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Abstract 

Carbon and oxygen isotopes (13C and 18O) in tree rings are widely used to reconstruct 

palaeoclimate variables such as temperature during the Holocene (12 thousand years ago - 

present), and are used increasingly in deeper time. However, their use is largely restricted to 

arboreal trees, which excludes potentially important data from prostrate trees and shrubs, which 

grow in high latitude and altitude end-member environments. Here, we calibrate the use of 13C 

and 18O as climatic archives in two modern species of southern beech (Nothofagus) from 

Tierra del Fuego, Chile, at the southern limit of their current range. We show that prostrate trees 

are potentially suitable archives for recording climatological means over longer periods (on the 

order of decades), which opens up these important environments for tree ring isotope analysis. 

We then apply our new understanding to a remarkable late Neogene (17-2.5 Ma) fossil 

Nothofagus assemblage from the Transantarctic Mountains, Antarctica, representative of a 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

2 
 

prostrate tundra shrub growing during a period of significant ice sheet retreat. The 13C of the 

fossil cellulose was found to be ~4‰ enriched relative to that of the modern tress. This is likely 

to be due to a combination of a more positive 13C of contemporaneous atmospheric CO2 and 

enhanced water use efficiency at the fossil site. Using the cellulose-18O in the fossil wood, we 

are able to reconstruct precipitation oxygen isotopes over the Antarctic interior for the first time 

for this time period. The results show that 18Oprecip over Antarctica was -16.0±4.2‰, around 

12‰ enriched relative to today, suggesting changes in the hydrological cycle linked to warmer 

temperatures and a smaller ice sheet. 

 

Keywords: Antarctica; Neogene; Sirius Group; tree ring isotopes, precipitation 

1 Introduction  

Tree ring stable isotope analysis is a powerful and widely-used tool for palaeo-climatic 

reconstructions (Cernusak and English, 2014; Gessler et al., 2014). It can provide rare insights 

into terrestrial palaeo-climate and environmental evolution at high temporal resolution, providing 

information on temperature (Gagen et al., 2007; Naulier et al., 2014; Lavergne et al., 2016, 

2018), precipitation (Cullen and Grierson, 2009; Xu et al., 2016), drought (Kress et al., 2010; 

Labuhn et al., 2016), and large-scale atmospheric circulation patterns (Xu, Sano and 

Nakatsuka, 2013; Grießinger et al., 2018). 

A key source of information in much of this work is the oxygen isotopic composition of tree ring 

cellulose (18Ocell). The theory on the underpinning variables controlling 18Ocell is relatively well 

developed, albeit with large uncertainties and knowledge gaps e.g. (Gessler et al., 2014; 

Treydte et al., 2014). The relationship between these variables and 18Ocell  can be described by 

various numerical models  and used to investigate oxygen isotope variations in multiple settings 

(Roden and Ehleringer, 2000; Farquhar and Gan, 2003; Ogée et al., 2003, 2009; Danis et al., 
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2012; Lavergne, Gennaretti, et al., 2017). Cellulose oxygen isotopes are governed by a complex 

array of factors, including source water isotopic composition (itself a result of precipitation 

isotopes, soil residence time, and evaporative effects); leaf water enrichment due to 

transpiration (Yakir and Sternberg, 2000); fractionation between leaf water and carbonyl oxygen 

(Sternberg and DeNiro, 1983; Sternberg and Ellsworth, 2011); and other oxygen exchange 

processes between organic compounds and surrounding water, for example during 

remobilisation of organic matter or cellulose biosynthesis  (e.g. Hill et al., 1995; Sternberg et al., 

2006; Gessler et al., 2007; Offerman et al., 2011; Nabeshima et al., 2018). The underpinning 

link with source water oxygen isotopes means that tree-ring cellulose 18O can be used to 

reconstruct the oxygen isotopic composition of precipitation. This in itself is a function of 

precipitation amount, altitude, temperature, residence time in the atmosphere, distance from 

moisture source and transport patterns (Dansgaard, 1964; Sime et al., 2009; Aggarwal et al., 

2012). Cellulose 18O can therefore be used as a proxy for reconstructing global and regional 

hydrological change, for example, changes in basinal water regimes (Brienen et al., 2012) or 

large-scale atmospheric circulation patterns (Baldini et al., 2008; Zhu et al., 2012).  

Carbon isotopes in tree-ring cellulose (13Ccell) also have utility as a palaeoclimatic proxy. In 

general, 13Ccell is controlled by the 13C of atmospheric CO2 (McCarroll and Loader, 2004; 

Treydte et al., 2007); atmospheric CO2 concentrations (Beerling, 1996; Köhler et al., 2010; 

Battipaglia et al., 2013), along with other factors that affect stomatal conductance including soil 

moisture and atmospheric vapour pressure deficit; and factors that control photosynthetic 

capacity such as nutrient availability and irradiance (Ehleringer et al., 1986; Farquhar, 

Ehleringer and Hubick, 1989; Cernusak et al., 2007; Cernusak, Winter and Turner, 2009). A 

range of downstream metabolic processes also play a role in shaping 13Ccell, including post-

carboxylation fractionation, phloem loading and transport, and respiratory isotope fractionation 

(Gessler et al., 2009; Priault, Wegener and Werner, 2009; Werner and Gessler, 2011; Werner et 
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al., 2011). 

