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Abstract	27 

Maternal	 senescence	 is	 the	 detrimental	 effect	 of	 increased	maternal	 age	 on	 offspring	28 

performance.	 Despite	 much	 recent	 interest	 given	 to	 describing	 this	 phenomenon,	 its	29 

distribution	 across	 animal	 species	 is	 poorly	 understood.	 A	 review	 of	 the	 published	30 

literature	 finds	 that	maternal	age	affects	pre-adult	 survival	 in	252	of	272	populations	31 

(93%)	 representing	 97	 animal	 species.	 Age	 effects	 tended	 to	 be	 deleterious	 in	32 

invertebrates	and	mammals,	including	humans,	confirming	the	presence	of	senescence.	33 

However,	 bird	 species	were	 a	 conspicuous	 exception,	 as	 pre-adult	 survival	 tended	 to	34 

increase	with	maternal	age	in	surveyed	populations.	In	all	groups,	maternal-age	effects	35 

became	more	negative	in	older	mothers.	Invertebrates	senesced	faster	than	vertebrates,	36 

and	humans	aged	faster	than	non-human	mammals.	Within	invertebrates,	Lepidopterans	37 

demonstrated	 the	 most	 extreme	 rates	 of	 maternal-effect	 senescence.	 Among	 the	38 

surveyed	 studies,	 phylogeny,	 life	 history,	 and	 environment	 (e.g.,	 laboratory	 vs	 wild	39 

populations)	were	tightly	associated;	this	made	it	difficult	to	make	confident	inferences	40 

regarding	 the	 causes	 of	 diversity	 for	 the	 phenomenon.	 However,	 we	 provide	 some	41 

testable	suggestions,	and	we	observe	that	some	differences	appear	to	be	consistent	with	42 

predictions	 from	 evolutionary	 theory.	 We	 discuss	 how	 future	 work	 may	 help	 clarify	43 

ultimate	and	proximate	causes	for	this	diversity.		44 

	45 

	 	46 
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Introduction	47 

Senescence	 is	 the	 age-related	 physiological	 deterioration	 of	 organismal	 function	48 

typically	associated	with	increasing	mortality	risk	(actuarial	senescence)	and	decreasing	49 

fertility	(reproductive	senescence).	Studies	report	actuarial	and	reproductive	senescence	50 

in	 most	 animal	 species	 across	 most	 phyla	 [1–6],	 with	 especially	 well	 documented	51 

senescent	 declines	 in	 wild	 vertebrates	 [7–10]	 and	 laboratory	 invertebrates	 [11–14].	52 

Maternal	 senescence,	 the	 detrimental	 result	 of	 a	 mother’s	 increasing	 age	 on	 traits	53 

associated	 with	 offsprings’	 life	 history	 or	 fitness	 [15–19],	 is	 a	 distinctly	 different	54 

manifestation	 of	 age.	 Whilst	 such	 effects	 of	 maternal	 age	 are	 attracting	 increased	55 

scientific	 attention,	 their	 distributions	 across	 the	 tree-of-life	 remain	 poorly	 described	56 

[20].	Investigating	the	prevalence	and	degree	of	maternal-age	effects	is	an	important	first	57 

step	to	understanding	ultimate	and	proximate	causes	of	this	form	of	senescence,	as	this	58 

may	identify	taxa	that	have	unusual	manifestations	of	ageing	that	warrant	special	focus	59 

in	the	future.	To	clarify,	we	use	the	term	‘ageing’	to	refer	to	any	age-related	change,	but	60 

we	reserve	‘senescence’	to	indicate	a	deleterious	effect	of	increased	age.		61 

Several	hundreds	of	models	have	been	proposed	to	explain	the	proximate	causes	of	62 

senescence	[21–25].	In	contrast,	there	are	few	explanatory	evolutionary	models,	but	all	63 

share	the	central	tenet	that	senescence	is	caused	ultimately	by	age-related	declines	in	the	64 

efficacy	of	natural	selection	[26].	Mutation	accumulation	[27]	and	antagonistic	pleiotropy	65 

[28]	 are	 two	 such	 models	 that	 make	 different	 assumptions	 regarding	 the	 genetic	66 

architecture	of	age-specific	traits.	Population	genetic	models	use	estimates	of	vital	rates	67 

(age-specific	survival	and	reproduction	rates)	and	various	assumptions	related	to	gene	68 

action	to	predict	patterns	of	actuarial	senescence	(e.g.	[29,30]).	More	recently,	Moorad	69 

and	Nussey	[31]	modified	these	to	quantify	how	age	changes	the	strength	of	selection	for	70 

age-specific	maternal	effects	and	to	show	how	these	changes	cause	maternal	senescence	71 
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manifested	upon	pre-adult	survival	to	evolve.	They	predicted	that	evolved	demographic	72 

patterns	 of	 this	 senescence	 should	 be	 qualitatively	 different	 from	 actuarial	 and	73 

reproductive	senescence.	However,	we	know	little	about	how	well	this	model	predicts	74 

patterns	of	ageing	in	real	populations.			75 

In	 this	paper,	we	address	 conspicuous	gaps	 in	our	understanding	of	 the	 taxonomic	76 

breadth	and	intensity	of	maternal-effect	ageing	by	performing	an	extensive	systematic	77 

review	of	the	literature	using	meta-analytical	methodology.	We	chose	pre-adult	survival,	78 

defined	here	as	survival	throughout	some	part	of	the	pre-reproductive	period.	The	nature	79 

of	this	part	will	vary	according	to	the	methodologies	of	the	available	papers,	and	it	largely	80 

reflects	 the	 characteristics	 of	 the	 study	 species	 (e.g.,	 hatching	 rate	 in	 invertebrates,	81 

survival	 to	 fledging	 in	 birds,	 survival	 to	 weaning	 in	 mammals	 or	 child	 survival	 in	82 

humans).	This	trait	was	chosen	as	our	focus	for	maternal-age	effects	for	several	reasons:	83 

1)	this	trait’s	relationship	to	fitness	is	profound	and	well-understood	conceptually	[26];	84 

