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Abstract  
Prosthetic joint infection (PJI) is a complication of joint replacement that occurs when bacteria 

adhere to the surface of a prosthetic joint and form a biofilm (Becker et al. 2014; Tande et al. 2014). 

Treatment is expensive and aggressive, constituting a major burden to the healthcare system and to 

the patients (Becker et al. 2014; Tande et al. 2014). Non-aureus staphylococci account for 

approximately 30% of all cases (Becker et al. 2014), with S. epidermidis being the main species 

involved (Becker et al. 2014), showing an increasing pathogenic potential (Uribe-Alvarez et al. 

2016). Despite this, little is known about the mechanism of infection, which is assumed to be biofilm 

formation. This work describes how the first highly curated genome-scale metabolic model for S. 

epidermidis RP62A was constructed, manually curated, validated against experimental data and 

analysed with linear-programming techniques to explore the metabolism of cells living in joints. We 

defined routes for production of energy, planktonic biomass and biofilm polymers during growth on 

nutrients found in synovial fluid and under the range of conditions encountered across the biofilm 

structure: the results obtained indicated that the metabolic network re-arranges itself, varying the 

uptake and metabolism of glucose and amino acids in response to environmental changes and 

highlighted the importance of the uptake and catabolism of citrulline for ATP production, a pathway 

that, to our knowledge, has not been described before in this context. This work also provided an 

explanation for experimental observations where a decrease in the production of biofilm was 

observed in vitro upon glutamate deprivation, linking its catabolism with the synthesis of ATP, and 

suggested that the cell’s ability to modify the level of de-acetylated residues in biofilm 

exopolysaccharides is an important feature of biofilm formation. Finally, it exemplified how 

metabolic modelling can be useful in anticipating regulatory patterns leading to optimal bacterial 

growth strategies in different environments. This work is being developed further with a focus on 

informing the pathogenesis of non-aureus staphylococci in PJI. 
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1 General introduction  

1.1 Project background and motivation 

Non-aureus staphylococci (NAS) are a diverse group of organisms which are poorly understood, yet 

important in disease and, specifically, very important in PJI. This project was born as part of the core 

research in NAS taking place at the Medical Microbiology Research Laboratory of the Norwich 

Medical School in 2016. By then, public and commercially funded research was being undertaken 

with the aim of commercially exploiting the study of genotypic and phenotypic diversity in this group 

of organisms. During these studies it became evident that the understanding of the mechanisms 

underlying the ability of NAS to colonise prosthetic joints was lacking. Thus this project aims to 

move forward our understanding of the pathogenicity of NAS through the generation of a curated 

model of the well described S. epidermidis strain RP62A.  

 

The expression of metabolic genes leads to synthesis of the enzymes catalysing chemical reactions 

occurring in the bacterial cell, with the exception of spontaneous reactions, which occur without 

enzymatic catalysis. Translating the bacterial genome into reactions allows us to define the metabolic 

network associated with the bacterial phenotype. Since it is by modifying their metabolism that 

bacteria adapt to new environments, understanding the metabolic features of NAS became one of the 

main interests of the research group. Analysis of structural metabolic models, which are 

mathematical representations of metabolic networks provides in-depth insight into these complex 

systems and ultimately helps to understand the metabolic basis of cellular phenotypes. These models 

also allow for the integration of phenotypic data sets in order to improve accuracy. Thus building 

and analysing a model for the S. epidermidis strain RP62A was a challenging but exciting opportunity 

to expand this research, as well as to establish collaborations with experts in the field and to test the 

worth of applying these techniques to a wider range of NAS strains and to other research projects. 

1.2 Aims and structure 

Specifically, three objectives were identified and pursued from the beginning of the project: 

a) To construct, curate and validate a high quality genome-scale metabolic model for S. 

epidermidis RP62A, a genome sequenced representative of the main NAS species involved 

in PJI. 

b) To analyse the model in order to define the metabolic pathways that allow this organism to 

grow in joints. 

c) To identify the metabolic mechanisms involved in biofilm formation in S. epidermidis 

RP62A. 
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This thesis is organised in the following manner: 

Chapter 1 presents the project background and gives a comprehensive introduction to NAS and PJI. 

Chapter 2 describes the basis of the mathematical modelling methodology used in the construction, 

curation and analysis of a genome-scale model of S. epidermidis, as well as the main aspects of these 

processes and the general properties of the model after its fundamental validation. 

Chapter 3 describes how the model is analysed in order to reproduce and investigate physiological 

features and metabolic strategies of the organism. 

Chapter 4 describes how the system is analysed for defining minimal growth requirements and the 

results obtained are compared with experimental data and used for further validation and refinement 

of the model. 

Chapter 5 describes how model analysis is used as a guiding-tool to define experiments for further 

validation of the system on the metabolism of nitrogen and amino acids, as well as the comparison 

of the in silico and in vitro results. 

Chapter 6 describes how the model is analysed for production of energy, planktonic biomass and 

biofilm polymers under the conditions encountered by cells living in the intra-articular space of 

joints. 

Chapter 7 is a general discussion of the results presented in this thesis and how this relates to the 

ability of S. epidermidis to cause infection. 

1.3 Non-aureus staphylococci 

1.3.1 Staphylococci and their classification 

Staphylococcal bacterial cells are non-motile and spherical, with an approximate diameter of 1.0 µm 
and usually appear as grape-like clusters. Staphylococci are Gram-positive microorganisms and most 
of them are catalase positive. They are facultative anaerobes that typically grow at temperatures 
between 18OC and 40OC and are able to tolerate high salt concentrations (Somerville 2016). The 
genus Staphylococcus is composed of multiple species that have been traditionally divided between 
‘coagulase-positive’ and ‘coagulase-negative’ staphylococci. However, this division corresponded 
to the clinical need to differentiate between pathogenic and non-pathogenic organisms and is not 
based on phylogenetic relationships (Becker et al. 2014; Somerville 2016). 

Historically, staphylococci were first divided into two groups, in 1884, by their ability to produce 

pigment: S. aureus (golden colonies) and S. albus (white colonies) (Cowan et al. 1954; Becker et al. 

2014). Soon after that, the need to differentiate between pathogenic and non-pathogenic 
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staphylococci led to the development of other typing protocols. In 1940, production of coagulase was 

considered a reliable method for distinguishing between pathogenic (coagulase-positive) and non-

pathogenic (coagulase-negative) staphylococcal species (Fairbrother 1940). It is worth noting that S. 

aureus was the only known coagulase-positive species at the time (Becker et al. 2014). Since then, 

other coagulase-positive staphylococcal species have been described, and some S. aureus strains 

have been shown to be coagulase-negative (Somerville 2016). Although S. aureus is still considered 

as the most important pathogenic species, the association between several “coagulase-negative 

staphylococci” and disease has been stablished and is reported to be increasing (Pereira 1962; Becker 

et al. 2014). However, despite its less than perfect association with infection, this classification 

scheme has prevailed. The genus Staphylococcus is currently composed of 47 species (Becker et al. 

2014; Somerville 2016) and S. aureus is the most notorious and the best known of all. S. aureus are 

highly virulent organisms and are known to be involved in several pathologies, including skin and 

respiratory infections, food poisoning and bacteraemia, which can lead to a life threatening 

conditions (Jarraud et al. 2002). Other species traditionally classified has coagulase-positive are: S. 

simiae, S. intermedius, S. delphini, S. lutrae and S. pseudointermedius, while S. scheiferi comprises 

coagulase-positive and coagulase-negative subspecies and the presence of coagulase in S. agnetis 

has been described as variable (Becker et al. 2014). Despite being significantly different, the rest of 

staphylococcal species have traditionally been grouped together as coagulase-negative 

staphylococci.  

Due to the reasons mentioned above, it seems no longer reasonable or practical to continue referring 

to all non-aureus staphylococcal species as ‘coagulase-negative staphylococci’. Therefore, the term 

used for them in this thesis is simply ‘non-aureus staphylococci’ or NAS. 

