
1 
 

Excited State Vibrations of Isotopically Labelled FMN Free and Bound to a LOV Protein 

James N. Iuliano,1‡ Christopher R. Hall,2‡ Dale Green,2‡ Garth A. Jones,2 Andras Lukacs,3 Boris 

Illarionov,4 Adelbert Bacher,4,5 Markus Fischer,4 Jarrod B. French,1 Peter J. Tonge1* and Stephen R. 

Meech2* 

1Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United 

States, 2School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K., 3Department of 

Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary, 4Institut für 

Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, 

Germany 5Department of Chemistry, Technical University of Munich, 85747 Garching, Germany 

Abstract 

Flavoproteins are important blue light sensors in photobiology and play a key role in optogenetics. 

The characterization of their excited state structure and dynamics is thus an important objective. 

Here we present a detailed study of excited state vibrational spectra of flavin mononucleotide 

(FMN), in solution and bound to the LOV-2 (Light-Oxygen-Voltage) domain of Avena sativa 

phototropin. Vibrational frequencies are determined for the optically excited singlet state and the 

reactive triplet state, through resonant ultrafast femtosecond stimulated Raman spectroscopy 

(FSRS). To assign the observed spectra, vibrational frequencies of the excited states are calculated 

using density functional theory, and both measurement and theory are applied to four different 

isotopologues of FMN. Excited state mode assignments are refined in both states and their 

sensitivity to deuteration and protein environment are investigated. We show that resonant FSRS 

provides a useful tool for characterizing photoactive flavoproteins, and is able to highlight 

chromophore localized modes, and to record hydrogen/deuterium exchange. 

‡JNI, CRH and DG contributed equally to this work through protein spectroscopy, FSRS development 

and calculations respectively. 
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Introduction 

The isoalloxazine moiety of flavin mononucleotide (FMN), a tricyclic heterocycle, is the chromophore 

responsible for the yellow pigmentation of flavoproteins. It is the common core of the different 

flavin cofactors (e.g. riboflavin, FMN, FAD) usually non-covalently bound in flavoproteins.1  In many 

proteins the flavin is a redox active element involved in electron transfer reactions.1  However, in a 

number of flavoproteins the flavin serves as a photoactive element, involved in mediating a variety 

of light driven processes, including DNA repair (photolyases), phototaxis (BLUF domains) and 

phototropism (LOV domains).2-5 This has driven much of the recent interest in the photochemistry 

and photophysics of flavins and flavoproteins, which accelerated with the discovery that photoactive 

flavoproteins may be used in optogenetics, where their ability to modify gene expression in a light 

sensitive fashion has been recruited to optically control cellular activity.6 

The investigation of flavoprotein photophysics necessarily entails the study of the electronically 

excited states of isoalloxazine. Transient absorption has been used to probe the excited state 

dynamics of a number of flavin cofactors and flavoproteins, yielding a detailed picture of the 

evolution of excited state populations and thus the rates of product formation on the femtosecond 

to nanosecond time scale.7-8 Structural information on excited state dynamics has been provided by 

transient infra-red (TRIR) measurements from ultrafast to seconds timescales.9-13 Significantly, TRIR 

experiments have the ability to probe the response to optical excitation of both the flavin moiety 

and the surrounding protein residues, thus providing a more complete picture of protein function.14 

One challenge in TRIR experiments is separating the contributions of the chromophore from those of 

the surrounding amino acid residues. Understanding both is vital to unravelling the protein’s 

signalling mechanism.  In TRIR this separation has been addressed through the study of isotopically 

substituted flavins, by isotope editing key protein residues or by site specific introduction of IR 

marker modes, using noncanonical amino acid substitution.13, 15-17   
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More recently the technique of femtosecond stimulated Raman spectroscopy (FSRS) has been 

developed to measure the vibrational Raman spectrum of excited electronic states and 

photoproducts.18-19 In addition to its ability to record transient real-time Raman spectra, FSRS can 

exploit resonance enhancements to probe specifically chromophore excited states.20 In photobiology 

resonant FSRS offers the opportunity of selectively recording spectra in specific electronic states 

(e.g. singlet and triplet, see below) and of separately measuring chromophore and protein modes.  

As such, FSRS (and related Raman experiments) have the potential to become a powerful tool in 

time resolved photobiology, which will be complementary to TRIR. In particular (i) studies in H2O 

buffer are possible using Raman methods, while for TRIR in H2O absorption near the amide region 

can seriously degrade signal-to-noise, leading to D2O being the favoured solvent (ii) very large 

protein complexes and whole cells have strong IR absorption, which can degrade signal-to-noise by a 

similar mechanism to H2O and (iii) Raman experiments yield a wide spectral range in a single 

experiment, while TRIR is typically restricted to a few hundred wavenumbers. 

In an important paper Ernsting and co-workers demonstrated that FSRS yields the Raman spectrum 

of the excited singlet state of riboflavin and FAD with good signal-to-noise.21 They investigated mode 

assignments in the S1 state through TD-DFT calculations, including four water molecules to represent 

a hydrogen-bonding environment, as well as using a polarizable continuum model (PCM) for solvent 

effects.  We extended the FSRS measurements to photoactive flavoproteins, specifically the blue 

light using flavin (BLUF) domain protein AppA, where the sensitivity of the FSRS signal to the dark or 

light adapted (signalling) state of the protein was investigated.22  Recently Andrikopoulos et al. 

reported the FSRS spectrum of FMN in both its singlet and triplet states, and again endeavoured to 

assign the observed modes through DFT calculations.23  In this work we present a detailed 

assignment of the FSRS spectrum of FMN in its singlet and triplet states through the study of four 

different isotopologues of isoalloxazine, complemented by the corresponding TD-DFT calculations. 

Isotope shifts aid assignment of the observed bands to calculated modes, which are generally more 

numerous.  Further we extend this approach to an investigation of the spectra of the recombinant 
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LOV-2 (Light-Oxygen-Voltage) domain of Avena sativa phototropin (subsequently designated 

AsLOV2) that has been studied earlier by transient IR.24-25 The primary event in LOV domain 

photochemistry is intersystem crossing to the triplet state, which then undergoes a reaction with an 

adjacent cysteine residue.26 The subsequent change in protein structure, an unbinding and uncoiling 

of an -helix,27 initiates signalling. The LOV-2 domain is involved in controlling phototropism, and 

has also been adopted as an optogenetic element.28-30 

 

Methods 

(i) Femtosecond Stimulated Raman.  FSRS spectra were measured using an instrument described in 

detail elsewhere.31-32 The 800 nm output of a 1 kHz Ti:Sapphire laser was divided to pump two 

optical parametric amplifiers (OPA) and as input to a second harmonic bandwidth compressor 

(SHBC). The first OPA generated 80 fs ‘actinic’ pump pulses at 450 nm (1 µJ, 170 µm spot size) to 

photochemically excite the sample. The second OPA generates 100 fs pulses at 1100 nm which are 

then focused onto a 2 mm CaF2 window to generate a white light continuum (480-1000 nm, 30 µm 

spot size) which act as the FSRS ‘Raman probe’. The picosecond 400 nm output of the SHBC is used 

to pump a third OPA which generates narrowband (ca 10 cm-1) picosecond ‘Raman Pump’ pulses. 