2)	evolutionary	theory	explicitly	models	age-specific	maternal	effects	on	this	trait	[31];	85 

and	 3)	 associations	 between	 the	 trait	 and	maternal	 age	 are	 observed	 with	 sufficient	86 

frequency	to	enable	a	large-scale	review.	This	study	addresses	questions	about	the	nature	87 

of	maternal-effect	ageing	as	it	manifests	on	pre-adult	survival	rates:	88 

1. Does	maternal	age	tend	to	affect	pre-adult	survival	in	most	species?		89 

2. Do	effects	of	increased	maternal	age	tend	to	be	negative	(is	maternal		senescence	the	90 

norm)?		91 

3. What	 features	 of	 specific	 studies	 (for	 example,	 phylogeny,	 presence/absence	 of	92 

biparental	care,		nature		of	human	interventions)	appear	to	predict	effect	sizes?		93 

We	 find	 that	 maternal-age	 effects	 are	 widespread	 across	 studies	 of	 animal	 species.	94 

However,		senescence	appears	to	be	a	general	and	important	phenomenon	in	only	some	95 

groups,	with	 large	observable	variation	in	the	rates	of	senescence	across	groups.	Wild	96 
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birds	and	Lepidopterans	(butterflies	and	moths)	represent	two	disparate	extremes.	Why	97 

these	particular	taxonomic	groups	should	be	unusual	in	this	respect	is	an	ecological	and	98 

evolutionary	puzzle.		99 

	100 

Materials	and	Methods	101 

This	meta-analysis	 followed	 the	 Preferred	Reporting	 Items	 for	 Systematic	Reviews	102 

and	 Meta-Analyses	 (“PRISMA”)	 guidelines	 [32]	 (Fig.	 S1).	 A	 literature	 search	 was	103 

conducted	 in	December	 2019	using	 the	 online	 databases	Web	 of	 Science	 and	 Scopus.	104 

Search	terms	are	provided	in	Supplementary	Table	S1.	105 

Accepted	papers	include	the	number	of	surviving	and	dying	pre-adults	as	functions	of	106 

maternal	age	(Fig.	S1).	Where	a	study	was	replicated	within	a	paper	or	where	a	species	107 

was	studied	in	more	than	one	paper,	discrete	binomial	datasets	were	extracted	for	each	108 

replicate	population,	and	we	treated	all	such	within-species	replicates	as	independent	in	109 

subsequent	 analyses.	Our	 criteria	 for	 acceptance	 and	methods	 for	 data	 extraction	 are	110 

described	 in	 the	 Supplemental	 Methods.	 Each	 age	 class	 was	 associated	 with	 a	111 

corresponding	 number	 of	 surviving	 and	 dying	 pre-adults	 (coded	 with	 1s	 and	 0s,	112 

respectively)	reconstructed	from	the	realised	maternal	age	distribution,	the	mean	rates	113 

of	age-specific	fecundity,	and	pre-adult	survival	rates	extracted	from	the	source	papers.		114 

Maternal	ages	in	each	study	were	standardized	by	dividing	by	generation	time	T.	For	115 

each	 replicate	 i,	 generation	 time	𝑇! 	was	 calculated	as	 the	average	of	 the	maternal	 age	116 

distribution	𝑓(𝑥),	or	𝑇! = ∑ 𝑥𝑁"!" ∑ 𝑁"!"⁄ 	[33].	However,	this	measure	is	sensitive	to	the	117 

age	 structure	 and	 vital	 rates	 of	 the	 population.	 In	 populations	 where	 the	 timing	 of	118 

breeding	is	influenced	by	experimenters	who	may	have	wished	to	enhance	the	power	of	119 

a	study	to	detect	age-related	effects,	the	value	of	T	in	the	experimental	population	may	120 

not	reflect	the	distribution	of	maternal	ages	found	in	natural	or	equilibrium	populations.	121 
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Such	cases	likely	involve	the	over-sampling	of	older	ages;	this	would	tend	to	inflate	values	122 

of	T	 and	 therefore	underestimate	 the	 true	magnitudes	of	maternal	effects.	Laboratory	123 

studies	 are	 most	 likely	 to	 introduce	 such	 biases.	 Failure	 to	 properly	 incorporate	 the	124 

duration	of	the	pre-reproductive	period	into	generation	time	calculations,	which	is	often	125 

substantial	in	laboratory	invertebrates,	can	also	contribute	to	significant	bias.	Therefore,	126 

for	studies	where	age	was	defined	in	terms	of	elapsed	time	since	reaching	adulthood,	total	127 

age	x	was	taken	as	the	sum	of	adult	age	and	the	duration	of	the	juvenile	period.	The	latter	128 

was	taken	either	from	the	source	paper	or	from	secondary	sources.	129 

All	else	equal,	we	expect	that	the	rates	of	survival	over	some	time	interval	will	decrease	130 

as	the	size	of	that	interval	increases.	Wherever	possible,	we	extracted	estimates	of	this	131 

pre-adult	 study	 interval,	 t,	 from	 each	 study.	 This	 study	 interval	 is	 standardized	 by	132 

generation	 length.	 For	 example,	 survival	 to	 one	 year	 of	 age	was	 assessed	 in	 the	 olive	133 

baboon	(Papio	anubis),	which	has	a	generation	time	of	11.16	years	(see	[34]	for	estimates	134 

of	T	and	pre-adult	study	duration).	Here,	t	=	1	yr	/	11.16	yr	=	0.09.	Some	studies	did	not	135 

provide	clear	descriptions	of	study	intervals.	For	example,		time-to-hatch		in	Drosophila	136 

melanogaster	eggs	was	unspecified	in	[35].	In	cases	such	as	these,	an	approximate	study	137 

interval	for	that	species	was	obtained	from	available	secondary	sources	(e.g.,	13.50	hours	138 

for	D.	melanogaster	[36]).	139 

Each	study	was	assigned	to	one	of	four	environmental	groups:	wild,	laboratory,	semi-140 

captive	 (where	 humans	 provided	 food	 or	 veterinary	 intervention),	 and	 agricultural.	141 