1.3.2 Genetic diversity of NAS 

Classification of staphylococci into species is most commonly based on the comparison of genetic 

sequences within the 16S rRNA operon, which are conserved throughout prokaryotes. This method 

compares the unknown sequence of a given organism to sequences of type strains defined by classical 

methods (Mincheol Kim 2014). Although this approach generates a reproducible phylogeny it does 

not always match phylogenetic trees based on other widespread housekeeping genes. For example, 

the agr locus (Robinson et al. 2005; Ikuo et al. 2014) has also been used for the phylogenetic 

classification of staphylococci (Dufour et al. 2002; Robinson et al. 2005): this is a quorum sensing 

accessory gene regulator consisting on the genes agrB, agrD, agrC, and agrA, and the regulatory 

effector molecule RNAIII, and is involved in the regulation of many virulence factors in 

staphylococci, being widespread (Tan et al. 2018) and well conserved (Robinson et al. 2005; Ikuo et 

al. 2014) in these species. When a typing study compared sequences related to the agr regulon in 

several Staphylococcus species (Dufour et al. 2002) and constructed phylogenetic trees from the 

different agr alleles, the interspecies relationships based on the agrB and agrC genes seemed to have 
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high discriminatory power and yield reliable phylogenetic groups. However, subsequent comparison 

of these phylogenies with a tree based on the 16S rRNA gene showed that some isolates defined as 

S. epidermidis by the 16S method appeared to be closer to S. capitis by agrB (Figure 1-1). 

 

 
Figure 1-1 Reconstruction of staphylococcal phylogenic trees based on the 16S rRNA and agrB genes 

Data from Philippe Dufour et al. 2002 and reproduced here with permission. 

Furthermore, different regions of the genome appear to give different phylogenies suggesting 

horizontal gene exchange. The situation is further complicated because the different NAS species 

present variable levels of genetic diversity (Miragaia et al. 2007; Bückle et al. 2017), with the 

population structure of some species being far more diverse than others. Two good examples are the 

two species S. epidermidis and S. carnosus (Miragaia et al. 2007; Bückle et al. 2017): in 2007, a 

study typed 217 S. epidermidis nosocomial isolates from several countries (Miragaia et al. 2007) 

using multi-locus sequence typing (MLST) and described 74 sequence types (STs) within 1 major 

and 8 minor clonal complexes, with recombination estimated to contribute to clonal diversity 

approximately twice as much as point mutations. When a similar approach was taken to study 

population diversity in S. carnosus from various sources (Bückle et al. 2017), 44 isolates were 

divided into only 9 STs but the population had a marked clonal structure and, in this case, genetic 

diversity was mainly attributed to point mutations. 

Recent, unpublished, studies performed at the Norwich Medical School, UEA (commercial 

confidentiality applies) question the current definition of NAS species. Using whole genome 

sequencing, a phylogeny was generated from the 16S ribosomal protein genes (described by (Hug et 

al. 2016)) for 225 NAS isolates collected to represent diversity. The groups generated, or “robust 

clusters” (RCs), were compared to the current species identification by mass spectrometry analysis 

(MALDI-TOF MS) (Figure 1-2). 
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Figure 1-2 Circular layout of the phylogeny generated from the analysis of 16S rRNA protein gene 

sequences from 225 isolates of NAS, Norwich Medical School, UEA 

The isolates were coloured according to their species characterization by MALDI-TOF MS in the following 

manner: brown = S. capitis; dark blue = S. epidermidis; light green = S. cohnii; dark green = S. haemolyticus; 

grey = S. aureus; orange = S. hominis; pink = S. warneri; purple = S. carnosus; red = S. ludgdunensis. Those 

isolates in yellow and light blue did not match any specific species profile according to the MALDI-TOF MS 

database. The number of asterisks shows next to each isolate’s name indicates its capacity to form a biofilm 

under the conditions tested: *(weak/non biofilm former); **(moderate biofilm former); ***(strong biofilm 

former); and ****(very strong biofilm former). This figure is reproduced here with permission from the study 

team and is under commercial confidentiality. 

These data (Figure 1-2) show the wide genetic diversity found within the NAS group, which is 

particularly striking for the S. epidermidis isolates (dark blue), which seem to fall within at least two 

well-differentiated clusters. Again, isolates classified as S. capitis (light brown) appear to be 

genetically closer to S. epidermidis than to any other NAS species, while isolates characterized as S. 

simulans (light blue) seem to fall far away from any other group. Notice how some clusters contain 

isolates of different colours, hence, belonging to different species according to the current species 

definition of NAS. 
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The RCs do not match precisely species as defined by mass spectrometry but, for urinary tract 

infection do match, more strongly than species, the clinical outcome (data not shown). When tested 

for biofilm formation there were some RCs which were unable to form biofilms but most clusters 

contained both strong and weak biofilm forming isolates. This suggests that biofilm formation is not 

directly inherited, and so is not solely related to gene content, but more likely is subjected to 

regulation of metabolism. 

It is becoming clearer and clearer that our current lack of understanding of the biology of different 

species within the NAS group is because the species themselves are poorly defined, making it 

difficult to establish associations between NAS species and disease. Studying the metabolic diversity 

of NAS will advance our understanding of their biology and so ultimately improve clinical 

management of patients infected by them. 

1.3.3 NAS species and association with disease: current 
perspective 

NAS comprise a diverse range of staphylococcal species, the majority of which are ubiquitous 

commensals of the skin and the mucous membranes but can behave as opportunistic pathogens under 

favourable circumstances, representing one of the major nosocomial pathogens (Becker et al. 2014). 

Furthermore, some NAS are currently known to be displaying increasing antimicrobial resistance, 

which might lead to a rise in their virulence and association with infection (Aggarwal et al. 2014; 

Morgenstern et al. 2016). They are particularly associated with the use of indwelling medical 

devices, which are frequently used in modern medicine (Becker et al. 2014): S. epidermidis is the 

main NAS species associated with PJI, as well as with other foreign body-related infections, 

endocarditis and neonatal infections (Becker et al. 2014; Argemi et al. 2015; Xue et al. 2015). S. 

haemolyticus has been reported in cases of foreign body-related infections (including PJI) and 

neonatal infections (Becker et al. 2014; Argemi et al. 2015). Both, S. epidermidis and S. haemolyticus 

are the two species more often associated with infections but also more frequently reported as 

contaminants in clinical microbiology laboratories (Argemi et al. 2015). S. hominis, S. capitis, S. 

warneri (Arciola et al. 2005; Von Eiff et al. 2006; Campoccia et al. 2010; Arciola et al. 2012) and 

S. caprae (Allignet et al. 1999; Tande et al. 2014) are also known to be involved in foreign body-

related infections and PJI. Finally, S. lugdunensis is frequently reported in patients with endocarditis 

and PJI (Becker et al. 2014; Tande et al. 2014) while S. saprophyticus is involved in urinary tract 

infections (Kuroda et al. 2001; Becker et al. 2014). 

1.4  Staphylococcal metabolism 

As we understand better the grouping of isolates into species then our understanding of 

staphylococcal metabolism, by species, will shed light over the metabolic diversity of clinically 
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relevant phenotypes (such as biofilms or Small Colony Variants (SCVs)) and the metabolic basis of 

antibiotic resistance and niche or host adaptation. For example, data previously obtained with the 

analysis of metabolic models of staphylococci has already been used to identify new potential drug 

targets (Becker et al. 2005; Heinemann et al. 2005) or to develop typing schemes for pathogenic 

strains of S. aureus (Bosi et al. 2016). Before starting the process of model construction, it is 

convenient to review some of the main physiological features of staphylococci and their metabolism. 

1.4.1 The electron transport chain 

The electron transport chain (ETC) of prokaryotes consists of a set of redox reactions transferring 

electrons from donors to acceptors, coupled with the translocation of protons across the cell 

membrane. This generates a proton concentration gradient or chemiosmotic gradient and the 

subsequent proton motive force (PMF) needed to drive phosphorylation of ADP to ATP by the ATP 

synthase. Many prokaryotes are able to regulate expression of the ETC components in response to 

changes in the environment, such as variation in the availability of electron acceptors, leading to the 

utilization of different electron transport pathways (Anraku 1988). Generally, O2 is the preferred 

electron acceptor. However, several species are capable of utilizing alternative compounds in its 

absence, such as NO3
-, NO2

-, fumarate or sulphate, although their reduction does not provide as much 

energy (Unden et al. 1997). Staphylococci are able to utilize both O2 and NO3
- as final electron 

acceptors, which allows for certain versatility in energy production under diverse environmental 

conditions (Sasarman et al. 1974), (Burke et al. 1975; Heinemann et al. 2005; Uribe-Alvarez et al. 

