides and tetracyclines were most 

frequently identified in eBG31; 31.5% (1414/4486) of the isolates harboured resistance to 

these four classes, either exclusively or in combination with other classes.  

Whilst the eBG31 population contained 53 gene clusters unique to that eBG, 

eBG297 did not contain any (Figure 4.2). Only 9 AMR gene clusters were found in both 

eBGs: aac(3)II, aph(3’)-Ib, aph(6)-Id, blaCTX-M, dfrA14, floR, mphA, sul2 and tet(A). 
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4.3.1.3 AMR Variation by Isolation Source 

 
The distribution of AMR across the S. Infantis isolation sources was calculated to 

determine whether the levels of resistance varied by source (eBG31, Figure 4.3). 

 For all reported antibiotic classes, the number of isolates from poultry with AMR 

 
Figure 4.2 Distribution of AMR gene clusters between eBG31 and eBG297  
UpSet plot showing the number of AMR gene clusters unique to and shared between eBG31 and eBG297 
isolates. 
eBG31              eBG297                 

 
 

Figure 4.3  eBG31 AMR distribution by isolation source 
Shown as a percentage of isolates from each source: environmental (n=947); human (n=1519) and 
poultry (n=947). 
Environmental        Human             Poultry            
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determinants was significantly larger than the other sources (p<0.00001). 65.9% 

(624/947) of eBG31 poultry isolates were resistant to aminoglycosides, quinolones, 

sulphonamides and tetracyclines compared with 32.4% (492/1519) of eBG31 human 

isolates and 12.7% (120/947) of eBG31 environmental isolates. The highest levels of MDR 

were seen in eBG31 isolates from poultry sources at 72.2% (684/947); this were 

significantly higher than the levels in isolates from human and environmental sources 

(p<0.00001).  The lowest levels of MDR were seen in the environmental isolates at 18.7% 

(177/947). 

The eBG297 isolates from environmental, unknown sources and 97.6% (164/168) 

of isolates from humans were sensitive to all the antibiotic classes. Only 1.8% (3/168) of 

the eBG297 isolates from humans had MDR. 

The distribution of AMR gene clusters across sources in eBG31 is shown in Figure 

4.4. 40.3% (25/62) of the AMR gene clusters found in eBG31 isolates were found in 

isolates from all sources. Interestingly, despite having the largest amount of AMR, only 

3.2% (2/62) of the gene clusters were found exclusively in isolates from poultry. A larger 

percentage, 22.6% (14/62), of AMR gene clusters were found to be unique to eBG31 

isolates from humans. Notably, more clusters were shared between human and 

environmental isolates than human and poultry isolates. 

 
 

Figure 4.4 Distribution of AMR gene clusters between eBG31 isolation sources 
UpSet plot showing the number of AMR gene clusters unique to and shared between eBG31 isolation 
sources.  
Environmental         Human             Poultry                                                                     
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4.3.1.4 AMR Variation by Origin 

 
In order to determine the geographical distribution of AMR in S. Infantis, the geographical 

differences in frequency of AMR and MDR in S. Infantis isolates were compared (Figure 

4.5). Levels of resistance to antibiotic classes varied by continent of eBG31 isolation.  

Isolates from South America had the highest levels of AMR, with the largest percentage of 

resistant isolates for all classes. The isolates from that continent and from returning 

travellers also had the lowest number of isolates susceptible to all antibiotics (15.6%, 

19/122) although this was closely followed by Asia with 18.5% (44/238). Conversely, low 

levels of AMR were identified in the African isolates, with 78.1% (232/297) sensitive to all  

 antimicrobials. 

A common AMR profile is visible with resistance to aminoglycosides, quinolones, 

sulphonamides and tetracyclines seen at similar levels within isolates from each 

continent, excluding Africa. For example, the percentage of isolates from South America 

that were resistant to aminoglycosides, quinolones, sulphonamides and tetracyclines 

were 80.3% (98/122), 78.7% (96/122), 77% (94/122) and 79.5% (97/122) respectively.  

MDR varied substantially by continent of isolation, ranging from 18.9% (56/297) in African 

eBG31 isolates to 81.1% (99/122) in South American eBG31 isolates. 

AMR was only observed in eBG297 isolates that had been found in Africa, with 

isolates from all other continents being pan-susceptible. 97.4% (151/155) of African 

eBG297 isolates also had no AMR determinants. 1.9% (3/155) of the African eBG297 were 

MDR; these 3 isolates contained genes encoding resistance to aminoglycosides, 

extended-spectrum beta-lactams, chloramphenicols, macrolides, sulphonamides, 

tetracyclines and trimethoprims.  
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Figure 4.5 Difference in AMR distribution by continent 

Shown as a percentage of isolates from each continent. • values are less than 1.5% but greater than 0. 
a) eBG31: Africa (n=297); Asia (n=238); Europe (n=959); North America (n=2793) and South 

America (n=122) 
b) eBG297: Africa (n=155); Asia (n=3); Europe (n=20); North America (n=2) and South America 

(n=0) 
Africa       Asia        Europe          North America          South America                  

0

10

20

30

40

50

60

70

80

90

Am
in

ogl
yc

osid
es

Beta
-L

ac
ta

m
s

Chlo
ra

m
phen

ico
ls

Fo
sf

om
yc

in
s

Q
uin

olo
nes

Su
lp

honam
id

es

Te
tr

ac
yc

lin
es

Tr
im

eth
oprim

s

Se
nsit

iv
e

M
DR

Pe
rc

en
ta

ge
 (%

)

Antibiotic Class and Resistance State

0

10

20

30

40

50

60

70

80

90

100

Am
in

ogl
yc

osid
es

Beta
-L

ac
ta

m
s

Chlo
ra

m
phen

ico
ls

Fo
sf

om
yc

in
s

Q
uin

olo
nes

Su
lp

honam
id

es

Te
tr

ac
yc

lin
es

Tr
im

eth
oprim

s

Se
nsit

iv
e

M
DR

Pe
rc

en
ta

ge
 (%

)

Antibiotic Class and Resistance State

a) 

b) 

• • 



 145 

 
Figure 4.6 Distribution of AMR gene clusters across eBG31 by continent 

UpSet plot showing the number of AMR gene clusters unique to and shared between eBG31 isolates 
from each continent.  
Africa        Asia        Europe          North America          South America                 

 

Despite eBG31 isolates from Europe and North America having lower percentages of 

isolates with AMR, they had the highest number of AMR gene clusters unique to each 

continent (Figure 4.6). AMR genes unique to African, Asian and South American eBG31 

isolates were also identified.  Only 17.7% (11/62) of the AMR genes were found in isolates 

from all the continents.  

 

4.3.1.5 AMR Variation by Year 

 
The occurrence of AMR in S. Infantis in each isolation year group was compared to 

identify whether there were trends by time (Figure 4.7).  Resistance to all of the included 

classes of antibiotic was seen for every year group in eBG31, with the exception of 

fosfomycins which was identified in isolates from 2006-2010 onwards. The highest 

frequency of MDR in eBG31 isolates was seen between 2017-2018, at 52.8% (615/1164), 

with significantly higher levels seen than in any other year group (p<0.05 for 1989-2005 

vs. 2017-2018, p<0.00001 for all other comparisons). The percentage of isolates with 

resistance to each included antibiotic class was highest for this most recent year group 

with the exception of trimethoprims.  The percentage of eBG31 isolates with resistance to 

beta-lactams, fosfomycins and quinolones increased consistently throughout the time 

periods in this project. Also, the levels of resistance to aminoglycosides, sulphonamides, 
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tetracyclines and overall levels of MDR appear to be associated, with similar levels seen in 

each year group. 

 

 

No eBG297 isolates with AMR were identified prior to 2011. Seven gene clusters were 

identified solely in isolates from 2011-2014; the other two resistance gene clusters were 

found between both 2011-2014 and 2015-2016.  The 3 MDR eBG297 strains were isolated 

from South Africa between July and October 2012, with the remaining isolate with 

resistance to macrolides and sulphonamides being isolated from South Africa in 2015.   

The distribution of eBG31 AMR gene clusters across the different time periods is 

shown in Figure 4.8.  25.8% (16/62) of the AMR gene clusters were found in isolates in 

every time period, including genes which encoded resistance to aminoglycosides, 

chloramphenicols, sulphonamides, tetracyclines, trimethoprims and beta-lactams, 

including extended-spectrum beta-lactams. The number of AMR gene clusters peaked in 

2015-2016, where isolates contained resistance genes for all of the 11 antibiotic classes 

identified. 18 AMR gene clusters identified in 2015-2016 were no longer present in eBG31 

isolates in 2017-2018, these genes encoded resistance to the following antimicrobial 

classes: aminoglycosides, beta-lactams, chloramphenicols, sulphonamides, 

trimethoprims, lincosamides, macrolides, polymyxins, quinolones and tetracyclines.  The 

largest number of genes unique to a time period was also seen between 2015-2016, 

including gene clusters such as blaSHV, catA1, lnu(F), mcr1 and qnrD. Interestingly, whilst 

  
Figure 4.7 Difference in AMR in eBG31 by year group 
Shown as a percentage of isolates from each continent. • values are less than 1% but greater than 0. 
1989-2005 (n=147)             2006-2010 (n=404)           2011-2014 (n=759)         2015-2016 (n=1203)         
2017-2018 (n=1164) 
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isolates from 2017-2019 had the highest levels of MDR (52.8%, 615/1164), there were no 

AMR gene clusters that were found exclusively in this time period.  

  

 
Figure 4.8 Distribution of AMR gene clusters across eBG31 by year group 
UpSet plot showing the number of AMR gene clusters unique to and shared between eBG31 isolates 
from each year group.  
1989-2005            2006-2010  2011-2014           2015-2016            2017-2018             

 

 

4.3.2 Mobile Genetic Elements 
 
To establish the distribution of plasmids across the S. Infantis population, the S. Infantis 

collection was screened for the presence of plasmids. ARIBA was run with the 

PlasmidFinder database and the genomes were screened separately for the presence of 

pESI (Appendix VI Table VI.4). 

46 different plasmid types were matched from the PlasmidFinder database. These 

were grouped by Inc type, resulting in 24 plasmid groups. While the number of plasmids 

found in each isolate varied between 0 and 5, 86% (4013/4670) lacked any plasmids from 

the PlasmidFinder database.  Of the 24 plasmid groups, the following were identified in 

fewer than 1% of eBG31 or eBG297 isolates: Col156, Col3M, Col440I, Col8282, Col(RNAI), 

Col(BS512), Col(IMGS31), Col(MG828), Col(pVC), IncB/O/K/Z, IncH, IncL/M, IncN, IncQ, 

IncR, IncU, p0111 and repA. These plasmids groups were therefore not included in graphs 
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discussing results grouped by Inc type, their results can be found in Appendix IV Table 

IV.2, IV.3, IV.4, IV.5.  

pESI was found in 33% (1541/4670) of the S. Infantis genomes (Appendix VI Table 

VI.5). Therefore, 55.6% (2597/4670) of the S. Infantis genomes did not contain plasmids 

from either the PlasmidFinder database or pESI search. Running Integron Finder on the 

Israeli pESI plasmid identified two class 1 integrons, the first 1,863 bases in length and 

containing the dfrA14 trimethoprim resistance gene (Integron A); the second 2,465 bases 

long and containing aadA1, the streptomycin and spectinomycin resistance gene 

(Integron B). Heatmaps of pESI showed that these integrons were absent from some of 

the pESI positive isolates (Appendix IV Figure IV.2). 40.2% (620/1541) of the pESI positive 

isolates were missing Integron A and 6.1% (94/1541) were missing Integron B. The 

location of blaCTX-M-65 in pESI positive isolates was identified to determine whether the 

gene was carried on the plasmid. 38.3% (590/1541) of the pESI positive isolates had 

blaCTX-M-65 on the plasmid.  

86.7% (9177/10588) of the AMR genes that were identified by ARIBA in the eBG31 

isolates were in isolates that contained pESI. Furthermore, of the 1549 isolates that had 

quinolone resistance due to mutations in gyrA, gyrB, parC or parE; 95.3% (1476/1549) 

contained pESI. Also, of the 1737 of the eBG31 isolates that had MDR; 87.1% (1513/1737) 

were positive for pESI. 

 

 

4.3.2.1 Plasmid Variation by eBG 

 

To determine the difference in plasmid prevalence by eBG, the occurrence of each 

plasmid group and variant of pESI in S. Infantis was plotted (Figure 4.9). 

Whilst 54.1% (2428/4486) of eBG31 were without a plasmid, 91.8% (169/184) of 

eBG297 isolates didn’t contain one. A higher proportion of eBG31 isolates were positive 

for each included plasmid group than seen in the eBG297 isolates, with the exception of 

IncF and pSL483.  
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Figure 4.9 Difference in plasmids between eBG31 and eBG297 
eBG31 (n=4486) and eBG297 (n=184). • values are less than 1% but greater than 0. 
eBG31              eBG297         

 

The variation in the types of plasmid found in eBG31 and eBG297 is shown in Figure 4.10.  

Unsurprisingly, considering the higher number of plasmids in eBG31 isolates, a large 

number of plasmids unique to that eBG were identified. The only plasmid group that was 

found solely in eBG297 was Col(IMGS31), however only one of the eBG297 isolates 

contained this, a strain which was isolated from South Africa in 2004. 
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Figure 4.10 Distribution of plasmid types shared by eBG31 and eBG297 
UpSet plot showing the number of plasmid types unique to and shared between eBG31 and eBG297 
isolates.  
eBG31              eBG297                 

• • 

 
N

um
be

r o
f p

la
sm

id
 ty

pe
s 

Number of plasmid types 



 150 

4.3.2.2 Plasmid Variation by Isolation Source 

 

The distribution of plasmid groups from each isolation source of S. Infantis was compared 

to quantify how the frequency of plasmid presence and type varies by source (Figure 

4.11). 

 

Although eBG31 isolates from environmental sources had the highest percentage of 

isolates with IncF and IncY plasmids, 5.5% (52/947) and 4.0% (38/947) respectively, it was 

also the isolation source with the largest percentage of isolates without pESI and without 

any plasmid at all.  For all plasmid groups except for pESI, the proportion of human eBG31 

isolates with the plasmid was greater than seen in eBG31 isolates from poultry sources. 

However, for pESI the opposite was true, significantly more of the poultry eBG31 isolates 

(657) were positive for the plasmid than human isolates (551) (p-value < 0.00001).  

Correlating with the lack of AMR genes in eBG297 isolates from environmental 

and unknown sources, no plasmids were identified in eBG297 isolates from these sources.  

The majority of the plasmid groups identified from human eBG297 isolates were only 

identified in one isolate. 

 

 
Figure 4.11 Difference in plasmids between eBG31 isolation sources 
Shown as a percentage of isolates from each source. • values are less than 1% but greater than 0. 
Environmental (n=947)        Human (n=1519)            Poultry (n=947) 
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Figure 4.12 Difference in pESI variant between eBG31 isolation sources 
Shown as a percentage of pESI positive isolates from each source: environmental (n=123); human 
(n=551) and poultry (n=657). pESI was only identified in eBG31. 
Environmental        Human             Poultry                                                   

 

The frequency of each variant of pESI occurring in each of the isolation sources was 

calculated (Figure 4.12).  Greater variation was seen in the frequency of presence of 

Integron A than Integron B, which appeared to be more conserved across pESI. Whilst 

similar frequencies of Integron A were seen in eBG31 isolates from human and poultry 

sources, it was less commonly found in isolates from environmental sources.  Of the 

eBG31 human pESI positive isolates, 5.4% (30/551) were isolated from urine. There was 

no association with isolation from urine and presence of the trimethoprim resistance 

encoding Integron A; 43.3% (13/30) did not contain the integron and 56.7% (17/30) did. 

Concerningly, 48.6% of the 657 eBG31 pESI positive isolates from poultry sources were 

found to be carrying the blaCTX-M-65 gene on the plasmid. 

The distribution of plasmid types across eBG31 isolation sources is plotted in 

Figure 4.13.  Despite poultry isolates having the smallest percentage of isolates without a 

plasmid, none of the plasmid groups were found uniquely in isolates sourced from 

poultry. Also, more plasmid types were identified in eBG31 isolates from humans than 

any other source, with that source having more plasmids unique to it and having more 

shared plasmids than poultry and environmental isolates. 
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Figure 4.13 Distribution of plasmid types between eBG31 isolation sources 
UpSet plot showing the number of plasmid types unique to and shared between eBG31 isolation sources.  
Environmental         Human             Poultry                                                                 
 

 

4.3.2.3 Plasmid Variation by Origin 

 
 
With a view to identify the geographical variation in plasmid presence across S. Infantis 

isolates, the occurrence of each included plasmid group from each continent was plotted 

in Figure 4.14. 

Given the lack of AMR in the eBG31 African sequences, it was also the continent 

with the largest percentage of isolates without a plasmid at 73.7% (219/297). The plasmid 

group most frequently present in the African eBG31 sequences was IncA/C at 13.8% 

(41/297). One of African IncA/C positive sequences was from PHE where the patient had 

travel history to Africa, the remaining 40 were all isolated from South Africa from human 

or environmental sources between 2005 and 2015.  

For all other continents the plasmid type most frequently identified was pESI; 799 

isolates with pESI were identified from North America, 456 from Europe, 162 from Asia, 

94 from South America and 5 from Africa. 
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In the eBG297 population, the isolates from Asia and North America lacked any plasmids. 

The only plasmid group found in the European sequences was IncF which was present in 6 

of the 20 samples. Within the African eBG297 samples plasmid groups, IncF, IncI and 

IncA/C were the most frequently identified, these were also most frequently found in the 

eBG31 African isolates. 

The distribution of pESI variants in each of the continents is shown in Figure 4.15. 

As seen with isolation source, the percentage of isolates with Integron B does not vary 

greatly between continents. However much greater variation is seen in the number of 

isolates with Integron A. A low percentage was seen in the African pESI sequences but as 

only 5 African sequences contained pESI this was of little significance. 41.9% (191/456) of 

 

 
Figure 4.14 Difference in plasmid type between S. Infantis by continent 
Shown as a percentage of isolates from each continent. • values are less than 1% but greater than 0.  

a) eBG31: Africa (n=297); Asia (n=238); Europe (n=959); North America (n=2793) and South 
America (n=122)  

b) eBG297: Africa (n=155); Asia (n=3); Europe (n=20); North America (n=2) and South America 
(n=0) 

Africa       Asia        Europe          North America          South America                
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the European pESI positive isolates contained Integron A, whilst 86.2% (81/94) of the 

South American sequences contained it. 

 

 
Figure 4.15 Difference in pESI variant across eBG31 by continent 
Shown as a percentage of pESI positive isolates from each continent: Africa (n=5); Asia (n=162); Europe 
(n=456); North America (n=799) and South America (n=94). 
Africa       Asia        Europe          North America          South America          

 

Variation was also seen in the percentage of pESI positive isolates with the blaCTX-M-65 

gene on the plasmid from each continent. Whilst none of the Africa and Asian sequences 

and very few of the European sequences had the gene on pESI, 64.1 % (512/799) of the 

North American and 67% (63/94) of the South American isolates did.  

The distribution of types of plasmid from eBG31 isolates in each continent is 

plotted in Figure 4.16. No plasmid groups were found exclusively in the South American, 

Asian or African eBG31 isolates. The only plasmid groups that were found in every 

continent were IncI plasmids and pESI. The largest group with shared plasmids was North 

America and Europe, which shared 21.7% (10/46) of the plasmid groups. In eBG297, 11 

plasmid groups were found in isolates from Africa and 2 in isolates from Europe. No 

plasmid groups were shared between the eBG297 isolates from different continents. 
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A summary of the AMR and pESI results for S. Infantis isolates from different sources and 

continents is shown in Table 4.3. 

 

    eBG31 eBG297 

    Sensitive MDR pESI n Sensitive MDR pESI n 

  eBG 57.5 38.7 34.4 4486 97.8 1.6 0 184 

Source 

Environmental 78.2 18.7 13.0 947 100 0 0 9 

Human 52.1 42.8 36.3 1519 97.6 1.8 0 168 

Poultry 26.0 72.2 69.4 947 0 0 0 0 

Origin 

Africa 78.1 18.9 1.7 297 97.4 1.9 0 155 

Asia 18.5 75.6 68.1 238 100 0 0 3 

Europe 43.7 51.0 47.5 959 100 0 0 20 

North America 65.1 31.7 28.6 2793 100 0 0 2 

South America 15.6 81.1 77.0 122 0 0 0 0 
 

 

Table 4.3 AMR and pESI levels in S. Infantis 
Percentage of isolates from each eBG, isolation source and continent that were susceptible to all known 
antimicrobials, had MDR and contained pESI. n = total number of isolates from each eBG, source group 
and continent.  