The pulse is tunable throughout the vis and near IR. In the present experiment it was centered at 

750 nm (4 µJ 100 µm spot size), a wavelength which was selected to be resonant with the excited 

state transient absorption of both singlet and triplet states of FMN; as described by Andrikopoulos et 

al there is a broad transient absorption at ca 800 nm for S1, which evolves into a more triplet-triplet 

absorption with a much larger transition dipole moment and a peak at 712 nm.23 Pulses were 

overlapped and focused to the sample position and the stimulated Raman signal was collected in the 

phase matched directions and dispersed in a SPEX 500M spectrometer with CCD detector. Optical 

choppers were used to modulate the actinic and Raman pump pulses resulting in four sets of pulse 
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sequences (a) Actinic Pump-Probe+Raman, (b) Raman+Probe, (c) Actinic Pump+Probe, and (d) probe 

only such that the excited state FSRS signals can be extracted from the transient absorption using:  

𝑅𝑎𝑚𝑎𝑛 𝐺𝑎𝑖𝑛 = 𝐿𝑜𝑔(
𝑃𝑢𝑚𝑝+𝑃𝑟𝑜𝑏𝑒+𝑅𝑎𝑚𝑎𝑛

𝑃𝑟𝑜𝑏𝑒+𝑅𝑎𝑚𝑎𝑛
),  

as described elsewhere.31 Spectra were calibrated using neat cyclohexane. The bandwidth was 

measured as <20 cm-1. In tables presented below we report the wavenumber maxima of the 

observed bands, and estimate a 3cm-1 shift as detectable. Samples (optical density 0.5 at 450 nm) 

were flowed through a 200 µm path length CaF2 cell at a rate of ~2 mL/min. All measurements were 

performed in 20mM Tris pH8.0, 150mM NaCl unless otherwise indicated. 

(ii) TD-DFT Calculations. The isoalloxazine chromophore in FMN was modelled in the form of 

lumiflavin, simplifying the ribityl-5’-phosphate in FMN to a methyl group. The ground state, S0, was 

optimized using DFT at the B3LYP33-34/TZVP35 level of theory and the optimized structure was 

characterised using harmonic frequency analysis at 298.15 K and 1 atm. In the style of Ernsting et 

al.,21 the chromophore is solvated by four explicit water molecules positioned around the polar end 

of the isoalloxazine moiety in addition to including a polarizable continuum model (PCM)36-37 for 

water. The excited states S1 and T1 were optimized at the same level of theory, using TD-DFT for S1 

and unrestricted DFT for T1. These stationary points were also characterized by harmonic analysis 

and found to correspond to minima. The optimized structure for the ground state, S0, is shown in 

Figure 1. The microsolvation layer provided by the four water molecules represents the H-bonding 

interaction, typical of the protein environment. In agreement with experiment, greater stabilisation 

of non-bonding and unoccupied π* orbitals localised at the polar end of isoalloxazine results in a 

red-shift of ππ* versus a blue-shift of nπ* transitions, such that the lowest energy transition for the 

explicitly solvated chromophore is an allowed ππ* and any electronic coupling between these states 

is reduced.21, 38-39 IR and Raman spectra were calculated for five isotopologues ([U-15N4]-FMN; [4,10a-

13C2]-FMN; [2,4a-13C2]-FMN; [2-13C1]-FMN and [4a-13C1]-FMN) at the optimized geometries of the 

three electronic states considered (S0, S1 and T1). Vibrational analysis was also repeated for the 
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excited states (S1 and T1) of FMN on deuteration of the only exchangeable hydrogen of the 

isoalloxazine, N3H (see also Figure 2a), alone and on deuteration of both N3H and the four explicit 

water molecules. All calculations were completed using Gaussian 16.40 The wavenumbers reported 

are unscaled, as it is not yet clearly established whether the 0.97 factor required for the ground state 

at this level of theory is also applicable to the excited state(s). 

 

 

Figure 1: (a) Ground state (S0) geometry of lumiflavin solvated by four water molecules as well as the PCM, 
optimized at the B3LYP/TZVP level of theory. (b) Electron density difference map for S1-S0, where dark (light) blue 
indicates regions of increased (decreased) electron density. 

Although the focus of this paper is on the vibrational spectra of the excited states, we present in 

Figure 1b the electron density difference map between S1 and S0, as an aid to understanding 

wavenumber shifts between states. This illustrates the potentially important role of H-bonding 

interactions, most notably at N5 where the calculated distance to the water oxygen contracts by 

9.3 pm in S1. As described below, the H-bond environment modifies the vibrational spectra of the 

electronically excited isoalloxazine moiety (and vice versa).14 
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(iii) Reagents. 13C-labeled riboflavin isotopologs  were synthesized using the method reported by 

Tishler et al.41 Isotope enrichments were approximately 99%. [U-15N4]riboflavin was obtained by 

fermentation using a recombinant E. coli strain that was grown with 15NH4Cl as the single nitrogen 

source.42 Enzyme-catalyzed phosphorylation of riboflavin isotopologs was performed as described 

elsewhere43 

(iv) Protein Preparation. A synthetic open reading frame specifying an N-terminal polyhistidine tag 

44recombinant Escherichia coli strain (UniProtKB O49003). The recombinant AsLOV2 protein was 

purified as described previously.24  

(v) Ligand exchange. Recombinant AsLOV2 (20 mg in 8 ml of 50 mM Tris hydrochloride, pH 8.0, 

containing 200 mM NaCl, 50 mM imidazole and 0.2 % NaN3 was applied to a column of chelating 

Sepharose (Ni2+ form, 1 cm  6 cm) that had been equilibrated with 50 mM Tris hydrochloride, pH 

8.0, containing 400 mM NaCl, 15 mM imidazole, 0.2% NaN3 (buffer A). The column was washed with 

30 ml of buffer A, 40 ml of buffer A containing 7 M guanidine hydrochloride, and 40 ml of buffer A. A 

solution (7ml) containing 2 mM isotope-labeled FMN in buffer A was allowed to circulate through 

the column for 20 hours at +4 °C. The column was washed with buffer A, and the protein was eluted 

by 50 mM Tris hydrochloride, pH 8.0, containing 400 mM NaCl, 120 mM imidazole and 0.2 % NaN3). 

Fractions were concentrated and transferred into 40 mM sodium/potassium phosphate, pH 7.0, 

containing 0.2% NaN3) by ultrafiltration. They were stored at -80 °C. 

Results and Discussion 

Figure 2 and Table 1 present the principal experimental and computational results of this paper.  