Both carbon and oxygen tree ring isotopes are increasingly being applied to older time periods 

of up to 53 Ma as more fossil plants with adequate preservation are being recovered (Jahren 

and Sternberg, 2008; Schubert and Jahren, 2011; Schubert et al., 2012; Wolfe et al., 2012; 

Hare et al., 2018). One particular advantage of this growing dataset is the ability of tree ring 

isotopes to reconstruct climatic parameters that are much harder to access through marine 

sediments. These include environmental geochemical signals like precipitation isotopes 

(Ballantyne et al., 2006; Jahren and Sternberg, 2008; Jahren et al., 2009) and atmospheric 

carbon isotopes (Arens, Jahren and Amundson, 2000; Jahren et al., 2001). A notable example 

is the rich treasure trove of exceptionally well-preserved Eocene and Pliocene fossil wood from 

multiple kimberlite deposits in the Canadian High Arctic. These fossil recoveries have revealed 

unique details about Eocene and Pliocene palaeoclimate and hydrological cycling through their 

stable isotope records, such as reconstructing terrestrial temperatures and the isotopic 

composition of precipitation as well as providing insights into high latitude climate variability 

(Ballantyne et al., 2006, 2010; Jahren and Sternberg, 2008; Jahren et al., 2009; Csank et al., 

2011; Wolfe et al., 2012).  

In this study, we apply tree ring isotope analysis to a unique suite of fossil prostrate or 

krummoltz Nothofagus trees recovered from the mid-late Neogene (~17 – 2.5 Ma) Sirius Group 

deposits at the Oliver Bluffs in the Transantarctic Mountains, Antarctica (85°07’S, 166°35’E; 

Webb and Harwood, 1987, 1993; Francis and Hill, 1996; Hill, Harwood and Webb, 1996). The 

plants were deposited at a similar latitude to today (Lawver and Gahagan, 2003) and represent 

a period of significant Antarctic Ice Sheet retreat, where warming of the continent allowed a 

tundra-like shrub to grow 480 km from the South Pole. 

Based on both geochemical (Rees-Owen et al., 2018) and macrofossil-derived (Francis and Hill, 
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1996; Ashworth and Cantrill, 2004) palaeothermometers, continental summer temperatures 

during the trees’ lifetimes were ∼5°C, implying a weakened latitudinal temperature gradient 

compared to the present day, where the mean temperature in December is -3.4°C (McMurdo 

Station; 77°51’S, 166°40’E). Shallower gradients are also supported by vegetation and marine 

proxy-based reconstructions, indicating, for example, a reduction of ∼5.5°C in the meridional 

temperature gradient during the early Pliocene relative to today (Brierley et al., 2009; Pound et 

al., 2012).  

The age of these sediments has been the subject of a lengthy debate, relating to the nature of 

the East Antarctic Ice Sheet under warmer-than-present conditions (Barrett, 2013). 

Biostratigraphical dating of the plant fossils by association with late Pliocene marine diatoms 

(Webb et al., 1984; Harwood, 1986) suggests the incursion of seaways deep into the Antarctic 

interior and indicates a dynamic ice sheet as late as 3 million years ago. This relatively young 

age for the plant fossils has been challenged by suggestions that the diatoms represent wind-

blown contamination from the open ocean (Burckle and Potter, 1996; Stroeven, Prentice and 

Kleman, 1996). Furthermore, cosmogenic exposure dating of nearby moraines indicates these 

sediments are much older (at least 5 Ma, but possibly as old as 17 Ma; Ackert, Jr. and Kurz, 

2004) and therefore that the ice sheet has been a stable climatic feature since the mid-Miocene.  

Evidence for a periodically reduced ice sheet accompanied by vegetation along the margins 

exists for the mid-Miocene (17-15 Ma; Warny et al., 2009; Feakins, Warny and Lee, 2012; 

Griener et al., 2015; Gasson et al., 2016; Levy et al., 2016). Increasingly both modelling (Dolan 

et al., 2011; Austermann et al., 2015; Pollard, Deconto and Alley, 2015; Pollard and Deconto, 

2016) and data (Fielding et al., 2012; Cook et al., 2013; Ohneiser et al., 2020) studies also 

suggest that at least partial EAIS retreat occurred during the Pliocene, allowing a tundra shrub 

to grow around 4.1 Ma. These competing scenarios pose a challenge to dating these fossils. 

Nevertheless, the fossiliferous bed clearly represents a period of significant East Antarctic Ice 
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Sheet (EAIS) retreat in response to warming temperatures (Mercer, 1986; Francis and Hill, 

1996). Our data will therefore give novel insight into past Antarctic climate change during a vital 

period in its glacial history.  

To date, the vast majority of tree ring stable isotope studies have been applied to trees with an 

arboreal habit. Prostrate trees (where stems grow horizontally to avoid harsh conditions such as 

freezing winds e.g. Salix arctica in the High Arctic and the fossil plants considered in this study) 

and shrubs are increasingly used in modern dendrochronological studies (Woodcock and 

Bradley, 1994; Hantemirov, Shiyatov and Gorlanova, 2011; Buras and Wilmking, 2014), where 

they can provide vital information on past climate for tree-less regions such as those at high 

latitude or altitude, and deserts. However, to our knowledge, no studies using tree ring isotopes 

in prostrate plants to reconstruct past climate exist, so there is uncertainty over the extent to 

which isotope theory developed for arboreal tree rings holds true for krummholz-type plants. 

Therefore, the objective of the first part of this study is to calibrate the use of tree ring isotopes 

(13C and 18O) in high latitude prostrate trees for climatic reconstructions using plants from Isla 

Navarino, Chile, where two deciduous southern beech (Nothofagus) species grow in both 

arborescent and prostrate form in a subpolar forest environment at the southern limit of their 

range. The objective of the second part is to apply this new knowledge to our fossil Nothofagus 

trees to enhance our understanding of how the Antarctic Ice Sheet has behaved during past 

warm periods of Earth’s history. 