2016). The literature on this matter suggests the presence of two independent but complementary 

mechanisms for NO3
- reduction in staphylococci: i) a mechanism functionally linked to the oxidation 

of menaquinones, which can work without direct involvement of cytochromes (Sasarman et al. 1974; 

Uribe-Alvarez et al. 2016) and ii) a mechanism in which NO3
- is directly reduced by cytochromes, 

which get oxidised, and are then reduced again by oxidising menaquinones (Sasarman et al. 1974; 

Burke et al. 1975; Heinemann et al. 2005). Furthermore, experimental results, published by Uribe-

Alvarez et al. 2016, have confirmed differential expression of cytochromes and a menaquinone-

dependent NO3
- reductase in S. epidermidis under aerobic, microaerobic and anaerobic conditions 

(Uribe-Alvarez et al. 2016), indicating that cytochromes are highly expressed in the presence of O2 

but this expression is reduced under microaerobic conditions, and is almost absent in anaerobiosis 

while expression of the NO3
- reductase increases in microaerobic conditions, and is high during 

anaerobiosis. This implies that cytochromes play a small role in the ETC in absence of O2, and hence 

the menaquinone-dependent NO3
--reducing mechanism is favoured in vitro under the experimental 

conditions used for testing. 

 

The ATP/NADH ratio indicates how many ATP molecules are generated per NADH molecule 

entering the electron transport chain and it is a commonly used indicator of the efficiency of the 

oxidative phosphorylation in cells. An ATP/NADH ratio of 2 (Wilkinson 1997; Heinemann et al. 
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2005) has generally been assumed for other staphylococci like S. aureus. Another important 

bioenergetic parameter is the P/O ratio which describes how much ATP is produced by the movement 

of an electron pair through the ETC leading to reduction of ½ O2 to H2O (Garrett 2010); reported 

estimates vary between 2.5 and 3 (Garrett 2010; Ferrier 2014), with values between this range being 

typically found when the TCA cycle is active. 

1.4.2 Metabolic states in staphylococci 

Under aerobic conditions, two metabolic states have been experimentally described in staphylococci, 

specifically in S. aureus: 

1.4.2.1 First metabolic state 

Catabolic repression is a common feature of many (but not all) bacteria. It ensures that their 

metabolism is adapted for quick utilisation of preferred C sources, such as glucose (Glc), by 

inhibiting the synthesis of catabolic enzymes for other available substrates like amino acids etc 

(Deutscher 2008). This behaviour has been described in the past by several authors as the ‘glucose 

effect’(Blumenthal 1972; Somerville et al. 2002; Somerville et al. 2003), and was for a long time 

attributed to wasteful ‘overflow’ metabolism, but is now believed to be linked to “quick growth” 

producing high growth yields (Kuroda et al. 2001; Somerville et al. 2003) and cell densities (El-

Mansi 2004). ‘Overflow metabolism’ has been observed in fast-growing bacterial, yeast, fungal and 

mammalian cells and is described as ‘wasteful’ due to the incomplete oxidation of growth substrates 

even in the presence of O2, leading to excretion of Lac, Ac or EtHO. In staphylococci, Glc presence 

leads to repression of the TCA cycle and Glc being metabolised to Ac, resulting it Ac accumulation 

in the media. This first metabolic state is observed during exponential growth and involves the 

incomplete oxidation of Glc to Pyr and further oxidation to Ac via acetyl-P in the Pta-AckA pathway, 

thus generating ATP by substrate level phosphorylation (Somerville et al. 2003; Sadykov et al. 2013; 

Somerville 2016; Halsey et al. 2017) (Figure 1-3). This process is less energy-efficient than 

performing the TCA cycle and cellular respiration (Vazquez 2018) but an incomplete oxidative 

strategy could be better suited to support fast growth, since it involves a smaller number of reactions, 

thus requiring the action of fewer enzymes than full-oxidative metabolism, which not only reduces 

protein investment but also saves on limited cellular space (Molenaar et al. 2009; Basan et al. 2015). 

In 2005, Heinemann et al. reproduced this metabolic state in a model of S. aureus N315 by artificially 

constraining the flux through the aconitate hydratase reaction of the TCA cycle (Heinemann et al. 

2005). 
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Figure 1-3 Schematic representation of the glucose catabolism of S. aureus during the exponential and 

post-exponential growth phases 

Figure from Philippe Somerville et al. 2003 reproduced here with permission. 

1.4.2.2  Second metabolic state 

When C availability is limited, organisms adapt in order to optimise the ATP yield per C atom by 

following a more protein-costly strategy which includes glycolysis, the TCA cycle and cellular 

respiration. This second metabolic state occurs during post-exponential growth, and has been 

observed in S. aureus when the concentration of Glc (or Glt) is reduced (Somerville et al. 2003), 

(Sadykov et al. 2013; Somerville 2016). At this point, metabolism transitions between energy 

production via substrate level phosphorylation to oxidative phosphorylation. In this case, cells adapt 

to the new conditions by taking up the Ac previously excreted to the media, converting it to AcCoA 

and feeding it into the TCA cycle, which is now de-repressed and utilised to maximize production 

of ATP and biosynthetic intermediates (Somerville et al. 2003; Somerville 2016) (Figure 1-3). 

Studies on S. aureus strains presenting mutations that cause lack of acetate catabolism have shown 

no alteration on survival during stationary-phase or production of virulence factors but reported 

reduced growth yield (Kuroda et al. 2001; Somerville et al. 2003). 

1.4.3 Metabolism in absence of O2 and NO3- 

In the absence of electron acceptors, staphylococci are known to perform mixed acid (Lac, Ac, Form) 

and butanediol fermentation (Fuchs et al. 2007), with Glc catabolic end products varying depending 

on the growth state and the experimental conditions (Sivakanesan et al. 1980). The data available 

regarding the anaerobic metabolism of S. epidermidis is very limited: in a study focused on Ser and 

Glc catabolism where a S. epidermidis strain was isolated from a contaminated culture of Peptococus 

prevotii, the utilisation of Ser as a C source for growth was high under anaerobic conditions in a rich 

undefined medium but was shown to decrease substantially when the Glc concentration was 

increased to 0.5% w/v, while the fermentation of Glc was favoured. This strain was specifically 

pathways used during exponential growth phase  
pathways used during post-exponential growth phase 
insufficient data
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reported to ferment Glc to Lac and trace amounts of Ac, Form and CO2 (Sivakanesan et al. 1980). 

However, since the origin of the strain used was uncertain and the media utilised through these 

experiments was undefined, this data should be considered with caution.  

1.4.4 Biofilm metabolism: production and utilisation of acetoin and 
butanediol 

A particular metabolic strategy described in staphylococci seems to be especially important during 

biofilm formation: cells growing in anaerobic or microaerobic environments, as is the case with 

staphylococcal biofilms, have been reported to mainly present a fermentative behaviour leading to 

excretion of Ac, Form and/or Lac (Resch et al. 2005; Zhu et al. 2007), but at a certain point of the 

exponential growth phase, cells divert Pyr metabolism to production and excretion of acetoin and 

butanediol. These metabolites are then available for use to obtain energy during the stationary growth 

phase, being taken up and converted to AcCoA (Zhu et al. 2007). Inhibition of the butanediol 

pathway or the acetolactate decarboxylase, which reduces acetolactate to acetoin, has been shown to 

prevent biofilm formation in S. aureus (Cassat et al. 2006). Since both acetoin and butanediol are 

neutral compounds, this strategy is believed to help counteract excessive media acidification caused 

by the excretion of acidic by-products (Yao et al. 2005; Xiao et al. 2007) while preventing a redox 

imbalance by regenerating NAD (Zhu et al. 2007). 

1.4.5 Metabolic features of other clinically relevant phenotypes: 
Small Colony Variants 

Small Colony Variants (SCVs) are mutant staphylococcal cells that constitute a sub-population 

frequently isolated in persistent antibiotic resistant infections (Proctor et al. 1994; McNamara et al. 