Figure 2a shows the isoalloxazine chromophore including the atom numbering scheme used.  Figure 

2c and e present experimental FSRS spectra from FMN and four isotopologues, measured 2 ps and 3 

ns after electronic excitation of FMN at 450 nm; for FMN (or FAD) itself there is good agreement 

with the experimental data presented here and those of Weigel et al and Andrikopoulos et al. The 2 

ps data reflect the FSRS spectrum of the S1 excited electronic state, and were previously shown to 
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not evolve on the timescale of tens of picoseconds.22  The excited singlet state lifetime of FMN is 4 

ns and its decay is mainly to the triplet state, T1 (via intersystem crossing with a quantum yield of the 

order of 0.2 to 0.6).45-47 The temporal evolution of the FSRS spectrum is assigned to formation of the 

T1 state.  The S1 lifetime is longer than the accessible delay time for the delay stage used. However, 

we find that the FSRS spectrum does not evolve further beyond 2 ns, but that the FSRS signal 

amplitude increases between tens of picoseconds and 3 ns; these data are shown in SI5. This occurs 

as a result of intersystem crossing (as previously seen in resonant FSRS44). This increased amplitude 

reflects the stronger resonance enhancement of T1 at the 750 nm23 Raman pump wavelength used, 

when compared to the singlet state (recalling that FSRS signal scales as the fourth power of the 

transition moment48); this is also evident in the enhanced signal to noise in the later time spectra 

(Figure 2). We thus conclude that data recorded at 3 ns represent FSRS of the T1 state.  Note that the 

S0 Raman spectra are not presented here, as the focus is on the excited states; the ground state has 

been studied and assigned elsewhere.49-50 
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Figure 2: (a) Lumiflavin with atom designations. (b), (d) and (f), calculated Raman spectra for lumiflavin with 4 
hydrogen-bonded water molecules; (b) S0, (d) S1, (f) T1. (c) and (e), FSRS spectra of FMN in 20 mM Tris 
hydrochloride, pH 8.0, containing 150 mM NaCl; (c) S1, (e) T1, arbitrarily offset for clarity. The calculated modes 
listed in Table 1 are indicated by dashed lines. The colour code for isotopologues is shown in (a). Additional 
calculated spectra for [4a-13C1]-FMN are included in supporting information. 

Figure 2 b,d,f present the results of DFT (S0, T1) and TD-DFT (S1) calculations of the Raman spectra for 

the H-bonded isoalloxazine chromophore shown in Figure 1a.  Each shows the calculated ‘stick’ 
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spectrum as well as a broadened spectrum, to allow for better comparison with experiment. The 

broadened spectra are obtained by applying a Lorentzian function with FWHM of 20 cm-1 (the 

estimated bandwidth of our spectrometer) to each ‘stick’ which are then scaled by an arbitrary 

constant such that the original ‘stick’ spectrum appears within the lineshape. In Figure 2b-f we 

present in each case the measurements or calculations for FMN and the isotopologues studied: [U-

15N4]-FMN; [4,10a-13C2]-FMN; [2,4a-13C2]-FMN; [2-13C1]-FMN.  Additional calculated spectra for [4a-

13C1]-FMN are included in the supporting information. The calculations were performed for 

lumiflavin rather than FMN itself for both computational simplicity and relevance. While FMN has a 

ribityl plus phosphate side chain (which is absent in isoalloxazine and replaced by a methyl group in 

lumiflavin), that chain is not expected to contribute to the observed Raman spectrum, which is 

assumed to be dominated by the electronically resonant isoalloxazine chromophore; a consequence 

of this assumption is clear that ribityl chain modes may be missed.  However, omitting the chain 

affords some other advantages. In particular, it is then not necessary to select a chain conformation, 

which, as Andrikopoulos et al. have shown,23 alters the calculated Raman spectra; in the actual 

solution at room temperature multiple interconverting conformers will be populated. Further, the 

presence of sidechain/chromophore interactions would also make the comparison with protein FSRS 

data more complex; in AsLOV2 the chain adopts an extended conformation, rather than folding back 

to interact with the chromophore, and should thus not be included in comparisons with 

experimental data.51  

Before considering the isotope shifts of the individual modes, it is instructive to qualitatively 

compare measured and simulated data, where some clear similarities and important differences are 

apparent.  Vibrational bands (or clusters of modes) are both observed and calculated near 1200, 

1400 and 1500 cm-1.  In contrast, the cluster of Raman active modes calculated to appear above 

1600 cm-1, which are mainly associated with the carbonyl stretches (C2=O and C4=O) are very weak 

or absent in the measurements.  Here we recall that Figures 2c,e are recorded under conditions of 

resonance enhancement, where particularly strong T1→Tn resonance is found in the region of the 
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750 nm pump, as well as a cluster of singlet states corresponding to S1→Sn excited state 

absorption.23 While the observed frequencies represent vibrations of the initial state (S1 or T1), the 

resonance Raman intensities depend upon the gradient of the upper (Sn, Tn) state potential along the 

vibrational coordinate.48 These enhancement factors are not taken into account in the calculations 

of the off resonant Raman spectra.  Thus it seems likely that the already modest intensity in the C=O 

stretch modes do not gain from resonance enhancement, presumably because they are less 

displaced on electronic excitation than the ring modes for example, and are therefore very weak in 

the experimental spectra. 

To assign the modes observed in the experimental spectra we compare the isotope shifts seen in the 

isotopologues studies with the calculated data. Clearly it is often the case that more than one 

calculated mode may contribute to any observed experimental band (Figure 2). We have identified 

the calculated modes which are most sensitive to isotope substitution, finding eight to ten modes in 

each electronic state (although these isotope sensitive modes are not the same ones in all three 

states). The modes are identified using the mode numbers generated from the Gaussian calculation 

for the case of the unlabelled isoalloxazine, specific to each electronic state (S0, S1 and T1). These 

selected modes are tracked through the different isotope labelled FMNs (dashed lines in Figure 2 

b,d,f). Any modes mainly localised on explicit waters are not considered, as in solution these will be 

dynamic and rapidly exchanging.  As expected for any large molecule, the actual nuclear 

displacements in a given normal vibrational mode are quite complex and involve a number of bond 

stretches and bends. In Table 1 the main nuclear displacements that are calculated to contribute are 

listed, along with the corresponding wavenumber or isotope shift; those displacements that involve 

the isotopically edited atoms are shown in bold. Atom displacements for these modes are illustrated 

in the supplementary information.
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Mode FMN  
/cm-1 

[U-15N4]-FMN 
/cm-1 

[4,10a-13C2]-FMN 
/cm-1 

[2,4a-13C2]-FMN 
/cm-1 

[2-13C1]-FMN 
/cm-1 

[N3D]-FMN 
/cm-1 

[N3D+D2O]-FMN 
/cm-1 

Assignmenti 

S1 FSRS  

 1220 +2 -1 -2 +7  0 74/75 

 1389 -14 -13 -8 -2  -2 82 

 1423 -13 -9 -5 -1  +7 85 

 1507 +1 -1 -1 0  +1 95 

T1 FSRS  

 1202 -8 -6 -5 -5   73 

 1284 -2 -12 -20 -5  -16  

 1399 -21 -5 -3 0  0  

 1519 -8 -11 -9 +3  -1 90/96 

S1 Calculated  

73 1198 -4 -3 0 +1   sN5-C5a, sN3-C4, sC6-C7, wC6-H, wC9-H 

74 1204 -7 0 -21 -11 -4 -6 sC2-N3, ssN5-C4a-C10a, sC9-C9a, sC6-C7, wC6-H, 
wC9-H, wN10-Me 