2 Materials and methods  

2.1 Oliver Bluffs; fossil site  

The fossil wood was sampled from a sedimentary succession at Oliver Bluffs in the Dominion 

Range of the Transantarctic Mountains (85°07’S, 166°35’E), which forms part of the Sirius 

Group sediments (Fig. 1). The fossil plant material occurs within one main bedding horizon in 

the central part of the exposure at Oliver Bluffs, on the eastern side of the upper valley of the 
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Beardmore Glacier. The present elevation is approximately 1760 m above sea level, but 

deposition likely occurred at a much lower altitude (Webb and Harwood, 1993; Ackert, Jr. and 

Kurz, 2004). The sedimentary sequence consists of glacial diamictites, and are thought to be 

lodgement tills deposited by the ancestral Beardmore Glacier during glacial advance and retreat 

(McKelvey et al., 1991). The fossiliferous bed containing fossil wood and leaves comprises 

poorly-sorted sandstones with silt lenses, representing an outwash deposit, in places burying 

poorly-developed glacial soils on a braided outwash plain (Ashworth and Cantrill, 2004). We 

envisage sporadic accretion of sediment over the plain, such that the fossiliferous bed is 

spatially heterogeneous, but as a whole is representative of a significant portion of the ice sheet 

retreat event (Rees-Owen et al., 2018).  

The fossil wood fragments were first described as Nothofagus (Carlquist, 1987) and later 

identified as Nothofagus beardmorensis  and are dated to between 17 and 2.5 Ma (Hill and 

Jordan, 1996; Hill, Harwood and Webb, 1996). Leaf remains and tree ring analyses suggest that 

these were deciduous prostrate shrubs, very similar to the krummholz N. pumilio and N. 

antarctica, which grow at the treeline in Tierra del Fuego, Chile (Francis and Hill, 1996). Due to 

the small ring size (<100 μm) and friability of the material, fossil wood fragments were sampled 

for isotope analysis in bulk or by isolating individual rings where possible, so our measurements 

are averages over multiple years and up to several decades. The necessity of combining 

multiple rings together for the analysis of the fossil wood material sets the context for the 

modern part of our study in which we stress the interpretation of data on decadal rather than 

annual timescales.  

2.2 Isla Navarino; modern analogue site  

Isla Navarino (55°56’S, 67°37’W; Fig. 1) is part of the Magellanic subpolar forests ecoregion 

which stretches west of the Andes down to Tierra del Fuego, Chile. The island has a maritime 

climate, with mean annual temperatures of 6 °C, average summer highs of 10°C and winter 
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averages of 2°C. Cool windy conditions prevail year round; Mean Annual Precipitation (MAP) is 

400-500 mm, which is uniformly distributed throughout the year. The island vegetation is 

characterised by Magellanic forest dominated by Nothofagus trees to the north, and Magellanic 

moorland to the south.  

The overall intention of this study is to ascertain whether the Antarctic fossil trees can be used 

for tree ring isotope work, so we designed our sampling strategy for the modern plants to mimic 

this where possible, including limiting our study to Nothofagus only. Wood cores and rounds 

from branches (for prostrate trees) from 31 living trees were collected at five sites on Isla 

Navarino during the austral summer of 2013. Three species of Nothofagus trees grow on the 

island, one evergreen species (N. betuloides) and two deciduous species (N. antarctica and N. 

pumilio). Because the fossil Nothofagus from the Sirus Group sediments are deciduous (Hill, 

Harwood and Webb, 1996), cores were taken from two deciduous Nothofagus species over an 

altitude transect from near sea-level to the treeline (∼600 m) at 5 sites (Table 1; Fig. 1). Over 

the transect, Nothofagus ranged in habit from arborescent (single stem and generally greater 

than 4 m in height) to krummholz form (i.e. prostate, with a small trunk or stem and multiple 

branches lying horizontally upon the ground). Species were identified by leaf character (Moore, 

1983) and sampled during the height of austral summer 2013 (January), when the trees were in 

full leaf. Arborescent trees were cored at chest height (∼130 cm above the ground) using an 

increment wood corer with a diameter of 5 mm. Prostrate individuals were sampled from primary 

branches in order to match sampling from the fossil trees. Two cores or rounds were sampled 

per individual tree and the cores and rounds were air-dried; cores were stored in plastic straws. 

Rounds were sanded with progressively fine sandpaper, and the surface of the tree-ring cores 

were cut using a core-microtome to improve ring visibility. 

The core samples were dated to the calendar year of their formation and cross-dated using the 

techniques described in (Stokes and Smiley, 1968). These were then statistically tested using 
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the programme COFECHA (Holmes, 1983; Grissino-Mayer, 2001) and chronologies were 

constructed using ARSTAN. As the austral growing season overlaps two calendar years, rings 

were assigned to the year when ring growth began (i.e. the last complete ring taken for each 

core in January 2013 was dated to austral summer 2011, as the 2012-2013 ring was still 

incomplete at the time of sampling). 

A 30 year sequence was isolated for isotopic analysis covering the period 1981-2011. This 

sequence length was chosen to roughly match the available tree ring spans of the fossil trees 

sampled here. Tree rings are composed of earlywood and latewood; the former comprises large 

thin-walled cells made of stored photosynthates from the previous year and the latter comprises 

thicker-walled cells formed during summer. Therefore to sample at true annual resolution, it has 

been suggested that only latewood should be taken (Switsur et al., 1995). However, the rings in 

the prostrate plants in this study were too small to obtain sufficient latewood, so the entire ring 

was sampled each time; this approach has been used successfully to reconstruct temperature 

in the same region (Lavergne et al., 2016). Isotope ratios were measured separately for each 

year and each tree. There are multiple missing years in the isotope chronologies where rings 

were too small to extract sufficient cellulose for analysis. 

Chronologies at annual resolution require the construction of chronologies that are statistically 

representative of the variability of the site. An Expressed Population Signal (EPS; Wigley, Briffa 

and Jones, 1984) was calculated for each site’s 18O and 13C chronologies. This is a measure 

of how well a chronology constructed from a finite number of trees represents the hypothetical 

perfect or true chronology; a value of 0.85 is generally considered to be an acceptable 

confidence level. On the whole, EPS is highly sensitive to the number of trees in the chronology. 