2000). This phenotype is characterized by presenting approximately one tenth of the wildtype colony 

size, lack of pigmentation, slow growth, altered carbohydrate utilization patterns and reduced 

hemolytic activity. These phenotypic changes have been related to an interruption of the ETC 

(Proctor et al. 1994) (McNamara et al. 2000). SCVs present an essentially fermentative carbohydrate 

metabolism, fermenting Pyr to Lac. Using metabolic modelling, Heinemann et al. reproduced this 

behavior in silico by artificially removing the heme-requiring cytochrome-b oxidase in a model of S. 

aureus N315, which interrupted the ETC and led to the system fermenting Glc to Lac (Heinemann 

et al. 2005). 

1.5 Minimal growth requirements for staphylococci 

Throughout the years, researchers have studied minimal growth requirements for staphylococci and 

these have been used to curate and validate metabolic reconstructions, including the one generated 

in this project. Previous work demonstrates that certain strains of S. aureus can be ‘trained’ to 

overcome certain, apparent, amino acid auxotrophies by gradually simplifying the culture media, 
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ultimately leading to growth without amino acids utilising NH3 as the sole N source (Gladstone 1937; 

Knight 1937). Staphylococci are known to have a complex regulatory network which has been shown 

to inhibit growth in minimal media through pathway repression (Becker et al. 2005; Heinemann et 

al. 2005; Lee et al. 2009; Bosi et al. 2016), a phenomenon that can be reversed after several passages 

in simplified media (Gladstone 1937; Heinemann et al. 2005; Bosi et al. 2016). Repression of 

biosynthetic pathways under certain circumstances (e.g. growth in rich media or inside a host where 

amino acids are largely available) can lead to varying growth phenotypes (Gladstone 1937; Knight 

1937; Heinemann et al. 2005; Lee et al. 2009; Bosi et al. 2016) and, as a result, several authors have 

reported differential amino acid and vitamin requirements for staphylococcal species, not only 

between but also within strains (Knight 1937; Emmett et al. 1975).  

In summary, while an organism’s genome might encode for all the enzymes required for the synthesis 

of a certain compound, if these are not transcribed or translated at sufficient levels at a given time, 

then that specific compound might be required in the media for growth (conditionally essential) but 

is not truly essential. 

1.5.1 Previously published minimal growth requirements for S. 
epidermidis RP62A 

In 1991, Hussain, Hastings and White performed growth requirement experiments on a set of S. 

epidermidis strains which included RP62A (Hussain et al. 1991). Using a minimal medium 

previously described by Gladstone in 1937 (Gladstone 1937) and removing one single amino acid at 

a time from a mixture of 18 amino acids, bacterial growth was estimated by eye after 18, 24 and 48 

hours. Results indicated that by time 18 hours, no growth was observed without the following single 

amino acids: Ile, Leu, Thr and Tyr, although it occurred at later time points. Therefore, it was 

concluded that removal of these amino acids delayed growth, while lack of Arg, Cys, Trp or Val 

seemed to prevent growth up to time 48 hours and, therefore, these amino acids were considered 

‘essential’ for growth. Simultaneous removal of more than two amino acids from the medium seemed 

to prevent growth in RP62A and all other strains tested.  

1.6 Nitrogen assimilation and amino acid catabolism in 
staphylococci 

The mechanisms for N assimilation and the key aspects of amino acid synthesis and catabolism are 

important for understanding the functioning of a system and the metabolic capability of an organism. 

1.6.1 Nitrogen assimilation 

The most common mechanisms of bacterial N assimilation involve the action of the enzyme Glt-dh 

(glutamate dehydrogenase) or the GS/GOGAT (Gln synthetase/Glt synthase) cycle. This has been 
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particularly well described for E. coli, which is known to primarily assimilate NH4
+ via the action of 

the Glt-dh (i), until the NH4
+ concentration falls below 1mmol, when its affinity for this substrate 

decreases and the GS/GOGAT system takes over (Amon et al. 2010) (ii). In summary, the 

mechanism works as follows (Somerville 2016): i) N is assimilated from NH4
+ by the Glt-dh 

catalysing a reductive amination of 2-KG that generates Glt; or ii) Glt (Tempest et al. 1970) is 

produced by the Glt synthase catalysing the transamidation of Gln and 2-KG that generates two 

molecules of Glt, while Gln can in turn be synthesised from Glt, ATP and NH3 by the Gln synthetase, 

or, alternatively, produced as glutaminyl-tRNA by the action of a tRNA-dependent amidotransferase 

over glutamyl charged tRNA (Ito et al. 2010). Glt and Gln are central to amino acid biosynthesis, 

although it is Glt which serves as the primary amino donor in most biosynthetic reactions for amino 

acids (excluding Asn, Trp, and His) (Reitzer 2003). 

1.6.2 The effect of glucose on amino acid catabolism 

Despite amino acid catabolism being important for growth in different niches, little is known about 

it in staphylococci. Amino acid catabolism in staphylococci can be affected by the presence of Glc 

in the media  (Townsend et al. 1996; Li et al. 2010; Nuxoll et al. 2012; Halsey et al. 2017). In 2017, 

Halsey et al. studied S. aureus growth in HHW, a rich but chemically-defined medium, by 

performing several growth analyses on mutants for catabolic pathways of interest selected from a 

sequenced transposon library and assessing the fate of 13C-labeled amino acids included in the media 

via NMR metabolomics (Halsey et al. 2017). They observed that when Glc was added at a 

concentration of 0.25% w/v (13.9 mmol), Glc, Glt, Asp and the glycogenic amino acids Ala, Ser, 

Gly and Thr were rapidly consumed and used to support growth, while catabolism of Arg, Pro and 

Lys was absent. On the other hand, cells grown in Glc-free medium utilised amino acids as follows: 

Glt acted as the main amino donor for anabolic processes as well as the main source of C by fuelling 

the TCA cycle via 2-KG and allowing subsequent gluconeogenesis via PEP synthesis from 

oxalacetate. Arg, Pro and His were directly transformed into Glt, without need for the involvement 

of Glt synthase (GOGAT) and the TCA cycle (Halsey et al. 2017; Halsey et al. 2017). While Pro 

acted as the main Glt source, His was only consumed upon depletion of Pro and Arg. Glycogenic 

amino acids were catabolised to Pyr, which was then consumed in the Pta/AckA pathway generating 

Ac and ATP via substrate-level phosphorylation during the exponential growth phase. An increased 

consumption of Ac was observed during the post-exponential growth phase, suggesting its 

transformation into AcCoA to enter the TCA cycle. Finally, Asp and Asn seemed to be mostly used 

to obtain oxaloacetate in order to replenish the TCA cycle, while other amino acids (Cys, Ile, Leu, 

Lys, Met, Phe, Tyr and Val) were consumed at a gradual pace, indicating their utilisation in the direct 

synthesis of protein. 

 

In 1999, Tynecka et al. described the effect of Glc on Glt catabolism during the study of mechanisms 

for energy conservation in S. aureus: their results showed that starved cells supplemented with Glt 
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oxidised this to generate 2-KG and NADH, which respectively entered the TCA cycle and the 

respiratory chain via the NADH-menaquinone oxidoreductase leading to ATP synthesis by oxidative 

phosphorylation (Tynecka et al. 1999). However, if the medium was supplemented with 1% Glc, 

repression of the NAD-dependent Glt-dh and the 2-KG-dh stopped the organism from catabolising 

Glt. These results suggested that phosphorylation is tightly coupled with Glt oxidation when this is 

the main C source in the media but its catabolism is no longer a main metabolic strategy followed 

when Glc is present. 

 

Glc was also shown to have an effect on the Ser catabolism of S. epidermidis (Sivakanesan et al. 

1980). In 1980, Sivakanesan and Dawes showed how Pyr production via deamination of Ser was 

substantially decreased in an undefined rich medium when supplemented with a Glc concentration 

of 0.5% (w/v), both in aerobic and anaerobic conditions. This again suggests that, in general, amino 

acid catabolism in the presence of preferred C sources is strongly repressed in staphylococci. 