 

 

 

 

 
Figure 4.16 Distribution of plasmid types across eBG31 by continent 

UpSet plot showing the number of plasmid types unique to and shared between eBG31 continents of 
isolation.  
Africa       Asia        Europe          North America          South America             
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4.3.2.4 Plasmid Variation by Year 

 

To investigate trends in plasmid presence by time in S. Infantis, the occurrence of 

plasmids in S. Infantis in each year group is plotted in Figure 4.17.  

 

 

 
Figure 4.17 Difference in plasmids between S. Infantis by year group 

Shown as a percentage of isolates from each year group. • values are less than 1% but greater than 0.  
a) eBG31: 1989-2005 (n=147), 2006-2010 (n=404), 2011-2014 (n=759), 2015-2016 (n=1203), 2017-

2018 (n=1164) 
b) eBG297: 2003-2005 (n=11), 2006-2010 (n=49), 2011-2014 (n=75), 2015-2016 (n=27), 2017-2019 

(n=16) 
1989-2005            2006-2010  2011-2014           2015-2016            2017-2019             
 

 

Four of the plasmid groups were identified in eBG31 isolates in every year group; IncA/C, 

IncF, IncI and IncX were present in less than 10% of isolates from every year group, with 

the exception of IncA/C and IncF in 2006-2010. pESI was also identified in isolates from 

every year group, increasing in frequency in the past 10 years. The earliest isolation date 

of an isolate with pESI was 1999, four pESI positive isolates were found in this year, all 

from humans in Japan. 
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In eBG297 isolates none of the included plasmid groups were identified prior to 

2006; of the rare plasmids, Col(IMGS31) was identified from South Africa in 2004.  Whilst 

IncA/C and IncX were found exclusively in one year group, IncI and IncF were both 

maintained in the eBG297 population, with the former present in isolates between 2006-

2016 and the latter 2006-2019. However, these were both at low numbers, with 1 or 2 

isolates with the plasmid found each year. 

 

Figure 4.18 shows the frequency of variants of pESI identified in each year group. As seen 

with isolation source and origin, there is little change in the presence of Integron B by 

year group. Integron A does fluctuate in frequency by year with a slight downward trend 

visible since 2011. A significant increase in the presence of the blaCTX-M-65 gene on pESI is 

visible, with a complete absence of the gene on the plasmid on strains isolated prior to 

2006 and 48.2% (295/612) of the pESI positive isolates from 2017-2019 containing    

blaCTX-M-65 on pESI (p<0.00001). 

 

 
Figure 4.18 Difference in pESI variant across eBG31 by year group 
Shown as a percentage of pESI positive isolates from each year group: 1989-2005 (n=50), 2006-
2010 (n=57), 2011-2014 (n=255), 2015-2016 (n=423), 2017-2018 (n=612). 
1989-2005            2006-2010  2011-2014           2015-2016           2017-2018            
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Figure 4.19 Distribution of plasmid types across eBG31 by year group 
UpSet plot showing the number of plasmid types unique to and shared between eBG31 isolates from 
each year group. 
1989-2005            2006-2010  2011-2014           2015-2016           2017-2018             

 

In the eBG297 isolates, 61.5% (8/13) of all the plasmids types were found exclusively in 

one year group.  None of the plasmids were identified in every year group.  The 

distribution of plasmid types in eBG31 across each year group is plotted in Figure 4.19. 

Unlike eBG297, a low proportion of plasmid types were found in a single year group 

(16.3%, 8/49). 69.4% (34/49) of the plasmid types were found in more than 2 year groups.  

Correlating with the decrease in diversity of AMR gene clusters between 2015-2016 and 

2017-2018, fewer plasmid groups were present in the 2017-2018 isolates; this year group 

also had the lowest number of plasmids unique to it. 

 

4.3.2.5 Phylogenetic Structure of pESI 

 
To ascertain the genetic diversity amongst the pESI sequences a SnapperDB was made, 

using the eBG31 nanopore reference and the Israeli pESI reference as a combined 

reference. 1539 of the pESI positive isolates passed into the database. 1013 5SNP clusters 

were present in the pESI SnapperDB, the largest of which containing 97 isolates; 83.6% 

(847/1013) contained only a single isolate.  
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Representatives of each 5SNP cluster within the database were selected and a 

soft-core SNP phylogeny was made, masking prophages, recombination and the eBG31 

reference (Figure 4.20).  The total number of SNPs represented in the phylogeny is 555. 

 

 

 

 
Figure 4.20 Phylogenetic structure of pESI 

Soft-core SNP Maximum Likelihood Phylogeny of 1013 5SNP cluster representatives of pESI.  The rings 
are annotated with the percentage of isolates in each 5SNP cluster that were isolated from each 
metadata group. 

 
 
Inner ring, number of sequences in 5SNP cluster:  
Second ring, percentage of sequences in each cluster from each continent: 
Africa       Asia        Europe          North America          South America          Unknown          
Third ring, percentage of sequences in each cluster from each isolation source: 
Environmental         Human             Poultry               Unknown                                                      
Outer ring, percentage of sequences in each cluster from each year group:  
1989-2005            2006-2010  2011-2014           2015-2016           2017-2018            Unknown 
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The phylogeny, which was rooted to its most ancestral node, contains several clades with 

small branch lengths close to the root. The majority of the sequences (440) belong to one 

of these clades. 

The second ring in Figure 4.20 shows the percentage of isolates from each 5SNP 

cluster that were isolated from each continent. Clustering by origin of isolation is 

apparent, with clades comprised mainly of North American sequences visible as well as 

clades comprised mainly of European or Asian sequences. The geographical distribution is 

very similar to that seen in the eBG31 phylogeny (Figure 3.13).  

The third ring in Figure 4.20 shows the percentage of isolates from each 5SNP 

cluster that were isolated from each isolation source. Clustering is also visible by source, 

with the clades that contain North American sequences comprised mainly of isolates from 

poultry. Conversely, the European and Asian clades contained large clusters of isolates 

from humans. 

The outer ring of Figure 4.20 shows the percentage of isolates from each 5SNP 

cluster that were isolated in each year group. Some clustering is visible, the North 

American clades are mainly comprised of sequences from 2017-2018. However, little 

clustering by year group is seen in the remainder of the tree. 

The pESI phylogeny was also annotated with pESI variant (Appendix IV Figure 

IV.3). Clustering of isolates lacking Integron A was observed with the most noticeable 

example present in one of the Eurasian clades, where most of the European sequences 

did not have the integron and the majority of the Asian sequences did. Clustering of pESI 

sequences with blaCTX-M-65 was also visible, with the North American clades containing 

almost all of the occurrences of the gene on the plasmid. 

To determine the distribution of pESI and pESI variants across the eBG31 soft-core 

SNP phylogeny (Figure 3.9), it was annotated with the percentage of isolates in each 

cluster that contained pESI (Appendix IV Figure IV.4). 89.9% (1384/1541) of the pESI 

positive sequences clustered in two of the fastbaps clusters, 1 and 5. One 25SNP 

representative group in fastbaps cluster 4 also contained pESI; this cluster was comprised 

of sequences from every continent and isolation source.  Isolates containing Integron A 

were found in fastbaps clusters 4 and 5 but not in cluster 1. Despite the number of pESI 

plasmids carrying blaCTX-M-65, only 12/831 25SNP representative groups contained these 

sequences, one of which containing 96.1% (567/590) of them. The pESI positive isolates 

with blaCTX-M-65 in this group originated from Europe, North America, South America or 
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had an unknown origin. They also came from all the source groups and were isolated 

from every year between 2010 and 2018. 

 

 
4.3.2.6 Integron Occurrence 

 
The number of integrons in each of the sequences was quantified to identify the variation 

in integron frequency across the S. Infantis population. Integron Finder was run on the 

scaffolded whole genome assemblies, including plasmids, of all S. Infantis isolates whose 

assemblies passed the assembly quality checks. This resulted in 4390 eBG31 isolates and 

180 eBG297 sequences being included.  

66.1% of the S. Infantis isolates did not contain any complete integrons, 18.9% 

contained 1 and 15% contained 2 integrons. All the integrons were found to contain the 

int1 gene and therefore be Class 1 integrons. Figure 4.21 shows the percentage of eBG31 

and eBG297 isolates that contained integrons.  

 

 
Figure 4.21 Difference in integron frequency between eBG31 and eBG297 
eBG31 (n=4390), eBG297 (n=180). 
eBG31              eBG297               

 

A significant difference was seen between the percentage of isolates that had no 

integrons in eBG31 vs. eBG297 (p<0.00001). Only 1.7% (3/180) of eBG297 isolates had 

any integrons; conversely 35.2% (1544/4390) of eBG31 had integrons, with a slightly 

higher proportion of these containing 2 integrons rather than 1. Of the 1544 eBG31 

isolates that had integrons, 92.9% (1435/1544) were positive for pESI. In contrast, of the 

1,490 pESI positive isolates that were checked for integron presence, only 2.3% did not 

contain an integron.   
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The difference in proportion of isolates from each isolation source that had 

integrons is displayed in Figure 4.22. Unsurprisingly considering AMR and plasmids were 

found exclusively in eBG297 isolates from humans, integrons were also found only in 

these samples, present in 1.8% (3/164) of the human samples. The percentage of isolates 

containing different numbers of integrons varied by isolation source in eBG31. The source 

with the lowest percentage of isolates with integrons was environmental, with only 15.2% 

(142/931) containing any integrons. This increased significantly with 70.7% (668/945) of 

poultry isolates containing 1 or 2 integrons (p<0.00001). A significantly larger proportion 

of poultry eBG31 isolates contained integrons than human eBG31 isolates (p< 0.00001). 

 
 

 
Figure 4.22 Difference in integron frequency between S. Infantis isolation sources 
Shown as a percentage of isolates from each source. 
eBG31: environmental (n=931); human (n=1482); and poultry (n=945)  
eBG297: environmental (n=9); human (n=164) and poultry (n=0)  
Environmental        Human             Poultry                                                            

 

The frequency of integron isolation from each continent is shown in Figure 4.23.  The 

number of integrons in each isolate varied depending on which continent it was isolated 

from, ranging from 2.4% (7/291) of African eBG31 sequences containing integrons to 

78.5% (95/121) of South American eBG31 sequences.  In the eBG297 sequences, the only 

continent that contained isolates with any integrons was Africa, with just 2% (3/151) 

containing 1 integron. 
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The frequency of integron occurrence from each year group was also compared 

(Appendix IV Figure IV.1). Integrons were only seen in eBG297 strains isolated between 

2011 and 2014, which correlates with the only year group to have MDR eBG297 isolates. 

The percentage of eBG31 isolates containing integrons has been increasing since 2006; 

51.5% (596/1158) of isolates from 2017-2019 contained at least one integron. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.23 Difference in integron frequency across S. Infantis by continent 
Shown as a percentage of isolates from each continent. • values are less than 1% but greater than 0. 
eBG31: Africa (n=291); Asia (n=233); Europe (n=900); North America (n=2774) and South America (n=121) 
eBG297: Africa (n=151); Asia (n=3); Europe (n=20); North America (n=2) and South America (n=0)  
Africa       Asia        Europe          North America          South America            
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4.4 Discussion 
 

A significant difference was found in the occurrence of AMR between the two eBGs in S. 

Infantis. This cannot be attributed to temporal differences in when the strains were 

isolated, as the eBG31 strains were isolated between 1989-2018 and the eBG297 strains 

between 2003-2019.  It could be due to the much larger size of the eBG31 population 

when compared to eBG297, or may be because of the differences in geographical 

distribution identified in Chapter 3.3.1.6; the majority (84%) of the eBG297 sequences 

were isolated from Africa compared to only 7% of eBG31 sequences.  

Low levels of AMR were observed in isolates from both eBGs isolated from Africa. 

As the majority of the sequences representing this continent were from South Africa, this 

finding is surprising due to the proportion of immuno-compromised people in this 

country. With a high proportion of the South African population being positive for AIDS, 

the need for frequent antibiotic consumption is increased, which would be expected to 

be associated with increased levels of resistance to these antibiotics (Essack et al., 2017; 

Statistics South Africa, 2018). However, this is not seen within the S. Infantis population. 

There was a large amount of variation in the AMR gene clusters that were found in 

eBG31 isolates from each continent, with only 11 of the 62 genes being found in isolates 

from all of the continents. This indicates that movement of S. Infantis between 

continents, or at least of isolates with AMR, has not been frequently occurring. 

Furthermore, AMR genes were found in eBG31 isolates that were unique to each of the 

continents, suggesting that there are continent-specific AMR profiles within the eBG31 

population. 

As broiler chickens are most frequently associated with S. Infantis, chicken meat is 

predicted to be the biggest source of zoonotic transmission of S. Infantis to humans (EFSA 

and ECDC, 2019a). However, the percentage of MDR S. Infantis isolates from poultry was 

significantly higher than those isolated from humans. This could indicate that poultry is 

not such a large contributor to S. Infantis in humans; as human and environmental eBG31 

isolates shared the most AMR gene clusters, possibly sources from this group are 

contributing more to human infection.  Alternatively, it is plausible that a subgroup of S. 

Infantis from poultry with lower rates of MDR is the source of the human infection.  

The high levels of AMR in eBG31 poultry isolates could explain the difference in 

AMR between the eBG31 and eBG297 isolates. Isolates from poultry are a large 
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contributor to AMR in the eBG31 population; it is conceivable that the lack of any eBG297 

isolates from poultry sources explains the low levels of AMR seen in this eBG. 

As seen with other Salmonella serovars (FDA, 2019b), the frequency of 

identification of AMR in eBG31 is increasing, with the highest percentage of isolates 

containing resistance genes for 7 of the 11 antibiotic classes identified in 2017-2019. This 

concurs with other research that has shown that AMR is an increasing problem within S. 

Infantis (Hindermann et al., 2017; Szmolka et al., 2018). None of the identified AMR genes 

were unique to 2017-2019, suggesting that this increase in resistance is due to resistance 

profiles already present in the population rather than the introduction of new resistance 

profiles. Over a quarter of the AMR gene clusters identified were present in eBG31 

samples isolated from every year group; genes encoding to resistance to aminoglycosides, 

chloramphenicols, sulphonamides, tetracyclines, trimethoprims and beta-lactams, 

including extended-spectrum beta-lactams, are therefore being maintained within the S. 

Infantis population. The eBG297 population had consistently low levels of antibiotic 

resistance, with MDR only present in isolates between July and October 2012, and 

therefore plausibly part of an outbreak.  

The small number of shared plasmids across eBG31 suggests that, other than 

between specific places such as North America and Europe, there is not a large amount of 

transmission of S. Infantis between continents. This supports the finding of a geographical 

signal across the eBG31 population in Chapter 3.3.2.5. Whilst in the eBG31 phylogeny the 

North American and European sequences were found to cluster separately, the European 

cluster did contain a large group of North American sequences, potentially explaining why 

these continents in particular share several plasmids. 

Concerningly the number of S. Infantis isolates with plasmids was at its highest 

between 2017 and 2019; associated with the highest levels of AMR. Whilst several 

different groups of plasmids were maintained in the eBG31 population, the same was not 

seen for eBG297 isolates where those that were seen in multiple year groups, occurred at 

low frequencies. Significantly fewer integrons were also identified in the eBG297 isolates 

than in eBG31. This suggests that the presence of these mobile genetic elements was not 

advantageous enough to be maintained; or that due to the small size of the eBG297 

population, transmission was lower than in eBG31. 

The global presence of pESI in S. Infantis was 33%, therefore it would be expected 

that pESI would have been present in eBG297, this was not the case. This could indicate 

that pESI is found specifically in eBG31 isolates, supporting the findings of Chapter 3.3.6.3 
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that eBG31 and eBG297 are distinct from one another and eBG297 should not be 

classified as S. Infantis. However, this absence of pESI in eBG297 could also be attributed 

to geography. Only 1.7% of the eBG31 African isolates were positive for pESI and as 84.2% 

of eBG297 sequences were found in Africa this could explain the lack of the plasmid in 

eBG297.  

pESI, previously found to be associated with broilers (Hindermann et al., 2017), 

was found more frequently in eBG31 isolates from poultry sources than any other source, 

with 69.7% of the poultry isolates in the project being positive for the plasmid. This 

suggests pESI is spreading throughout the poultry industry. Whilst at lower levels than 

seen in poultry isolates, pESI was also present in 36.3% of eBG31 isolates from humans. 

Due to the presence of several AMR genes on the plasmid this is a public health concern, 

particularly if the plasmid becomes more prevalent in areas with a larger proportion of 

immuno-compromised people, such as Africa. Interestingly, pESI was only identified in 

13% of the eBG31 environmental isolates. This suggests that whilst pESI is present in 

livestock and other environmental sources, it is not common in this source of S. Infantis. 

The decreased frequency of Integron A in the pESI positive environmental eBG31 isolates 

indicates that adaptation to niche has occurred and that the environmental isolates are 

distinct from the human and poultry isolates. 

Also of concern is the presence of the blaCTX-M-65 gene on pESI amongst the poultry 

eBG31 isolates, which increased significantly in occurrence and was found to be present 

on 48.6% of pESI from poultry. As S. Infantis is found at high levels in poultry meat from 

EU member states, this could result in an increase in human cases with resistance to 

extended-spectrum beta-lactams (EFSA and ECDC, 2019a). The fact that no plasmid 

groups were found exclusively in poultry isolates suggests that this could be the source of 

infection for the other source groups; any plasmids these isolates acquire have been 

transmitted to the other sources. This further increases the risk of the blaCTX-M-65 gene 

spreading across the S. Infantis population. 

This project has identified pESI in S. Infantis from Japan in 1999; pESI has therefore 

been maintained in the S. Infantis population for the last 2 decades. Whilst it is plausible 

that pESI originated in Asia, more isolates from that time period would be needed to 

support this.  The presence of Integron A on pESI varies by continent, source and year of 

isolation. This could indicate that in some continents more than one population of S. 

Infantis are coexisting, carrying different variants of pESI. It could also be due to the 

selective pressure for the integron, perhaps the need for resistance to trimethoprim, 
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varies with continent, source or time. There was no association with Integron A presence 

and isolation from urine, however data on trimethoprim use was not available; with this 

data the cause of the variation in the presence of Integron A may become more apparent. 

This project has identified, for the first time, the severity of the pESI problem 

within the S. Infantis population. Previous research has identified the presence of pESI in 

isolates from select countries, but the overall numbers of isolates with pESI was before 

now unknown. pESI was found to be associated with a large proportion of the AMR in the 

S. Infantis population. Whilst it has not been determined that pESI carried these AMR 

determinants, there is a clear increase in particular in AMR and integrons in isolates with 

the plasmid.  

 

4.4.1 Conclusions 
 

To conclude this work has shown, for the first time, the global and source distribution of 

AMR and pESI in S. Infantis. The levels of AMR vary drastically in the S. Infantis 

population, with high levels seen in eBG31 and low levels in eBG297. Of particular 

concern is the high levels of resistance seen in isolates sourced from poultry. pESI is a 

large contributor to the high levels of AMR and therefore the identification of its presence 

in samples should be made a high priority by public health laboratories.  As high-quality 

genomes are required for accurate determining of AMR gene and pESI presence, it is 

possible that low coverage in areas of the genome containing these elements could result 

in an underestimation. Therefore, the true levels of AMR and pESI seen in S. Infantis may 

be even higher. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 168 

5. Chapter 5.  Genome-Wide Association Study of S. Infantis Isolated 
from Humans and Poultry 

 
5.1 Introduction 
 
To reduce cases of salmonellosis, informing prevention measures with source attribution 

is needed (Pires et al., 2014).  Genome wide association studies (GWAS) can be used to 

identify if genetic differences between isolates are associated with a phenotype. For 

example, when comparing 440 S. enterica isolates from 15 serovars and different 

isolation sources, researchers were able to identify genes significantly associated with 

avian, bovine, swine and fish sources (Vila Nova et al., 2019). The absence of genes was 

not found to be associated with isolation source. 