In this study, the EPS for each site was low (particularly for 13C) (0.65 – 0.87 for 18O; 0.46 – 

0.76 for 13C), suggesting that a greater sample size is needed to be representative of the whole 

sample site, particularly for 13C, which generally exhibits lower EPS (Daux et al., 2018). 
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Because we are not intending to develop a detailed chronology for Isla Navarino, but instead 

test whether tree ring isotopes are broadly applicable to our prostrate fossil trees, we judge that 

this is adequate for the purposes of this study. 

 

Soil and root samples were also collected, along with water from a stream network covering the 

altitude transect in order to estimate source water 18O. Soils were sampled from 50 cm depth 

around the roots of three trees from each of the five sites (where 90% of Nothofagus forest root 

mass is situated; Schulze et al., 1996). Root samples were taken from at least one tree at three 

of the five sites. Roots and soils were wrapped in cling film, stored in multiple airtight bags and 

frozen until required for water extraction. Source water samples were taken from seven fast-

flowing streams and one lake, covering the entire altitudinal transect, filtered (0.2 μm), and 

stored in McCartney vials.  

2.3 Sample preparation and isotopic analysis  

Except where otherwise indicated, the following procedures were all carried out in the University 

of Leeds Cohen Geochemistry laboratories in the School of Earth and Environment, 2013 - 

2016. 

Oxygen isotope ratios are expressed as 18O; where delta notation is the conventional notation 

used for the ratio of isotopes (e.g. 18O/16O) in a sample (R) relative to a standard (RSTD) such 

that  = (R/(RSTD − 1)1000,) reported in per mil (‰). Results are reported with respect to Vienna 

Standard Mean Ocean Water (VSMOW). Carbon isotope ratios (13C/12C) are expressed as 13C 

and reported relative to the Vienna Pee Dee Belemnite standard. 
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2.3.1  Preservation of fossil material 

Exceptional preservation of the fossil Nothofagus utilised in this study is well documented 

(Francis and Hill, 1996), and is supported by scanning electron microscope imaging (Fig 1D), 

which shows excellent retention of wood fibres. Although it is clear that some degradation of 

vessels has occurred, this should not impact the isotopic signal of the remaining cellulose; 

cellulose extracted from fossil trees significantly older than those used in this study (up to 53 

Ma; (Wolfe et al., 2012; Hook et al., 2014, 2015; Staccioli, Santoni and Pizzo, 2014) was 

extracted in low yield (<5%; Hook et al., 2015) indicating a high degree of cellulose degradation, 

but showed no signs of isotopic alteration. Mineral contaminants in the form of microcrystalline 

calcite were detected in the Sirius Group fossil trees using energy dispersive X-ray 

spectroscopy, which could affect both 18O and 13C, but the delignification step during 

extraction is performed below pH 5, which removed all calcite. After extraction, cellulose was 

recovered as a white fluffy material (5 - 30% yield), which is a clear indication that cellulose is 

well-preserved and hence the fossil material is appropriate for isotope analysis.  

2.3.2 Cellulose isotope measurements  

Cellulose was extracted from both modern and fossil samples using batch extraction equipment 

described by (Wieloch et al., 2011). To summarise, ground wood samples were heated in 

aqueous NaOH solution (5%, 2 hours, 60°C, repeated twice) to remove tannins, resins and fatty 

acids. Samples were then heated (60°C) in acidified NaClO2 (via glacial acetic acid; 7.5%, pH 4-

5) for 10 hours; this step was repeated four times to ensure complete delignification. Finally, we 

used a solution of NaOH (17%; 60°C, 2 hours) to remove hemicelluloses, leaving α-cellulose for 

analysis. Cellulose samples were homogenised using a Retsch MM301 Mixer Mill, then freeze-

dried for 24 hours to remove ambient water. Samples were stored in Eppendorf vials and kept in 

a desiccator for >24 hours prior to isotope analysis.  
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In order to measure 18Ocell, the milled, freeze-dried cellulose samples were weighed, packed 

into silver capsules and pyrolysed at 1450°C. Oxygen isotope ratios were measured using an 

elemental analyser with a purge and trap column (Elementar vario PYRO cube), coupled to an 

Isoprime isotope ratio-mass spectrometer. Ratios of 18O/16O were converted to 18OVSMOW with a 

one point linear calibration using IAEA-601 (benzoic acid; 18O = 23.15±0.3‰ ) with reference to 

cellulose from Sigma-Aldrich, UK (Lot#SLBD2972V; hereafter Leeds Sigma cellulose). The 

Leeds Sigma cellulose was analysed at the University of Leeds against IAEA-CH-3 cellulose, 

assuming 18O = 31.9±0.5‰ (Hunsinger, Hagopian and Jahren, 2010) and assigned a value of 

29.2±0.2 . Standards were included at an interval of every twelve samples. Within-run 

reproducibility of an internal check standard was ±0.37‰. For 13C analysis, extracted cellulose 

samples were weighed and packed into tin capsules. Carbon isotope ratios were measured 

using an Elementar vario PYRO cube elemental analyser coupled to an Isoprime mass 

spectrometer. The encapsulated samples were combusted at 1150°C in pure oxygen. Ratios of 

13C/12C were calibrated to the international VPDB scale using in-house urea and C4 sucrose. 

These were assigned values of -46.83±0.22‰ and -11.93±0.24‰, respectively after calibration 

using six replicates of each of the following international standards: IAEA-LSVEC (-46.479‰), 

IAEA-CH7 (-31.83‰), IAEA-CH6 (-10.45‰) and IAEA-CO1 (+2.48‰). The precision obtained 

for repeat analysis was better than ±0.2‰ (σ).  