1.6.3 Differential amino acid utilisation on planktonic cultures and 
biofilms 

Cells growing as part of biofilms are generally exposed to different biochemical conditions than 

planktonic cultures, such as lower concentration of nutrients and O2 and a gradient of these 

concentrations across biofilm layers. It is, therefore, not surprising for cells to respond to these 

changes and to their need to produce specific biofilm biomass components by re-wiring their 

metabolism, which is likely to lead to specific amino acid extraction patterns. Such changes have 

been observed in staphylococci in vitro: particularly, a study conducted by Zhu et al., in 2007  

showed that S. aureus cultures growing as biofilms on TSB plus 0.25-0.5% w/v Glc selectively 

utilised the amino acids Arg, Gln, Gly, Pro, Ser and Thr while Trp and Val were left unconsumed 

(Zhu et al. 2007). In contrast, planktonic cultures, which also extracted Gln, Gly, Ser and Thr, 

consumed Ala and Glt, and took up only Pro and Val when other C sources became limiting. This 

study showed that although Arg utilisation seemed to favour biofilm formation in staphylococci by 

either i) helping to counteract excessive cell acidification via excretion of NH4
+ via Arg deamination 

or ii) helping to avoid the cellular host immune response (Zhu et al. 2007), it was not essential for 

the process, since mutants showing reduced production of biofilm exopolysaccharides upon 

inactivation of the Arg deiminase operon in vitro were still able to generate biofilms as dense as the 

wild-type strains (Zhu et al. 2007). 

 

In summary, the way in which Glc and other compounds are metabolised seems to vary substantially 

depending on the growth conditions (e.g. aerobiosis or anaerobiosis), the substrates present, the 

concentrations at which they are available and the growth phenotype and growth stage of the 

organism. 
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1.7 Biofilm production in staphylococci 

The ability of NAS to colonize an implant surface by forming biofilms is the primary virulence factor 

that allows them to cause foreign-body related infections such as PJI (Arciola et al. 2012), (Tande et 

al. 2014). Biofilms are complex communities of bacteria embedded in an extracellular matrix. 

Bacterial cells encased in the biofilm matrix are difficult to eliminate, since they present reduced 

sensitivity to antibacterial and disinfectant agents and are partly sheltered from the host immune 

response (Arciola et al. 2012; Becker et al. 2014; Tande et al. 2014). Biofilms can be monomicrobial 

or polymicrobial (formed by one or more bacterial species) and are composed of bacterial 

subpopulations with different genotypic and phenotypic features (Arciola et al. 2012). Most biofilms 

involved in PJIs have a monomicrobial nature (Tande et al. 2014; Benito et al. 2016; Sebastian et al. 

2018). Due to their structural and biological complexity, biofilms can be considered somehow similar 

to multicellular organisms (Arciola et al. 2012). Bacterial biofilms are mainly composed of water, 

which has been shown to account for up to 97% of the biofilm matrix when several bacterial biofilm 

types were analysed, followed by bacterial cells, exopolysaccharides and other excreted products 

(Sutherland 2001). A part from water, the biofilm matrix mainly contains extracellular polymeric 

substances (EPS), which are conglomerates of exopolysaccharides, proteins, lipids, teichoic acids 

and extracellular DNA (eDNA) (Arciola et al. 2012; Becker et al. 2014). The exact composition of 

a biofilm can vary depending on the environment where it is formed, the bacterial species involved 

and even between and within strains (Arciola et al. 2012; Tande et al. 2014; Zapotoczna et al. 2016). 

The ability of staphylococcal strains to form biofilms differs widely depending on environmental 

conditions and media composition (Arciola et al. 2012), and often, expression of biofilm formation 

in vitro has shown to be inconsistent. There is evidence that staphylococci are capable of adapting 

their metabolism to produce biofilms of different nature (proteinaceous, exopolysaccharidic, 

fibrinous or amyloidal) according to external stimuli (Zapotoczna et al. 2016). It is also not clear 

whether the ability of an organism to form a luxuriant or a non-luxuriant biofilm could either be an 

advantage or disadvantage when colonizing a host (Arciola et al. 2012; Tande et al. 2014). When 

studying biofilm formation, staphylococci are commonly divided into ica-positive or ica-negative 

strains, depending on whether the icaADBC operon (Heilmann et al. 1996; Gerke et al. 1998; Lee et 

al. 2016; Somerville 2016) is either present or absent in their genome. As would be expected the 

biofilms vary, with ica-positive strains forming more structured and robust biofilms than the ica-

negative strains (Le et al. 2018). The majority of the biofilm forming strains studied to date are ica-

positive, as is the case with the strain selected to generate a metabolic model relevant to PJI in this 

project (S. epidermidis RP62A). 
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1.7.1 Molecular mechanisms of biofilm formation 

Biofilm formation comprises several sequential events and is typically described as a four-step 

process (Arciola et al. 2012; Becker et al. 2014; Tande et al. 2014; Zapotoczna et al. 2016): (i) initial 

bacterial attachment to a surface, (ii) cell accumulation, (iii) biofilm maturation and (iv) cell 

detachment. There are diverse and redundant molecular mechanisms involved in biofilm formation, 

which can be summarized as follows: (Figure 1-4) (Arciola et al. 2012; Zapotoczna et al. 2016): 

i) initial attachment:  

 i.i) adhesion through non-specific interactions (hydrophobic, electrostatic and Lifshitz-Van 

der Waals forces). 

 i.ii) adhesion through specific interactions. Mediated by autolysin/adhesin proteins (mainly 

AtlE in S. epidermidis and AtlA in S. aureus). 

ii) cell accumulation:   

 ii.i) ica-positive strains: production of exopolysaccharides, including the main matrix 

component PIA (polysaccharide intercellular adhesine), for which synthesis is mediated by the 

icaADBC locus. Production of Microbial Surface Components Recognizing Adhesive Matrix 

Molecules (MSCRAMMs) such as the SdrG, SdrF, SesC or Embp adhesion proteins and production 

of phenol-soluble modulins, with a role in accumulation of amyloid aggregates which promote cell 

aggregation. 

 ii.ii) ica-negative strains: expression of adhesive proteins anchored to the cell wall such as 

Bap, Aap and Embp. 

 iii) biofilm maturation:  

 iii.i) increased production of components from the biofilm matrix (EPS). Once the cells reach 

stationary growth phase, their quorum sensing regulatory system (regulated by the agr and lux locus) 

activates, leading to an increased production of Autoinducing Peptide (AIP) and synthesis of the 

small RNA, RNAIII, a quorum sensing inhibitor (Giacometti et al. 2003).  

iv) cell detachment: 

 iv.i) the increase on RNAIII leads to the expression of extracellular proteases and phenol-

soluble modulins that cause cells to detach.  
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Overall, the regulation of bacterial biofilm formation is dependent on the detection of environmental 

stress and transcriptional regulation. In NAS, the alternative sigma factor SigB and the sar 

(staphylococcal accessory regulator) regulatory element SarA (Fluckiger et al. 1998) have been 

shown to be important, alongside the bacterial quorum sensing regulatory system.  

 
 

Figure 1-4 Schematic representation of the steps involved in the process of biofilm formation 

Adapted from Arciola et al. 2012 and reproduced here with permission. 

1.7.2 Environmental conditions encountered by bacteria growing 
in joints 

1.7.2.1 Composition of the synovial fluid 

The intra-articular space of the joints is filled with synovial fluid. This fluid is a mixture of a 

transudate of plasma and compounds actively secreted by synoviocytes (cells of the joint capsule) 

and its main role is to provide nutrients and lubrication for the cartilages. In normal physiological 

conditions, its composition is similar to that of plasma, with Glc levels close to those found in serum 

(550 µmol/l approx.) and 25% of the total protein present in blood (Stein et al. 1954; Frame 1958; H 

Kenneth Walker 1990; Canepa et al. 2002; Gale 2007). Coagulation proteins are absent and small 

proteins (e.g. albumin) are present at higher concentrations than larger proteins such as globulins. 

Synovial fluid contains the same individual free amino acids as the human blood plasma, including 

non-essential amino acids such as aminobutyric acid, citrulline, ornithine and taurine. These range 

in concentrations from 2 µmol/l (Asp) (Canepa et al. 2002) to 400 µmol/l (Gln) (Canepa et al. 2002). 