Humans	were	also	surveyed	but	not	so	categorized.	Non-human	animals	were	grouped	142 

by	 taxonomic	 relationships	 into	 invertebrates,	birds,	non-human	mammals,	 and	other	143 

vertebrates.	 Invertebrates	 were	 further	 divided	 into	 Lepidopterans	 and	 other	144 

invertebrates	 (including	 non-Lepidopteran	 insects),	 but	 this	 division	 was	 made	 after	145 

effect	sizes	were	estimated,	and	a	pronounced	difference	was	observed	between	these	146 
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two	groups.	Phylogenetic	trees	were	created	using	the	National	Centre	for	Biotechnology	147 

Information	Taxonomy	database	[37]	and	PhyloT		[38]	and	visualised	using	‘ggplot2’	and	148 

‘ggtree’	[39,40].	149 

We	estimated	 the	 effect	 that	maternal	 age	had	on	 the	proportion	of	 surviving	pre-150 

adults	for	each	replicate	independently.	We	fit	generalised	linear	models	(GLMs)	of	pre-151 

adult	survival	(𝑃)	with	binomial	error	(𝑒)	distribution	and	probit	link	functions	to:	[1]	152 

age-independent,	[2]	linear	and	[3]	quadratic	models	of	maternal	age.	This	link	function	153 

assumes	 a	 Gaussian	 distribution	 of	 a	 latent	 predictor	 variable,	 and	 it	 is	 a	 standard	154 

function	 used	 by	 quantitative	 geneticists	 for	 scaling	 genetic	 contributions	 to	 survival	155 

[41,42].		For	equations	1-3,	P(x)	is	the	probability	of	a	pre-adult	surviving	at	standardised	156 

maternal	 age	 x,	 whereas	A,	B,	 and	 C	 are	 the	 intercept,	 the	 linear	 coefficient,	 and	 the	157 

quadratic	coefficient,	respectively.	158 

	159 

𝑃(𝑥) = 	𝐴 + 𝑒		 [1]	160 

𝑃(𝑥) = 	𝐴 + 𝐵𝑥 + 𝑒		 	 	 	 	[2]	161 

𝑃(𝑥) = 	𝐴 + 𝐵𝑥 + 𝐶𝑥# + 𝑒	 	 	 	[3]	162 

		163 

Replicate-specific	log-likelihoods	for	all	models	were	noted	along	with	estimates	of	effect	164 

sizes	and	associated	standard	errors	(SEs).	We	calculated	Akaike	Information	Criterion	165 

values	(AIC)	for	each	replicate	i,	and	model	j	using	𝐴𝐼𝐶!$ = 	2𝑘$ − 2𝑙𝑜𝑔𝑙𝑖𝑘! ,	where	𝑘$ 	is	the	166 

number	of	parameters	(one,	two	or	three,	for	the	age-independent,	linear	or	quadratic	167 

models,	 respectively).	 From	 these,	 sample-size	 corrected	 AIC	 values	 (AICc)	 were	168 

calculated	 using	 the	 formula	 𝐴𝐼𝐶𝑐!$ =
%&'!"(#)"*)"(+,

(.!/)"/+)
,	 where	 𝑛! 	 was	 the	 number	 of	169 

observations	 for	 each	 replicate	 [43].	 Based	 upon	 the	 results	 from	 model-fitting	 (see	170 
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Results),	our	subsequent	analyses	 focus	upon	 the	 linear	effects	of	maternal	age	 in	old	171 

mothers,	where	“old”	is	defined	as	equal	or	greater	than	the	average	age	of	mothers	T	172 

(standardized	maternal	ages	greater	than	one).		173 

To	correct	for	variation	in	study	intervals	t	across	studies,	we	first	assessed	its	impact	174 

on	maternal-age	effects.	We	performed	a	bootstrap	weighted	regression	using	the	“boot”	175 

package	in	R	Version	3.6.0	[44–46]	of	estimated	linear	effect	sizes	upon	t.	Weights	were	176 

taken	from	the	inverse	of	the	estimated	SEs	that	were	associated	with	the	linear	effect	177 

sizes.	Values	of	t	are	mathematically	constrained	on	the	interval	1	³	t	>	0,	and	they	ranged	178 

here	 from	 0.007	 in	 a	 human	 population	 to	 0.935	 in	 a	 Dermestid	 beetle	 species,	179 

Trogoderma	 inclusum	 (See	 Fig.	 S2	 for	 a	 full	 distribution	 of	 t	 across	 all	 extracted	180 

populations).	 In	 general,	 invertebrates	 appeared	 to	 spend	 a	 greater	 fraction	 of	 their	181 

generation	time	observed	as	pre-adults	than	the	vertebrates	(median	t		=	0.120	and	0.091,	182 

respectively).	 Note	 that	 two	 replicates	 of	 rotifers	 (Brachionus	 calcyflorus)	 included	 a	183 

diapause	phase	as	part	of	the	pre-adult	period	[47].	As	this	period	of	diapause	described	184 

in	the	paper	appeared	to	us	to	be	both	arbitrary	and	highly	influential	to	calculated	values	185 

of	t,	we	considered	only	the	time	from	egg	to	hatching	and	omitted	the	diapause	phase	186 

from	analysis	of	these	populations.	187 

The	overall	effect	of	t	(pre-adult	study	interval)	on	maternal-age	effects	tended	to	be	188 

negative,	-1.235	(-2.750,	0.107)	[results	presented	in	this	way	express	the	bootstrapped	189 

mean	and	the	bias-corrected	95%-tiles	in	brackets].	Because	greater	values	of	t	indicate	190 

greater	exposure	to	mortality	risk,	and	some	risk	can	follow	from	maternal	age,	we	expect	191 

that	 any	 average	 effect	 that	 age	 tends	 to	 have	 on	 survival	 across	 all	 studies	 will	 be	192 

amplified	as	t	increase.	As	these	age	effects	tended	to	be	negative	(see	Result	below),	the	193 

negative	influence	of	t	upon	those	estimates	is	to	be	expected.	We	corrected	age	effects	194 

for	the	estimated	effect	of	study	interval	by	adding	1.235 × 	t	to	each.	We	did	not	alter	SEs	195 
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associated	 with	 these	 estimates.	 Replicates	 were	 pooled	 in	 groups	 in	 accordance	 to	196 

taxonomy	and	environments.	From	these	groups,	we	calculated	weighted	bootstrapped	197 

means	 for	 each	 (n	 =	 10,000	 replicates),	 where	 weightings	 were	 the	 inverse	 of	 the	198 

estimated	SEs.		199 

	200 

Results	201 

A	total	of	196	animal	papers	met	our	search	criteria.	From	these,	we	extracted	and	202 

analysed	 273	 populations	 from	 97	 animal	 species	 (Table	 S2).	 One	 population	 was	203 

disregarded	because	no	offspring	died	within	the	experimental	replicate.	Species	were	204 

studied	 in	 a	 single	 environmental	 context,	 with	 three	 exceptions:	 1)	 the	 red-legged	205 

partridge,	Alectoris	rufa,	(semi-captive	and	agricultural	[48,49]);	2)	the	domestic	sheep,	206 