The sizes of the pan and core genomes of Salmonella varies between studies due 

to the inclusion of different serovars or the numbers of genomes being compared. An 

assessment of 4,893 S. enterica isolates, including strains from each subspecies, identified 

a pan genome estimated at 25,300 genes, with 1,500 belonging to the core genome 

(Laing, Whiteside and Gannon, 2017). A smaller study, including 440 S. enterica isolates, 

found the pan genome consisted of 21,835 genes, with 2,705 being core (Vila Nova et al., 

2019). 

While several studies have been published looking at the pan genome structure of 

multiple Salmonella serovars, fewer have looked within serovars.  A comparison of 37 S. 

Typhimurium isolates had a pan genome of 6,433 genes, with 4,003 core; 21 S. Dublin 

isolates had a pan genome of 5,066 genes, with 4,326 core and 32 S. Newport isolates 

had a pan genome of 5,351 genes, with 4,290 core (Liao et al., 2019).  Another study 

looking at 115 strains of S. Weltevreden found a pan genome of 11,969 coding sequences 

and a core of 4,046 (Makendi et al., 2016). 

Many virulence factors have been identified in Salmonella, with virulence genes 

varying between and within serovars (Cheng et al., 2015).  IGRs have been identified as 

virulence factors in Salmonella; however, little research has been performed looking at 

the number of pan and core IGRs in Salmonella.  When evaluating 68 S. Typhimurium 

strains, the total number of IGRs identified was 1857; the majority (1576) of these were 

core IGRs (Fu et al., 2015).   

Previous research has found that S. Infantis is less invasive than S. Typhimurium 

and that the virulence factors present vary depending on country of isolation; with sopE 

absent in S. Infantis from Israel but the most common virulence factor identified in 
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Pakistan (Aviv et al., 2019; Wajid et al., 2019).  Differences in virulence gene levels have 

also been seen between S. Infantis isolates from different sources; virulence gene 

patterns were observed in isolates from broilers but missing in isolates from breeders and 

layers (Sever and Akan, 2019).  

 

5.1.1 Aims and Objectives 
 

S. Infantis is an important serovar in poultry, being the serovar most frequently identified 

from broilers and broiler meat in EU member states (EFSA and ECDC, 2019a).  However, 

despite being seen at such high levels in broilers, it is seen relatively less frequently in 

humans, being the fourth most common serovar in EU member states. Identifying why 

this is the case is important for public health as it could be used to predict and reduce the 

risk of the numbers of human cases increasing.  

Previous chapters in this thesis have identified that, on the eBG31 phylogeny, several 

clusters of human sequences were visible, indicating the potential for a sub-group of S. 

Infantis that is more virulent in humans. The human eBG31 sequences were also found to 

be more diverse than poultry isolates. Conversely, the poultry eBG31 isolates had 

significantly higher levels of AMR than the isolates from humans (p < 0.00001); 

furthermore, pESI was significantly more commonly identified in isolates from poultry 

than humans (p < 0.00001). 

Little is known about the pan genome or IGRs in S. Infantis and if they vary between 

isolates from different sources. As it is possible that genetic differences in S. Infantis 

isolates could explain the differences in the numbers of cases seen in poultry and 

humans, the aims of this chapter were to: 

 

• Identify the variation in genes between S. Infantis isolated from humans and 

poultry 

• Identify the variation in IGRs between S. Infantis isolated from humans and 

poultry 

• Determine associations with other components of the genome and isolation 

source 
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5.2 Specific Methods for Feature Identification and Comparison 
 
5.2.1 Strain Selection 
 

The eBG31 collection was analysed for this chapter, with the Illumina short read sequence 

data for the eBG31 reference strain being used (Ashton et al., 2017). The strains were 

filtered by isolation source to include strains isolated from humans or chickens; the 

metadata phrases that were used to include isolates as from humans or poultry are listed 

in Appendix II Table II.1. 

 

5.2.2 Virulence Factors 
 

ARIBA was run using the parameters described in Chapter 2.7.4 and the vfdb_full 

database (Chen et al., 2016; Hunt et al., 2017). ARIBA summary was run with the 

cluster_cols match option to output the match column.  

 

5.2.3 Genes and Intergenic Regions 
 

The pan genome and IGR analyses were both carried out using scaffolded assemblies that 

were of sufficient quality (Chapter 2.6.7).  Roary (version 3.12.0) was run on the gff 

outputs of Prokka (Chapter 2.6.8) using 16 threads, making a fast core gene alignment 

with -e and -n and not splitting paralogs with -s (a requirement for Piggy input) 

(Seemann, 2014; Page et al., 2015).  Artemis (version 17.01.1) was used with the gff 

output of Prokka to identify the amino acids present in hypothetical proteins of interest 

(Rutherford et al., 2000). This was then run through Protein BLAST with default settings to 

identify homologous proteins (McGinnis and Madden, 2004).  

Piggy (accessed 05.06.19) was run with 16 threads using the gff outputs of Prokka 

(Chapter 2.6.8) and the output folder produced by Roary with default parameters (Thorpe 

et al., 2018).  The core gene and core IGR alignments produced by Roary and Piggy 

respectively were used as input for RAxML, which was used with the settings described in 

Chapter 2.7.2 to generate core gene and core IGR phylogenies.  The phylogenies were 

rooted to their most ancestral node and visualised and annotated using iToL and the iToL 

colored strip file (Letunic and Bork, 2016). 

TreeBreaker (accessed 10.06.19) was run on the core gene and core IGR 

phylogenies with default settings (Ansari and Didelot, 2016; Azim and Didelot, 2018). The 
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TreeBreaker R script (accessed 22.10.19) was then used with R (version 3.5.1) and RStudio 

(version 1.2.1335) to generate the phylogenies annotated with posterior probability; I 

amended the script to alter the display of the phylogenies to circular and reduce the size 

of the tip labels (R Core Team, 2018; RStudio, 2018).  

 

5.2.4 Statistical Analyses 
 

Scoary (version 1.6.16) was used with the ARIBA, Roary and Piggy results on CLIMB to 

identify virulence factors, genes and IGRs that were associated with isolation source 

(Chapter 2 2.7.5) (Brynildsrud et al., 2016; Connor et al., 2016). Unlike in Chapter 4, the 

pairwise comparisons option, which is default, was used for all the analyses, enabling 

correction based on population structure. The option --p 1.0 was also used to not exclude 

by p-value. A Benjamini-Hochberg adjusted p-value of less than 0.05 was used to define 

significance, correcting for multiple comparisons.  

The p-values within box plots were determined using the Mann Whitney U test 

using RStudio and R. The two population proportions z test calculator was used to 

determine whether proportions were significantly different (Stangroom, 2019).  

Figures 5.5 and 5.9 show the distribution of the differences in percentage between 

poultry and human associated genes/IGRs. To create these figures the percentage of 

isolates with each gene/IGR was calculated for both sources. The smaller percentage was 

then subtracted from the larger percentage; for example, if a gene was present in 80% of 

poultry isolates and 20% of human isolates, it would be poultry associated, with a 

difference in percentage of 60%.  The frequency of these differences in percentage was 

then plotted. 

 

5.2.5 PySeer – Unitig Association with Source 
 

For this analysis, the contigs.fasta outputs of SPAdes (Chapter 2.6.6) was used as input. 

The human and chicken S. Infantis isolate assemblies that were good quality (Chapter 

2.6.7) were copied to CLIMB where all of the software was run (Bankevich et al., 2012). 

Unitig-counter (version 1.0.5) was run on all the assemblies using four cores; this involves 

the generation of a De-Bruijn graph of all the assemblies, nodes on the graph are shared 

by genomes and are called unitigs (Jaillard et al., 2018; Lees, 2019). MASH (version 2.1.1) 

was used to generate a distance matrix for all the assemblies with 4 threads and a sketch 
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size of 10,000, with the square_mash script provided with PySeer (version 1.1.2) used to 

convert the output (Ondov et al., 2016; Lees et al., 2018). 

  The scree_plot_pyseer script that was provided with PySeer was used to generate 

a scree plot of the MASH output to determine the PySeer setting for multidimensional 

scaling; this shows the results of a principal component analysis where the data was split 

into components and the variance in each measured in eigenvalues. The ‘knee’ of the plot 

(Figure 5.1) was recommended as the value to be used, so 2 was selected for this option 

(Lees and Galardini, 2018). Pyseer was then run with the uncompressed option, using 2 as 

the value for max-dimensions, the output of unitig-counter as k-mers and the distance 

matrix generated by MASH to control for population structure. The names of the isolates 

containing each unitig was added using the print-samples flag and the output_patterns 

option was used to create a patterns file to determine the significance threshold.   

 

 

The Roary core gene phylogeny was also used with PySeer instead of the MASH output to 

adjust for population structure. The qq_plot script included with PySeer was used to 

produce plots comparing the p-values. Using MASH to control for population structure 

gave a better result and was therefore selected over the use of the phylogeny. 

The count_patterns.py script provided by PySeer was used with the patterns file, 

an alpha value of 0.05 and 4 cores to determine the Bonferroni p-value threshold for 

defining significance, corrected for multiple comparisons, which was 1.02x10-6.  The lrt p-

value, the p-value adjusted for population structure, was then used to identify the 

significant unitigs. Sed commands were used to replace each isolates name with either 

‘Human’ or ‘Poultry’; the number of occurrences of each of these for each unitig was then 

counted. 

 
Figure 5.1 Scree plot of the variance across the distance matrix.  

The variance across the first 30 principle components in the distance matrix calculated using eBG31 

isolates from humans (n=1432) and poultry (n=945). 

Principle Components 
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 The phandango_mapper command with PySeer was used to create a Manhattan 

plot of the significant unitigs associated with either isolation source, mapped against the 

eBG31 nanopore reference. This was visualised using phandango and the Prokka 

annotation file of the reference (Chapter 2.6.8) (Hadfield et al., 2018). The coordinates of 

areas of unitig coverage of the reference were used to identify which coding sequences 

were present in the Prokka file.  
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5.3 Results 
 

To further investigate whether there were any genetic differences between S. Infantis 

isolates that infect poultry and humans, the variation in the virulence factors, pan 

genome, IGRs, SNPs and unitigs between isolates from these source groups were 

compared. 

As no eBG297 strains were isolated from poultry, the eBG297 human isolates were 

excluded from this chapter’s analyses; as eBG31 represented 96.1% of the S. Infantis 

collection this is a good representation of the population.   

 

5.3.1 Virulence Factors 
 

The virulence factors in all eBG31 human (n=1,519) and poultry (n=947) isolates were 

identified using ARIBA and the full VFDB database. 698 virulence factors were identified, 

36 of which were conserved across all of the isolates; the remaining 662 virulence factors 

varied in frequency of identification between the two sources.  The previously mentioned 

genes sopE and sopE2 were identified in 0.2% (6/2466) and 99.4% (2451/2466) of the 

isolates respectively.  

 Scoary was used to determine whether any of the virulence factors were 

significantly associated with either source group, with a Benjamini-Hochberg corrected p-

value of less than 0.05. 30 were identified as being significantly associated to a source 

group, 21 of these were associated with poultry isolates, although none were found 

exclusively from that source group (Appendix VI.5). The factor most associated with 

poultry isolates was irp1, the yersiniabactin biosynthetic protein, which was present in 

67.5% (639/947) of the poultry isolates and 33.0% (502/1519) of the human isolates.  

 9 of the virulence factors were significantly associated with being isolated from 

humans, 7 of which were identified exclusively from humans. However, these 7 factors 

were only present in 17 of the human isolates and were variants of the pil gene. Another 

pil gene, pilT was significantly associated with the human eBG31 isolates although it was 

only present in 25 human and 3 poultry isolates. The only other gene that was 

significantly more frequently identified in the human isolates was sspH2; present in 11.9% 

(181/1519) of the human isolates versus 7.1% (67/947) of the poultry isolates. 
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5.3.2 Variation in Pan Genome Structure 
 

 In order to determine whether the pan genome of human eBG31 isolates and poultry 

eBG31 isolates varied, 2427 good quality scaffolded assemblies, 1482 from humans and 

945 from poultry, were annotated using Prokka and the genes present and shared across 

the isolates identified using Roary. 

A total of 21,976 genes were identified across the 2,427 isolates, with the lowest number 

of genes present in a single isolate being 4,173 and the highest 5,065. The core genome, 

defined as gene presence in greater than or equal to 99% of strains, consisted of 4,132 

genes.  The accessory genome, all genes that were not core, was split into: soft-core 

which encompassed genes that were present in between 95% and 99% of strains; shell 

which was genes present in between 15% and 95% of strains and cloud which was genes 

seen in less than 15% of isolates. 0.2% (34/21976) of the genes identified were soft-core; 

2.6% (561/21976) were shell and 78.5% (17248/21976) were cloud genes.  

 The pan genome structure within each isolation source was compared (Figure 

5.2). Although the structure by source appears to vary considerably, a similar number of 

genes were core; 4,137 genes in the human eBG31 isolates were core, versus 4,141 in the 

poultry isolates. A larger number of genes, 19,343, were identified in eBG31 isolates from 

humans when compared to the number seen in poultry isolates, 10,550. The 83.3% 

 

 
Figure 5.2 Pan genome composition of eBG31 human and eBG31 poultry isolates 

a) Pan genome structure of eBG31 human isolates (n=1482) 
b) Pan genome structure of eBG31 poultry isolates (n=945) 

Core: 99% ⩽ Strains ⩽100%, Soft-core: 95% ⩽ Strains < 99%, Shell: 15% ⩽ Strains < 95%, 
Cloud:  Strains < 15% 
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increase in the number of genes in the human isolates is due to the cloud genes, which 

increased in number by 151.7% from that seen in the poultry isolates. 

This difference in the number of genes identified cannot be attributed to isolates 

from humans having more genes as the opposite was found to be true; a significant 

difference was found between the distribution of the number of genes in eBG31 isolates 

from either source, with over 50% of the poultry isolates having more genes than seen in 

75% of the human isolates (p-value < 2.2x10-16) (Figure 5.3).  

 

 
Figure 5.3 Difference in the distribution in the number of genes in eBG31 human and poultry isolates 
Box plot showing the variation in the number of genes in each eBG31 isolate from human sources 
(n=1,482) and poultry sources (n=945). 
Human             Poultry              
                                         

 

To identify whether differences seen between the pan genome structure of eBG31 

human and poultry isolates was due to a small number of extremely divergent sequences 

or that the discrepancy was seen uniformly throughout the groups, the number of genes 

in each of the isolates that belonged to each pan genome section was calculated (Figure 

5.4).  

A significant difference was seen between the number of core genes in each 

human and poultry isolated eBG31 isolate (p-value < 2.2x10-16). The number of core genes 

was higher in the poultry isolates with 97.4% (920/945) of the poultry isolates containing 

more core genes than the largest number from a human isolate.  A larger range was seen 

in human eBG31 isolates, with the lowest number of core genes seen in two historical 

PHE isolates at 4,044; both isolates were associated with foreign travel to Asia, one 

isolated in 2007 and the other in 2011. 
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Figure 5.4 Distribution of the number of genes belonging to each pan genome component from each 
eBG31 human and poultry isolate 

a) Number of core genes in each human (n=1482) and poultry (n=945) eBG31 isolate 
b) Number of soft-core, shell and cloud genes in each human (n=1482) and poultry (n=945) eBG31 

isolate 
Human             Poultry                                                      

 

A significant difference was also seen between human and poultry eBG31 isolates from 

each of the accessory genome components (p-value < 2.2x10-16). A significantly greater 

number of both soft-core genes and shell genes were seen in poultry isolates (p-value < 

2.2x10-16). Conversely, significantly more cloud genes were identified in the human 

isolates; whilst isolates with 0 cloud genes were present, 50% had greater than or equal 

to 44 cloud genes (p-value < 2.2x10-16). 99 human isolates had more than 194 cloud genes 

and are plotted as outliers on the box plot; these were isolated from Africa, Europe, 

North America and South America from every year between 2005-2018.  
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5.3.3 Genes Associated with Isolation Source 
 

To establish whether any genes were significantly associated with isolation from human 

or poultry sources, Scoary was run on the Roary output. 1,342 genes were significantly 

associated with isolation source; 716 with human isolation and 626 with poultry isolation 

(p-value < 0.05). The difference in the percentage of isolates with associated genes from 

either source varied (Figure 5.5).   

 

 
Figure 5.5 Distribution in the difference in the percentage of associated genes between sources 
The percentage of isolates with a lower proportion of each significantly associated gene was subtracted 
from the percentage of isolates with each gene from the other source  • values are less than 5 but 
greater than 0. 
Human (n=1482)               Poultry (n=945)                
 

Whilst more genes were significantly associated with human sources, many were 

identified in low numbers of human sequences; the majority of these genes (82.8%, 

593/716) were only present in up to 5% more of the human isolates than in poultry 

isolates. Conversely, the majority (55.1%, 345/626) of the poultry associated genes were 

identified in over 30% more of the poultry isolates than in human isolates.  

 Focussing on genes that were identified in large numbers of sequences, 47 poultry 

associated genes were identified with a difference in percentage of 40% to that seen in 

human isolates, 40 of which were hypothetical proteins.  The other seven genes were: 

parM, srp54, pifC, vapC_2, xerC_2, pndA and tufA_1.  The gene most associated to poultry 

eBG31 isolates, parM, which is plasmid associated, was present in 56.9% (538/945) of 

isolates from poultry and 10.3% (152/1482) of isolates from humans. Another variant of 

the elongation factor gene, tufA_2 was the gene most associated with eBG31 human 
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isolation, present in 86.9% (1288/1482) of human eBG31 isolates and 50.2% (474/945) of 

eBG31 poultry isolates.  

 The human and poultry isolates in the eBG31 soft-core SNP phylogeny (Figure 3.9) 

were annotated with the tufA variant they contained (Appendix V Figure V.1).  Clustering 

is visible, with several large groups of human eBG31 sequences containing exclusively 

tufA_2.  In areas where the human eBG31 sequences clustered with poultry isolates there 

is more disparity in the variant of tufA, with both human and poultry isolates containing 

either variant or both. 

 

5.3.4 Genes Unique to an Isolation Source 
 

Many genes were also identified as being found exclusively in isolates from either source 

group. 11,426 of the genes were unique to the human isolates, 342 of which were 

significantly associated with that source (p < 0.05). A smaller number, 2632, were 

identified exclusively in eBG31 poultry isolates, 23 of these were significantly associated 

(p < 0.05). The distribution of the number of unique genes in each of the isolates from 

either source is plotted in Figure 5.6. 

 

 

 
 

Figure 5.6 Distribution of the number of unique genes in eBG31 human and eBG31 poultry isolates 
Box plot showing the variation in the number of genes found exclusively in each source group in each 
eBG31 isolate from human sources (n=1482) and poultry sources (n=945).  
Human             Poultry                                                      

Source

1

Nu
m

be
r o

f g
en

es

0

100

200

300

400

500

600

Human Poultry 



 180 

eBG31 isolates from human sources had a significantly different distribution of unique 

gene identification per isolate compared to the eBG31 poultry isolates (p-value < 2.2x10-

16). Whilst the median number of unique genes per isolate from each source was 

comparable, the range varied considerably. Furthermore, significantly more human 

isolates than poultry isolates contained at least one unique gene (1066 human isolates, 

551 poultry isolates, p-value < 0.00001).  

Hypothetical proteins were encoded by 78.7% (8988/11426) and 77.5% 

(2041/2632) of the genes unique to human and poultry sources respectively. In both 

sources the majority of these were found in only one isolate; the largest number of 

isolates that shared a hypothetical protein was 47, which was observed twice in human 

isolates. 

The distribution of the number of isolates from either source that contained 

unique genes encoding known proteins was calculated (Appendix V Figure V.2).  Whilst 

significantly more of the human eBG31 isolates had unique genes, 68.9% (1682/2440) of 

the genes that encoded a defined protein were only identified in a single isolate. 2.7% 

(66/2440) of the genes were identified in more than 10 isolates, with the highest 

occurrence being variants of the dam, ftsH, hin genes which were seen in 34 human 

eBG31 isolates. 

As with the human eBG31 unique genes, the majority (90.9%, 539/593) of the 

defined protein-coding genes unique to the eBG31 poultry isolates were only identified in 

1 isolate. Unlike the human sourced isolates, only 2 of the genes were identified in over 

10 samples, ycbX_2 and a gene encoding the IS3 family transposase IS1353. 