75 1212 -16 -12 -6 -4 -10 -11 asC10a-N1-C2, sN3-C4, sC4a-N5, sC6-C7 

      +56 +55 

80 1360 -4 -6 -1 0 0 0 sN10-C10a, sN3-C4, asC7-C8-C9, asC6-C5a-C9a, 
bN10-Me, bC7-Me, bC8-Me 

81 1377 -3 -5 -9 -2 +2 +2 sC4a-C10a, sN1-C2, sC5a-C9a, sC6-C7, wC6-H 

82 1393 -14 -9 -4 -2 0 +1 sC4a-N5, sN10-C10a, sN1-C2, ssC8-C9-C9a, wC6-H, 
bN10-Me, wC8-Me, wC7-Me 

85 1426 -11 -11 -25 -4 -1 -1 asN5-C4a-C4, ssC10a-N1-C2, sN3-C4, wC6-H, 
scC8-Me, scN10-Me 

94 1506 -6 0 -2 -1 -4 -4 sC9a-N10, ssN5-C4a-C4, sN1-C10a, sC6-C7, wN3-H, 
bC7-Me, bC8-Me, bN10-Me 

95 1511 -4 -9 -2 0 -2 -2 sC4a-N5, sN1-C10a, sC7-C8, sC5a-C9a, wN3-H, 
bC7-Me, bC8-Me, bN10-Me, wC9-H, wC6-H 

99 1622 0 -17 -18 -18 -1  ss(C2=O2, C4=O4), wN3-H, bH2O 
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T1 Calculated  

73 1190 -9 -4 -24 -12 +1 -6 asN1-C2-N3, asC4-C4a-C10a, asC5a-C6-C7, wC6-H, 
ssC8-C9-C9a 

76 1260 -13 -8 -3 -1   asC2-N3-C4, sN10-C10a, sC4a-N5, sC6-C7, wC6-H, 
wN10-Me 

79 1348 -8 -8 -2 -2 -2 -2 sN10-Me, sN1-C10a, ssC2-N3-C4, asC6-C7-C8, 
asC9-C9a-C5a, wC6-H, wC9-H 

81 1395 -14 -14 -17 -8 +2 +3 sN1-C10a, sC4a-N5, ssC2-N3-C4, sC9-C9a, bC7-Me, 
wN3-H 

83 1406 -10 -8 -14 -3 -1 -1 sN10-C10a, sC4a-N5, sN1-C2, sN3-C4, ssC8-C9-C9a, 
wC7-Me, wC8-Me, wN10-Me 

90 1486 -5 -11 -13 -6   sC4a-N5, sN1-C10a, as(C2=O2, C4=O4), wN3-H 

94 1512 -4 -3 -3 0 -1 0 sC4a-N5, sN1-C10a, ssC5a-C6-C7, sC8-Me, 
sC9a-N10, wN3-H, bN10-Me, bC7-Me 

96 1540 -9 -14 -9 -2 -10 -9 sC4a-N5, sN1-C10a, sC2=O2, sN3-C4, ssC7-C8-C9, 
wC6-H, wC9-H, wN3-H 

101 1648 0 -9 -11 -11 -1 -3 ss(C2=O2,C4=O4),  sC5a-C6, sC8-C9, sC10a-N10, 
wC6-H, wC9-H 

S0 Calculated  

76 1299 -11 -2 -3 -3   sN1-C2, sN5-C5a, sN10-C10a, sN3-C4, wC6-H, 
wC9-H 

77 1313 -13 -4 -2 0   sN3-C4, ssN10-C10a-N1, sC4a-N5, sC5a-C6, 
asC7-C8-C9, wC6-H, wC9-H, wN10-Me 

79 1359 -3 -11 -3 -1   asN10-C10a-C4a, ssC2-N3-C4, asC5a-C9a-C9, 
sC7-C8, wC6-H 

80 1388 -6 -12 -5 -4   ssC10a-N1-C2, asC4a-C4-N3, sC5a-C9a, sC8-C9, 
scN10-Me 

81 1413 -2 -3 -4 -1   sC4a-C4, sN1-C2, ssC5a-C6-C7, scC7-Me, scC8-Me 

94 1544 -15 -17 -5 -1   sN1-C10a, sC4a-N5, sN3-C4, sC9-C9a, sC7-C8, 
wN3-H, as(C2=O2, C4=O4) 

95 1556 -11 -6 -6 -1   asN10-C10a-N1, sC4a-N5, ssC8-C9-C9a, ss(C2=O2, 
C4=O4), wN3-H, bN10-Me 
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101 1663 -1 -1 -6 -6   sC2=O2, sC4a-N5, sC6-C7, sC9-C9a  

102 1688 -3 -8 -25 -21   sC2=O2, wN3-H, bH2O 

103 1717 -3 -27 -2 0   sC4=O4, wN3-H, bH2O 

Table 1: Experimental FSRS peaks and relevant calculated modes of FMN in states S1, T1 and S0 with corresponding frequency shifts for all isotopologues shown in Figure 2 and 
on deuteration of FMN in states S1 and T1 shown in Figure 3. Calculated modes are numbered according to the Gaussian output for each electronic state and assigned in terms 
of the main nuclear displacements, where stretches involving isotopically substituted atoms are shown in bold. s: stretch, a-: antisymmetric, s-: symmetric, w: wag, t: twist, 
sc: scissor, r: rock, b: bend. Three atom stretches are described with respect to the centre atom and delocalised/coupled carbonyl stretches are indicated using brackets. iMode 
numbers given for FSRS assignments refer to the calculations presented below, as discussed in the text.
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S1 Raman Assignments.  Concerning the experimental spectra (Figure 2c), we note that there are 4 

indications of Raman mode activity above 1600 cm-1 which might be associated with C=O modes, but 5 

this is so weak that we do not attempt a more definitive assignment. The next lower wavenumber 6 

band clearly observed is at 1507 cm-1 in FMN. This band has the strongest observed activity and is 7 

insensitive to all isotope exchange patterns studied. Continuing to lower wavenumber, a pair of 8 

bands are measured at 1423 and 1389 cm-1, with the lower wavenumber contribution being 9 

particularly susceptible to isotopic substitution (Figure 2c).  The lowest wavenumber band 10 

considered here is a broad asymmetric band at 1220 cm-1 in FMN. This is resolved into a doublet in 11 

all of the isotopes studied, with characteristic patterns for each isotopologue. 12 