Ovis	 aries,	 (agricultural	 and	 natural	 [50,51]);	 and	 3)	 the	 Columbian	 ground	 squirrel	207 

Spermophilus	columbianus	(semi-captive	and	natural	[52,53]).	208 

There	were	strong	associations	among	the	available	studies	between	taxonomic	and	209 

environmental	 groups	 (Table	 1).	 Invertebrate	 species	 were	 only	 studied	 in	 the	210 

laboratory.	Birds	and	mammals	were	most	frequently	studied	in	the	wild,	and	only	one	211 

study	 from	one	 species	 from	either	of	 these	groups	 (Mus	musculus)	provided	 suitable	212 

laboratory	data.	Ideally,	taxonomic	groups	would	have	been	distributed	more	evenly	over	213 

environments,	as	this	might	have	supported	a	two-factor	analysis.	Unfortunately,	these	214 

strong	associations	among	the	available	literature	undermine	rigorous	attempts	to	assign	215 

causes	 of	 potential	 effect	 size	 differences	 to	 either	 phylogeny	 (at	 the	216 

vertebrate/invertebrate	scale)	or	environmental	context.	Compounding	this	problem	is	217 

the	fact	that	life	history	strategies	share	this	same	dichotomous	partition	of	species:	birds	218 

and	mammals	are	long-lived	and	tend	to	provide	obvious	post-natal	maternal	care.	 	In	219 
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contrast,	 the	 invertebrate	 species	 studied	 here	 in	 the	 laboratory	 are	 short-lived	 and	220 

demonstrate	little	or	no	conspicuous	maternal	care.	The	sole	mammalian	species	to	be	221 

studied	in	the	laboratory	is	the	only	species	studied	in	that	context	to	provide	post-natal	222 

maternal	 care.	 The	 only	 studied	 reptile	 species,	 Lacerta	 vivipara,	 provides	 pre-natal	223 

maternal	care.	224 

Replicate-specific	 results	 from	 the	 GLMs	 (Equations	 1-3)	 are	 given	 in	 Table	 S3a.	225 

Comparisons	 of	 AICc	 values	 found	 that	 the	 age-independent	models	 were	 best	 in	 20	226 

cases,	 linear	age	effect	models	were	best	 in	51	cases,	and	quadratic	age	effect	models	227 

were	 best	 in	 201	 cases.	 Summed	 AICc	 values	 over	 all	 replicates	 indicated	 a	 strong	228 

preference	 for	 the	quadratic	model	of	maternal	age	on	pre-adult	 survival	 (DAICc	Age-229 

Independent:	+229755;	DAICc	Linear:	+43828).	We	estimated	negative	quadratic	effects	230 

in	202	cases	and	positive	quadratic	effects	in	70	cases.	The	weighted	bootstrapped	means	231 

of	 the	 quadratic	 effects	were	 negative	when	 pooled	 over	 all	 species	 -0.525	 (-0.813,	 -232 

0.308)	and	within	all	taxonomic	groups	(Table	1).	Quadratic	effects	were	different	from	233 

zero	in	the	aggregate	and	in	all	but	two	groups	(birds	and	mammals).	Nevertheless,	the	234 

strong	tendency	towards	a	negative	quadratic	effect	of	age	across	species	indicates	that	235 

linear	fits	of	all	available	maternal	ages	tend	to	underestimate	senescence	experienced	236 

by	older	females	(or	overestimate	maternal	effect	improvement	in	the	old).	In	light	of	this	237 

finding,	we	re-focused	our	question	to	evaluate	the	linear	effects	of	maternal	age	on	old	238 

females	only,	where	old	defines	all	ages	greater	than	T	(generation	time).	The	distribution	239 

of	age-effects	in	old	mothers	is	illustrated	in	Fig.	1,	and	the	range	of	ages	that	remained	240 

for	each	study	after	 removing	ages	 less	 than	T	are	 illustrated	 in	Fig.	S3.	Note	 that	 the	241 

approach	 taken	here	 to	 focus	upon	particular	ages	does	not	presume	 that	 senescence	242 

actually	 exists	 in	 any	 population;	 in	 this	 way	 it	 differs	 from	 other	 approaches	 that	243 
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estimate	 an	 age-of-onset	 for	 senescence	 and	 use	 this	 age	 to	 define	 ageing	 rates	 in	244 

identified	senescence	phases	of	life	[54–56].	245 

When	 averaged	 over	 all	 populations,	 the	 linear	 effects	 of	maternal	 ages	 across	 all	246 

available	ages	were	negative,	-0.378		(-0.573,	-0.204).	The	linear	effects	of	ages	in	the	old,	247 

which	are	the	focus	of	our	analyses,	were	stronger	and	remained	statistically	significant,	248 

-0.691		(-0.913,	-0.505).		All	effect	sizes	are	reported	on	the	probit	scale.	Conversion	to	249 

the	scale	of	survival	is	not	straightforward,	as	linearity	on	the	probit	scale	implies	strong	250 

nonlinearity	on	the	scale	of	survival.	Nonetheless,	we	provide	one	metric	that	can	indicate	251 

the	 effects	 of	 increased	maternal	 age	 at	 the	 onset	 of	 old	 age	 on	 this	 scale.	We	 define	252 