 

5.3.5 Variation in Intergenic Region Composition 
 

To establish whether the IGRs of S. Infantis isolates varied between isolates sourced from 

humans and from poultry, Piggy was run on the gff output of Prokka and the Roary 

output. 1482 eBG31 isolates from humans and 945 eBG31 isolates from poultry sources 

were compared. 

12,458 different IGRs were identified across the S. Infantis human and poultry 

isolates; 20% (2464/12458) were core, 1% (149/12458) soft-core, 4% (454/12458) shell 

and 75% (9391/12458) cloud.  The proportion of IGRs from human and poultry eBG31 

isolates that were core and accessory is shown in Figure 5.7. While 6,139 IGRs were 

identified in the eBG31 poultry isolates, 11,286 IGRs were present in the eBG31 human 



 181 

isolates. This 83.8% increase, as seen with the structure of the pan genome, contributes 

to the varying structure of the IGR population by source.  

 

 
Figure 5.7 IGR composition of eBG31 human and eBG31 poultry isolates 

a) IGR structure of eBG31 human isolates (n=1482)  
b) IGR structure of eBG31 poultry isolates (n=945) 

Core: 99% ⩽ Strains ⩽100%, Soft-core: 95% ⩽ Strains < 99%, Shell: 15% ⩽ Strains < 95%,  
Cloud:  Strains < 15% 

 

The distribution of the number of IGRs in each eBG31 human and poultry isolate was 

calculated (Appendix V Figure V.3). Despite a higher number of IGRs being identified from 

the human eBG31 isolates, the distribution of the number of IGRs in isolates from each 

source was significantly different (p-value < 2.2x10-16). As seen with the distribution of 

genes, over 50% of the poultry eBG31 isolates contained more IGRs than seen in 75% of 

the eBG31 human isolates. 

The number of IGRs in each isolate belonging to each component of the IGR is 

plotted in Figure 5.8. The eBG31 poultry isolates contained significantly more core IGRs 

than the eBG31 human isolates (p-value < 2.2x10-16); only one eBG31 poultry strain 

contained fewer than the maximum number of core IGRs in the eBG31 human isolates, 

DRR002281, which was isolated from Asia in 2010 and contained 2,413 core IGRs.  

A significant difference was also seen between the number of IGRs within each 

accessory IGR component from either isolation source (p-value < 2.2x10-16). 99.6% 

(1476/1482) of the eBG31 human isolates had greater than 104 soft-core IGRs in their 

genome, the maximum that was seen in the poultry isolates. While significantly more 

shell IGRs were seen in the eBG31 poultry isolates, a significantly higher number of cloud 

IGRs were present in the eBG31 human isolates; 11 had greater than 188 IGRs, the 
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maximum number in any eBG31 poultry isolate (p-value < 2.2x10-16). These isolates were 

from Europe, North America and Africa; isolated between 2008 and 2017.   

 

 

5.3.6 IGRs Associated with Isolation Source 
 

The association between each IGR and isolation from human or poultry sources was 

determined using Scoary.  963 IGRs were significantly associated with isolation source; 

445 from human sources and 518 from poultry sources (p<0.05). 

 The difference in the percentage of isolates containing associated IGRs between 

each source was determined (Figure 5.9). Despite fewer IGRs being associated with 

isolation from humans than genes, the distribution in the difference between the 

occurrence of these IGRs in human and poultry eBG31 isolates is comparable to what was 

seen in the source associated genes (Appendix V Figure V.4). 74.4% (331/445) of the 

 

 
 
Figure 5.8 Distribution of the number of IGRs belonging to each IGR component from each eBG31 
human and poultry isolate  

a) Number of core IGRs in each human (n=1482) and poultry (n=945) eBG31 isolate 
b) Number of soft-core, shell and cloud IGRs in each human (n=1482) and poultry (n=945) eBG31 

isolate 
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human associated IGRs were only present in up to 5% more human eBG31 isolates than 

poultry eBG31 isolates. However, the majority of the poultry associated IGRs were seen 

with a larger difference in percentage between the sources, with 50.2% (260/518) 

present in over 20% more poultry isolates.  

 

Two IGRs which were present in over 50% more isolates in its associated source group 

were identified, one human associated and one poultry associated. The poultry 

associated IGR was present in 55.3% (523/945) of the poultry isolates and 4.9% (73/1482) 

human isolates; the human associated IGR present in 95.0% (1408/1482) of human 

isolates and 44.7% (422/945) of poultry isolates. Both of these IGRs contained double 

promoters resulting in divergent transcription of the genes either side of it. They were 

also between the same genes on all the genomes, yfkN and a gene encoding a 

hypothetical protein similar to cytoplasmic proteins. Every isolate had only one of these 

two IGRs with the exception of one human isolate which had neither; the human 

associated one was 136 bases long and the poultry associated one, 634 bases.  Neither of 

the IGRs contained ncRNAs previously identified in other Salmonella serovars; as the 

ncRNA suite in S. Infantis has not yet been solved it is possible that ncRNAs unique to S. 

Infantis were present.   

The eBG31 soft-core SNP phylogeny (Figure 3.9) was annotated with the variant of 

the IGR that the human and poultry isolates contained (Appendix V Figure V.6).  99% 

(592/596) of the isolates with the poultry associated IGR variant belonged to the same 

 
Figure 5.9 Distribution in the difference in the percentage of associated IGRs between sources 
The percentage of isolates with a lower proportion of each significantly associated IGR was subtracted 
from the percentage of isolates with each IGR from the other source.  • values are less than 2 but greater 
than 0.  
Human (n=1482)               Poultry (n=945)                                    
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25SNP cluster, which could indicate that they were part of an outbreak. 89% (520/596) of 

the isolates in that cluster with that variant were from poultry sources, isolated between 

2014 and 2018 and from 30 different states across the USA. 

 

5.3.7 IGRs Unique to an Isolation Source 
 

Of the 12,458 IGRs that were identified in the S. Infantis isolates, 1,172 were found 

exclusively in poultry isolates, 45 of which were significantly associated and 6,319 in 

human isolates, 180 that were significantly associated (p < 0.05). The distribution of the 

number of unique IGRs in each of the isolates is shown in Figure 5.10.  

 

  

The distributions of unique IGRs from human and poultry sources were significantly 

different (p-value < 2.2x10-16). Whilst 78.5% (742/945) of strains had fewer than 3 IGRs 

unique to poultry isolation, 55.6% (796/1432) of the human isolates contained 3 or more 

IGRs unique to human isolation. Additionally, significantly more poultry isolates contained 

0 unique IGRs than human isolates (human n=286, poultry n=380, p-value < 0.00001).  

  The distribution of isolation frequency of IGRs unique to isolation source was 

calculated (Appendix V Figure V.5). 72.3% (847/1172) of IGRS unique to poultry and 

62.3% (3935/6319) of IGRs unique to humans were only identified in 1 isolate.  However, 

several were present in larger number of isolates, with a higher number of IGRs unique to 

isolation from humans seen in multiple isolates.  8 unique IGRs were identified in over 40 

eBG31 human isolates, 6 of these were present in between 40 and 60 isolates. An IGR 

 
Figure 5.10 Distribution of the number of IGRs unique to eBG31 human and eBG31 poultry isolates 
Box plot showing the variation in the number of unique IGRs in each eBG31 isolate from human sources 
(n=1482) and poultry sources (n=945).  
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between cysG and a gene encoding a hypothetical protein, promoting transcription in this 

order, was present in 87 isolates. The most common IGR unique to human sources was 

present in 105 isolates and was predicted to divergently transcribe two genes encoding 

hypothetical proteins.  1 IGR unique to poultry sourced isolates was seen in 50 isolates 

and was between tyrosine recombinase producing gene xerC and a gene encoding an IS6 

family transposase which were transcribed in the order written. 

 

5.3.8 SNPs Associated with Isolation Source 
 

In order to identify other components of the genome that may be associated with 

isolation source, variation within the core genome, core IGRs and unitigs were 

investigated.  

 

5.3.8.1 Differences Within Core Genetic Elements 

 

A maximum likelihood phylogeny was generated using the core gene alignment of 1,482 

human eBG31 isolates and 945 eBG31 poultry isolates produced by Roary (Figure 5.11).  

Clustering by isolation source is clear within the phylogeny. The majority of the 

isolates from poultry sources cluster in one section of the phylogeny and although 

interspersed with isolates from humans, several clades are present containing only 

poultry isolates. Clustering of isolates from human sources is also evident with several 

large clades entirely comprised of these isolates.  

A maximum likelihood phylogeny of the core IGRs from the same isolates was also 

generated (Appendix V Figure V.7). Similar patterns of clustering by isolation source were 

seen in this phylogeny with the majority of the eBG31 poultry isolates clustering in one 

section and several large clades containing isolates from humans also present.  

 To identify whether any of the clades within the core gene and IGR phylogenies 

had distinct phenotype distributions, the software TreeBreaker was used (Appendix V 

Figure V.8, V.9). Several of the branches within both phylogenies were significantly 

associated with a change of isolation source, having a posterior probability of greater 

than 0.5. 
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Figure 5.11 Maximum likelihood phylogeny of core genes 
Phylogeny of 4132 core genes from 1482 eBG31 human isolates and 945 eBG31 poultry isolates.  
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5.3.8.2 Unitigs Associated with Isolation Source 

 

To identify smaller areas of the genome that were associated with isolation source, 

PySeer was used with unitigs as the input. The contigs assembly format was used with 

poor-quality assemblies excluded; resulting in the inclusion of 1483 eBG31 isolates from 

human sources and 944 from poultry sources. 1 isolate from human sources and one 

from poultry sources that had been included in the pan genome analyses were excluded 

and two new human samples were included.  

 70,216 unitigs were identified which were associated with isolation from 

either human or poultry sources. Those with a population structure adjusted and 

Bonferroni corrected p-value of less than 1.02x10-6 were classed as significantly 

associated, resulting in 17,052 significant unitigs, 6,539 that were associated with humans 

and 10,508 with poultry. The length of the significant unitigs varied, the smallest unitig 

was 31 nucleotides long, found from both sources; the largest 1,411 nucleotides in the 

human isolates and 6,522 in the poultry isolates.  

Figure 5.12 shows the inverse p-values for the significant unitigs and their position 

across the genome. Significant unitigs associated with both isolation sources are present 

throughout the genome. Higher levels of significance were observed in the poultry 

associated unitigs, with many of the unitigs having higher inverse p-values than the 

human associated unitigs.  

3 clusters of significant unitigs were identified in Figure 5.12, regions 1, 2 and 3. 

While significant unitigs were seen in both source groups, regions 1 and 3 were more 

densely populated in the poultry eBG31 isolates and region 2 more so in the human 

eBG31 isolates. The genes present in these regions were identified from the eBG31 

reference annotation (Appendix VI.6). Region 1 contained 72 genes, 55 of which encoded 

hypothetical proteins and the remainder encoded proteins involved in, for example, lipid 

biosynthesis and transport, DNA replication and translation and formate transmembrane 

activity. Region 2 contained 34 genes, 29 encoding hypothetical proteins and 5 genes 

encoding known proteins whose functions were: translation regulation, cell membrane 

component, rRNA processing, heat response and copper ion binding.  
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Figure 5.12 Manhattan plots of significant unitigs 
17,052 unitigs identified in 1483 eBG31 human isolates and 944 eBG31 poultry isolates that were 
significantly associated with isolation source plotted against the eBG31 reference.  

a) Unitigs significantly associated with isolation from humans (n=6,539) 
b) Unitigs significantly associated with isolation from poultry (n=10,508) 

      region 1                 region 2                    region 3 
  

Region 3 contained 53 genes, 39 of which encoded hypothetical proteins. The other 14 

encoded proteins involved in, for example, nucleic acid repair, transcription regulation, 

translation, metal ion binding and also genes associated with recombination and 

prophages. Also present was the uppP gene. 
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5.4 Discussion 
 
The aim of this chapter was to identify any genetic basis for S. Infantis being the serovar 

most frequently identified from domestic fowl in Europe but only the fourth most 

common serovar causing infection in humans (EFSA and ECDC, 2018b). To the authors 

knowledge, this GWAS is the largest performed on isolates within a Salmonella serovar. 

Although 9 virulence factors were identified which were significantly associated 

with isolation from humans, none of these were seen at a high frequency across the 

human isolates and therefore cannot explain the difference in prevalence of S. Infantis in 

poultry and humans. A higher number, 21 virulence factors, were significantly associated 

with isolation from poultry, including irp1, the yersiniabactin biosynthetic protein which 

has previously been identified on pESI-like plasmids (Franco et al., 2015). Whilst the 

increased association with virulence factor presence in poultry isolates could explain the 

high incidence of S. Infantis amongst poultry isolates, it does raise the question, is poultry 

a major source of human S. Infantis infection? This could indicate either that whilst the 

poultry associated virulence factors are needed for colonisation of poultry, they are not 

needed for human colonisation; or that the main contributor to human S. Infantis 

infection is not, as is suspected, poultry meat. 

Whilst 4,132 genes were seen in all but 1% of isolates, only 34 genes were seen in 

the soft-core genome, suggesting that aside from the genes conserved in both human 

and poultry eBG31 isolates, the genes were seen a lot more sporadically. The vast 

majority of the genes were seen in less than 15% of the isolates, indicating the genetic 

diversity within the eBG31 population.  There also appears to be greater genetic diversity 

in eBG31 than in some Salmonella serovars; a comparison of 1,326 genomes from an eBG 

containing monophasic S. Typhimurium sequences identified fewer core genes than in 

eBG31 (4,050), a smaller pan genome (13,135) and fewer cloud genes (8,588) (Palma et 

al., 2018). However, a study of 622 S. Enteritidis sequences found a pan-genome of 

18,091 genes; comparable to what was observed in eBG31 (Feasey et al., 2016).  

The structure of the pan genome varied by isolation source, most noticeably in the 

overall number of genes identified across the isolates, with 83.3% more genes being 

identified from the human isolates. Conversely, the distribution of the number of genes in 

each isolate were significantly different, with poultry isolates having more than those 

from humans. A larger proportion of the eBG31 poultry isolates pan genome was 

comprised of core genes, suggesting that there is less variation within the eBG31 poultry 

population when compared to the eBG31 human population.  The variation within the 
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eBG31 human population was not due to a small number of divergent sequences, as 50% 

of the human sequences contained over 43 cloud genes; significantly fewer cloud genes 

were identified from each of the eBG31 poultry isolates. 

Unsurprisingly, considering the variation in the structure of the pan genome, there 

were several thousand genes that were significantly associated with isolation from 

human or poultry sources. Whilst there was a greater number of genes which were 

significantly associated with isolation from human sources, the majority of these genes 

were seen in low numbers of isolates, again highlighting the diversity within the human 

eBG31 population. Even though a smaller number of genes were significantly associated 

with isolation from poultry, they were seen in higher frequencies, suggesting either 

several instances of emergences of these genes or small outbreaks of isolates sharing 

them.  Whilst this again highlights the difference between S. Infantis isolates from these 

sources, this data can currently only be used to speculate that perhaps some of these 

genes, or even a combination of them, need to be present in order to cause human 

infection. The increased number of genes associated with and unique to eBG31 human 

isolates does support this hypothesis, also emphasising the greater genetic diversity 

amongst the eBG31 human isolates.  This could suggest that the source of infection for 

these human cases was not poultry sources, supporting the conclusions drawn from 

Chapter 4 that despite the prevalence of S. Infantis in poultry, it is not the main 

contributor to infections in humans.  As the human isolates had similar AMR levels to 

those seen in the environmental isolates it could be that this source group causes a large 

number of human S. Infantis infections. 

Two variants of tufA, the translation elongation factor (UniProt, 2019b), were 

identified in the S. Infantis human and poultry isolates; one of the variants significantly 

associated with human eBG31 isolates and the other with isolates sourced from poultry. 

The fact that 86.9% of human eBG31 isolates, collected over across three decades, have 

maintained tufA_2 indicates that there is a selective advantage for the presence of this 

gene in colonising the human host. As previous research has identified that synonymous 

codon changes in the tufA and tufB genes in S. Typhimurium altered levels of protein 

expression, it is plausible that the variants of tufA associated with human eBG31 isolates 

are associated with different levels of protein expression and that this is advantageous in 

causing infection in humans (Brandis and Hughes, 2016). It could also be argued that the 

increased prevalence of the tufA variant significantly associated with poultry eBG31 

isolates is a factor in the success of S. Infantis in poultry.  If the S. Infantis poultry 
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population is split into two groups, with either variant of tufA, but isolates containing only 

one of the variants are more virulent to humans, then this immediately reduces the 

likelihood of a human coming in contact with an S. Infantis isolate likely to cause 

infection. It would be pertinent to identify the difference between the variants of tufA, to 

determine if it is responsible for the different frequencies in S. Infantis isolation from 

humans and poultry.  

The composition of the IGRs in eBG31 was comparable to the pan genome 

structure. The number of core IGRs in eBG31 was larger than the number found in a 

comparison of 68 S. Typhimurium (1,576), suggesting greater IGR diversity in eBG31 (Fu et 

al., 2015).  Significantly more IGRs were identified in the eBG31 human isolates that were 

present in fewer than 15% of the samples. This supports the findings that the eBG31 

human isolates are more diverse than the isolates from poultry.  Despite the overall 

increased number of IGRs identified from eBG31 human isolates, significantly more IGRs 

were present in each of the eBG31 poultry isolates. The increased number of genes and 

IGRs present in the poultry eBG31 isolates adds further evidence that the two source 

groups are two separate niches within the S. Infantis population; if the source of human 

infection was mainly poultry products then the frequency of genes and IGRs identified 

would be similar.  

As the majority of the IGRs unique to a source were identified only in 1 isolate this 

suggests that they are not maintained in the S. Infantis population and that they were 

acquired sporadically. The presence of unique IGRs in multiple isolates suggests either a 

possible outbreak or that the altered gene expression caused by the IGR is beneficial to 

the bacteria.  

IGRs were identified that were significantly associated with a source group.  The 

IGR that was most frequently identified exclusively from poultry was between 

recombinase and transposase encoding genes; this could be attributed to the increased 

percentage of eBG31 poultry isolates with plasmids, in particular pESI, when compared to 

isolates from humans (Chapter 4.3.2.2). 

Two IGRs were identified in all but 1 isolate, between a gene encoding a 

hypothetical protein and yfkN which encodes a trifunctional nucleotide phosphoesterase 

protein involved in DNA translation (UniProt, 2019a). One of the variants was significantly 

associated with isolation from humans, with 95% of isolates from humans containing this 

IGR and 44.7% of the poultry isolates containing it. However, upon annotating the eBG31 

phylogeny with these variants it was discovered that 99% of the poultry associated 
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variant of the IGR were from the same 25SNP cluster in the phylogeny, indicating that 

they could be part of an outbreak. However, as these strains were isolated over several 

years and from 30 states in the USA, this could suggest that this strain of S. Infantis is 

endemic in poultry in the USA and that the human-associated variant is what is normally 

seen in S. Infantis. It is possible that this IGR variant could be attributed to the success of 

this endemic strain. It would therefore be beneficial to identify what this IGR does to 

determine the risk it presents. 

Clustering by isolation source was identified within both the core gene and core 

IGR phylogenies with large clades containing exclusively eBG31 human isolates evident. 

There were also large clusters of poultry isolates that were interspersed by human 

isolates, supporting the hypothesis that a subset of poultry S. Infantis are associated with 

human infection. 

A SNP in an IGR has been identified in S. Typhimurium that differentiates between 

ST19 and ST313, causing increased virulence gene transcription in ST313 which is 

associated with causing large numbers of iNTS infections (Hammarlöf et al., 2018).  It is 

therefore possible that SNPs in the S. Infantis IGRs could also affect transcription of a 

virulence factor, resulting in organisms that are more virulent to a particular host. Whilst 

the genes and IGRs included were core to isolates from both sources, there were SNPs in 

these genes that were maintained within clusters of organisms in the phylogeny. Many of 

these clusters contained isolates from both sources, but there were several clades 

containing isolates from one source. This supports the hypothesis that some of the S. 

Infantis isolates that infect humans and poultry originate from two genetically distinct 

populations, but that there are also cases where poultry products have caused human 

infection. 