Turning to the calculated data, it is interesting that the cluster of modes above 1600 cm-1 involving 13 

the C=O stretching modes are at lower wavenumber than in S0 (Figure 2b,d) and have additional 14 

modes contributing, suggesting these bonds are weakened on * excitation.  The only major 15 

isotope shifts are for mode 99, the symmetric C2=O/C4=O stretch, which is evidently (and not 16 

unexpectedly) red shifted by C2 and C4 13C exchange. To lower wavenumber, the most intense mode 17 

calculated near the observed 1507 cm-1 band in FMN is found at 1511 cm-1 (mode 95). In four of the 18 

isotopologues investigated this mode shifts by less than 4 cm-1, consistent with the experimental 19 

observations.  This mode involves a number of CC and CN ring stretches.  Interestingly a 9 cm-1 red 20 

shift is calculated for [4,10a-13C2]-FMN, which is not observed experimentally. However, in this 21 

particular isotopologue, mode 95 decreases in amplitude and its wavenumber crosses below that of 22 

mode 94.  Mode 94 undergoes a corresponding increase in its amplitude, from very weak to strong; 23 

this result is thus consistent with the experimentally observed isotope insensitivity in [4,10a-13C2]-24 

FMN. 25 

There are moderately intense modes calculated at 1475 and 1467 cm-1, which are absent in the 26 

experimental spectra, perhaps because they do not benefit from resonance enhancement (these 27 

modes are more localised on the methyl groups – see supporting information). The next cluster of 28 

modes includes the most intense, at 1377 cm-1 in FMN. This cluster must contribute to the pair of 29 
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bands observed at 1423 and 1389 cm-1; with regards to isotope effects mode 85 and 80, 81, 82 30 

respectively appear to be the major contributors to the observed Raman shifts.  Mode 85 at 1426 31 

cm-1 in FMN has contributions from stretches involving atoms N5, C4a, C4, C10a, N1 and C2, 32 

consistent with its strong calculated isotope dependence; C4a exchange has a particularly marked 33 

effect, which aligns with the experimental result for [2,4a-13C2]-FMN (Figure 2c). For the lower 34 

wavenumber contribution (modes 80, 81, 82 which involve CC and CN stretches spread over all three 35 

rings, see Table 1 and supporting information) the calculated shift between FMN and [2-13C1]-FMN is 36 

< 2 cm-1, consistent with measurement. For [U-15N4]-FMN, [4,10a-13C2]-FMN and [2,4a-13C2]-FMN red 37 

shifts are both calculated and observed. 38 

The pair of observed modes derived from the single broad 1220 cm-1 signal in FMN have 39 

contributions from modes 73, 74 and 75.  In particular mode 75 contributes to the downshift of the 40 

lower wavenumber component in [U-15N4]-FMN and [4,10a-13C2]-FMN, while mode 74 plays a similar 41 

role for [2,4a-13C2]-FMN and [2-13C1]-FMN.  Modes 74 and 75 have contributions from ring stretching 42 

in all three rings, while the smaller isotope shifts in mode 3 reflect its greater localisation on ring I.  43 

Summarising, for the four bands clearly observed in the FSRS spectra of S1 FMN, we make the 44 

following assignments. The doublet character of 1220 cm-1 on isotope substitution suggests at least 45 

the involvement of modes 74 and 75. These mainly involve framework stretch modes spread over 46 

rings I-III, without involvement of the N3H wag. For the experimental 1389 cm-1 band, modes 80, 81, 47 

82 can contribute, and the isotope shifts observed point to mode 82. This mode is characterised by 48 

CN ring stretches and C6H wag. The 1423 cm-1 band is tentatively ascribed to mode 85, although it 49 

lacks the large shift calculated for [2,4a-13C2]-FMN.  Mode 85 mainly comprises CN stretches in ring 50 

III and methyl wag motions. Finally, the negligible isotope effect in the intense 1507 cm-1 band is 51 

best represented in mode 95 (although the assignment required the calculated change in character 52 

to mode 94 for different isotopologues to be considered, as described above). Again that mode 53 

involves CN and CC ring stretches as well as N3H and methyl wag. 54 
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Comparing to previous literature is difficult, as some assignments involve calculated modes involving 55 

the ribityl chain, which is not included in our calculation. Indeed, Andrikopoulos et al. include two 56 

specific sidechain conformations with differing assignments.23 Further, Weigel et al.’s discussion of S1 57 

assignments is mainly focused on the deuteration effects.21 Nevertheless, some comparisons are 58 

possible. The intense high frequency band observed here at 1507 cm-1 aligns with 1505 cm-1 band of 59 

Weigel et al. In the absence of isotope shifts a number of their calculated modes were possible 60 

assignments, each mainly involving ring stretches, consistent with our assignment of mode 95. 61 

Andrikopoulos et al. assign the band at 1500 cm-1 band to a higher frequency mode involving CO 62 

stretch, N3H wag and explicit water bending, but also discuss an improved assignment to an 63 

alternative mode comprised of ring stretches, in alignment with the present results. Our 1423 cm-1 64 

band aligns with the 1421 cm-1 band of Weigel et al. Again they have multiple possibilities, mainly 65 

involving ring modes. Andrikopoulos et al. suggest either ring modes or CH twist/rock may be 66 

important, depending on the specific conformation of the ribityl chain. The present data support an 67 

assignment to ring modes. Our 1389 cm-1 band compares with the 1387 cm-1 of Weigel et al, with 68 

both assignments involving ring displacements.  Andrikopoulos et al. report a 1384 cm-1 band, again 69 

mainly assigned to CH motion, which we do not detect as a major contribution, although our 70 

calculation has methyl rather than the ribityl chain. In all three studies the bands between 1200 - 71 

1260 cm-1 are multiplet, making further comparison challenging.  72 

T1 Raman Assignments. For the observed T1 spectra there are four well resolved but asymmetric 73 

bands (Figure 2e).  There is no measurable activity resolved above 1550 cm-1, consistent with the 74 

negligible contribution from the CO modes in the resonant FSRS.  The highest wavenumber band 75 

observed is at 1519 cm-1. This is sensitive to isotope substitution, in contrast to the highest 76 

wavenumber band in the S1 spectrum (1507 cm-1) indicating that these two bands are of different 77 

origin.  In order of decreasing wavenumber, the next band at 1399 cm-1 in FMN is insensitive to 78 

isotope substitution except in the case of [U-15N4]-FMN, where a red shift is observed.  Next is the 79 
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band at 1284 cm-1 in FMN which shows significant isotope shifts of up to 20 cm-1, while the final 80 

band is at 1202 cm-1 (FMN) and has a weaker red shift of 8 cm-1 at most. 81 

Considering the carbonyl region (> 1550 cm-1) calculated for T1, we note again the relatively large 82 

number of modes which contribute in the excited state, compared to the ground state, and also that 83 

the mean wavenumber of this cluster of modes has shifted slightly further to the red in T1 compared 84 

to S1. At lower wavenumber, the experimentally observed relatively narrow band at 1519 cm-1 (FMN) 85 

corresponds to a cluster of intense modes in the calculation between 1480 and 1550 cm-1.  The three 86 

strongest are modes 90, 94, 96 (see Table 1). From these, 90 and 96 exhibit shifts of between 5 and 87 