δ(0.01 × k)	 to	 be	 the	 increase	 in	 age	 from	 T	 that	 delivers	 a	 1%	 change	 in	 pre-adult	253 

survival,	where	k	is	+1	(a	1%	increase	in	survival)	when	age	effects	are	positive	(B	>	0)	254 

and	k	=	-1	(a	1%	decrease	in	survival)	with	maternal	senescence	(B	<	0).	Smaller	values	255 

indicate	less	time	required	to	make	that	change	and	stronger	age	effects.	These	values	are	256 

estimated	for	all	replicates	and	reported	in	Table	S3b	and	Fig.	S4	of	the	supplementary	257 

material.	 The	 reported	 taxonomic	 structure	 is	 based	 upon	 probit	 measures,	 but	 the	258 

diversity	illustrated	in	Fig	S4	suggests	that	these	qualitative	patterns	are	robust	to	this	259 

change	in	scaling.	260 

Populations	 were	 pooled	 within	 each	 environment-by-taxon	 group,	 and	 the	261 

bootstrapped	means	 and	95%-tiles	 are	 reported	 for	 each	 in	Table	1.	Of	 the	 five	most	262 

populated	 groups,	 all	 appeared	 to	 have	 mean	 effect	 sizes	 that	 differed	 from	 zero.	263 

Lepidopterans,	other	 invertebrates,	wild	mammals,	 and	humans	exhibited	statistically	264 

significant	deleterious	effects	of	maternal	age.	In	contrast,	wild	birds	appeared	to	present	265 

positive	 age	 effects	 on	 early	 survival.	 Senescence	 was	 most	 pronounced	 within	 the	266 

Lepidopterans,	with	deleterious	age	effects	 in	the	old	of	nearly	an	order	of	magnitude	267 

greater	than	the	global	mean	(-6.142	vs	-0.691).	268 
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	269 

Table	1.	Maternal-age	effects	in	the	old	for	all	environment-by-taxon	groups	(means	and	270 

bias-corrected	95%-tiles).	Sample	sizes	are	given	in	italics	where	the	number	of	species	271 

is	followed	by	the	number	of	replicates.	Confidence	intervals	are	not	indicated	when	only	272 

one	replicate	was	available.	Bold-faced	estimates	of	 the	means	 indicate	significance	at	273 

α < 0.05.		274 
	

Lepidopterans	 Other 
Invertebrates	

Birds	 Mammals	 Other		
Vertebrates	

Humans	

Laboratory	 -6.142	
(-8.885,		
-4.088)	
15/27	

-0.849	
(-1.295,		
-0.471)	
34/79	

-	 3.280	
1/1	

0.075		
1/1	

-	

Semi-Captive	 	 -	 -0.515	
(-0.937,	0.029)		

4/4		

-0.228	
(-0.723,	0.045)		

7/8	

	-0.986	
1/1	

-	

Agricultural	 	 -	 0.327	
(0.071,	1.246)	

2/8	

	0.137	
(-0.258,	0.583)	

3/13	

-	 -	

Wild	 	 -	 0.124	
(0.002,	0.287)	

20/37		

	-0.295	
(-0.451,		
-0.140)	
11/12	

-	 -	

Humans	 	 -	 -	 -	 -	 -0.819	
(-1.113,		
-0.423)	
1/80	

	275 

Finally,	we	paired	four	groups	and	assemblages	of	groups	to	compare	effect	sizes	using	276 

Mann-Whitney	U	Tests.	Two	such	assemblages	are	‘Non-Human	Mammals’	(n	=	34)	and	277 

All	Vertebrates’	(n	=	165).	The	bootstrapped	means	values	for	these	are	0.0001	(-0.218,	278 

0.359)	and	-0.303	(-0.456,	-0.164),	respectively.	Non-directional	effects	within	the	‘Non-279 

Human	Mammals’	group	is	caused	by	combining	positive	effects	from	agricultural	studies	280 

with	 negative	 effects	 from	 other	mammal	 populations.	 The	 following	 comparisons	 of	281 

mean	effect	sizes	follow	from	Table	1	and	results	from	four	independent	Mann-Whitney	282 

Tests:	283 

1. Lepidopterans	<	Non-Lepidopteran	Invertebrates	<	0	(W	=	198,	P	<0.001);	284 

2. Humans	<	Non-Human	Mammals	(W	=	532,		P	<0.001);	285 
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3. Wild	Mammals	<	0	<	Wild	Birds	(W	=	64,		P	<0.001);	and	286 

4. Non-Lepidopteran	Invertebrates	<	All	Vertebrates	<	0	(W	=	5501,		P	=	0.049).		287 

	288 

Discussion	289 

Our	results	provide	definitive	answers	to	two	study	goals.	First,	maternal	age	affected	290 

pre-adult	survival	rates	in	93%	of	extracted	populations	drawn	from	divergent	animal	291 

taxa	and	environments.	Second,	these	effects	tended	to	be	deleterious	(thereby	fitting	the	292 

definition	of	maternal-effect	senescence)	across	all	broadly	defined	animal	groups,	with	293 

the	conspicuous	exception	of	birds	from	agricultural	and	wild	populations.	Maternal	age	294 

trajectories	tended	towards	concavity	in	all	groups,	indicating	that	rates	of	senescence	295 

intensified	 in	 old	 mothers	 in	 populations	 that	 senesce,	 and	 rates	 of	 improvement	296 

diminished	in	late	life	in	those	populations	that	do	not	senesce.		297 

The	 general	 trends	 observed	 here	 are	 anticipated	 by	 recent	 evolutionary	 theory.	298 

Moorad	 and	 Nussey	 [31]	 integrated	 Indirect	 Genetic	 Effects	 (IGEs)	 into	 evolutionary	299 

demographic	models	of	phenotypic	selection	with	the	aim	to	predict	how	maternal	age	300 

should	 evolve	 to	 affect	 pre-adult	 survival.	 IGEs	 are	 a	 quantitative	 genetic	 concept	301 

developed	by	animal	breeders	[57,58]	before	gaining	much	attention	from	evolutionary	302 

geneticists	 interested	 in	 social	 evolution	 [59–61].	 This	 begins	 with	 the	 conventional	303 

perspective	that	individual	phenotypes	(e.g.,	pre-adult	survival)	are	affected	by	their	own	304 

genes	 (Direct	 Genetic	 Effects,	 or	 DGEs)	 and	 the	 environment	 that	 they	 experience.	305 