Several thousand unitigs were identified throughout the genome that were 

significantly associated with either human or poultry sources. This is considerably larger 

than seen in a comparison of 440 S. enterica genomes, where only 52 areas of the 

genome were found to be significantly associated with isolation source (Vila Nova et al., 

2019).  The fact that so many significantly source associated unitigs have been acquired 

and been conserved in the population suggests that the organisms causing infections in 

humans and poultry are two distinct populations. Three regions were identified 

containing a high density of significant unitigs in the genomes, two of which were 

associated with poultry and the third with humans.  
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For such a high density of unitigs to be present in a region could be explained by 

that region not being conserved and that SNPs have accumulated over time; however, 

that would not explain why these unitigs were all significantly more present in isolates 

from one of the sources. These regions therefore may be evidence of adaptation to niche. 

The majority of the genes in these regions encoded hypothetical proteins or 

housekeeping genes. In one of the more poultry associated regions was the gene uppP 

which is predicted to confer resistance to the antibiotic bacitracin (UniProt, 2019c). It is 

possible that the poultry associated eBG31 isolates have acquired mutations in this gene 

or in the other genes that gives them a selective advantage when infecting poultry; 

increasing the occurrence of S. Infantis in this source group. 

 

5.4.1 Conclusion 
 
To conclude, despite the high numbers of S. Infantis cases reported in domestic fowl, it 

appears that either only a subset of the isolates from poultry are capable of causing 

infection in humans or that other sources are responsible for causing a large proportion 

of human infections. While a genetic element was not identified that was present in all 

human eBG31 isolates and none of the isolates from poultry, several candidate genes, 

IGRs and unitigs were identified which were significantly associated with isolation from 

humans. Although further research is needed to identify how the presence of these 

genetic elements affects the colonisation of humans, this information is of use to public 

health teams as isolates positive for these elements have a higher risk of causing infection 

in humans; this therefore allows prioritisation of S. Infantis case control in poultry.  

Identifying the association with other sources and human infection would also be 

beneficial.  
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6. Chapter 6.  Overall Discussion 
 
 

In this project I amassed a collection of 4,670 S. Infantis genomes, determining the global 

population structure, AMR and plasmids levels and performing a GWAS comparing 

human and poultry eBG31 isolates. This work represents the largest comparison of S. 

Infantis genomes, with the largest published work currently containing just 264 genomes 

(Acar et al., 2019).  

 Whilst eBG31 was the dominant eBG seen in S. Infantis across the globe, the 

proportion of isolates belonging to eBG297 varied by continent; globally 3.9% were 

eBG297 but this increased to 34.1% in Africa.  The genetic distance within and between 

the eBGs was identified; despite the number of isolates included in the eBG31 collection, 

the distance between eBG297 and eBG31 was 4.1 times greater than the distance within 

the eBG31 collection. This suggests that the two eBGs are too genetically distinct to 

belong to the same serovar, raising the question, should eBG297 be called S. Infantis? In 

order to answer this further research should be performed, determining whether they 

are biologically different and comparing the distance between and within other S. 

enterica serovars. 

 A strong geographical signal was identified in the eBG31 phylogeny, with the six 

clusters in the phylogeny each dominated by isolates from a single continent.  The African 

eBG31 isolates were found to be the most distant from other continents, suggesting 

African associated lineages within the eBG31 population. Clustering by isolation source 

was also present in the phylogeny; this information on the geographic and isolation 

source signals within the eBG31 population will be beneficial to public health teams when 

investigating S. Infantis outbreaks. As the methods used in database generation mirrored 

those used by PHE, the databases created can be imported into their system; the lineage 

that new isolates, when added to the databases, belong to could then indicate their 

source and continent of origin.  

A difference in AMR levels was observed between the two eBGs, with just 1.6% of 

eBG297 having MDR versus 37.9% of eBG31.  The levels of AMR in the eBG31 isolates 

were found to be increasing, with numerous AMR profiles maintained in the population 

over several years. The geographical signal seen in eBG31 was also observed in the 

accessory genome, with several AMR gene clusters and plasmids found exclusively in a 

continent.  
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This work has also shown the importance of pESI in the eBG31 population, 

identifying that whilst not present in eBG297, 33% of the eBG31 isolates contained the 

plasmid. An association between pESI presence in poultry isolates was identified, with 

69.7% of poultry isolates containing pESI. Also of concern is the significant increase with 

time in occurrence of blaCTX-M-65 on pESI positive poultry isolates, present in 48.6% of 

poultry isolates with the plasmid.  The presence of this gene, as well as aadA1, sul1, tetA 

and dfrA14 on pESI, is a public health concern due to the obvious risk to human and 

chicken health it presents if the number of isolates with the plasmid increases.  Future 

work could include the identification of other ESBLs or other AMR genes present on pESI 

to further identify the risk it presents. Low levels of pESI were identified in isolates from 

Africa, an increase in incidence here would also be concerning due to the increased 

number of immuno-compromised people in this continent.  As a result of these findings, 

testing for pESI presence in any S. Infantis isolates identified by public health teams 

should be implemented as the spread of the plasmid needs to be monitored. 

 Differences in the source distribution were seen between the eBGs, with no 

eBG297 isolates being isolated from poultry. This could suggest that eBG297 cannot 

colonise domestic fowl, however, it is more likely that due to the low numbers of isolates 

identified in that eBG, eBG297 isolates have not yet been found in poultry. Sequencing of 

S. Infantis isolated from poultry in South Africa, where eBG297 was frequently identified, 

would be beneficial in identifying whether eBG297 is also present in poultry. 

Large clusters of human isolates were visible in the eBG31 phylogeny which led to 

the hypothesis that some lineages of S. Infantis have adapted to become more virulent to 

humans.  Analysis of the pan and core genome found key differences between eBG31 

isolates from human and poultry sources. Greater diversity was seen amongst the human 

isolates, with a pan genome that was 83.3% larger than seen in the poultry isolates.  

Furthermore, several thousand genes and kmers were found to be significantly associated 

with one of the sources. An example is tufA, two variants of this gene were identified in 

the isolates, tufA_2 which was significantly associated with humans and the other, tufA_1 

with poultry.  Despite the three-decade time period that the human isolates were 

collected over, 86.9% of the isolates contained tufA_2, suggesting it confers a selective 

advantage for infection in humans.  

Due to the findings of this research, I have two hypotheses to explain the low 

numbers of S. Infantis infection seen in humans. The first being that the S. Infantis poultry 

population is split into two groups, with one containing a genetic element, such as 
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tufA_2, which increases the pathogen’s ability to colonise humans and the other group 

less capable of infecting humans. The alternative hypothesis is that poultry products 

aren’t in fact the major source of human infection and that other environmental sources 

are associated with more infections.  This is supported by the human and environmental 

isolates having the largest number of shared AMR gene clusters and a smaller genetic 

distance than seen between human and poultry isolates.  

In order to determine whether either of these hypotheses are correct, the next 

step would be to identify whether any of the genes, IGRs and kmers that have been 

identified as being associated with human infection are advantageous for S. Infantis 

survival within the human host. Further experiments, such as the use of a chicken caecum 

model and human colon model, could be used to identify whether these candidate 

genetic elements are advantageous for S. Infantis survival in humans or poultry.  A 

genome-wide screening method such as TraDIS could be used to quantify how knocking 

out genetic elements identified as being significantly associated with either source group 

affects S. Infantis survival.  The use of TraDIS would also be beneficial as it could identify 

genes essential for survival in both the hosts.    

Additionally, another GWAS could be performed, comparing the eBG31 human 

and environmental samples to see if they are genetically more similar than when 

compared to the poultry isolates. It may be beneficial to break down the environmental 

sources into smaller groups such as cattle and swine.  An alternative method that could 

be implemented is machine learning. Previous researchers have used a Random Forest 

classifier to perform source attribution of a global collection of S. Typhimurium isolates; 

identifying 50 genetic regions that could be used to predict whether the isolate was from 

livestock (Zhang et al., 2019).  Support Vector Machine classifiers have been built that 

discriminate between bovine and human E. coli isolates with an accuracy of 83% 

(Lupolova et al., 2017). This approach has also been used to identify how similar genomic 

features are between E. coli isolates from different hosts, predicting the zoonotic 

potential of isolates from cattle (Lupolova et al., 2016).  Another approach that machine 

learning has been used for is the identification of strains associated with iNTS infection, 

with a Random Forest classifier developed that discriminated between invasive and 

gastrointestinal Salmonella serovars (Wheeler, Gardner and Barquist 2018).  It would be 

beneficial to apply these approaches to the S. Infantis collection to identify sub-groups of 

strains that pose a greater risk of causing invasive infections; to further explore the 
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differences between the strains isolated from human, poultry and environmental sources 

and identify which source the human isolates resembled more closely.   

One limitation in this project was the restrictions the use of SnapperDB put on the 

analyses that could be done. Whilst using the software was beneficial as it allowed 

calculations of clustering present with eBG31 and eBG297 and enables integration of the 

results directly with PHE’s data analysis pipeline; it also limited the number of sequences 

that could be included in the project due to the time the software took to run once the 

databases were populated.  This resulted in the requirement of a cut-off date for when 

sequences could no longer be included from PHE or Enterobase. Also, as each database 

could only contain isolates belonging to one eBG, this limited the phylogenetic 

comparisons that could have been performed between eBG31 and eBG297 isolates.   

Previous studies have identified that long term storage of Salmonella strains in 

agar is associated with genome rearrangement (Edwards et al., 2001; Porwollik et al., 

2004; Matthews, Rabsch and Maloy, 2011) and plasmid loss when compared to isolates 

that are frozen (Olsen et al., 1994).  As the hPHE isolates were stored on agar it is possible 

that the numbers of plasmids identified from these isolates is an underrepresentation of 

what was originally present. 

Another limitation to this project was the potential of sampling bias. Due to the 

inclusion of samples from online databases, often lacking metadata, it is possible that 

smaller studies selected isolates for sequencing for reasons such as increased virulence. 

Historically there was also a sampling bias for the collection of Salmonella isolates by the 

NICD from blood in South Africa. For these reasons, calculations such as the invasive 

index of S. Infantis could not be performed. 

   

 

6.1 Conclusion 
 

In conclusion, S. Infantis is a polyphyletic serovar comprised of eBG31, whose population 

splits into lineages associated with geography, and eBG297 which is strongly associated 

with isolation from Africa. High levels of AMR were identified in the eBG31 population, 

associated with pESI, which was especially common in isolates from poultry. The eBG31 

human population had a greater genetic diversity than seen in the eBG31 poultry 

population with several thousand genes significantly associated with either source. This 

could explain the difference in the incidence of S. Infantis in poultry and humans, it is 
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possible that only a sub-group of S. Infantis is capable of causing human infection; or that 

sources other than poultry are causing the human infections seen.  The increased 

understanding this work provides on this emerging pathogen will be beneficial for public 

health teams globally.   
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I Appendix I. Scripts 
 
I.I Input filtering for MOST 
 
This script pulls out the required lines from the MOST output, sorts them, removes 

unwanted characters and strings; resulting in a summary file for each xml input (Tewolde 

et al., 2016). 

 
#!/bin/bash 
 
sample=$1 
 
find $1 | xargs egrep -n '<result type="MLST" value="' > result$1.xml 
find $1 | xargs egrep -n 'QC_max_percentage_non_consensus_base_for_all_loci' > consensus$1.xml 
find $1 | xargs egrep -n '<ngs_sample id' > id$1.xml 
find $1 | xargs egrep -n ' <result_data type="QC_traffic_light" value=' > traffic$1.xml 
sort -g traffic$1.xml result$1.xml consensus$1.xml id$1.xml > summary$1 
awk ' />/ {print}' ORS=',' summary$1 > line$1 
tr -d " \t" < line$1 > nospaces$1 
sed 's/\"//g' nospaces$1 > noquotes$1  
 
sed -e "s/1:<ngs_sampleid=//g" noquotes$1 | sed -e "s/_1.fastq//g" |sed -e "s/_R1.fastq//g" | sed -e 
"s/4:<resulttype="MLST"value=//g" | sed -e 
"s/12:<result_datatype=QC_max_percentage_non_consensus_base_for_all_locivalue=//g" | sed -e 
"s/14:<result_datatype=QC_traffic_lightvalue=//g"  > sed$1 
sed -e "s/>//g" sed$1 > sed2$1 
sed 's/\///g' sed2$1 > filtered_$1 
 
rm result$1.xml 
rm consensus$1.xml 
rm id$1.xml 
rm traffic$1.xml 
rm summary$1 
rm line$1 
rm nospaces$1 
rm noquotes$1 
rm sed$1 
rm sed2$1 

 
 
I.II Concatenating filtered output for MOST 
 
This script concatenates all summary xml outputs of ‘Input filtering for MOST’ in a folder 
into one xml, inserting a line break between each entry and adding titles to each column. 
 
#!/bin/bash 
 
awk 1 ./*filtered* > tmp_awk.xml 
 
echo -e "ID, Sequence Type, Max  Percentage Non Consensus Base for all loci, , , , , , , Traffic Light," | cat - 
tmp_awk.xml > filtered_cat_results.xml 
 
rm tmp_awk.xml 
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I.III Annotating a phylogeny containing cluster representatives 
 
This script requires a metadata file containing sequence ID, the metadata of interest and 

the SNP address of each isolate at the cluster level used to generate the phylogeny.  It is 

run using a while loop with a list of the representative sequences and their SNP 

addresses.  It collates all isolates in each cluster into a file with the metadata and then 

counts the occurrences of each metadata type in each cluster. 

 
#!/bin/bash 
 
address=$1 
representative=$2 
 
echo -e "with open('"All_eBG31_Metadata.txt"', '"r"') as input_file, \\" >>$representitive.py 
echo -e " \t open('$representitive.txt', 'w') as output_file:" >>$representitive.py 
echo "" >>$representitive.py 
echo -e " \t for line in input_file:" >>$representitive.py 
echo -e " \t\t if ' $address' in line:" >>$representitive.py 
echo -e " \t\t\t output_file.write(line)" >>$representitive.py 
python $representitive.py 
rm $representitive.py 
 
address=$1 >>meta_$representitive.py 
representative=$2 >>meta_$representitive.py 
 
echo "import re" >>meta_$representitive.py 
echo "from collections import Counter" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo "with open('"$representitive.txt"', '"r"') as input_file, \\" >>meta_$representitive.py 
echo " open('meta_"$representitive.txt"', 'w') as output_file:" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo " for i in input_file:" >>meta_$representitive.py 
echo "  i = i.rstrip()" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo "  array = re.split(r'\t+', i)" >>meta_$representitive.py 
echo "  id = array[0]; origin = array[1]; address = array[5]" >>meta_$representitive.py 
echo "  #print id, origin, year, travel, mlst; raw_input()" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo "  match = re.search('"Africa"', origin)" >>meta_$representitive.py 
echo "  if match:" >>meta_$representitive.py 
echo "   output_file.write('Africa, ')" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo "  match = re.search('"NAmerica"', origin)" >>meta_$representitive.py 
echo "  if match:" >>meta_$representitive.py 
echo "   output_file.write('NAmerica, ')" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo "  match = re.search('"Asia"', origin)" >>meta_$representitive.py 
echo "  if match:" >>meta_$representitive.py 
echo "   output_file.write('Asia, ')" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo "  match = re.search('"Europe"', origin)" >>meta_$representitive.py 
echo "  if match:" >>meta_$representitive.py 
echo "   output_file.write('Europe, ')" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo "  match = re.search('"SAmerica"', origin)" >>meta_$representitive.py 
echo "  if match:" >>meta_$representitive.py 
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echo "   output_file.write('SAmerica, ')" >>meta_$representitive.py 
echo "" >>meta_$representitive.py 
echo "  match = re.search('"Unknown"', origin)" >>meta_$representitive.py 
echo "  if match:" >>meta_$representitive.py 
echo "   output_file.write('Unknown, ')" >>meta_$representitive.py 
python meta_$representitive.py 
rm meta_$representitive.py 
 
address=$1 >>count_$representitive.py 
representative=$2 >>count_$representitive.py 
 
echo "import re" >>count_$representitive.py 
echo "import collections" >>count_$representitive.py 
echo "" >> count_$representitive.py 
echo "wordcount = collections.Counter()" >> count_$representitive.py 
echo "with open('"meta_$representitive.txt"') as file:" >>count_$representitive.py 
echo "  for line in file:" >>count_$representitive.py 
echo "          wordcount.update(line.split())" >>count_$representitive.py 
echo "" >> count_$representitive.py 
echo "for k,v in wordcount.iteritems(): print '"$representitive"', k, v," >>count_$representitive.py 
 
python count_$representitive.py 
rm count_$representitive.py 

 
 
 
I.IV Calculating the number of zero's in the pESI coverage matrix 
 
Using the pESI coverage as input, this script calculates the number of bases with zero 

reads coverage.  

 
#!/bin/bash 
 
location=$1 
sample=${location#*\/} 
 
awk '{print $2}' /Results/"$location"_pesi_coverage.txt > col_$sample 
grep -c 0 col_$sample > n_$sample 
printf '%s' "$sample:" | cat - n_$sample 
rm col_$sample 
rm n_$sample 
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I.V Generating a coverage matrix for pESI 
 
This script produces a bsub file which is submitted to a high-performance cluster system 

where the job is then run. SMALT is used to map the sequence to the pESI 

pseudomolecule (Ponstingl and Ning, 2014). SAMtools then sorts the output into a BAM 

file and calculates the depths of coverage for every base, including those with no 

coverage (Li et al., 2009). The pESI coverage results are then pulled out and given a 

heading.  

#!/bin/bash 
 
location=$1 
sample=${location#*\/} 
 
 
echo "CREATE bsub scripts" 
echo $sample 
  
echo "#!/bin/sh" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "#BSUB -q short-eth" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "#BSUB -R "rusage[mem=1600]"" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "#BSUB -M 1600" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "#BSUB -J mapping" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "#BSUB -oo mapping_"$sample".out" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "#BSUB -eo mapping_"$sample".err" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo ". /etc/profile" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "module add smalt/0.7.6" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "module add samtools/1.5/gcc" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "mkdir /Mapping_pESI/"$sample"" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "mkdir /Mapping_pESI/"$sample"" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "mkdir /Coverage/"$sample"" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "cp /Fastqs/"$location"/"$sample"*1_paired.fastq.gz /Mapping_pESI/"$sample"/" 
>>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "cp /Fastqs/"$location"/"$sample"*2_paired.fastq.gz /Mapping_pESI/"$sample"/" 
>>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "chmod 755 /Mapping_pESI/"$sample"/*fastq.gz" >>/pESI_with_SMALT/mapping_bsubs/$sample-
mapping.bsub 
echo "smalt map -r 5 -o /Mapping_pESI/"$sample"/"$sample".sam 
pesi_reference/Mapping_pESI/"$sample"/"$sample"*1_paired.fastq.gz 
/Mapping_pESI/"$sample"/"$sample"*2_paired.fastq.gz" >>/pESI_with_SMALT/mapping_bsubs/$sample-
mapping.bsub 
echo "samtools sort /Mapping_pESI/"$sample"/"$sample".sam -o /Coverage/"$sample"/"$sample".bam" 
>>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "samtools depth -aa /Coverage/"$sample"/"$sample".bam > 
/Coverage/"$sample"/"$sample"_raw.txt" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "grep "ASRF" /Coverage/"$sample"/"$sample"_raw.txt > /Coverage/"$sample"/"$sample"_asrf.txt" 
>>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "awk '{print \$1\":\"\$2\"\t\"\$3}' /Coverage/"$sample"/"$sample"_asrf.txt > 
/Coverage/"$sample"/"$sample"_awk.txt" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "echo -e '"Base "\t" "$sample""' | cat - /Coverage/"$sample"/"$sample"_awk.txt > 
/Results/"$location"_pesi_coverage.txt" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "rm -r -f /Mapping_pESI/"$sample"" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "rm -r -f /Mapping_pESI/"$sample"" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
echo "rm -f -r /Coverage/"$sample"" >>/pESI_with_SMALT/mapping_bsubs/$sample-mapping.bsub 
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I.VI Transposing the coverage matrices 
 
The following script to transpose a large text file was found on a coding forum (Hægland, 

2013). 