 

2.3.3 Water isotope measurements  

Water was extracted from roots and soils by cryogenic vacuum distillation, following the 

procedure detailed by West, Patrickson and Ehleringer (2006). Extracted samples, along with 

stream waters, were stored frozen until they were measured for water isotope ratios at the 

School of Environmental Sciences, University of East Anglia, UK. The 18O/16O ratios were 
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analysed using a Picarro L1102-i cavity ring-down spectroscopy analyser with a CTC Analytics 

autosampler. Each sample was injected and measured 6 times using 2.5 µl of water for each 

injection. Together with the samples, two secondary international standards (USGS 64444 and 

USGS 67400) and one internal laboratory standard (NTW – Norwich tap water) were measured, 

each injected 10 times in order to minimize memory effects. Final isotopic compositions were 

calculated using the calibration line based on the secondary international standards and 

reported in permil units with respect to V-SMOW on the V-SMOW – SLAP scale. The precision 

of the measurements is 0.1 ‰ for 18O. 

The isotopic composition of plant source water for the modern Nothofagus in this study was 

constrained by measuring 18O of soil waters (18Osoil) for the five sites, which ranged between -

13.1±0.73‰ and -10.6±1.17‰ (1 σ; grand mean = -11.9±0.89‰; n=16; Table 1). Oxygen 

isotopes from eight streams and lakes across the sampling transect (18Ostream), ranged between 

-11.1‰ and -9.8‰ (mean = -10.8±0.41‰). Root water extracted from Nothofagus trees at three 

sites (mean = -10.5±0.54‰, n=4) was isotopically similar to 18Ostream and 18Oprecip, indicating 

that plants took up water from an annually integrated precipitation signal. 

The 18O data presented here only represent one year’s precipitation. We also used 

temperature, precipitation and precipitation 18O data from the nearby Global Network of 

Isotopes in Precipitation (GNIP) station at Ushaia, Argentina (54°46’48" S; 68°16’48" W), 

approximately 50 km away, in order to take into consideration summer and winter seasonal 

precipitation in this study, noting that there are a number of missing years for the data set; a 

more complete dataset is available from Punta Arenas but this station is significantly further 

away. Mean summer precipitation for Ushaia was -9.9±0.9‰; mean winter precipitation was -

11.92±0.75‰, which is not statistically different from the mean soil water 18O (p<0.001).  
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2.3.4 Modelling 18Osource 

There are multiple models of varying complexity linking these parameters and it is not clear 

whether more complex models provide better predictions than simpler ones. For the purposes of 

this study, we used a relatively simple model given by eq. 1 (Anderson et al., 2002), which was 

chosen because there are only two unconstrained parameters (relative humidity, RH, and the 

fraction of leaf water not subject to fractionation, f). We acknowledge that there are more 

complex process-based and mechanistic models described in the literature, but consider that 

the use of more complex models linking 18Osource with 18Ocell (Roden, Lin and Ehleringer, 2000; 

Danis et al., 2012) would require making assumptions about a larger number of parameters 

which are difficult to constrain in deep time, for example amount of precipitation and daily max 

and min temperatures. The Anderson model has been used in multiple studies to reconstruct 

past precipitation isotopes (Csank et al., 2011; Wolfe et al., 2012; Hook et al., 2015).  


18Osource = 18Ocell −(1− f)(1−RH)(εe +εk)−ε    (1)  

where ε is the biological fractionation factor associated with the formation of cellulose (+27±3‰; 

(Sternberg and DeNiro, 1983), εe is the equilibrium liquid-vapour fractionation for water and 

approximates 18O of atmospheric vapour (assumed here to be 11‰; Majoube, 1971)  and the 

subscript source denotes source water. The kinetic liquid-vapour fractionation (εk) is dependent 

on leaf morphology and boundary layer vapour transport conditions; broad-leaf trees have 

quasi-laminar boundary layer conditions so εk = 21‰ (Buhay, Edwards and Aravena, 1996). 

The parameter f is the fraction of leaf water not subject to evaporation (Allison, Gat and Leaney, 

1985) and also includes the isotopic alteration of carbon-bound oxygen via exchange with stem 

water (Roden and Ehleringer, 1999).  

We tested the assumptions made by Anderson et al. (2002) using measured 18Ocell from the 

modern analogue trees as input for the model (with RH = 0.7, f = 0.2 as in Allison et al., 1985) 
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and compared the results against measured 18Osource (i.e. soil and stream water) 18Oroot from 

Isla Navarino, and the GNIP precipitation data from Ushaia. In order to apply the model to fossil 

Nothofagus, we applied a large range of values for RH that are consistent with measurements 

from high latitude modern analogue sites such as Isla Navarino (0.5 - 0.85) and using a random 

number generator with uniform distribution, we sampled between these constraints (n=10000) to 

provide an estimate of the possible range of 18Oprecip.  

3. Results and discussion  

3.1. Oxygen and carbon isotope ratios in modern Nothofagus  

Oxygen and carbon isotope ratios in modern Nothofagus trees over a range of morphologies 

were measured to provide a first order check on the ability of fossil prostrate Nothofagus plants 

to record long-term climate and environmental variables. Mean 18Ocell for all sites over the 

sample period (1981-2011) ranged between 24.1‰ and 26.9‰. There was no statistically 

significant difference between the two Nothofagus species (p>0.7; Student’s unpaired t-test). 