However,	 it	also	recognises	that	one’s	environment	can	be	affected	by	influences	from	306 

social	partners		(e.g.,	mothers),	and	the	social	environment	that	produces	the	phenotype	307 

can	evolve	by	natural	 selection	 to	 the	degree	 that	 these	 influences	are	genetic	 (IGEs).	308 
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Phenotypes	 evolve	 as	 individuals’	 genetically-determined	 environments	 change	 by	309 

natural	selection.		310 

Most	 evolutionary	 genetic	 models	 of	 senescence	 assume	 implicitly	 that	 DGEs	311 

represent	 the	 only	 route	 towards	 evolutionary	 change	 [26,28,62],	 but	 Moorad	 and	312 

Nussey	[31]	modified	one	such	model	[30]	by	assuming	that	mothers	contributed	IGEs	313 

that	were	 independent	 and	 identically	 distributed	 across	 all	 ages.	 They	 found	 that	 as	314 

maternal	age	increases,	selection	to	remove	deleterious	age-specific	IGEs	must	eventually	315 

diminish,	and	it	follows	that	the	pre-adult	survival	should	evolve	such	that	it	deteriorates	316 

as	mothers	 get	 older.	 Furthermore,	 they	 showed	 that	 certain	demographic	 conditions	317 

exist	that	allow	pre-adult	survival	to	evolve	to	increase	with	maternal	age	at	early	ages	318 

before	 reversing	 and	 evolving	 senescence	 at	 late	 ages,	 but	 they	 emphasised	 that	 all	319 

models	 eventually	 lead	 to	 accelerated	 rates	 of	 senescence	 with	 increasing	 age.	 This	320 

prediction	 is	 consistent	with	 the	 pervasive	 negative	 quadratic	 relationships	 observed	321 

here,	 although	 it	must	 be	 noted	 that	Moorad	 and	 Nussey	 evaluated	 death	 rates	 on	 a	322 

different	 scale	 than	 that	 used	 here	 in	 our	 probit	 models,	 and	 we	 cannot	 state	 with	323 

confidence	that	a	negative	quadratic	relationship	on	one	scale	reliably	predicts	the	same	324 

on	the	other.	This	issue	can	be	explored	explicitly	in	follow-up	studies	that	can	focus	more	325 

directly	on	testing	evolutionary	theory	(see	below).		326 

One	goal	of	our	study	was	to	describe	the	diversity	of	maternal	ageing.	In	particular,	327 

we	were	interested	in	the	role	of	phylogeny.	A	secondary	focus	was	to	characterize	how	328 

human	influence	upon	populations	(e.g.,	laboratory	vs	wild	populations)	might	affect	age	329 

effects.	However,	it	was	clear	from	our	review	of	the	relevant	literature	that	phylogeny	330 

and	 environment	 are	 too	 closely	 aligned	 to	 make	 broad	 conclusions	 regarding	331 

independent	effects	of	both	factors.	Consequently,	we	were	largely	forced	to	consider	our	332 

primary	 focus,	 phylogeny,	 but	 it	 should	 be	 understood	 that	 our	 suggested	 causal	333 
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inferences	regarding	these	should	be	considered	preliminary	until	enough	studies	that	334 

disrupt	the	association	between	phylogeny	and	environment	are	published	to	support	335 

more	focused	reviews.	Such	efforts	are	being	made	to	study	actuarial	senescence,	such	as	336 

in	 wild	 insect	 populations	 [63–68],	 and	 we	 encourage	 more	 such	 work	 to	 explore	337 

maternal-age	effects.		338 

We	 found	 a	 reasonable	 number	 and	 diversity	 of	 studies	 (species	 number	 >	 5	 and	339 

population	replicates	>	10)	in	laboratory	invertebrates,	wild	birds,	wild	mammals,	and	340 

humans.	Whilst	maternal	age	in	older	than	average	individuals	was	clearly	deleterious	341 

when	averaged	over	all	groups,	two	taxonomic	groups	stood	out	as	clearly	different.	Wild	342 

birds	 were	 the	 only	 reasonably	 populated	 group	 that	 exhibited	 positive	 effects	 of	343 

maternal	age	in	the	old.	Why	birds	should	be	so	different	in	this	respect	is	an	outstanding	344 

question	that	requires	further	study,	but	we	might	speculate	on	possible	causes.		345 

Pre-adult	birds	are	frequently	cared	for	by	individuals	other	than	their	mothers.	The	346 

most	common	source	of	additional	care	 is	 the	father	[69,70].	 It	may	be	that	maternal-347 

effect	senescence	exists	in	birds,	but	these	deleterious	effects	are	masked	by	sources	of	348 

allocare.	Unless	the	ages	of	other	care-givers	are	perfectly	correlated	with	those	of	the	349 

mothers,	we	can	expect	that	offspring	of	old	mothers	will	receive	care	from	young	social	350 

partners	 and	 vice	 versa.	 This	will	 obscure	 the	 effects	 of	maternal	 age	 (an	 effect	 of	 a	351 

reversion-to-the-mean).	A	total	of	17	of	the	20	(85%)	of	the	surveyed	wild	bird	species	352 

are	known	to	exhibit	some	form	of	biparental	care;	this	approximates	the	prevalence	of	353 

80-90%	across	all	bird	species	[70].		Biparental	care	is	comparatively	rare	in	mammals	354 

[71]	and	invertebrates	[72].	Only	four	of	eleven	surveyed	wild	mammal	species	provide	355 

this	 form	of	care	[71],	and	no	surveyed	 invertebrate	species	 is	known	to	demonstrate	356 

biparental	care	[72].	Viewed	across	the	non-human	groups	studied	here	(invertebrates,	357 

wild	mammals,	 and	wild	 birds),	 the	 frequency	 of	 biparental	 care	 appears	 to	 counter-358 
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indicate	 the	degree	 of	maternal-effect	 senescence,	 but	 this	 pattern	 is	 only	 suggestive;	359 

more	 studies	 are	 needed	 from	 wild	 mammal	 and	 invertebrate	 species	 that	 exhibit	360 

biparental	care	and	from	bird	species	that	do	not.	Interestingly,	one	relevant	and	highly-361 

replicated	laboratory	study	on	an	insect	with	biparental	care,	Nicrophorus	vespilloides,	362 

found	no	effects	of	maternal	age	on	pre-adult	survival	[19].	Furthermore,	we	note	that	363 

even	when	biparental	care	 is	absent,	paternal	age	can	still	have	an	effect	on	offspring	364 

outcomes	 through	 other	mechanisms,	 such	 as	 sperm	 quality.	 For	 example,	 increased	365 

paternal	 age	 in	 the	 long-lived	 houbara	 bustard	 (Chlamydotis	 undulata)	 causes	 both	 a	366 

decline	 in	hatching	success	and	rate	of	pre-adult	development	 [73,74].	Studies	should	367 

account	 for	 variation	 in	 paternal	 age	 either	 by	 reducing	 or	 eliminating	 it	 via	 the	368 

experimental	 design	 (e.g.,	 [19])	 or	 accounting	 for	 it	 statistically	 by	model	 fitting	 (e.g.,	369 