 
{  
    for (i=1; i<=NF; i++) a[NR,i]=$i 
} 
END { 
    for (i=1; i<=NF; i++) { 
        for (j=1; j<=NR; j++) { 
            printf "%s", a[j,i] 
            if (j<NR) printf "%s", OFS 
        } 
        printf "%s",ORS 
    } 
} 

 
 
I.VII Generating R scripts to make the heatmaps 
 
This script generates R scripts for each coverage matrix (R Core Team, 2018). A list of the 

isolates in the matrix is inputted with R to generate a phylogeny. The coverage matrix is 

then imported into R using data.table (Dowle and Srinivasan, 2018). Every value in the 

matrix above 20 is converted to 20 and below 20 to 0. The heatmap is then generated 

using phylotools, exported as a tiff file (Revell, 2012).  

 
#!/bin/bash 
 
sample=$1 
 
echo "library(ape, lib.loc=\”/R/x86_64-redhat-linux-gnu-library/3.5\")" >>/R_workspace/scripts/$sample.R 
echo "library(phytools, lib.loc=\”/R/x86_64-redhat-linux-gnu-library/3.5\")" 
>>/R_workspace/scripts/$sample.R 
echo "library(data.table, lib.loc=\”/R/x86_64-redhat-linux-gnu-library/3.5\")" 
>>/R_workspace/scripts/$sample.R 
echo "" >>/R_workspace/scripts/$sample.R 
echo "tree_"$sample" <- read.tree(file = \"pESI_tree_lists/"$sample"_tree\")" 
>>/R_workspace/scripts/$sample.R 
echo "data_"$sample" <- fread(\"pESI_heatmap_lists/transposed/"$sample"_transposed\", header = TRUE, 
check.names = FALSE)" >>/R_workspace/scripts/$sample.R 
echo "matrix_"$sample" <- as.matrix(data_"$sample", rownames = 1)" >>/R_workspace/scripts/$sample.R 
echo "matrix_"$sample"[matrix_"$sample"<20] = 0" >>/R_workspace/scripts/$sample.R 
echo "matrix_"$sample"[matrix_"$sample">20] = 20" >>/R_workspace/scripts/$sample.R 
echo "colours<-colorRampPalette(colors=c(\"blue\",\"red\"))(100)" >>/R_workspace/scripts/$sample.R 
echo "tiff("\"$sample"_heatmap.tiff\", height=8.27, width=11.69, units='in', res=600)" 
>>/R_workspace/scripts/$sample.R 
echo "phylo.heatmap(tree_"$sample", matrix_"$sample",scale=0.2, fsize=0.1, pts = FALSE, colors=colours, 
legend = FALSE, split = c(0.25, 0.75))" >>/R_workspace/scripts/$sample.R 
echo "dev.off()" >>/R_workspace/scripts/$sample.R 
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I.VIII Identifying whether blaCTX-M-65 is on pESI 
 
This script creates bsub files for each sequence to then be submitted to a high 

performance cluster. Each assembly is nucleotide blasted against CP016407 with the 

subject and query ID’s and start and ends outputted (McGinnis and Madden, 2004). The 

blast results are then filtered, excluding hits that don’t cover blaCTX-M-65.    

 
#!/bin/bash 
 
location=$1 
sample=${location#*\/} 
 
 
echo "CREATE bsub scripts" 
echo $sample 
  
echo "#!/bin/sh" >>$sample-esbl.bsub 
echo "#BSUB -q short-eth" >>$sample-esbl.bsub 
echo "#BSUB -R "rusage[mem=1000]"" >>$sample-esbl.bsub 
echo "#BSUB -M 1000" >>$sample-esbl.bsub 
echo "#BSUB -J esbl" >>$sample-esbl.bsub 
echo "#BSUB -oo esbl"$sample".out" >>$sample-esbl.bsub 
echo "#BSUB -eo esbl"$sample".err" >>$sample-esbl.bsub 
echo "" >>$sample-esbl.bsub 
echo ". /etc/profile" >>$sample-esbl.bsub 
echo "module add ncbi-blast/2.9.0+/gcc" >>$sample-esbl.bsub 
echo "" >>$sample-esbl.bsub 
echo "mkdir /Mapping_pESI/"$sample"/" >>$sample-esbl.bsub 
echo "cp /Assemblies/"$location"/"$sample"_scaffolds.fasta /Mapping_pESI/"$sample"/" >>$sample-
esbl.bsub 
echo "chmod 755 /Mapping_pESI/"$sample"/*" >>$sample-esbl.bsub 
echo "blastn -query /Mapping_pESI/"$sample"/"$sample"_scaffolds.fasta -db eBG31_Tate_pESI.fa -task 
megablast -outfmt '10 sseqid qseqid length qstart qend sstart send' | grep 'CP016407.1' > 
/Mapping_pESI/"$sample"/"$sample"_blast.txt" >>$sample-esbl.bsub 
echo "awk -F "," '(NR>1) && ($6 < 279352 ) ' /Mapping_pESI/"$sample"/"$sample"_blast.txt > 
/Mapping_pESI/"$sample"/"$sample"_l6.txt" >>$sample-esbl.bsub 
echo "awk -F "," '(NR>1) && ($7 > 280227 ) ' /Mapping_pESI/"$sample"/"$sample"_l6.txt > 
/Mapping_pESI/"$sample"/"$sample"_h7.txt" >>$sample-esbl.bsub 
echo "awk -F "," '(NR>1) && ($7 < 279352 ) ' /Mapping_pESI/"$sample"/"$sample"_blast.txt > 
/Mapping_pESI/"$sample"/"$sample"_l7.txt" >>$sample-esbl.bsub 
echo "awk -F "," '(NR>1) && ($6 > 280227 ) ' /Mapping_pESI/"$sample"/"$sample"_l7.txt > 
/Mapping_pESI/"$sample"/"$sample"_h6.txt" >>$sample-esbl.bsub 
echo "cat /Mapping_pESI/"$sample"/"$sample"_h7.txt /Mapping_pESI/"$sample"/"$sample"_h6.txt > 
/ESBL_Containing/Results/"$sample"_results.txt" >>$sample-esbl.bsub 
echo "rm -rf /Mapping_pESI/"$sample"/" >>$sample-esbl.bsub 
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I.IX Extracting the integron finder results 
 
This script creates a bash script for each of the sequences which extracts the column with 
the title ‘Complete’ from the Integron Finder summary output (Cury et al., 2016a). It then 
counts the occurrences of 1’s (Complete integron) and 0’s (Incomplete integron) and 
output these into a results file.  
 
#!/bin/bash 
 
location=$1 
sample=${location#*\/} 
 
echo "awk -v header="\$\{1:-complete\}" '" >> /Integron_Finder/extraction_scripts/"$sample".sh 
echo "BEGIN { FS=\" \"; c=0 }" >> /Integron_Finder/extraction_scripts/"$sample".sh 
echo "NR == 1 { for (i=1;i<=NF;i++) { if (\$i==header) { c=i }} }" >> 
/Integron_Finder/extraction_scripts/"$sample".sh 
echo "NR > 1 && c>0 { print \$c }" >> /Integron_Finder/extraction_scripts/"$sample".sh 
echo "' /Integron_Finder/"$location"/"$sample"_scaffolds.summary > "$sample"_tmp1" >> 
/Integron_Finder/extraction_scripts/"$sample".sh 
echo "grep -c 0 "$sample"_tmp1 > "$sample"_Incomplete" >> 
/Integron_Finder/extraction_scripts/"$sample".sh 
echo "grep -c 1 "$sample"_tmp1 > "$sample"_Complete" >> 
/Integron_Finder/extraction_scripts/"$sample".sh 
echo "sed -i -e 's/^/"$sample": /' "$sample"_Incomplete" >> 
/Integron_Finder/extraction_scripts/"$sample".sh 
echo "sed -i -e 's/^/"$sample": /' "$sample"_Complete" >> 
/Integron_Finder/extraction_scripts/"$sample".sh 
echo "rm -f "$sample"_tmp1" >> /Integron_Finder/extraction_scripts/"$sample".sh 
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II Appendix II. Supplementary Data for Chapter 2 
 

 

Source Group Keyword 
Environmental Air, Almonds, Animal, Animal feed, Animal-calf-formula-fed veal, Animal-cattle-beef cow, 

Animal-cattle-dairy cow, Animal-cattle-heifer, Animal-cattle-steer, Animal-swine-market swine, 

Animal-swine-roaster swine, Animal-swine-sow, Aquatic, Aquatic animal, Avian, Avian (carcass), 

Bacon flavored bones, Basil, Bearded dragon feces, Beef chicken soy composite, Beef cutlets, 

Beef meat, Biological tissue and/or fluid -sus scrofa domesticus, Black pepper, Blood meal, 

Boneless pork, Bovine, Bovine (carcass), Bovine (feces), Bovine (feed-grain pellets), Bovine 

(feed), Bovine (intestine), Bovine (necropsy-mesenteric lymph node), Bovine (necropsy), Bovine 

feces, Bovine kidney (bos taurus), Bovine liver, Bovine tissue, Brewer's yeast, Bulk feed, Camel 

(feces), Camel (si), Camel spleen, Camelid, Canine, Canine (bal), Canine (feces), Canine 

(necropsy), Canine feces (canis lupus familiaris), Canine intestine (canis lupus familiaris), Cat's 

claw powder (herbal product), Catfish meal, Cattle, Cattle feed, Chicken cage, Chocolate candy 

pieces, Cilantro, Comminuted beef, Comminuted or otherwise nonintact-pork, Companion 

animal, Composite food, Compost, Cordon bleu, Coriander, Crawfish, Creek water, Cucumbers, 

Dairy, Distilled corn, Dog, Dog food, Dog treat, Drag swab, Drag swab through chicken house 

(gallus gallus domesticus), Dried parsley, Dried pork ears, Dry dog food, Duck meats for dogs, 

Environment, Environmental samples, Environmental sponge, Environmental swab, 

Environmental swabs, Environmental_other, Eq_horse, EQAD, EQAD UKNEQAS, Equine, Equine 

feces, Equus caballus feces, Farmed fresh water shrimp, Feces (bos taurus), Feed, Feeding stuffs, 

Feline, Feline intestine (felis catus), Fines, Finished feed, Finished pet food, Fish, Fish water 

(pisces), Food, Food investigation, Food source unknown, Fresh cheese, Fried charal (sardines), 

Frozen baby clam boiled, Frozen cut crab, Frozen iqf scallops adductors, Frozen lobster tails, Frz 

calamari rings Caprine (feces), Carcass swab, Cat, Cat food, Frz shrimp, Goat, Ground beef, 

Ground pork, Hog feed, Hogs, Horse, Invertebrates, IQA, Jalapeno peppers, Lemon grass tea, 

Lettuce, Livestock, Lizard, Mdh garam masala, Meat, Meat & bone meal, Meat and bone meal, 

Meat feed, Meat/nonmeat combination-combination species, Mouse (necropsy), Natural pig 

ears, Nonmeat-other, Nutmeg, Offal, Other mammal, Other_veg_mineral, Ovine, Ovine (feces), 

Papaya, Parmesan cheese, shelf stable grated, Parsley, Pasilla peppers, Pasta, Pecan halves, 

Peppermint powder, Pet food - raw fresh, Pet food (kibble), Pet food ingredient, Pet foods, Pet 

treat, Pig, Pig fetus (sus scrofa domesticus), Pig stool, Pig's ears, Placenta (canis lupus familiaris), 

Plant, Porcine, Porcine (colon), Porcine (necropsy-intestine), Porcine feces(sus scrofa 

domesticus), Porcine liver, Porcine lung, Porcine lymph node (sus scrofa domesticus), Porcine 

spleen, Porcine tissue, Pork, Pork carcass, Pork chop, Pork meat, Pork sausage, Potato and meat 

(bovine), Poultry feed, Produce field - drag swab, Product-raw-ground, Product-raw-intact-beef, 

Product-raw-intact-pork, Product-raw-intact-siluriformes, Product-RTE-fully cooked, Product-

swab-pork, Protein dairy feed, Pumpkin seed powder, Raw almonds, Raw almonds/nuts, Raw 

bone, Raw kale-red, Raw meat, Raw pork, Reptile, Rinse water, Rodent, Scallops, Seagull, 

Sediment, Sewage, Shelf stavble grated parmesan and romano cheese blend in a glass jar with a 

metal lid., Shellfish, Shinisaurus crocodilurus, Shrimp, Snails, Soil/dust, Soy lecithin fluid, 

Spinach, Sus scrofa, Sus scrofa domesticus, Swab, Sweet basil (dried), Swine, UK_GBRUSAL, 

Walnuts, Water, White pepper powder, Wild animal, Za'atar 

 

Human Anthropogenic, Ascitic fluid, Aspirate, Blood, Blood culture, Clinical, Clinical sample, CSF, CSF & 

stool, Faeces, Homo sapiens, Homo sapiens, Human, Human blood, Mesoscopic, Organic, Pus, 

Rectal swab, Stool, Stool, Swab superficial, Tissue, Urine, Wound, Wound drain, Wound swab 

Poultry Animal-Chicken-Young Chicken, Animal-Turkey-Turkey Carcass Sponge, Avian, Boneless skinless 

chicken breast, Broiler carcass, Broiler chicken, Cajun Chicken (Raw Meat), Chicken, Chicken 

breast, Chicken by-product, Chicken carcass, Chicken carcass rinse, Chicken cecum pre-harvest 

(Poultry), Chicken drag swab, Chicken kiev, Chicken leg, Chicken livers, Chicken meat, Chicken 

mince, Chicken survey, Chicken Wing, Comminuted Chicken, Comminuted Turkey, Dried egg 

powder, Duck, Egg yolks, Frozen raw whole chicken, Gallus gallus domesticus, Ground turkey, 

Guinea fowl, NRTE (Not-Ready-to-Eat) Comminuted Poultry Exploratory Sampling - Chickens, 

Osborne eggs, Poultry rinse, product-eggs-raw-whole, product-eggs-raw-yolks, Quail, Raw 

chicken, Raw chicken escalopes, Raw chicken kebab meat, Raw Egg Shell, Raw Intact Chicken, 

Raw poultry (chicken), Raw Shell Eggs, Retail Chicken Quarter Leg (Poultry), Slaughter chicken 

ceca, Slaughter comminuted chicken, Thai chicken mix, turkey, Young chicken rinse 

 

Table II.1 Keywords used to stratify into source groups 
All of the keywords associated with the S. Infantis strains and the source group they belonged to. 
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Source Group Keyword 
Faeces or 

rectal swabs 
Faeces, Stool, Rectal Swab 

Blood Blood, Blood culture 

Urine Urine 

Chickens Chickens, CHICKEN SURVEY, Young chicken rinse, Animal-Chicken-Young Chicken, Gallus gallus 

domesticus, Chicken, broiler chicken, Chicken drag swab 

 

Chicken meat Chicken leg, Chicken wing, Raw chicken, Raw Chicken Escalopes, Cajun Chicken (Raw Meat), 

THAI CHICKEN MIX, RAW POULTRY(CHICKEN), Raw Poultry, FROZEN RAW WHOLE CHICKEN, 

CHICKEN MINCE, RAW CHICKEN KEBAB MEAT, Chicken Wing, Chicken Breast, Chicken Breast, 

Boneless skinless chicken breast, Chicken Kiev, Chicken breasts, chicken meat, Chicken Wings, 

Comminuted Chicken, Chicken Legs, Raw Intact Chicken, Slaughter, chicken ceca, Slaughter, 

comminuted chicken, chicken by-product, Comminuted Turkey, Chicken Carcass, Chicken 

carcass rinse, Broiler carcass, Chicken livers, Chicken Cecum Pre-Harvest (Poultry), Retail Chicken 

Quarter Leg (Poultry), Poultry rinse 

 

Eggs Raw Egg Shell, OSBORNE EGGS, Raw Shell Eggs, egg yolks, product-eggs-raw-whole, dried egg 

powder, product-eggs-raw-yolks 

 

Duck Duck 

Turkey Ground Turkey, turkey, Animal-Turkey-Turkey Carcass Sponge,  

Quail Quail 

Pigs PIG, Pork Chops, Animal-Swine-Sow, pork chop, porcine spleen, raw pork, Swine, Porcine Liver, 

Porcine Tissue, Porcine (necropsy-intestine), Porcine (colon), Porcine, Porcine Lung, Pork 

Carcass, Animal-Swine-Roaster Swine, Animal-Swine-Market Swine, Hogs, Product-Swab-Pork, 

Pig Fetus (Sus scrofa domesticus), Product-Raw-Intact-Pork,  Comminuted or Otherwise 

Nonintact-Pork, GROUND PORK, Product-Raw-Ground, biological tissue and/or fluid -Sus scrofa 

domesticus, Porcine feces(Sus scrofa domesticus), Boneless Pork, Pork Meat, Pork, Sus scrofa 

domesticus, Porcine Lymph node (Sus scrofa domesticus), Sus scrofa, pork sausage, Pig stool 

 

Cattle Animal-Cattle-Dairy Cow, Ground Beef, Animal-Cattle-Beef Cow, Product-Raw-Intact-Beef, 

Bovine (carcass), Bovine, Bovine (feces), Bovine (necropsy), Bovine (feed), Bovine (intestine), 

Bovine Tissue, Bovine Liver, Bovine (feed-grain pellets), Bovine Feces, Comminuted Beef, 

Animal-Calf-Formula-fed Veal, Animal-Cattle-Steer, potato and meat (bovine), Feces (bos 

taurus), Animal-Cattle-Heifer, Beef Cutlets, bovine kidney (Bos taurus), Bovine (necropsy-

mesenteric lymph node), Beef Meat, CATTLE 

 

Animal feed dog treat, animal feed, dog food, bacon flavored bones, bulk feed, poultry feed, pet food 

(kibble), natural pig ears, Dry Dog Food,  protein dairy feed,  distilled corn, feeding stuffs, pet 

treat, hog feed, Blood Meal, pig's ears, Dried Pork Ears, cat food, Pet Food Ingredient, Raw Bone, 

Pet Foods,  meat & bone meal,  cattle feed, meat and bone meal, Finished Pet Food, Meat Feed, 

Finished Feed, Pet food - raw fresh, Duck meats for Dogs 

 

Table II.3 Keywords used to stratify into source subgroups 
All of the keywords associated with the S. Infantis strains and the source subgroup these belonged to. 

Source Group Keyword 
Africa African Continent, Cameroon, Cote d'Ivoire, Egypt, Ethiopia, Gambia, Ghana, Kenya, Morocco, 

Nigeria, South Africa, Tunisia, Uganda, United Republic of Tanzania 

Asia Afghanistan, Asian Continent, Bangladesh, China, India, Indonesia, Iran, Iraq, Israel, Japan, 

Pakistan, Saudi Arabia, Thailand, Turkey, United Arab Emirates 

Europe Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, European Continent, 

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, Malta, Norway, Poland, 

Portugal, Romania, Slovakia, Spain, Ukraine, United Kingdom 

North 
America 

Canada, Caribbean, Costa Rica, Cuba, El Salvador, Jamaica, Mexico, Panama, Saint Vincent and 

the Grenadines, United States 

South 
America 

Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador, Guyana, Peru, South American Continent, 

Suriname 

 

Table II.2 Countries and continents S. Infantis was isolated from 
The countries, and keywords defining continents, belonging to each continent that S. Infantis strains 
were isolated from. 
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Figure II.1 N50 distribution in the S. Infantis genomes         
Histogram of the N50 result for each of the first 4,438 genomes included in the project.                                                                                                                                                                                                                   
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Figure II.2 Contig number distribution in the S. Infantis genomes               
Histogram of the number of contigs for each of the first 4,438 genomes included in the project.                                                                                                                                                                                                              
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III Appendix III.  Supplementary Data for Chapter 3 
 
 

 
 

 

Figure III.2 Year distribution within each continent 

Africa n=452, Asia n=241, Europe n=979, N.America n=2795, S.America n=122, Unknown n=81.  