14 cm-1 in [U-15N4]-FMN, [4,10a-13C2]-FMN and [2,4a-13C2]-FMN, which are on the same scale as the 88 

experimental shifts observed.  A shift of ≤ 6 cm-1 is seen for [2-13C1]-FMN, again consistent with 89 

experiment.  Mode 96 has its dominant contributions for ring stretch modes spread over all three 90 

rings, while mode 90 is localised on rings II and III. Mode 94 is more localised on ring I, consistent 91 

with its smaller isotope shifts. 92 

The broad band observed at 1399 cm-1 in FMN corresponds with calculated modes 79, 81, 83 (1348, 93 

1395 and 1406 cm-1 in FMN).  The most significant (20 cm-1) isotope red-shift observed was for [U-94 

15N4]-FMN, where there is also a marked change in the asymmetry of the band. The peak shift is 95 

larger than the largest calculated isotope shift (17 cm-1 for [2,4a-13C2]-FMN). Thus to account for the 96 

large shift in [U-15N4]-FMN it seems likely that the isotope red-shift is accompanied by a change in 97 

the dominant character of this mode, i.e. the main mode contributing in [U-15N4]-FMN is distinct 98 

from that in FMN.  Indeed, the calculations indicate that the Raman activity changes between these 99 

three modes depending on the pattern of isotope substitution (Figure 2f). 100 

The next band, observed at 1284 cm-1 in FMN, occurs in a region which is rather quiet in the 101 

calculated spectrum.  We have identified the very weak mode 76, dominated by NC stretches, as a 102 

possible candidate for resonant enhancement, but the isotope shifts calculated for this mode are 103 

weaker than those observed.  The final experimental band is at 1202 cm-1 in FMN. The only potential 104 
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assignment from the calculations is mode 73 at 1190 cm-1, which has delocalised CN and CC stretch 105 

contributions. However, the calculations do not reproduce the rather modest isotope shifts 106 

observed, in particular a large shift is predicted for [2,4a-13C2]-FMN which is not seen experimentally. 107 

Summarising, the 1519 cm-1 band is assigned to one of either modes 90 or 96, both of which have 108 

prominent CN and CO stretch contributions, as well as N3H wag. Thus, the mode character is indeed 109 

different to the strong 1507 cm-1 mode of the S1 state. This assignment accords with that of 110 

Andrikopoulos et al. for one of their conformations.23 Neither 1399 cm-1 nor 1284 cm-1 bands are 111 

readily assigned based on the current calculations, and we suspect resonance enhancements must 112 

play an important role. The likely assignment of the 1202 cm-1 band is mode 73, which again involves 113 

CN stretch modes. 114 

S0 Raman Assignments. The focus of this paper is on the S1 and T1 states, but we conclude with 115 

comments on the S0 state calculations. This state has been investigated in detail by a number of 116 

groups, including studies of some of the isotopologues investigated here.  Many of the most isotope 117 

sensitive modes mainly comprise ring stretching, and are thus consistent with the large isotope shifts 118 

associated with [U-15N4]-FMN and [4,10a-13C2]-FMN. An interesting observation concerns the large 119 

shifts found in higher wavenumber modes associated with C=O stretches.  The highest wavenumber 120 

mode (mode 103) in FMN is a C4=O localised stretch with N3H wag (in-plane bend). However, 121 

specifically in [4,10a-13C2]-FMN this mode develops a delocalised C4=O/C2=O antisymmetric stretch 122 

character accompanied by a 27 cm-1 red shift (see supporting information, where relevant nuclear 123 

displacements are indicated). Mode 102 is primarily C2=O with N3H wag in FMN, but in [4,10a-13C2]-124 

FMN the character of the mode is again delocalised, now as the symmetric stretch of the carbonyls. 125 

However, this leads to only an 8 cm-1 shift, the largest isotope shift being observed for [2,4a-13C2]-126 

FMN (25 cm-1) with a slightly smaller shift in [2-13C1]-FMN. The change in character of the C=O 127 

stretches in FMN, which is accompanied by large spectral shifts, has been noted before on 128 

deuteration of N3H (to which we return below).15-16  However, that the relatively smaller 129 

perturbation of 12C/13C exchange can have similar effects is significant, because wavenumber shifts 130 
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in the carbonyl region of flavoproteins are often taken as indicative of specific H-bonding 131 

interactions at either C4=O or C2=O.52 It should always be borne in mind that these modes may 132 

become more (or less) delocalised under some circumstances, and that can also give rise to large 133 

spectral shifts; thus the support of isotope exchange and/or calculation is important in definitive 134 

assignments of carbonyl wavenumber shifts. 135 

Effect H2O/D2O Exchange The majority of transient IR data have been recorded in D2O to avoid the 136 

distorting effects of the strong absorbance of the H2O bending mode in the region of most interest. 137 

It has previously been shown that H2O/D2O exchange causes significant changes in the IR spectra of 138 

isoalloxazine. Exchange of N3H for N3D was shown to result in a 13 cm-1 downshift in the C4=O 139 

mode.53 We also reported that this exchange (coupled with whether or not H-bonds were formed) 140 

caused a complex variation in the character of the C=O stretch + N3H wag modes.15-16 Specifically, 141 

the H/D exchange led to changes from two localised C=O stretches to a coupled 142 

symmetric/antisymmetric pair of C=O stretches, both accompanied by N3H/D wag. This change in 143 

character resulted in large spectral shifts; a similar change in character was calculated on 13C 144 

substitution (Figure 2, above). It thus seems worthwhile to investigate the effect of D2O on the 145 

excited state Raman spectra. This was previously considered for the S1 state FSRS by Ernsting and co-146 

workers.21 147 

In Figure 3a and c the experimental FSRS data are presented for the S1 and T1 states of FMN 148 

respectively, measured in H2O and D2O. The corresponding calculations are shown in Figures 3b and 149 

d, but in this case we calculate first the effect of N3H/D exchange and then the result of exchanging 150 

all H-bonded H2O to D2O.  The calculations show that both N3H/D exchange and an H/D-bonding 151 

environment affect the spectra in the carbonyl region, for both S1 and T1. This is in line with similar 152 

effects observed for IR data in the S0 state.15-16 However, the weak Raman signal for these modes 153 

does not permit comparison with experiment. 154 
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 155 

Figure 3: FSRS spectra of FMN in H2O buffer (20 mM Tris hydrochloride, pH 8.0, containing 150 mM NaCl) (blue) 156 
and D2O (green), (a), S1; (c), T1. Calculated Raman spectra of lumiflavin, (b) S1 and (d) T1. Spectra of FMN 157 
calculated with all H atoms (blue), exchange of N3H to N3D only (cyan) and full N3D + D2O substitution (green). 158 
The calculated modes listed in Table 1 are indicated by dashed lines. 159 

For the S1 excited state, the measured band at 1507 cm-1 is insensitive to H/D exchange. The 160 

contributing modes were assigned as 94 and 95 (Table 1). These are dominated by ring stretches, 161 

but both do have a component of N3H wag (see supporting information). However, experiment and 162 

calculation agree that this does not yield significant sensitivity to N3H/D exchange (shifts of 4 and 2 163 

cm-1 respectively, Figure 3a,b). Similarly, the 1389 and 1423 cm-1 bands are observed and calculated 164 

to be insensitive to either N3H or H2O exchange. The band at 1220 cm-1 is much more sensitive to 165 

exchange (a similar effect having been noted by Weigel et al21). Calculations show that the dominant 166 

effect of D2O is due to N3H/D exchange rather than the H-bond environment (Figure 3b). The result 167 
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of exchange is that the 1220 cm-1 band activity is suppressed in D2O and its intensity is distributed 168 

over a number of other nearby modes. The isotope study (Figure 2) showed the 1220 cm-1 band to 169 

comprise at least a doublet, and three modes were calculated to be able to contribute. Although the 170 