[75]).	Observations	from	human	populations	do	not	support	biparental	care	as	a	primary	370 

cause	for	the	wild	bird	results.	Father	and	grandmothers	can	contribute	meaningfully	to	371 

the	performance	of	infants	and	children,	but	humans	appear	to	have	strong	signatures	of	372 

maternal		senescence	when	compared	to	other	vertebrates,	the	majority	of	which	provide	373 

only	uniparental	care.	Finally,	it	must	be	noted	that	this	suggested	mechanism	can	only	374 

serve	to	reduce	the	apparent	magnitude	of	maternal-age	effects;	it	cannot	reverse	their	375 

direction.	376 

In	 terms	 of	 the	 magnitude	 of	 effects,	 Lepidopterans	 (moths	 and	 butterflies)	 were	377 

clearly	the	most	disparate	group	with	extremely	deleterious	average	effects	in	the	old,	an	378 

order	of	magnitude	greater	 than	 the	other	groups	combined.	Even	when	compared	 to	379 

non-Lepidopteran	invertebrates	(which	still	exhibited	stronger	effects	than	vertebrates),	380 

these	 rates	 were	 seven-fold	 greater.	 Variation	 in	 the	 nature	 of	 maternal	 care	 might	381 

account	for	these	differences.	None	of	the	studied	invertebrate	species	delivered	post-382 

natal	care,	yet	many	vertebrate	studies	focused	upon	juvenile	periods	coincident	to	post-383 
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natal	 care.	 If	 pre-natal	 maternal-effect	 senescence	 was	 stronger	 than	 post-natal	384 

senescence,	then	senescence	in	invertebrate	studies	would	tend	to	be	stronger.	One	way	385 

that	this	might	happen	is	if	 increased	age	provides	some	mitigating	benefit	to	the	pre-386 

adult.	Learning,	for	example,	is	believed	to	cause	increased	fledgling	rates	with	increased	387 

maternal	age	in	seabirds	[76,77],	and	it	is	difficult	to	imagine	how	increased	experience	388 

can	serve	to	improve	pre-natal	condition	to	the	same	degree.	However,	this	suggestion	389 

does	not	explain	why	Lepidopterans	age	differently	from	other	invertebrates.	Pre-	and	390 

post-natal	 maternal-effect	 senescence	 has	 been	measured	 independently	 in	 very	 few	391 

studies,	including	seabirds	[78]	and	burying	beetles	[19];	more	such	studies	made	over	a	392 

diversity	 of	 species	 are	 necessary	 to	 assess	 general	 patterns	 of	 pre-	 vs	 post-natal	393 

maternal-effect	senescence.		394 

Another	striking	life	history	difference	between	studied	vertebrate	and	invertebrate	395 

species	is	that	the	duration	of	reproductive	lifespan	of	the	former	is	longer	than	that	of	396 

the	latter,	even	when	accounting	for	the	vast	differences	in	generation	time.	One	way	to	397 

quantify	this	is	to	take	the	square-root	of	the	variance	in	standardized	maternal	age	at	398 

birth,	 or	 F∑ G1(")
23
− 1H

#
" ,	 where	 𝑓(𝑥)	 is	 the	 fraction	 of	 new	 offspring	 attributed	 to	399 

mothers	of	that	age,	and	𝑇I 	is	the	mean	of	that	distribution	(see	Materials	and	Methods).	400 

This	 provides	 a	 dimensionless	 comparative	metric	 of	 the	 dispersion	 of	 maternal	 age	401 

(sigma).	The	medians	of	sigma	 for	vertebrates	and	 invertebrates	are	0.347	and	0.178,	402 

respectively.		Evolutionary	theory	anticipates	that	maternal	senescence	should	evolve	to	403 

be	faster	when	sigma	is	small,	although	that	prediction	has	not	been	made	previously.	404 

Moorad	and	Nussey	[31]	showed	that	in	stable	age-structure	populations,	the	strength	of	405 

selection	 acting	 on	 an	 IGE	 produced	 by	 a	mother	 of	 some	 age	 that	 acts	 on	 pre-adult	406 

survival	 is	 proportional	 to	 the	 probability	 𝑓(𝑥),	 the	 same	 distribution	 that	 defines	407 
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generation	time	T	(the	mean)	and	the	standard	deviation	about	the	standardized	mean	408 

(sigma).	It	must	be	the	case	that	when	sigma	is	small,	selection	for	IGEs	declines	more	409 

precipitously	after	T	than	when	sigma	is	large.	This	leads	to	the	prediction	that	maternal-410 

age	effects	in	the	old	are	positively	associated	with	this	measure	(senescence	decreases	411 

as	sigma	grows).	This	might	explain	why	Lepidopterans	(median	sigma	=	0.069),	which	412 

are	usually	considered	to	have	reproductive	lifespans	that	are	so	abbreviated	as	to	make	413 

them	nearly	semelparous	[79],	senesce	faster	than	other	invertebrates	(median	sigma	=	414 

0.282).	 Further	 evidence	 for	 positive	 associations	 between	 sigma	 and	 rates	 of	 ageing	415 

come	 from	within-group	 Spearman	 rank	 correlations:	 Lepidopterans	 (0.538,	n	 =	 27);	416 

Non-Lepidopteran	Invertebrates	(0.177,	n	=	79);	Wild	Birds	(0.0325,	n	=	37);	and	Wild	417 