However, there is also no statistically significant difference between sites for mean 18Ocell, and 

therefore for altitude and morphology (i.e. prostrate or arboreal form), indicating that morphology 

does not impact absolute 18Ocell integrated over multiple tree rings. Intriguingly, prostrate trees 

in this study exhibit much lower inter-tree variability than their arborescent counterparts (σ = 

2.1‰ and σ = 0.8‰, for arboreal and prostrate morphologies, respectively (Fig. 3)). Prostrate 

plants are more aerodynamically decoupled from the atmosphere, and retain tight control over 

their microclimate (Barrera et al., 2000; Korner, 2003), which may reduce inter-tree variability in 

transpiration.  

Mean 13Ccell  for each site ranged between -27.2‰ and -26.7‰, (grand mean = -26.6±0.7‰), 

which is consistent with typical values for C3 land-plants (O’Leary, 1988). Mean inter-tree 

variability was low (σ range = 0.6 - 0.8‰) and did not vary with altitude or morphology. In this 
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case, 13Ccell variability may be dominated by carbon assimilation rather than stomatal 

conductance (in support of findings of Farquhar, Barbour and Henry, (1998) and Scheidegger et 

al., (2000) for example). A dominant stomatal conductance signal would lead to co-varying 

carbon and oxygen isotope ratios with morphology (Lavergne, Daux, et al., 2017; Guerrieri et 

al., 2019).  

The low EPS in this study means our chronology is inappropriate for studying climate variations 

at interannual resolution, and would need to be updated with more trees if that were the purpose 

of the study. However, this does not prevent us using the data to understand a longer-term 

integrated climate signal; the low inter-tree variability in the prostrate plants in particular 

suggests they may function well as a record of climate information integrated over longer 

timescales and we test this hypothesis using a physiological model below. This is particularly 

pertinent to the fossil plants in this study, where the tree ring widths are extremely narrow and 

do not provide sufficient material for analysis at annual resolution; data from the fossil plants is 

integrated over the entire individual plant.  

3.2 Carbon isotopes in fossil Nothofagus  

Mean 13Ccell was -22.6±1.9‰ (1 σ). The inter-tree variability here is much larger than in either 

the arboreal or prostrate plants from Isla Navarino (-26.6±0.7‰), which again is consistent with 

the dataset spanning millennial timescales. This range of values is significantly enriched by 

∼+4‰ (p<0.001) relative to the mean values seen in the modern Nothofagus trees (Fig. 2).  

Scarring on the bark (Francis and Hill, 1996) of the fossil plants implies strong winds and 

paleosol analysis suggests that MAP was 120-220 mm (Retallack, Krull and Bockheim, 2001), 

which is considerably lower than the MAP on Isla Navarino (400-500 mm). This would lead to 

enhanced water stress, although fossil Nothofagus leaves associated with the wood fragments 

are large in size indicating that the plants were not living in a marginal habitat (Hill et al., 1996) 
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and thus any water stress could not have been too severe. For both fossil tree age scenarios, 

atmospheric CO2 was equal to, or greater than present day, at ~400 ppm for the Pliocene, and 

exceeding 500 ppm for the warmest periods of the mid-Miocene (Pagani et al., 2010; Holbourn 

et al., 2015; Levy et al., 2016). Both of these factors would lead to enhanced water-use 

efficiency, reducing stomatal conductance and hence enriching 13Ccell. 

Additionally, Tipple, Meyers and Pagani, (2010) (Tipple, Meyers and Pagani, 2010) find that 


13C of atmospheric CO2 was higher than present day for both the Pliocene (between around -

6.7 and -6‰) and mid-Miocene (between around -5.7 and -5‰), compared to between -8.5 and 

-7.5‰ for the present day (Keeling et al., 2017). This increase in the baseline 13C  in 

combination with enhanced water-use efficiency, is sufficient to explain the large enrichment we 

see between modern and fossil 13Ccell data. 

3.3. Source water 18O in modern Nothofagus 

There was no significant trend in 18O of measured soil, root or stream waters with altitude, 

which is most likely because of the small altitude range covered in this study (0-600 m). Sites 2 

and 3 18Osoil are statistically different from each other (p<0.05; one way ANOVA with post-hoc 

Tukey test) and site 2 is also significantly depleted relative to the stream and root water, 

suggesting an increased contribution from winter precipitation to soils. From these observations 

we infer that plant source water 18O (18Osource) can be treated as 18Oprecip, where 18Oprecip is 

controlled by latitude, condensation temperature and precipitation amount (Dansgaard, 1964). 

3.4 Source water 18O prediction from modern cellulose 18O 

We now test whether 18Oprecip can be reconstructed from 18Ocell, using the model from 

Anderson et al., (2002). 

The chosen model under-predicted 18Osource by between 0.2‰ and 2.9‰ (mean for all sites = 
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1.5‰; Fig. 3). This could be due to model parametrization; we chose a value of exactly 27‰ for 

the biological fraction factor ε, but another value within the accepted range of 24-30‰ could 

equally be chosen (as in Anderson et al., 2002 and demonstrated by the x-axis error bars). 

Moreover, modelled 18Osource was not statistically different from 18Oroot, 
18Ostream or GNIP 

summer precipitation, indicating that the model works well for predicting 18Oprecip from 

measured 18Ocell in Nothofagus. We now apply the model to the fossil Nothofagus in order to 

calculate ancient 18Oprecip.  