Significant amounts of hyaluronic acid (16.65 mmol) (Gale 2007), a polymer of glucuronic acid and 

NAcGlc, are present and are responsible for the high viscosity of the fluid. Other components that 

can be found in this fluid are NH4
+, chondroitin sulphate (a polymer of NAcGal and glucuronate), 
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urea and uric acid. While the concentration of NH4
+ is approximately 50 µmol/l (Pathology Armony 

group 2011), the concentration of  electron acceptors is approximately 70 µmol/l for NO3
-/NO2

-
 

(Tsikas et al. 1998; Ghasemi et al. 2010) and 24 mmol for O2 (Shapiro 1995; Chu et al. 2003; 

Malatesha et al. 2007). Since NO2
- has a short half-life in plasma in vitro, being readily oxidised to 

NO3
-
 (Gilchrist et al. 2010), the NO3

-/NO2
- blood concentration was solely attributed to NO3

- in the 

corresponding in silico analyses performed during this project. 

 

During inflammation and/or infection the following biochemical changes have been described (H 

Kenneth Walker 1990): decreased hyaluronic acid concentration and fluid viscosity due to its 

fragmentation by lysozymes released by polymorphonuclear cells (Fu et al. 2019), reduction on the 

Glc concentration due to bacterial activity, lower pH and, in some cases, an increase in lactic acid 

concentration. Thus, it is safe to assume that hyaluronic acid is likely to be found partially hydrolysed 

during inflammation, with the subsequent products (glucuronic acid and NAcGlc) being available in 

their free form.  

1.7.3 Composition of biofilms growing in joints 

To date, there is no biochemically defined biomass composition available for staphylococcal biofilms 

retrieved from prosthetic joints. As already mentioned, biofilm formation is a complex process and 

staphylococcal strains exhibit different strategies depending on their gene content and the 

environmental conditions encountered. RP62A is considered a reference biofilm-positive strain 

within S. epidermidis (Sadovskaya et al. 2004), the main species involved in nosocomial bacteraemia 

and indwelling medical device associated infections (Xue et al. 2015). Ica-positive strains, such as 

RP62A, are known to mainly (but not exclusively) generate biofilms of polysaccharidic nature. The 

main matrix component of these biofilms is a β 1-6 linked NAcGlc polymer or PNAG (poly-

NAcGlc), which has been shown to account for as much as 70% of the biofilm dry weight 

(Baldassarri et al. 1996). PNAG was first described in S. epidermidis (RP62A and other strains) and 

named Polysaccharide Intercellular Adhesin (PIA) (Mack et al. 1992; Mack et al. 1996). PIA is the 

major exopolysaccharide involved in intercellular adhesion in staphylococci (Somerville 2016) and 

plays an important role in the accumulation and maturation phases of biofilm formation in strains 

exhibiting an exopolysaccharidic biofilm-forming strategy (Büttner et al. 2015). It has been proposed 

as a marker for infection and even as a candidate for vaccine development (Somerville 2016). Several 

environmental factors have been reported to induce PIA synthesis, although with significant variation 

between strains (Otto 2008; Somerville 2016). These include: increased temperature; lack of O2; high 

osmolarity; presence of Glc and EtHO; and decreased iron concentration. Other important 

components of RP62A biofilms are extracellular teichoic acids, proteins and nucleic acids 

(Sadovskaya et al. 2004), however proportions in the biofilm biomass vary with the growth 

conditions. Both PIA and extracellular teichoic acids contain positive and negative charges in their 

structures (Somerville 2016). The ability of the cells to regulate the relative production of these 



Chapter I. General introduction 
 

 18 

compounds allows them to generate biofilms with different physicochemical properties and, thus to 

colonise a wider range of environments (Sadovskaya et al. 2004). 

1.7.4 Structure and synthesis of PIA in S. epidermidis 

The PIA polymer in S. epidermidis presents 15 to 20% of its sugar residues de-N-acetylated, thus 

positively charged, and distributed more or less evenly along the polymer (Mack et al. 1996). 

Approximately 6% of these residues are modified with succinate moieties, which introduce negative 

charges thus making the polymer zwitterionic (Mack et al. 1996). This characteristic is directly 

related to the adhesive properties of PIA, and its capacity to attach to the bacterial cell surface (Rohde 

et al. 2010), although the specific mechanisms by which this molecule is retained in the cell wall are 

currently unknown (Mack et al. 1996). The length of this polymer has been estimated in 

approximately 130 NAcGlc residues (Mack et al. 1996).  

 

While the amino groups needed for PIA synthesis are obtained from amino acids, the production of 

sugar moieties is directly linked to glycolysis/gluconeogenesis: the amino sugar UDP-NAcGlc is the 

specific biosynthetic precursor and sugar donor for PIA production  (Büttner et al. 2015; Lee et al. 

2016; Somerville 2016). Synthesis of amino sugars involves directing Glc metabolism away from 

glycolysis and towards production of NAcGlc. In this process, an amino group is transferred to the 

intermediate F6P, generating GlcN-6P, which is subsequently isomerised to GlcN-1P. The last two 

steps in the de novo biosynthesis of UDP-NAcGlc involve the acetylation and activation of GlcN-1P 

and are catalysed by GlmU, a fused enzyme with two enzymatic activities (GlcN-1P acetyltransferase 

and UTP-N-acetyl-α-D-glucosamine-1-P uridylyltransferase) that has been identified as a potential 

therapeutic target for biofilm-associated infections  (Burton et al. 2006; Somerville 2016).  

 

In S. epidermidis, the icaADBC operon (Heilmann et al. 1996; Gerke et al. 1998; Lee et al. 2016; 

Somerville 2016) encodes all enzymes catalysing synthesis of PIA from UDP-NAcGlc, and has close 

orthologues in other species, including E. coli. The ica genes function as follows (Figure 1-5): icaA 

encodes for a NAcGlc transferase that generates an initial NAcGlc polymer of approximately 20 

residues utilising UDP-NAcGlc as a substrate (Gerke et al. 1998; Somerville 2016; Le et al. 2018). 

This gene functions together with icaD, which assists the former in an undefined way. IcaC is a 

transmembrane protein involved in further elongation of the polymer and its transport toward the 

periplasm (Gerke et al. 1998; Somerville 2016; Le et al. 2018), and IcaB is a secreted deacetylase 

responsible for the de-N-acetylation step of some of the NAcGlc units, which introduces positive 

charges in the polymer by leaving the amino groups unmasked (Heilmann et al. 1996; Gerke et al. 

1998; Somerville 2016; Le et al. 2018). The mechanism leading to O-succylation of the sugar 

residues is currently unknown. 
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Figure 1-5 Schematic representation of the biosynthetic process of the biofilm matrix polymer PIA in 
staphylococci 

Figure from Le et al. 2018 and reproduced here with permission.  

 

PIA, also known as PNAG, is a partially de-acetylated NAcGlc polymer involved in the accumulation and 

maturation phases of biofilm formation. It is synthesized by IcaA, a membrane-located NAcGlc transferase 

which works together with the accessory protein IcaD. IcaC is a transmembrane protein that exports the 

growing PIA chain, which is then partially de-acetylated by IcaB (a cell surface de-acetylase), introducing 

positive charges which are essential for the attachment of the polymer to the cell surface. The ica gene locus 

contains the icaADBC operon and the icaR gene, which respectively encode for the Ica proteins described 

above and the regulatory protein IcaR. 

 

The regulation of PIA synthesis is fairly complex. There are multiple factors involved in the 

transcription of the ica operon, which can be regulated either directly at the icaA promotor or through 

expression of IcaR, which binds to the promotor region of the operon acting as a transcriptional 

repressor (Conlon et al. 2002). Some of the factors involved in this regulatory process are (Otto 2009; 

Cue et al. 2012): i) the action of global regulatory proteins, such as the sar family proteins, the global 

regulatory alternative sigma factor (SigB), the SrrAB two component system or the quorum sensing 

system; and, ii) the action of DNA insertion elements. While SarA and the alternative sigma factor 

SigB up-regulate PIA synthesis, the quorum sensing system luxS seems to down-regulate it (Otto 

2008). The quorum sensing signalling molecule autoinducer-2 regulates biofilm formation in RP62A 

by regulating the icaR gene, although there are conflicting reports on whether its action up-regulates 

or down-regulates the ica operon (Xue et al. 2015). The widespread DNA insertion element IS256 

can integrate into the ica genes abolishing PIA synthesis. This element can also integrate into the 

sigB operon and sarA locus, causing phenotypic switching and potentially affecting other cellular 

traits, allowing cells to adapt to the changing environment (O'Gara 2007). Its insertion seems to be 

irreversible (Otto 2008). 
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1.7.5 Metabolic features of staphylococcal biofilms 

Despite their importance, there is very little consensus about the metabolic requirements for biofilm 

formation in staphylococci (Zhu et al. 2007): S. aureus biofilms have been reported to present a 

dynamic metabolic flux of C and amino acids (Zhu et al. 2007) while S. epidermidis biofilms have 

been described as maintaining a relatively low metabolic activity (Yao et al. 2005; Sadykov et al. 

