LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean

Denvil-Sommer, Anna ORCID: https://orcid.org/0000-0002-9124-2827, Gehlen, Marion, Vrac, Mathieu and Mejia, Carlos (2019) LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean. Geoscientific Model Development, 12. 2091–2105. ISSN 1991-9603

[thumbnail of Published_Version]
Preview
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution.

Download (7MB) | Preview

Abstract

A new feed-forward neural network (FFNN) model is presented to reconstruct surface ocean partial pressure of carbon dioxide (pCO2) over the global ocean. The model consists of two steps: (1) the reconstruction of pCO2 climatology, and (2) the reconstruction of pCO2 anomalies with respect to the climatology. For the first step, a gridded climatology was used as the target, along with sea surface salinity (SSS), sea surface temperature (SST), sea surface height (SSH), chlorophyll a (Chl a), mixed layer depth (MLD), as well as latitude and longitude as predictors. For the second step, data from the Surface Ocean CO2 Atlas (SOCAT) provided the target. The same set of predictors was used during step (2) augmented by their anomalies. During each step, the FFNN model reconstructs the nonlinear relationships between pCO2 and the ocean predictors. It provides monthly surface ocean pCO2 distributions on a 1∘×1∘ grid for the period from 2001 to 2016. Global ocean pCO2 was reconstructed with satisfying accuracy compared with independent observational data from SOCAT. However, errors were larger in regions with poor data coverage (e.g., the Indian Ocean, the Southern Ocean and the subpolar Pacific). The model captured the strong interannual variability of surface ocean pCO2 with reasonable skill over the equatorial Pacific associated with ENSO (the El Niño–Southern Oscillation). Our model was compared to three pCO2 mapping methods that participated in the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative. We found a good agreement in seasonal and interannual variability between the models over the global ocean. However, important differences still exist at the regional scale, especially in the Southern Hemisphere and, in particular, in the southern Pacific and the Indian Ocean, as these regions suffer from poor data coverage. Large regional uncertainties in reconstructed surface ocean pCO2 and sea–air CO2 fluxes have a strong influence on global estimates of CO2 fluxes and trends.

Item Type: Article
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 12 Sep 2020 00:26
Last Modified: 09 Mar 2024 01:28
URI: https://ueaeprints.uea.ac.uk/id/eprint/76847
DOI: 10.5194/gmd-12-2091-2019

Actions (login required)

View Item View Item