3.5. Reconstructing ancient precipitation 18O from fossil Nothofagus  

Mean 18Ocell for the fossil plants was 20.3±3.0‰. The inter-tree variability is similar in 

magnitude to that seen in modern trees, but is greater than the inter-tree variability seen in the 

prostrate plants of this study. It seems likely that these data capture both significant temporal 

variability and climate variability. It is important to note that here, we are treating all fossils as 

being geologically contemporaneous as they were all collected from the same bed, but it is 

highly likely that our data may span multiple millennia. Ice sheet fluctuations during both the 

mid-Miocene and Pliocene occurred at orbital timescales (Greenop et al., 2014; Patterson et al., 

2014); therefore the duration represented by the fossils must be less than 100 kyr, but long 

enough for poorly developed soils to form and woody plants to colonise the area. This is 

consistent with the larger variability in the fossil data compared to the modern. Mean 18Ocell for 

the Sirius Group plant is significantly depleted by ∼5‰ (p<0.001) relative to the mean of the 

modern Nothofagus trees from Isla Navarino (25.5±1.5‰). Broadly, there are two major controls 

on 18Ocell, which could cause such an offset: evapotranspiration rates (controlled by relative 

humidity and stomatal conductance) and 18O of the plant’s source water (McCarroll and 

Loader, 2004). From the modern data, we assume that plant source water is equal to 

precipitation 18O within the uncertainty of precipitation variability. In addition to latitude, 
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precipitation amount, and temperature, there are further processes that could modify this signal, 

including evaporation from soil or plants using groundwater as a moisture source. Depletion 

could result from a large decrease in stomatal conductance caused by increased vapour 

pressure deficit reducing evapotranspiration from leaves. However, vapour pressure deficit 

across southern Chile is already relatively low (<0.5 kPa; Du et al., 2018) and it is unlikely that 

there would have been significant decreases in vapour pressure deficit for Antarctica when 

summer temperatures are not predicted to have been much lower (Rees-Owen et al., 2018). 

Alternatively, decreased 18Ocell could be caused by a difference in 18Oprecip, which is consistent 

with the higher palaeolatitude of the fossil plants (85°S for the Sirius Group, 54°S for Isla 

Navarino). We test this hypothesis using the physiological model for 18Oprecip from Anderson et 

al, (2002). Using this approach, we calculate that mean continental Antarctic palaeoprecipitation 

was -16±4.2‰ (1 σ; ranging between -26‰ and -3.5‰). Since 18Ocell is strongly modified by 

ambient relative humidity, the large range in our results is consistent with the conservative (i.e. 

wide) humidity range used in this study.  

In the present day, 18Oprecip over East Antarctica is highly variable, ranging from -55‰ at the 

highest elevations and furthest from the coast, to -25‰ near sea level at lower latitudes <75°S 

(Masson-Delmotte et al., 2008). However, there is considerable uncertainty surrounding the 

palaeoaltitude of the Nothofagus fossils sampled in this study (Ackert, Jr. and Kurz, 2004), 

which makes it difficult to provide context for the reconstructed 18Oprecip values. We therefore 

compared our record to measured  

Antarctic 18Oprecip from sites above 75°S and less than 700 m above sea level (the height of the 

timberline on Isla Navarino; Masson-Delmotte et al., 2008), representing a reasonable habitat 

range. Reconstructed 18Oprecip was significantly enriched by ∼+12‰ relative to modern 18Oprecip  

(ancient mean = -16‰, modern mean = -28‰; p <0.001; Fig. 4). Growth experiments have 
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suggested that plant 2H  (and therefore by extension, 18O) can be significantly enriched in 

plants grown under continuous light, analogous to the polar light regime (Yang et al., 2009). 

Therefore, part of the enrichment in the Sirius Group specimens could be accounted for by the 

continuous light regime experienced by the Antarctic plants during the growing season, which 

would increase 18Ocell via continuous transpiration, as opposed to the light regime on Isla 

Navarino, where plants undergo a diurnal transpiration-respiration cycle. However, the plants 

used by Yang et al. (2009) have a relatively high transpiration rate because of the relatively 

warm growing temperatures used in their experimental study. We suggest that the transpiration 

rate for the Sirius Group plants would likely be much lower because of the cold summer 

temperatures (∼5°C, compared to ∼20°C in the environment used by Yang et al., 2009). 

Furthermore, Nothofagus have been documented as having significantly tighter stomatal control 

of transpiration than co-existing conifers (Fernández, Gyenge and Schlichter, 2009), as used by 

Yang et al. (2009). Therefore it seems likely that there is much lower enrichment due to 

continuous light in the Sirius Group fossils (see Supplementary Information for further 

discussion).  

Our result has implications for regional and global climate during periods of ice sheet retreat in 

the Neogene. A significant enrichment in precipitation isotopes implies a considerable change in 

some of the atmospheric processes of the hydrological cycle. Plausible mechanisms include 

increased temperatures affecting fractionation during condensation, or changes in rainout 

patterns due to shifts in source moisture region or different atmospheric circulation patterns 

leading to a shortened vapour transport pathway. As previously discussed, warmer Antarctic 

temperatures (relative to today) are consistent with multiple contemporaneous terrestrial 

temperature proxies, which suggest that summer temperatures reached 5°C during the period of 

study (Ashworth and Kuschel, 2003; Ashworth and Preece, 2003; Ashworth and Cantrill, 2004; 

Rees-Owen et al., 2018). This result is also consistent with both age scenarios for the site: 
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during both the mid-Miocene and Pliocene, sea surface temperatures in the Southern Ocean 

were several degrees warmer than today (Warny et al., 2009; McKay et al., 2012; Clark et al., 

2013) and there is evidence for reduced sea ice cover (Whitehead, Wotherspoon and Bohaty, 

2005; Warny et al., 2009). However, previous work by Feakins et al, (2012) suggests that the 

relationship between temperature and precipitation isotopes earlier in the Miocene (20 - 15 Ma) 

on the Antarctic coast was different from the modern, driven by increased evaporation from a 

warmer Southern Ocean. Similarly, isotopic disequilibrium between vapour and precipitation in 

modern-day Patagonia has been suggested to explain greater than expected 18Ocell 

(Penchenat et al., 2020). This implies that other factors may also influence the hydrological 

cycle at this time, which is plausible within the context of a warmer Neogene world, where 

warmer Southern Ocean temperatures could drive an increase in evaporation from high latitude 

moisture sources. Equally, the smaller ice sheet could well have influenced regional 

atmospheric circulation patterns, and changes in global atmospheric circulation are documented 

for the Pliocene (Brierley et al., 2009). These variables are likely to be important for 

understanding the full significance of our data, but are unconstrained, and a full exploration of 

hydrological changes is beyond the scope of this study. These questions could be more fully 

answered through further data collection to reduce proxy uncertainty, and the use of a coupled 

ocean-atmosphere climate model to investigate hydrodynamic changes.  