2010). However, studies of this area of S. epidermidis metabolism are scarce. It is believed that cells 

within biofilms grow in an anaerobic or microaerobic environment, where they convert Pyr to Lac, 

Ac and Form (Resch et al. 2005; Zhu et al. 2007), which leads to pH reduction and red-ox 

imbalances. These issues seem to be tackled by diverting Pyr to the butanediol pathway, where two 

pH-neutral compounds (acetoin and butanediol) are produced and excreted to the environment (Zhu 

et al. 2007), thus preventing excessive acidification (Section 1.4.4). Staphylococcal biofilms have 

also been reported to present specific amino acid consumption patterns (Section 1.6.3) and to redirect 

usage of C and energy from biosynthetic pathways towards growth support (Zhu et al. 2007). Amino 

acid catabolism and other aspects of biofilm metabolism are yet to be fully understood. This is partly 

due to the existence of several biofilm forming strategies across and within bacterial species, and 

partly because of the complexity of biofilm structures and their life cycles.  

A general feature of exopolysaccharidic staphylococcal biofilms is that external conditions or 

stresses that repress central metabolism such as high Glc concentrations or restrictive levels of 

nutrients, iron or O2 have been shown to result in dramatic increases of PIA production in vitro, 

hence, suggesting that changes on the intercellular levels of biosynthetic intermediates, ATP or the 

redox status of the cell may act as intracellular metabolic signals that influence the transcriptional 

processes regulating biosynthesis of PIA (Vuong et al. 2005; Sadykov et al. 2008; Sadykov et al. 

2011; Somerville 2016). Thus the activity of the TCA cycle has been proposed as a mechanism for 

translation of external environmental stimuli into metabolic effectors with a final regulatory role on 

biofilm formation (Sadykov et al. 2008).  

Further studies are needed in order to understand biofilm metabolism as a whole. Particularly, some 

authors are applying metabolic modelling to the investigation of the spatio-temporal distribution of 

substrates and their utilisation within these communities (Phalak et al. 2016; Carlson et al. 2018; 

Zhang et al. 2018; Schepens et al. 2019), which is an important step forward for those trying to 

unravel the metabolic features that make biofilms the most ubiquitous and successful colonising 

bacterial phenotype.  

1.8 Prosthetic Joint Infection 

Arthroplasty or joint replacement is a surgical procedure during which a damaged joint is realigned, 

remodelled or replaced by a prosthetic implant. It allows millions of patients to relieve pain and 
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recover or improve joint functionality each year (Tande et al. 2014). PJI occurs when bacteria 

manage to adhere to the surface of a prosthetic implant and colonize it by growing a biofilm. PJIs 

are usually acquired at the time of surgery through contamination of the prosthesis or periprosthetic 

tissue, or, more rarely, through a hematogenous infection (Tande et al. 2014). Observations in animal 

models suggest that, right after intraoperative contamination of the joint space the infection is 

confined to this area. Once established, it spreads to the adjacent bone metaphysis and, if allowed to 

progress, it could also affect the bone diaphysis (Belmatoug et al. 1996; Tande et al. 2014) (Figure 

1-6). It is unclear if this is also the case in hematogenous infections (Belmatoug et al. 1996; Tande 

et al. 2014). Depending on the virulence of the causative organism, the symptoms might show up 

just a few months after surgery (< 3 months), between 3 and 12 months, or even 24 months later. PJI 

by NAS can occur in any of these three modalities (Tande et al. 2014).  
 

 
Figure 1-6 Schematic showing a total hip arthroplasty in place with relevant structures highlighted 

Figure from Tande et al. 2014 and reproduced here with permission. 

1.8.1 The scope of the problem 

PJI occurs with a relatively low frequency in primary hip and knee arthroplasties (1.5-2.5%) 

(Montanaro et al. 2011; Arciola et al. 2012) but it can have devastating consequences for the patients. 

Complications of this process can cause severe bone and soft tissue damage (Montanaro et al. 2007), 

(Arciola et al. 2011; Montanaro et al. 2011; Arciola et al. 2012). Often, PJI is diagnosed once the 

infection has already become chronic. At this point, substitution of the implant under revision surgery 

is the only option for successful treatment (Arciola et al. 2012; Lange et al. 2012) and the risk of 

relapse increases (3.2-5.6%) (Montanaro et al. 2011; Arciola et al. 2012). The economic impact of  
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PJI is also significant. Arthroplasty is a frequently performed procedure, and, due to the cumulative 

effect of an aging population and an increasing life expectancy presents a rising incidence, and so do 

PJIs. In 2015, there were over 185,000 primary joint replacements performed in the UK and 15,027 

revision hip or knee surgeries. From those, 2,811 procedures were for management of PJI (National 

Joint Registry for England 2016). In Europe, the mean total costs per patient rose from €14,135 

(between 1997 and 2001) to €23,113 (between 2002 and 2006) (Oduwole et al. 2010) and in the UK, 

the mean cost of a total knee arthroplasty for infection had already reached £30,011 per patient by 

2012 (Kallala et al. 2015). These figures illustrate how PJI is becoming an increasing burden for the 

healthcare system and the population. 

1.8.2 Etiological causes 

The majority of PJIs are monomicrobial infections. Polymicrobial infections have been reported in 

up to 35% of early-onset cases and in less than 20% of cases at any time point after joint replacement 

(Tande et al. 2014; Benito et al. 2016; Sebastian et al. 2018). Staphylococci are the leading 

etiological agents (Arciola et al. 2012; Tande et al. 2014; Bémer et al. 2016; Benito et al. 2016). 

Among them, S. aureus and S. epidermidis respectively represent the first and the second bacterial 

species most often isolated in cultures from these patients (Arciola et al. 2012; Tande et al. 2014; 

Bémer et al. 2016; Benito et al. 2016). In 2014, Tande and Patel conducted a review of the published 

data regarding the relative frequency of microorganisms isolated from patients with PJI (Tande et al. 

2014). They performed a collective analysis of the microbiological results of 14 large studies that 

included over 2,400 patients from several countries and time points (Table 1-1). Their observations 

concluded that staphylococci accounted for between the 50 and 60% of the cases, with S. aureus and 

NAS equally contributing to this percentage. Two later multicenter studies, performed by Benito et 

al. (Benito et al. 2016) in Spain and Bemer et al. (Bémer et al. 2016) in France, presented similar 

results, with staphylococci being the leading cause of PJI (in 65.2% and 66.3% of the cases 

respectively). In the datasets from the 2014 review study (Tande et al. 2014) and the French study 

(Bémer et al. 2016), Streptococcus and Enterococcus species accounted approximately for the 10% 

of the cases and aerobic Gram-negative bacilli for less than 10%, with both studies reporting 

approximately a 15% of polymicrobial infections, while the Spanish study (Benito et al. 2016) 

reported an increasing trend in infections caused by Gram-negative bacilli and the rise of multidrug-

resistant infections (mainly due to this group of organisms).  
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Table 1-1 Common etiological causes of PJI 

 
Data from Tande et al. 2014 and reproduced here with permission. 

1.8.3 Diagnosis 

Orthopaedic surgeons have to make a diagnostic decision based on the interpretation of the symptoms 

of the patients, their clinical history, the results of clinical investigations and the microbiological 

results obtained by the clinical laboratory (Atkins et al. 1998). S. aureus is usually far more virulent 

than NAS and its detection on a patient’s samples is sufficient to give a positive diagnosis for 

infection. However, NAS are common skin commensals and comprise an important source of sample 

contamination and, therefore, their isolation leads to diagnostic uncertainty (Tande et al. 2014). Most 

clinical laboratories do not type NAS but simply report as “coagulase-negative staphylococci”. The 

decision on clinical relevance is based on the repeated isolation of NAS with similar antibiotic 

resistance profiles and the clinical picture of the patient (Parvizi et al. 2011; Becker et al. 2014). 