 
 

 

Figure III.1 Distribution of isolation source by year  

Environmental n=956, Human n=1687, Poultry n=947, Unknown n=1080. 
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Figure III.4 Distribution of eBG by year  

eBG31 n=4486            eBG297 n=184 
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Figure III.3 Distribution of STs in S. Infantis 

a) STs in eBG31 for n=80 strains, excluding ST32. ST groups: 
 

b) STs in eBG297 (n=184). STs:  
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Figure III.5 Year distribution within each S. Infantis ST 

a) eBG31: ST32 n=4406, ST2283 n=33, ST2146 n=26, ST2937 n=2, ST3756 n=2, ST3815 n=3, novel1 
n=4, all other STs n=1 

b) eBG297: ST603 n=158, ST1823 n=5, ST7731 n=8, ST7732 n=12, novel3 n=1 
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Figure III.6 Source distribution within each S. Infantis ST 

a) eBG31: ST32 n=4406, ST2283 n=33, ST2146 n=26, ST2937 n=2, ST3756 n=2, ST3815 n=3, novel1 
n=4, all other STs n=1 

b) eBG297: ST603 n=158, ST1823 n=5, ST7731 n=8, ST7732 n=12, novel3 n=1 
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Figure III.7 Continent distribution within each S. Infantis ST 

a) eBG31: ST32 n=4406, ST2283 n=33, ST2146 n=26, ST2937 n=2, ST3756 n=2, ST3815 n=3, novel1 
n=4, all other STs n=1 

b) eBG297: ST603 n=158, ST1823 n=5, ST7731 n=8, ST7732 n=12, novel3 n=1 
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Figure III.8 Heatmap of the bootstrap results for the clustering within the eBG31 alignment 

Dendrogram of the fastbaps clusters in the eBG31 soft-core SNP alignment with a heatmap of the 
bootstrap results. Six clusters were identified in the alignment with high bootstrap results seen between 
sequences within each fastbaps cluster. 

 

 

 

 
Figure III.9 Year distribution within eBG31 fastbaps clusters 

Percentage of isolates from each eBG31 fastbaps cluster that were isolated from each year group. 
 

 

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6

Pe
rc

en
ta

ge
 (%

)

eBG31 Fastbaps Cluster



 216 

 

 
 

Figure III.10 Median pairwise SNP distribution within and between eBG31 fastbaps clusters 

Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum pairwise SNP 
distances within and between each eBG31 fastbaps cluster. 

a) Within each eBG31 fastbaps cluster 
b) Between each eBG31 fastbaps cluster 

 

 

b) 

a) 
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Figure III.11 eBG31 cladogram annotated with fastbaps cluster 

Soft-core SNP Maximum Likelihood cladogram of 831 25SNP cluster representatives of eBG31.  
 
Inner ring, Number of sequences in 25SNP cluster:  
  
Outer ring, fastbaps cluster:   
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Figure III.12 eBG31 phylogeny annotated with ST 

Soft-core SNP Maximum Likelihood Phylogeny of 831 25SNP cluster representatives of eBG31.  The outer 
ring is annotated with the percentage of isolates in each 25SNP cluster that were isolated from each ST 
group. 
 

 
Inner ring, Number of sequences in 25SNP cluster:   
                         
Middle ring, fastbaps cluster:  
 
Outer ring, ST: 2146           2283            32             Other  
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Figure III.13 Distribution of median pairwise SNP distance within and between each eBG31 year group  
Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum pairwise SNP 
distances within and between each year group. 

a) Within each eBG31 year group 
b) Between each eBG31 year group 

 
 
 
 
 
 

b) 

a) 
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Figure III.14 Distribution of median pairwise SNP distance within and between each eBG31 source 

group  
Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum pairwise 
SNP distances within and between each source. 

a) Within each eBG31 source group 
b) Between each eBG31 source group 

 
 
 

b) 

a) 
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Figure III.15 Distribution of median pairwise SNP distance within and between each eBG31 continent  
Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum pairwise SNP 
distances within and between each continent. 

a) Within each continent 
b) Between each continent 

b) 

a) 
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Figure III.16 Heatmap of the bootstrap results for the clustering within the eBG297 alignment 

Dendrogram of the fastbaps clusters in the eBG297 soft-core SNP alignment with a heatmap of the 
bootstrap results. Five clusters were identified in the alignment with high bootstrap results seen 
between sequences within each fastbaps cluster. 

 

 

 

 

 

 

 

 

Figure III.17 Distribution of median pairwise SNP distance within each eBG297 source 

Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum pairwise 
SNP distances within each source. 
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Figure III.18 Distribution of median pairwise SNP distance within and between each eBG297 fastbaps 

cluster  
Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum pairwise SNP 
distances within and between each eBG297 fastbaps cluster. 

a) Within each eBG297 fastbaps cluster 
b) Between each eBG297 fastbaps cluster 
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             Figure III.19 eBG297 phylogeny annotated with year of isolation 
Soft-core SNP Maximum Likelihood Phylogeny of 183 eBG297 isolates, annotated with the year   
group of isolation.  
 
Inner ring, fastbaps cluster: 1           2           3           4           5      

Outer ring, year group:   
 
 

Tree scale: 0.01
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             Figure III.20 eBG297 phylogeny annotated with isolation source 

Soft-core SNP Maximum Likelihood Phylogeny of 183 eBG297 isolates, annotated with the source                      
of isolation. 
Inner ring, fastbaps cluster: 1           2           3           4           5      

Outer ring, year group:  Environmental         Human            Unknown         

 

Tree scale: 0.01
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Figure III.21 eBG297 phylogeny annotated with continent of isolation 

Soft-core SNP Maximum Likelihood Phylogeny of 183 eBG297 isolates, annotated with the 
continent of isolation. 

   Inner ring, fastbaps cluster: 1           2           3           4           5  
                 
                Outer ring, continent:   Africa           Asia            Europe            N. America           Unknown          

Tree scale: 0.01
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              Figure III.22 eBG297 phylogeny annotated with ST 

              Soft-core SNP Maximum Likelihood Phylogeny of 183 eBG297 isolates, annotated with the ST.  

 
             Inner ring, fastbaps cluster:  1           2           3           4           5      

           Outer ring, ST: 603            1823           7731            7732            novel3 
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Figure III.23 Distribution of median pairwise SNP distance within and between each eBG297 year group 

Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum pairwise SNP 
distances within and between each year group. 

a) Within each year group 
b) Between each year group 

 

 

 

 

 

b) 

a) 
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Figure III.24 Distribution of median pairwise SNP distance within and between each eBG297 continent 

Box and whisker plot showing the minimum, 1st quartile, median, 3rd quartile and maximum pairwise SNP 
distances within and between each continent. 

a) Within each continent 
b) Between each continent 

 

 

 

 
 
 
 
 
 
 

b) 

a) 
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IV Appendix IV. Supplementary Data for Chapter 4 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure IV.1 Difference in integron frequency across S. Infantis by year group 

Shown as a percentage of isolates from each year group. 
eBG31: 1989-2005 (n=144), 2006-2010 (n=39), 2011-2014 (n=715), 2015-2016 (n=1177) and 2017-2018 
(n=1158) 
eBG297: 2003-2005 (n=10), 2006-2010 (n=49), 2011-2014 (n=73), 2015-2016 (n=26) and 2017-2019 
(n=16) 
1989-2005            2006-2010  2011-2014           2015-2016            2017-2018          
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    eBG31    eBG297    

    Lincosamides Macrolides Polymyxins Lincosamides Macrolides Polymyxins 

  eBG 0.38 0.27 0.002 0 2.17 0 

Source 

Environmental 0.53 0.53 0.1 0 0 0 

Human 0.39 0.39 0 0 2.38 0 

Poultry 0.53 0 0 0 0 0 

Origin 

Africa 0 0.67 0 0 2.58 0 

Asia 0.42 0.42 0 0 0 0 

Europe 1.67 0.42 0.1 0 0 0 

North America 0 0.18 0 0 0 0 

South America 0 0 0 0 0 0 

Year Group 

1989-2005 0 0.68 0 0 0 0 

2006-2010 0 0.99 0 0 0 0 

2011-2014 0.40 0.26 0 0 4.00 0 

2015-2016 0.75 0.33 0.1 0 3.70 0 

2017-2019 0.43 0.09 0 0 0 0 

 

Table IV.1 Resistance to Lincosamides, Macrolides and Polymyxins 
Percentage of eBG31 (n=4486) and eBG297 (n=184) isolates from each eBG, source, origin and year group with resistance to Lincosamides, Macrolides and Polymyxins. 
eBG31 source: environmental (n=947); human (n=1519) and poultry (n=947)   
eBG297 source:  environmental (n=9); human (n=168) and poultry (n=0) 
eBG31 origin:  Africa (n=297); Asia (n=238); Europe (n=959); North America (n=2793) and South America (n=122) 
eBG297 origin: Africa (n=155); Asia (n=3); Europe (n=20); North America (n=2) and South America (n=0) 
eBG31 year: 1989-2005 (n=147), 2006-2010 (n=404), 2011-2014 (n=759), 2015-2016 (n=1203), 2017-2018 (n=1164) 
eBG297 year: 2003-2005 (n=11), 2006-2010 (n=49), 2011-2014 (n=75), 2015-2016 (n=27), 2017-2019 (n=16) 
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Table IV.2 Rare plasmid distribution by eBG 
Percentage of eBG31 (n=4486) and eBG297 (n=184) isolates containing each rare plasmid type              
with an overall isolation rate of less than 1% per eBG. 

  eBG31 eBG297 
Col156 0.29 0.54 
Col3M 0.02 0 
Col440I 0.25 0 
Col8282 0.16 0 
Col(RNAI) 0.56 0 
Col(BS512) 0.16 0.54 
Col(IMGS31) 0 0.54 
Col(MG828) 0.11 0 
Col(pVC) 0.87 0 
IncB/O/K/Z 0.13 0 
IncH 0.40 0 
IncL/M 0.11 0 
IncN 0.45 0.54 
IncQ 0.11 0 
IncR 0.11 0 
IncU 0.07 0 
p0111 0.09 0 
repA 0.09 0 
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 eBG31 eBG297 

 Environmental Human Poultry Environmental Human Poultry 

Col156 0.11 0.33 0.11 0 0.60 0 

Col3M 0 0.07 0 0 0 0 

Col440I 0.11 0.20 0 0 0 0 

Col8282 0.11 0.33 0 0 0 0 

Col(RNAI) 0.21 0.92 0.42 0 0 0 

Col(BS512) 0 0.13 0.11 0 0.60 0 

Col(IMGS31) 0 0 0 0 0.60 0 

Col(MG828) 0 0.13 0 0 0 0 

Col(pVC) 0.63 0.46 0.84 0 0 0 

IncB/O/K/Z 0 0.33 0 0 0 0 

IncH 1.27 0 0 0 0 0 

IncL/M 0.42 0 0 0 0 0 

IncN 0 0.66 0.11 0 0 0 

IncQ 0 0.13 0 0 0 0 

IncR 0 0.20 0.21 0 0 0 

IncU 0 0.20 0 0 0 0 

p0111 0 0.26 0 0 0 0 

repA 0.11 0.20 0 0 0 0 
Table IV.3 Rare plasmid distribution by isolation source 
Percentage of eBG31 and eBG297 isolates from each source containing each rare plasmid type with an 
overall isolation rate of less than 1% per eBG. 
eBG31: environmental (n=947); human (n=1519) and poultry (n=947)   
eBG297:  environmental (n=9); human (n=168) and poultry (n=0) 
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 eBG31 eBG297 

 Africa Asia Europe 
North 
America 

South 
America Africa Asia Europe 

North 
America 

South 
America 

Col156 0.34 0 0.94 0.04 0.82 0.65 0 0 0 0 

Col3M 0 0 0.10 0 0 0 0 0 0 0 

Col440I 0 0 0.31 0.25 0 0 0 0 0 0 

Col8282 1.01 0.42 0.21 0.04 0 0 0 0 0 0 

Col(RNAI) 0.34 0.42 0.73 0.54 0 0 0 0 0 0 

Col(BS512) 0 0 0.10 0.18 0.82 0.65 0 0 0 0 

Col(IMGS31) 0 0 0 0 0 0.65 0 0 0 0 

Col(MG828) 0 0 0.52 0 0 0 0 0 0 0 

Col(pVC) 0.34 0 1.25 0.90 0.82 0 0 0 0 0 

IncB/O/K/Z 1.01 0 0 0.11 0 0 0 0 0 0 

IncH 0 0 0.21 0.57 0 0 0 0 0 0 

IncL/M 0 0 0.21 0.11 0 0 0 0 0 0 

IncN 0.67 0 0.73 0.39 0 0.65 0 0 0 0 

IncQ 0 0 0.42 0.04 0 0 0 0 0 0 

IncR 0 0 0.31 0 1.64 0 0 0 0 0 

IncU 0.34 0 0.21 0 0 0 0 0 0 0 

p0111 0 0 0.10 0.11 0 0 0 0 0 0 

repA 0 0 0.21 0.07 0 0 0 0 0 0 
Table IV.4 Rare plasmid distribution by continent 
Percentage of eBG31 and eBG297 isolates from each continent containing each rare plasmid type with an 
overall isolation rate of less than 1% per eBG. 
eBG31 origin:  Africa (n=297); Asia (n=238); Europe (n=959); North America (n=2793) and South America 
(n=122) 
eBG297 origin: Africa (n=155); Asia (n=3); Europe (n=20); North America (n=2) and South America (n=0) 
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 eBG31 eBG297 

 

1989 
to 
2005 

2006 
to 
2010 

2011 
to 
2014 

2015 
to 
2016 

2017 
to 
2018 

2003 
to 
2005 

2006 
to 
2010 

2011 
to 
2014 

2015 
to 
2016 

2017 
to 
2019 

Col156 1.36 0 0.92 0.25 0 0 0 0 3.70 0 

Col3M 0 0 0 0.08 0 0 0 0 0 0 

Col440I 0 0 0.26 0.33 0.09 0 0 0 0 0 

Col8282 0 0.25 0.26 0.33 0 0 0 0 0 0 

Col(RNAI) 0.68 0.25 0.66 0.83 0.43 0 0 0 0 0 

Col(BS512) 0 0 0 0.33 0.09 0 0 0 3.70 0 

Col(IMGS31) 0 0 0 0 0 9.09 0 0 0 0 

Col(MG828) 0 0 0.40 0.17 0 0 0 0 0 0 

Col(pVC) 0 0.99 1.71 1.16 0.34 0 0 0 0 0 

IncB/O/K/Z 0 0.50 0.13 0.08 0.09 0 0 0 0 0 

IncH 1.36 0 1.05 0.50 0.17 0 0 0 0 0 

IncL/M 0 0 0.53 0 0 0 0 0 0 0 

IncN 0 0.25 0.53 0.42 0.34 0 0 0 3.70 0 

IncQ 0 0 0.40 0.17 0 0 0 0 0 0 

IncR 0 0 0.26 0.25 0 0 0 0 0 0 

IncU 0 0 0.40 0 0 0 0 0 0 0 

p0111 0 0 0.13 0.08 0.17 0 0 0 0 0 

repA 0 0 0.26 0.08 0.09 0 0 0 0 0 
 

Table IV.5 Rare plasmid distribution by year group 
Percentage of eBG31 and eBG297 isolates from each year group containing each rare plasmid type with 
an overall isolation rate of less than 1% per eBG. 
eBG31 year: 1989-2005 (n=147), 2006-2010 (n=404), 2011-2014 (n=759), 2015-2016 (n=1203), 2017-
2018 (n=1164) 
eBG297 year: 2003-2005 (n=11), 2006-2010 (n=49), 2011-2014 (n=75), 2015-2016 (n=27), 2017-2019 
(n=16) 
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Figure IV.2 pESI presence in eBG31 from England & Wales and South Africa 
Soft-core SNP maximum likelihood phylogeny of 139 England & Wales eBG31 sequences and 85 South African eBG31 sequences rooted to the most ancestral 
node. Heat map showing mapped sequence read coverage for the S. Infantis isolates to the pESI plasmid. The colour blue indicates a depth of ≥ 20 mapped reads.  

A B 
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Figure IV.3 Phylogenetic distribution of pESI variants 
Soft-core SNP Maximum Likelihood Phylogeny of 1013 5SNP cluster representatives of pESI.  The outer 
rings are annotated with the percentage of isolates in each 5SNP cluster that were isolated from each 
continent or had each pESI variant. 

 
Inner ring, number of sequences in 5SNP cluster:  
  
 
Second ring, percentage of sequences in each cluster from each continent: 
Africa       Asia        Europe          North America          South America          Unknown          
Third ring, percentage of sequences in each cluster containing Integron 1:  
Presence 
Fourth ring, percentage of sequences in each cluster containing Integron 2:  
Presence 
Outer ring, percentage of sequences in each cluster containing blaCTX-M-65 on pESI:  
Presence 
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Figure IV.4 eBG31 phylogeny annotated with pESI variant 
Soft-core SNP Maximum Likelihood Phylogeny of 831 25SNP cluster representatives of eBG31.  The outer 
rings are annotated with the percentage of isolates in each 25SNP cluster that had each pESI variant. 
 

Inner ring, fastbaps cluster:  
 
Second ring, pESI presence: 
Third ring, pESI with Integron 1:  
Fourth ring, pESI with Integron 2:  
Fifth ring, pESI with blaCTX-M-65:  
Outer ring, Number of sequences in 25SNP cluster:  
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V Appendix V.  Supplementary Data for Chapter 5 
 

 
 

 
Figure V.1 eBG31 phylogeny annotated with tufA variant 
Soft-core SNP Maximum Likelihood Phylogeny of 831 25SNP cluster representatives of eBG31. Each 
representative isolate is labelled with the percentage of isolates from humans or poultry sources in its 
cluster that contained tufA_1, tufA_2 or both variants. 
 
Inner ring, Number of sequences in 25SNP cluster:  
 
Second ring, Source: Human                   Poultry      
 
Outer ring, tufA variant: tufA_1              tufA_2                Both tufA_1 and tufA_2 
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Figure V.2 Isolation frequency of known protein-coding genes unique to human or poultry eBG31 
isolates 
2,440 protein-coding genes with a known function were found exclusively in 1482 eBG31 human isolates. 
593 protein-coding genes with a known function were found exclusively in 945 eBG31 poultry isolates.    
• values are less than 10 but greater than 0. 
Human              Poultry                  

         

 
 

Figure V.3 Difference in the distribution in the number of IGRs in eBG31 human and poultry isolates. 
Box plot showing the variation in the number of IGRs in each eBG31 isolate from human sources 
(n=1482) and poultry sources (n=945).  
Human             Poultry                                                      
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Figure V.4 Distribution of the difference in the percentage of associated genes and IGRs between sources 
The percentage of isolates with a lower proportion of each significantly associated gene/IGR was 
subtracted from the percentage of isolates with each gene/IGR from the other source.  1482 eBG31 human 
isolates and 945 poultry eBG31 isolates were compared. • values are less than 2 but greater than 0.  
Human – Genes                Poultry – Genes                Human – IGRs                Poultry – IGRs                                                     
 
 

 
 

 

Figure V.5 Isolation frequency of IGRs unique to human or poultry eBG31 isolates 
6,319 IGRs were found exclusively in 1,482 eBG31 human isolates. 1,172 IGRs were found exclusively in 945 
eBG31 poultry isolates. • values are less than 20 but greater than 0. 
Human              Poultry                          
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Figure V.6 eBG31 phylogeny annotated with source associated IGR variants 
Soft-core SNP Maximum Likelihood Phylogeny of 831 25SNP cluster representatives of eBG31. Each 
representative isolate is labelled with the percentage of isolates from humans or poultry sources in its 
cluster that contained the poultry or human associated variant of the IGR between yfkN and a hypothetical 
protein.  
 
 
Inner ring, Number of sequences in 25SNP cluster:  
 
Second ring, Source: Human                   Poultry      
 
Outer ring, IGR variant: Human associated variant              Poultry associated variant                 
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Figure V.7 Maximum likelihood phylogeny of core IGRs 
Phylogeny of 2464 core IGRs from 1482 eBG31 human isolates and 945 eBG31 poultry isolates.  

Human              Poultry                          

Tree scale: 0.00001
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Figure V.8 Maximum likelihood phylogeny of core genes annotated with distinct phenotype 
distribution 
Phylogeny of 4132 core genes from 1482 eBG31 human isolates and 945 eBG31 poultry isolates.  

The branch thickness and redness is in proportion to the posterior probability (p > 0.5) that a change of 
isolation source has occurred.  
Human              Poultry                          
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Figure V.9 Maximum likelihood phylogeny of core IGRs annotated with distinct phenotype distribution 
Phylogeny of 2464 core IGRs from 1482 eBG31 human isolates and 945 eBG31 poultry isolates.  
The branch thickness and redness is in proportion to the posterior probability (p > 0.5) that a change of 
isolation source has occurred. 