4. Conclusions  

By testing a simple physiological model linking 18Ocell with 18Oprecip in two species of modern 

Nothofagus plants, which grow in both arboreal and prostrate form, we found that 18Ocell of 

prostrate Nothofagus faithfully records 18Oprecip at multi- year resolution. Hitherto, most tree ring 

stable isotope analyses have been applied to trees with an arboreal habit in temperate and 

tropical environments. Therefore, it was previously unclear whether the assumptions made in 
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tree ring isotope theory hold true for krummholz-type plants, such as those from Oliver Bluffs, 

which feature growth asymmetry that could affect isotopic signals via resource partitioning. Our 

findings demonstrate that prostrate trees are potentially suitable archives for recording 

climatological means over longer periods (on the order of decades). This result opens up high 

latitude and altitude end-member environments in both palaeo and modern times for tree ring 

isotope analysis. 

The carbon isotope composition of cellulose from exceptionally well-preserved Neogene fossil 

wood from the Transantarctic Mountains, Antarctica was ~4‰ more positive than that of the 

modern samples. This difference is best explained as the result of a more positive value for the 


13C of contemporaneous atmospheric CO2 and enhanced water use efficiency at the Oliver 

Bluffs site, although the precise contribution of each of these factors to this signal is unknown. 

The oxygen isotopic composition of the fossil wood provides new insights into Neogene 

hydrological cycling. Our record indicates that during a period of EAIS ice sheet retreat in which 

small prostrate shrubs colonised the exposed glacial landscape close to the South Pole, the 

hydrological cycle was markedly different to today with precipitation significantly enriched in 18O 

by ∼12‰ relative to modern precipitation over the continent. While the enrichment may be 

temperature driven alone, our result correlates well with the result of Feakins et al. (2012), 

suggesting that moisture source regions may have been different in the past. However, it is not 

possible to distinguish between these two possibilities, or some combination of both, based on 

the geochemical data alone.  
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Figure Captions 

 

Figure 1: (A) Location of sampling sites on Isla Navarino in Tierra del Fuego, Chile. Yellow 

triangle = marks the location of the GNIP station at Ushuaia; open circles = mark the tree ring 

sampling sites. (B) Fossil wood location at Oliver Bluffs (black filled circle), Transantarctic 

Mountains, Antarctica. White represents ice; grey shapes are Transantarctic Mountain outcrops. 

(C) Photograph of exceptionally preserved fossil Nothofagus from Oliver Bluffs. (D) Scanning 

Electron Microscope image of fossil Nothofagus, demonstrating excellent preservation of wood 

fibres. (E) Prostrate Nothofagus antarctica from Isla Navarino. 

 

Figure 2: (A) Standard deviation of 13Ccell (open circles) and 18Ocell (closed circles) with altitude 

for Nothofagus from Isla Navarino, demonstrating a decrease in variability for 18Ocell for 

prostrate trees. (B) Mean 18Ocell data for modern Nothofagus separated into arboreal and 

prostrate form, and fossil Nothofagus. (C) As panel (B) but for 13Ccell. 

 

Figure 3: The relationship between modelled source water 18O and measured 18Osource water 

for each site (from soils from each of the five sites (circles), roots from three sites (squares) and 

Global Network of Isotopes in Precipitation 18Oprecip (summer precipitation; diamond). Modelled 

source water 18O was calculated from measured 18Ocell (modern Nothofagus) using the same 

method as Anderson et al. (2002). Markers give the mean 18O, y-error bars show the full 

measured data range, x-errors show the range of modelled 18Osource if  were varied within the 

range given by Sternberg and DeNiro, (1983), and a 1:1 ratio is given by the dotted line for 

comparison. Modelled data is calculated using RH = 0.7, f = 0.2. 
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Figure 4: Cellulose δ18O from the Sirius Group fossil Nothofagus, with modelled δ18O of 

palaeo precipitation and modern Antarctic snow. Modern measurements from Masson-Delmotte 

et al. (2008); data restricted to >75°S and below 700 masl. The median is given by the line, the 

first and third quartiles by the box, and the whiskers denote the full range of data. 
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Table 1: Summary of sample sites on Isla Navarino with mean site 18Osoil. 

Site Latitude Longitude Elevation / m No. trees 


18
Osoil / ‰ 

 

No. soil 
water 

replicates 

1 54° 56’ 37’’ S 67° 39’ 25’’ W 29 5 -11.50.25 3 

2 54° 57’ 04’’ S 67° 38’ 58’’ W 97 4 -13.10.73 4 

3 54° 58’ 33’’ S 67° 40’ 22’’ W 247 5 -10.51.17 3 

4 54° 59’ 19’’ S 67° 41’ 02’’ W 395 7 -12.01.29 2 

5 54° 59’ 35’’ S 67° 41’ 04’’ W 527 11 -12.00.58 4 
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Graphical abstract 
 
 
Rees-Owen et al, A calibration of cellulose isotopes in modern prostrate Nothofagus and its 
application to fossil material from Antarctica 
 
Highlights 

 Prostrate trees record average climate over decadal time periods in tree ring cellulose-


18O 

 Late Neogene Antarctic wood indicates a ~12‰ enrichment in H2O-δ18O relative to 

today 

 Evidence for marked changes in Antarctic hydrological cycle 
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