N3H wag is not contributing in these modes, for mode 75 it becomes prominent following exchange 171 

to N3D. This change is accompanied by a large blue shift (the resulting change in mode displacement 172 

is illustrated in supporting information). This is consistent with observation. 173 

Turning to the triplet state (Figure 3c,d), the measurements show that the bands observed at 1519 174 

and 1399 cm-1 are insensitive, while the lower wavenumbers bands (1284 and 1202 cm-1) are 175 

sensitive, to N3H/D exchange. The calculation indicates that the carbonyl modes (>1600 cm-1) are 176 

strongly perturbed by both N3H/D exchange and H/D-bonding, as was the case for S0 and S1 (above). 177 

The three modes which can contribute to the observed 1519 cm-1 band are sensitive to N3H/D 178 

exchange, consistent with two of them (90 and 96 – see above) containing a significant displacement 179 

in N3H wag. However, the observed effect is that these changes cancel one another out, leading to 180 

no overall shift. The 1284 cm-1 mode was unassigned on the basis of the calculations but is observed 181 

to be sensitive to exchange.  The interesting case is the behaviour of the single mode 73 (Table 1) to 182 

which the 1202 cm-1 band could be assigned. In the measurements this mode is suppressed in D2O. 183 

In the calculation its amplitude is also reduced upon N3H/D exchange, and another mode appears at 184 

lower wavenumber (1168 cm-1). When the H-bonds are exchanged for deuterium bonds there is a 185 

small enhancement in the intensity of a previously very weak mode at 1228 cm-1, which may 186 

contribute to the observed red shift in the 1284 cm-1 mode. 187 

In summary, the excited state modes of FMN are sensitive to exchange of H2O for D2O. Marked 188 

effects were expected in the carbonyl stretch/N3H wag region, on the basis of earlier studies in S0. 189 

This is supported by calculation, but those effects will be most apparent in IR measurements. 190 

Concerning the FSRS data, the dominant deuteration effect is observed around 1200 cm-1 for both S1 191 

and T1 states. The underlying assignment involves a number of modes, which are mainly influenced 192 



24 
 

by N3H/D exchange, rather than the H-bonding environment.  This suggests that the effect can be 193 

used as a marker for the rate of H/D exchange in Raman studies of flavoproteins. 194 

Singlet - Triplet Spectral Shift. Here we consider changes in the spectra between the singlet and 195 

triplet states, which were already apparent in the FSRS data in Figure 2.  Related spectral shifts have 196 

been reported in transient IR studies of FMN on singlet to triplet state conversion.9 We thus include 197 

the measured and calculated IR spectra in this section, and to allow this comparison we focus on 198 

calculations for N3D isoalloxazine in D2O, the conditions used for IR measurements. We necessarily 199 

adopt a more qualitative approach to the comparison between theory and experiment, since for 200 

each new state a new set of modes is obtained. As a result, we cannot formally track individual 201 

modes between S0, S1 and T1 states in the same way as was done for the different isotopologues 202 

(Figure 2). However, the geometries of S1 and T1 are very similar making some comparison of their 203 

modes meaningful. 204 

Considering the FSRS data (Figure 4a,c) we note that the very broad shoulder to the blue of the 1508 205 

cm-1 band in S1 has decreased in amplitude in T1, which is consistent with the calculated behaviour of 206 

the C=O+N3H wag modes, which dominate this region; however, the measured signal is weak, in 207 

contrast to the (off resonance) calculations, probably indicative of small displacements on excitation, 208 

as described above. The 1508 cm-1 band itself blue shifts on triplet state formation (as also reported 209 

by Fuertes and co-workers23) to 1518 cm-1. Comparing this to the calculations, we see that the blue 210 

shift is reproduced by an enhancement in the intensity of a mode at 1538 cm-1 localised on rings I 211 

and II, and a small blue shift in the intense S1 mode localized on the same rings at 1509 cm-1 (see 212 

dashed lines in Figure 4c and for more detail SI). In the measured FSRS data the 1387 and 1430 cm-1 213 

bands in S1 collapse to a single band in T1 at 1399 cm-1. This is not consistent with calculation, and 214 

indeed even its opposite. Both S0 and S1 have strong calculated Raman activity between 1300 and 215 

1400 cm-1 and the S0 data are consistent with both Raman and resonance Raman experiments. We 216 

suggest that the observed difference between theory and experiment reflects the different 217 
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resonance conditions for S1 and T1 states, and highlights the need for high quality calculations of 218 

resonance Raman spectra.48  219 

 220 
Figure 4: (a) S1 (blue) and T1 (red) FSRS spectra of FMN in D2O. (b) TRIR spectra of FMN at 100 ps, 1 ns, 3 ns and 221 
4 ns (deuterated buffer, 20 mM Tris hydrochloride, pH 8.0, containing 150 mM NaCl).  (c) Calculated Raman 222 
and (d) IR spectra of FMN with N3D + D2O substitution for S0 (green), S1 (blue) and T1 (red). 223 

For the IR data (Figure 4b,d) there are also points of agreement and disagreement with calculation. 224 

First the TRIR data in Figure 4b show the time resolved IR spectra of FMN evolving from initial 225 

population of the S1 state following ground state excitation (t = 0), which then evolves in 226 
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nanoseconds to form the T1 state. Since these are difference spectra, the S0 data are also included as 227 

bleaches (negative optical density, OD) while the transient (positive OD) represents formation of the 228 

S1 and T1 states in the picosecond and nanosecond spectra respectively. The bleach features match 229 

the calculated S0 IR spectra well, as previously noted.15-16, 54 The two highest wavenumber modes 230 

arise from separate C=O + N3D wag, and the next two lowest wavenumber modes are ring modes 231 

involving C=N stretches. Upon electronic excitation the bleaches at 1650 - 1700 cm-1 (S0) are 232 

accompanied by formation of a weak S1 positive feature at 1615 cm-1. In terms of wavenumber this 233 

corresponds with the calculated carbonyl modes in the excited state at 1599 and 1636 cm-1, but the 234 

intensities differ, the measured signal being much weaker than that calculated. The intense bleach 235 

of the ring mode at 1548 cm-1 is not accompanied by a strong positive feature in the S1 spectrum. 236 

This is in good agreement with calculation, where there is no corresponding intense feature in the 237 

calculated S1 spectrum. As the S1 state decays to T1 the most remarkable change in the IR spectra is 238 

the shift from 1382 cm-1 absorption to 1438 cm-1. Again this accords nicely with calculation, where a 239 

strong IR mode at 1379 cm-1 in S1 is replaced by a complex set of modes between 1400 and  1500 240 

cm-1 in T1. 241 

Aqueous Solution - Protein Spectral Shifts. In this section we compare the S1 and T1 Raman spectra 242 

of FMN in buffer solution with those measured for FMN in AsLOV2. Time resolved IR studies of 243 