Mammals	(0.112,	n	=	12).	We	note,	however,	that	Lepidopterans	are	the	only	group	with	418 

a	correlation	estimate	that	reaches	significance	(P	=	0.004).		419 

Finally,	we	note	that	the	evolutionary	theory	[31]	emphasized	that	selection	for	age-420 

specific	maternal	IGEs	for	pre-adult	survival	follows	entirely	from	mean	vital	rates.	As	421 

vital	rates	for	many	species	are	now	available	(e.g.	[80,81]),	selection	for	maternal-age	422 

effects	can	be	estimated	directly	over	a	diverse	collection	of	populations.	An	obvious	and	423 

tractable	 question	 that	 remains	 to	 be	 investigated	 is	 whether	 variation	 in	 selection	424 

explains	the	diversity	of	ageing	rates	within	and	among	the	groups	identified	here.	No	425 

formal	 attempt	has	been	made	 to	 reconcile	patterns	of	 selection	with	observations	of	426 

actuarial	or	reproductive	senescence	on	such	a	broad	scale.	However,	this	could	be	done	427 

in	 conjunction	with	 the	 aforementioned	 analysis	 to	 evaluate	which	manifestations	 of	428 

ageing	 (maternal,	 actuarial,	 or	 reproductive)	adhere	closest	 to	predictions	made	 from	429 

evolutionary	theory.				430 

While	we	make	no	specific	suggestions	for	why	these	might	generate	the	particular	431 

patterns	 of	 diversity	 observed	 here,	 we	 believe	 that	 two	 other	 factors	 deserve	 to	 be	432 
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mentioned.	First,	the	manner	by	which	natural	selection	affects	an	evolutionary	change	433 

is	 sensitive	 to	 the	 genetic	 architecture	 underlying	 the	 trait	 [82].	 Quantitative	 genetic	434 

approaches	can	be	applied	to	characterize	genetic	architecture	in	wild	populations	[83–435 

86],	but	we	are	aware	of	no	attempts	to	do	this	for	age-specific	maternal	IGEs.	Second,	436 

most	relevant	ageing	studies	measure	cohort-level	changes	in	the	effects	of	maternal	age.	437 

These	 reflect	 a	 combination	 of	 within-	 and	 among-individual	 changes.	 Evolutionary	438 

models	(including	[26,31])	focus	on	the	former,	which	makes	testing	predictions	using	439 

cohort-level	measures	 risky.	 The	most	 obvious	 source	 of	 among-individual	 change	 is	440 

selective	disappearance	[2,8,87,88].	Studies	of	maternal-effect	senescence	can	quantify	441 

these	effects,	but	this	is	rare.	Among	studies	that	do	measure	it,	there	does	appear	to	be	442 

variation	 in	 its	 importance	 [19,51,89,90].	 Evaluating	 the	 effects	 of	 selective	443 

disappearance	is	relatively	straightforward	(see	cited	examples),	and	all	ageing	studies	444 

should	attempt	to	do	so.			445 

Previous	studies	have	documented	and	attempted	to	explain	among-species	diversity	446 

in	rates	of	actuarial	and	reproductive	senescence	[3,4,91].	This	work	extends	this	effort	447 

to	another	manifestation	of	ageing.	Consistent	with	these	earlier	studies,	we	find	obvious	448 

among-species	variation	in	rates	of	ageing	with	clear	evidence	for	underlying	structure	449 

involving	 phylogeny.	 Whilst	 the	 causes	 for	 this	 structure	 are	 still	 unclear,	 we	 are	450 

encouraged	 that	 general	 patterns	 appear	 to	 be	 consistent	 with	 predictions	 from	451 

evolutionary	theory,	and	we	are	hopeful	that	finer-scaled	tests	of	this	theory	will	shed	452 

light	 on	 the	 causes	 of	 variation	 in	 rates	 of	maternal	 ageing.	 Future	 experimental	 and	453 

observational	studies	on	maternal-effect	senescence	will	improve	our	ability	to	explain	454 

this	variation,	especially	when	they	focus	upon	understudied	taxa	(e.g.,		fish,	reptiles	and	455 

amphibians),	 wild	 populations	 of	 invertebrates,	 and	 species	 with	 life	 histories	 that	456 

appear	unusual	for	their	taxonomic	groupings	(such	as	mammals	or	insects	that	exhibit	457 
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paternal	or	cooperative	care).	Taxonomic	gaps	amongst	wild	populations	likely	reflect	a	458 

general	 preference	 amongst	 ecologists	 to	 invest	 in	 long-term	 studies	 of	 birds	 and	459 

mammals	rather	than	any	biological	feature	of	these	species	that	might	make	them	more	460 

amenable	to	the	study	of	ageing.	Finally,	it	would	be	interesting	to	assess	maternal	ageing	461 

in	species	that	lack	evidence	for	actuarial	senescence	[see	4]	(these	species	did	not	appear	462 

in	 our	 search	 for	 data	 amenable	 to	 our	 analyses),	 particularly	 as	 evolutionary	 theory	463 

predicts	a	link	between	adult	ageing	rates	and	the	evolution	of	maternal	senescence	[31].				464 
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	735 

Figure	Legends	736 

	737 

Fig.	 1	 Maternal-age	 effects	 in	 old	 individuals	 arranged	 by	 phylogenetic	 relationship.	738 

Effect	sizes	and	SEs	(on	the	probit	scale)	were	averaged	within	species.	Three	replicates	739 

were	removed	prior	to	averaging	as	their	SEs	made	visualisation	impossible	(Centropages	740 

typicus,	-78.53	±	8991.38;	Psuedaletia	sequax,	-159.74	±	6298.32;	and	Ovis	aries,	14.23	±	741 

2474.36).	Two	 species	 indicated	by	 *	were	not	 included	here	because	 their	 estimates	742 

would	 not	 fit	 (see	Table	 S3b	 for	 these).	 Colours/line-type	 indicate	 environment:	wild	743 

(blue/two-dashes),	 laboratory	 (red/dot-dash),	 semi-captive	 (purple/long-dash),	744 

agricultural	(black/solid),	and	humans	(orange/dotted).	Error	bars	around	the	estimate	745 

represent	95%	confidence	intervals.	746 