Human              Poultry      
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VI Appendix VI. Electronic Appendices 
 

VI.I Shorten node names for Prokka  
 
 “shorten_node_names.pl” 
 
When given a list of names of fastas to shorten, this shortens all nodes names within each 

fasta, renaming the output to include ‘_shortcontigs’. 

 
VI.II Get Representatives from SnapperDB script 
 
 “get_eBG31_representitives.py” 
 
This script, when given a SnapperDB name, username and password, creates a list of all 

sequences in the database and a list of representatives for each 50SNP cluster in the 

database (Ashton et al., 2017)  

 

VI.III Metadata and Results 
 

“Infantis_Metadata_and_Results.xlsx” 

Table VI.1 S. Infantis Metadata 

Continent, source group, year group and ST results for the S. Infantis collection (n=4670). 

 

Table VI.2 S. Infantis Fastbaps Clusters 

Fastbaps cluster results for the eBG31 (n=4485) and eBG297 (n=183) isolates.  

. = isolate belongs to other eBG  

 

Table VI.3 S. Infantis AMR Results 

Antimicrobial resistance determinant presence for each of the 11 antimicrobial classes in the S. Infantis 

collection (n=4670). 

 

Table VI.4 S. Infantis Plasmid Results 

Plasmid group presence and pESI variants in the S. Infantis collection (n=4670). 

 

Table VI.5 S. Infantis Integron Results 

Number of integrons present in each S. Infantis isolate (n=4570). 
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VI.IV eBG31 phylogeny  
 
“Annotated_eBG31_Phylogeny.pdf” 
 

Figure VI.1 eBG31 phylogeny annotated with source, continent, year and ST 

Soft-core SNP Maximum Likelihood Phylogeny of 831 25SNP cluster representatives of eBG31. Rings 3-6 

represent the percentage of isolates in each 25SNP cluster that were isolated from each source, continent, 

year group and ST.   
 

Inner ring, Number of sequences in 25SNP cluster:  

 

Second ring, fastbaps cluster:   

 

Third ring, Source:  

 

Fourth ring, Continent: Africa           Asia            Europe            N. America           S. America           Unknown          
 

Fifth ring, Year: 

 

Outer ring, ST: 2146            2283            32             Other 

  
 
VI.V Significantly Associated Virulence Factors 
 
“Associated_Virulence_Factors.xlsx” 
 

Virulence factors identified in a comparison of 1,519 human and 947 poultry eBG31 isolates that 

were significantly associated with either isolation source 

 

VI.VI Genes Present in Significantly Associated Unitigs  
 
“Associated_Unitigs_Region1.gff, Associated_Unitigs_Region2.gff, 
Associated_Unitigs_Region3.gff” 
 

Prokka outputs for the 3 regions of the eBG31 reference that contained high densities of unitigs 

significantly associated to an isolation source 
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VII Appendix VII. Publications Arising from this Thesis 
 

VII.1 Posters 
 

07.03.18, Global Diversity of Salmonella Infantis. HPRU GI Annual Conference, Norwich. 

 

Authors: Jennifer Mattock1, Marie Anne Chattaway2, Hassan Hartman2, Gemma 

Langridge3, Paul Hunter1, and John Wain3 

 

20.03.18, Global Diversity of Salmonella Infantis.  Public Health Research and Science 

Conference, Warwick. 

 

Authors: Jennifer Mattock1, Marie Anne Chattaway2, Hassan Hartman2, Tim Dallman2, 

Gemma Langridge3, and John Wain3 

 

14.03.19, Global Diversity of Salmonella Infantis. HPRU GI Annual Conference, London. I 

won an award for the best overall poster at this conference. 

 

Authors: Jennifer Mattock1, Marie Anne Chattaway2, Emma Manners4, Hassan Hartman2, 

Tim Dallman2, Tina Duze5, Shannon Smouse6, Nomsa Tau6, Karen Keddy5, Anthony Smith6, 

Gemma Langridge3 and John Wain3 

 

VII.2  Oral Presentations 
 

01.03.17, “Reducing the Risk of Emerging Gastrointestinal Infection”. HPRU GI Annual 

Conference, Liverpool. 

03.10.17, “Impact of the chicken gut microbiota on Salmonella colonisation of the chicken 

caecum”. Molecular Characterization of Foodborne and Waterborne Pathogens, including 

Whole-Genome Sequencing Analysis of Pathogen, South Africa. 

17.11.17, “Diversity of Salmonella Infantis in England and Wales”. GBRU, PHE. 

28.06.18, “Global Diversity of Salmonella Infantis”. GBRU, PHE. 

25.09.18, “Global Diversity of Salmonella Infantis”.  International Symposium on 

Salmonella and Salmonellosis, France. 
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VII.III  Journal Articles  
 

Future publication: “Distinct genetic phylogeny in human Salmonella Infantis from South 

Africa and the United Kingdom: implications for management.”  

 

Authors: Jennifer Mattock1, Marie Anne Chattaway2, Karen Keddy5, Hassan Hartman2, Tim 

Dallman2, Anthony Smith6, Emma J. Manners4, Oby Enwo1, Tina Duze5, Shannon Smouse6, 

Nomsa Tau6, Alison E. Mather3, John Wain3 and Gemma Langridge3 

 

Publication in preparation for submission to Microbial Genomics: “Identification of a pESI-

like plasmid and presence of multi-drug resistant clones found in the S. Infantis UK 

population” 

 

Authors: Jennifer Mattock*1, Winnie Lee*2,7, David Greig2,8, Gemma Langridge3, Samuel 

Bloomfield3, Alison Mather3, Andrew Edwards7, John Wain3, Hassan Hartman2, Tim 

Dallman2, Marie Anne Chattaway2, Satheesh Nair2  

*Joint first co-authors 

 

 

Location: 1Norwich Medical School, University of East Anglia, UK. 2Gastrointestinal 

Bacteriology Reference Unit, Public Health England, UK. 3Quadram Institute Bioscience, 

Norwich, UK. 4European Bioinformatics Institute, UK.  5Faculty of Health Sciences, 

University of the Witwatersrand, Johannesburg, South Africa. 6Centre for Enteric 

Diseases, National Institute for Communicable Disease, Johannesburg, South Africa.  
7Imperial College London, London, UK. 8University of Edinburgh, Edinburgh, UK. 
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Abbreviations 
 

AMR  antimicrobial resistance 

APHA Animal and Plant Health Agency 

CDC  Centers for Disease Control and Prevention 

CSF  cerebrospinal fluid 

CSV  Comma-separated value 

DEFRA  Department for Environment, Food & Rural Affairs 

DLV  double-locus variant 

DNA  deoxyribonucleic acid 

eBG  eBurstGroup 

ECDC  European Centre for Disease Prevention and Control 

EFSA  European Food Safety Authority 

ENA European Nucleotide Archive 

ESBLs  extended-spectrum beta-lactamases 

EU  European Union 

FDA  Food and Drug Administration 

FSA  Food Standards Agency 

GBRU  Gastrointestinal Bacterial Reference Unit 

GWAS  Genome wide association studies 

HIV  human immunodeficiency virus 

hPHE historical Public Health England 

HUS  haemolytic uraemic syndrome 

IGR  intergenic region 

IID  infectious intestinal disease 

IL Interleukin 

Inc incompatibility 

Integron A 
The integron in the ASRF01000104.1_contig_55 contig of the 

pESI assembly 

Integron B 
The integron in the ASRF01000099.1_contig_4 contig of the 

pESI assembly 

iNTS invasive non-typhoidal salmonellosis 

MDR  Multidrug resistance 

MLST  Multi-locus sequence typing 
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MLV multiple-locus variant 

MRCA  most recent common ancestor 

NCEZID  National Center for Emerging and Zoonotic Infectious Diseases 

ncRNAs  non-coding ribonucleic acids 

NICD  National Institute for Communicable Diseases 

NTS  Non-Typhoidal Salmonella 

PCR  polymerase chain reaction 

pESI  plasmid of emerging S. Infantis 

PHE  Public Health England 

QIB  Quadram Institute Bioscience 

QRDR  quinolone resistance determining region 

Rep  Replicon 

SLV  single-locus variant 

SNP  single nucleotide polymorphism 

SPI  Salmonella Pathogenicity Island 

SPV  Salmonella plasmid virulence 

SRA  Sequence Read Archive 

ST  Sequence Type 

STEC  Shiga toxin-producing E. coli 

STFP  Secure File Transfer Protocol 

STM signature tagged mutagenesis 

subsp. subspecies 

T3SS  Type III Secretion System 

TMDH transposon-mediated differential hybridisation 

TraDIS transposon directed insertion-site sequencing 

TraSH transposon-site hybridisation  

UEA  University of East Anglia 

UK United Kingdom 

USA  United States of America 

WHO  World Health Organization 
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Glossary of Terms 

 

Basecalling – The process of interpreting the output of a sequencing run as nucleotides.  

Contig – Contiguous sections of the genome (Narzisi and Mishra, 2011). 

Crunch file – The format used by software such as ACT containing information comparing 

genomes (Carver et al., 2005). 

De Bruijn Graph – A method used by genome assemblers to resolve differences between 

reads. Reads of length k are plotted onto the graph, when they diverge this is plotted as a 

node and edges are plotted until the k-mers converge again. The assembled genome is 

determined by walking through the graph. 

Demultiplexing – To allow multiple isolates to be sequenced at once, each sample is 

labelled with unique indexes. Demultiplexing is the process of pulling out the sequence 

data out for each isolate from the sequencing run output. 

Dcm methylation – DNA methylation of the second cytosine of CC(A/T)GG sequences 

(Gomez-Eichelmann, Levy-Mustri and Ramirez-Santos, 1991). 

eBurstGroup (eBG) - defined as multi locus sequence types (ST) linked by single locus 

variants (Achtman et al., 2012).  

eBG31 collection – All eBG31 sequences that successfully passed into SnapperDB. 

Indel – An indel is a short insertion or deletion of nucleotides (Sehn, 2015). 

k-mer – A sequence of length k. 

Manhattan plot – A scatter plot commonly used to present GWAS results. The x-axis 

represents the SNPs position in the genome and the y-axis shows the negative log of the 

p-value for each SNP.  The lowest p-values appear at the top of the graph (Modena et al., 

2019). 

Multidrug Resistance (MDR) – Resistance to at least 3 classes of antimicrobials 

N50 – The number at which the combined length of sequences greater than this number 

makes up at least 50% of the whole genome (Narzisi and Mishra, 2011). 

pESI pseudomolecule – The eBG31 reference genome concatenated with the pESI 

reference. 

Properly paired reads – When read pairs are aligned with a distance equal to the distance 

between the ends of the reads, they are properly paired (Thankaswamy-Kosalai, Sen and 

Nookaew, 2017). 

QC max percentage non consensus base of each locus – An output of MOST showing the 

highest percentage of non-consensus bases in each allele (Tewolde et al., 2016) .     
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Scaffolds – Contigs that have been ordered and spaced by N’s, predicting their 

orientation in the genome. 

Scree plot – a plot of the results of a principal component analysis, a multivariate 

statistical test where data is split into components showing variation, measured in 

eigenvalues (Abdi and Williams, 2010; Lewith, Jonas and Walach, 2010). 

SNP address - SnapperDB calculates and stores the distances between all sequences 

added to the database (Ashton et al., 2017). It clusters the sequences on seven levels of 

SNP distance: 250, 100, 50, 25, 10, 5 and 0. For a sequence to be added to a cluster it 

needs to be within that SNP distance of any isolate in the cluster. The clusters that each 

sequence belongs to are used to give it a seven-digit code. This SNP address is then used 

to provide real-time clustering of sequences and identify outbreaks. 

Tagmentation – A step in the library prep reaction which uses a transposon to cleave the 

DNA and adds a primer to each piece of double stranded DNA (Illumina, 2015). 

Unitig – A compacted De Bruijn graph is made using all the genomes in the association 

study (Jaillard et al., 2018). A node on the graph is a unitig and represents a sequence 

that is shared by genomes. 

UpSet Plot – An alternative to a Venn diagram, each row in the plot represents a segment 

of a Venn diagram, with the value of each intersection shown as a bar chart (Lex et al., 

2014). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 254 

Software and Hardware Glossary 
 

Albacore (Oxford Nanopore Technologies) – An Oxford Nanopore Technologies (ONT) 

basecaller that identifies the DNA sequences from the raw output of a MinION 

sequencing run. 

awk (Dougherty and Robbins, 1997) – a Unix programming language for the manipulation 

of text files. 

ape (Paradis and Schliep, 2018) - An R package containing tools to work with phylogenies. 

ARIBA (Hunt et al., 2017) – Identifies the presence of genes in fastq files from a selection 

of databases, with the option to create a database. 

Artemis Comparison Tool (ACT) (Carver et al., 2005) – A java based tool to compare two 

or more DNA sequences and visualise the similarities. 

Artemis (Carver et al., 2012) – Allows visualisation of genomes, including annotation files. 

Bandage (Wick et al., 2015) – Allows visualisation of the assembly graphs produced by 

assemblers. 

bcl2fastq (Illumina, 2019b) – Converts the bcl output of an Illumina sequencing run into 

fastq files. 

BRIG (Alikhan et al., 2011) – Uses BLAST to generate images showing the similarity of 

multiple prokaryotic genomes to a reference. 

BWA (Li, 2013) – Burrows-Wheeler Aligner,  a tool that maps sequences against a 

reference sequence. BWA-MEM is used to map sequences with reads, varying from 70bp-

1Mbp in length, faster and more accurately than the other algorithm for that read length, 

BWA-SW. 

Canu (Koren et al., 2017) – A long read assembler that uses adaptive k-mer weighting and 

can accurately assemble large repeats. 

Circlator (Hunt et al., 2015) – A tool that circularises assemblies. 

data.table (Dowle and Srinivasan, 2018) – An R package that enables reading and 

manipulation of large data. 

devtools (Wickham et al., 2018) – An R package that facilitates R package development 

and installation of other packages. 

Entrez Direct (Kans, 2019) – Gives access to the NCBI’s database via command line. 

Fastbaps (Tonkin-Hill et al., 2019) – Provides hierarchical clustering of sequence data 

similar to hierBAPS, but much faster. 
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FastQC (Andrews, 2010) – Provides information on the quality of raw sequence data, 

producing an overview and summary graphs. 

Genome Analysis Toolkit (GATK) (Van der Auwera et al., 2013)  – A variant caller for high-

throughput sequencing data. 

ggplot2 (Wickham, 2016) – An R package for creating graphics. 

grep (Dougherty and Robbins, 1997) – a Unix command for displaying and editing lines of 

text. 

Gubbins (Nicholas J Croucher et al., 2015) – Identifies recombination within an alignment. 

hierBAPS (Cheng et al., 2013) – Determines clustering of DNA sequences using a 

hierarchical approach of Bayesian inference. 

Integron Finder (Cury et al., 2016a) – Identifies integrons in bacterial genomes. 

iTOL (Letunic and Bork, 2016) -  An online tool for visualisation and annotation of 

phylogenies. 

Mash (Ondov et al., 2016) – Calculates the genetic distance between sequence data by 

creating MinHash sketches and determining the proportion of k-mers shared. 

MATLAB (MathWorks, 2014) – A programming platform for data analysis. 

MEGA7 (Kumar, Stecher and Tamura, 2016) – A graphical user interface that analyses 

sequence data, producing alignments, phylogenies and calculating molecular evolution. 

MegaBLAST (McGinnis and Madden, 2004) - Searches a nucleotide query against 

nucleotide databases, efficiently finding long alignments between highly similar 

sequences. 

Metric Oriented Sequence Typer (MOST) (Tewolde et al., 2016) – Assigns ST profile. 

MUMmer dnadiff (Kurtz et al., 2004) – Quantifies the differences between two genomes. 

NanoFilt (De Coster et al., 2018) – Trims and filters the reads of long read sequencing 

data from ONT sequencing runs. 

Nanopolish (Loman, Quick and Simpson, 2015) – When provided with Oxford Nanopore 

fast5 files and a draft assembly it produces a consensus sequence. 

NanoStat (De Coster et al., 2018) – Produces summary statistics of long read sequencing 

data from ONT sequencing runs. 

Nucleotide BLAST (McGinnis and Madden, 2004) – Searches a nucleotide query against 

nucleotide databases. 

PHASTER (Arndt et al., 2016) – Identifies and annotates prophage sequences in bacterial 

genomes. 
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PHEnix (Jironkin et al., 2017) – The SNP calling pipeline used by PHE. It takes paired end 

fastqs as input, maps to a reference genome, variant calls, and filters the resulting variant 

call format (VCF) file. 

phylobase (Michonneau et al., 2019) – An R package that allows manipulation of 

phylogenies. 

PHYLOViZ (Ribeiro-Gonçalves et al., 2016) – Generates minimum spanning trees of allelic 

data. 

phytools (Revell, 2012) – An R package containing tools to work with phylogenies. 

Piggy (Thorpe et al., 2018) – Uses the output of Roary to analyse the intergenic regions in 

bacterial genomes. 

Pilon (Walker et al., 2014) – A tool for improving draft assemblies by correcting bases and 

variant detection using read alignment analysis. 

PlasmidFinder (Carattoli et al., 2014) - An online tool that identifies the presence of 

plasmids in uploaded sequences. The database can be downloaded and used as input for 

ARIBA. 

Prokka (Seemann, 2014) – Performs prokaryote genome annotation. 

Protein BLAST (McGinnis and Madden, 2004) – Searches an protein query against protein 

databases. 

pyseer (Lees et al., 2018) – Estimates the genetic variation within a bacterial population 

associated with a phenotype; taking into account the effect of population structure. 

QUAST (Gurevich et al., 2013) – A tool to assess the quality of assemblies. 

R (R Core Team, 2018) – A programming language for statistical computing and graphics. 

Racon (Vaser et al., 2017) – Corrects assemblies using alignments of the assembly to 

either short or long read sequence data. 

RAxML (Stamatakis, 2014) – Produces a maximum likelihood phylogeny from an 

alignment. 

ResFinder (Zankari et al., 2012) – An online tool that identifies the presence of AMR 

genes in uploaded sequences. The database can be downloaded and used as input for 

ARIBA. 

rhierBAPS (Tonkin-Hill et al., 2018) – An r package of the hierBAPS software. 

Roary (Page et al., 2015) – Produces the pan genome from annotated assemblies. 

RStudio (RStudio, 2018) – An environment for R. 

SAMtools (Li et al., 2009) – Has various functions to process alignments in the SAM 

format. SAMtools sort is used to sort alignment, SAMtools index to index them and 
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SAMtools depth calculates the depth at each position. SAMtools flagstat prints statistics 

for the alignment. 

Scoary (Brynildsrud et al., 2016) – Uses the output of Roary to calculate the association 

between traits and genes.  

sed (Dougherty and Robbins, 1997) – A Unix stream editor, used for editing multiple text 

files. 

SMALT (Ponstingl and Ning, 2014) – Maps sequence data to a reference genome. 

SnapperDB (Ashton et al., 2017) – A database that stores a pairwise distance matrix of 

SNP distances. This can be used to produce alignments and a SNP address for each 

isolate. 

SPAdes (Bankevich et al., 2012) – A genome assembler. 

SRA Toolkit fastq-dump (National Center for Biotechnology Information, 2014) – Allows 

access and conversion of the data in the SRA to fastq format. 

Tablet (Milne et al., 2013) – Allows visualisation of assemblies and alignments. 

The Cloud Infrastructure for Microbial Bioinformatics (CLIMB) (Connor et al., 2016) – A 

high performance computing cluster for UK microbial bioinformaticians. 

TreeBreaker (Azim and Didelot, 2018) – With a phylogeny and phenotype information it 

uses Bayesian inference to determine whether phenotypes are distributed evenly across 

the phylogeny and if branches are associated with a phenotype. 

Trimmomatic (Bolger, Lohse and Usadel, 2014) – A pre-processing tool that trims and 

filters reads from either single end or paired end sequence data. 

Unicycler (Wick et al., 2017) – A tool that assembles bacterial genomes using a 

combination of long read and short read sequence data. 

unitig-counter (Jaillard et al., 2018; Lees, 2019) -  Takes assemblies as input and counts 

the unitigs in a bacterial population using a compressed De-Bruijn graph. The output is 

used as input for pyseer. 

VFDB (Chen et al., 2016) – An online database containing information about virulence 

factors of bacterial pathogens. The database can be downloaded and used as input for 

ARIBA. 
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