AsLOV2 have been reported previously,25, 55 but this is the first time-resolved Raman study. It is 244 

particularly important to characterise the FMN triplet state of LOV domains, since this is the reactive 245 

precursor leading to formation of the adduct state on the microsecond timescale,24 which triggers 246 

the structure change which in turn results in the signalling state. When this reaction, which occurs 247 

between the triplet FMN and an adjacent cysteine residue, is blocked the FMN triplet state is formed 248 

in high yield and has been shown to act as a genetically expressible source of reactive oxygen.56-57 249 

Figure 5 shows FSRS data for FMN and AsLOV2 recorded as a function of time, revealing the 250 

expected evolution from excited singlet to triplet state on the nanosecond time scale. Qualitatively, 251 

there is a high degree of similarity between spectra measured in the two environments. This 252 
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contrasts with time resolved IR studies of AsLOV2 and FMN, where additional features in AsLOV2 are 253 

observed on all time scales and have been assigned to excitation induced changes in the IR spectra 254 

of interacting amino acid residues.9, 14 This difference is assumed to arise because the FSRS signals 255 

are enhanced by resonance with electronic transitions, which are localised on the chromophore. 256 
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 257 

Figure 5: (a) FSRS spectra of aqueous FMN (red) and AsLOV2 (black) in 20 mM Tris hydrochloride, pH 8.0, 258 
containing 150 mM NaCl at 1 ps (S1), 10 ps, 500 ps, 1 ns and 3 ns (T1). (b) ligplot analysis of AsLOV2 interactions 259 
in the FMN binding pocket. 260 

There are however significant differences in the details of FMN and AsLOV2 FSRS spectra (both 261 

measured in H2O buffer). In the 1200 cm-1 region, the 1220 cm-1 band in solution is red shifted in the 262 
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protein, and better resolved. In both environments the band shifts to the red on formation of the 263 

triplet, but the shift is smaller in the protein. In both samples a new band appears in the triplet state 264 

spectra, most clearly resolved at 1277 cm-1 for AsLOV2.  The band structure in the 1200 cm-1 region 265 

was shown to be sensitive to N3H/D exchange and H-bonding environment, so we speculate that 266 

differing interactions between FMN at N3H and either H2O or the amino acid residues in the binding 267 

site are the origin of the behaviour observed.  268 

For both samples there is a complex spectrum in the S1 state between 1330 and 1450 cm-1, involving 269 

three bands. These bands in AsLOV2 are red shifted compared to FMN in solution. For both samples 270 

this band structure evolves into a single strong, broad and asymmetric band in the T1 state, again 271 

slightly red shifted in the protein. The most surprising result in Figure 5 is the absence in AsLOV2 of 272 

the blue shift observed between 1507 cm-1 band (S1) and 1519 cm-1 (in T1) in FMN in solution. We 273 

note that this band, and its blue shift on T1 formation (Figure 4), is calculated to arise from a complex 274 

mix of at three modes (Figure 2), so we speculate that the different H-bond interaction between 275 

isoalloxazine and the protein matrix gives rise to the different behaviour.  To assess the nature of the 276 

changes to H-bonding environment when FMN is bound in the protein, we present the results of a 277 

ligplot analysis (Figure 5B), which plots the protein chromophore interactions based on the protein 278 

crystal structure.58 This shows that compared to the calculated structure for FMN in water (Figure 1) 279 

there is a strong H-bond formed at N3H, but no corresponding H-bond to N5. Displacements of both 280 

these atoms plays a prominent role in the 1220 and 1507 cm-1 bands of FMN (Figure 2, Table 1).  281 

Finally, we assess the use of isotope labelling in assigning vibrational bands in protein excited state 282 

Raman spectra. To this ends we compare FSRS of AsLOV2 with AsLOV2 loaded with [U-15N4]-FMN 283 

(Figure 6). For T1, the state shifts observed in buffer solution are also seen in the protein. For 284 

example, the 7 cm-1 shift in the 1501 cm-1 band and the 17cm-1 red shift in the 1391 cm-1 band agree 285 

well with solution data for [U-15N4]-FMN and with calculations (Figure 2). For the S1 state the small (2 286 

cm-1) of shift in the 1499 cm-1 band also correlates with calculated FMN data, as does the red shift of 287 

the 1412 cm-1 band. However, the downshift of the 1197 cm-1 band in [U-15N4]-FMN is larger than in 288 
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FMN, although it was noted above that this mode is calculated to be multimodal in S1, and behaves 289 

differently in the protein, probably because of the role of N3H and its interaction with the 290 

surrounding residues. 291 

 292 

Figure 6: FSRS spectra of aqueous (20 mM Tris hydrochloride, pH 8.0, containing 150 mM NaCl) AsLOV2 293 
containing FMN (blue) and [U-15N4]-FMN (red) (a) S1; (b) T1.  294 

 295 

Conclusions.  The excited state Raman spectra of the singlet and triplet states of FMN have been 296 

measured by resonant FSRS in solution and in AsLOV2. The measurements have been extended to 297 

several FMN isotopologues, and the data are compared with DFT and TD-DFT calculations of excited 298 

state vibrational spectra. The measured spectra are in general simpler than the calculated spectra, 299 

probably because FSRS is a resonant experiment, and only a subset of Raman active modes gain 300 

from resonance enhancement; in particular, the carbonyl localised modes are very weak in the FSRS 301 

data.  302 

The observed isotope shifts for the S1 and T1 states of FMN in aqueous solution are generally well 303 

reproduced by the calculations, although multiple modes contribute to the observations, which 304 

complicates assignment. In general, the resonant FSRS data are dominated by ring modes. However, 305 

experiment and calculation for the effects of deuteration showed that exchange at N3H/D has a 306 

significant effect on a number of Raman active modes, an effect that could be used to investigate 307 
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isotope exchange rates in flavoproteins. FSRS measurements were extended to the LOV domain 308 

protein AsLOV2 and it was shown that the FSRS spectra are dominated by chromophore localised 309 

modes (a consequence of resonance enhancement) and that differential interactions with the 310 

environment led to some changes in the observed spectra. 311 

Raman spectroscopy has many advantages over IR as a tool for the study of biomolecules – it is not 312 

restricted to D2O solutions and can be observed even for large proteins and their complexes. 313 

Further, a broad wavenumber range is observed in the Raman measurement, in contrast to transient 314 

IR experiments which may be limited by the IR bandwidth available.  In ultrafast photobiology, the 315 

Raman spectrum of a specific (resonant) transient excited state can be measured, a degree of 316 

selectivity not available in transient IR. The present work shows that measurement and assignment 317 

of excited state Raman spectra can be undertaken in flavoproteins, thus opening the way to the 318 

more widespread application of FSRS to probe structural dynamics in photobiology. 319 
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