1.8.3.1 Typing of NAS 

Accurate identification of NAS to the species level is difficult (Ghebremedhin et al. 2008). During 

the last two decades, advances on next generation sequencing techniques have led to the development 

of new typing schemes for these organisms. Several typing methods use sequencing data from the 

variable regions of the multi-copy 16S rRNA gene (Takahashi et al. 1999; Becker et al. 2004), 

specific regions of housekeeping genes, such as sodA, tuf, or gap (Ghebremedhin et al. 2008), whole 

genome sequencing (Becker et al. 2014) or multi-locus sequencing typing (Miragaia et al. 2007). So 

far, no definitive typing scheme has been agreed. 

Clinical laboratory speciation of NAS isolates is typically based in biochemical testing (e.g. gram 

tests, catalase or coagulase activity), antibiogram profiling or, the more recently introduced MALDI-

TOF MS (Carbonnelle et al. 2007; Zhu et al. 2015), which is the current gold standard method for 

routine identification of staphylococcal species (Argemi et al. 2015). It identifies bacterial species 
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by comparing the peptide mass spectra of the isolates with stored profiles derived from the current 

definition of NAS species. However, there is some doubt regarding the taxonomical and biological 

relevance of the current phylogenetic classification of NAS (Section 1.3.2). 

1.8.3.2 Clinical diagnosis: the decision-making process 

The existence of three different diagnostic guidelines (English, French and American), (de Langue 

Française 2010; Osmon et al. 2012; Public Health England 2016) evidences the difficulty of 

diagnosis for clinicians. Despite being based upon data provided by the same microbiological study 

(Atkins et al. 1998), these guidelines differ in their recommendations regarding the collection and 

processing of intraoperative biopsies and on how to assign clinical significance to the isolates. In 

general, a patient is considered positive for infection if multiple ‘indistinguishable isolates’ (2 to 3) 

are identified on several fluid or tissue samples (3 to 5). Two isolates are defined as 

‘indistinguishable’ if they share similar antibiograms. However, different strains may present similar 

antibiograms and genetically indistinguishable strains may present different ones, so this definition 

can be ambiguous. The current UK guidelines are published by Public Health England (Public Health 

England 2016) 

1.8.4 Treatment 

PJI caused by NAS can present ambiguous symptoms such as moderate pain, swelling of the joint 

and reduced range of movement, which could also be compatible with a presumed non-infectious 

process known as aseptic loosening (Tande et al. 2014). The treatment for PJI and aseptic loosening 

differs significantly on its length and level of aggressiveness and has, as a consequence, different 

implications for the patient and different associated costs to the healthcare system (Figure 1-7). 

Usually, treatment of aseptic loosening includes a single stage revision surgery and an oral antibiotic 

regime (Tande et al. 2014; Norfolk & Norwich University Hospital 2015). In contrast, treatment for 

PJI involves surgical debridement or implant revision of the joint (in many cases, a two-stage 

surgery), which carries significant surgical morbidity and requires high doses of antibiotics between 

the two stages (usually for around six weeks) and after surgery (Osmon et al. 2012; Becker et al. 

2014; Norfolk & Norwich University Hospital 2015). Often, the causative organism cannot be 

identified prior to surgery, leading to unnecessarily aggressive treatment of instances where 

symptoms are derived from causes other than an infection. Therefore, making an accurate diagnosis 

represents a major decision for the patient and the surgeon (Becker et al. 2014).  
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Figure 1-7 Knee revision at Norfolk & Norwich University Hospital showing actions and decision points 

Actions are shown in boxes, decision points in diamonds, diagnostic test-related activities are shown in bullet 

points and the use of antibiotics appears as ABx. This figure was produced by Iain McNamara and colleagues 

(Norfolk & Norwich University Hospital) and is reproduced here with permission.  

1.9 Metabolic reconstructions of staphylococci 

Mathematical analysis of metabolic networks combines the use of bioinformatics tools, mathematical 

theories and in silico simulation as a way to explore and study cellular behaviour (Feist et al. 2009). 

It allows the integrative analysis of a wide range of experimental data (Shlomi et al. 2007; Oberhardt 

et al. 2009) and has been successfully used over the years to test hypotheses, simplify and increase 

the accuracy of the experimental design process (Feist et al. 2009; Oberhardt et al. 2009), define 

strategies for the genetic manipulation of organisms with commercial purposes (Fong et al. 2005; 

Durot et al. 2009; Kabimoldayev et al. 2018) and to define new drug targets (Becker et al. 2005; 

Jamshidi et al. 2007; Raghunathan et al. 2009). A more detailed introduction to the mathematical 

modelling of metabolism is provided in the following chapter. 

 

At the time of writing, a curated genome-scale metabolic model of S. epidermidis has not been 

published, therefore, this project is expected to have a high research impact. However, several models 

have been published for S. aureus, most of them for the strain N315, and these have been used to 

define novel drug targets against staphylococci (Becker et al. 2005; Heinemann et al. 2005), new 

broad-spectrum drug targets (Lee et al. 2009) and even to develop new typing schemes (Bosi et al. 

2016):  

 Two initial models, named iSB619 (Becker et al. 2005) and iMH551(Heinemann et al. 

2005), were published in 2005. Both studies used linear programming-based analysis to compute the 

effects of gene deletion in the presence of O2 and rich media, and defined essential reactions for 

growth under these conditions (Becker et al. 2005; Heinemann et al. 2005). The first model (iSB619) 

was used to define an in silico minimal medium for bacterial growth, which compared reasonably 

well with an experimentally defined medium, but presented some discrepancies regarding amino acid 

requirements. This work identified a list of possible chemical inhibitors for 24 reactions defined as 
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essential for growth and were proposed as candidates to be considered in the search for new anti-

staphylococcal compounds (Becker et al. 2005). The second model (iMH55), was used to perform 

an in silico gene deletion analysis that defined the sub-metabolism of glycans, lipids, cofactors and 

vitamins as fairly rigid and proposed for them to be considered as potential new drug targets. 

 

 The two latest models (by Lee et al. 2009 and Bosi et al. 2016) were initially developed for 

the strain MRSA N315 but were later modified to include several other strains (12 and 63 

respectively). The model published by Lee et al. was used to define an in silico minimal medium for 

S. aureus that contained 6 components less than a previously published minimal medium (Price et 

al. 2004). Experimental results showed that both media supported similar growth rates in vitro (Price 

et al. 2004; Lee et al. 2009). These authors also proposed studying enzymatic genes as strong 

candidates for new drug targets (Lee et al. 2009), since they tend to present less variation than genes 

involved in pathogenicity or virulence. An enzyme deletion study performed with this model defined 

several single and paired metabolic enzymes as unconditionally essential for growth (in rich media) 

(Lee et al. 2009). The results obtained indicated that the functionality of the metabolic networks of 

these strains was strongly strain dependant. The work published by Bosi et al. in 2016 determined 

the pan-genome (total set of genes) and the core genome (genes shared by all the strains) of a total 

of 64 strains (Bosi et al. 2016). The 58% of the genes in the core genome were found to have 

metabolic functions. The virulome (total set of genes encoding virulence factors) was also defined, 

with the 39% of these genes shared by all strains. Finally, comparison of these models showed that 

the core reactome (reactions shared by all strains) represented, on average, the 70% of all reactions 

in each independent strain. Reactions which differed between strains were mainly involved in the 

catabolism of alternative C sources and amino acid biosynthesis, and therefore, possibly related to 

niche adaptation. The models were used to analyse the strain’s ability to utilize up to 300 different 

nutrients in the presence and absence of O2. Finally, data regarding the strain’s growth capabilities 

and distribution of virulence factors was combined and proposed as a way to define new typing 

schemes with potential to distinguish disease phenotypes (Bosi et al. 2016). 

 

A detailed comparison of the general properties of these models and the model produced during this 

project is given in Chapter 7, Section 7.1. 
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2 General methods 

2.1 Introduction to mathematical modelling of metabolism 

Mathematical modelling builds conceptual representations of real-world processes using 

mathematical language and techniques as a way to facilitate their study. Mathematical models can 

be used to explore the characteristics of a system: representing a metabolic network in a mathematical 

format makes it accessible to computers for extensive and rigorous analysis. Models can be built to 

study either small sections or the full metabolic network of an organism of interest (Poolman et al. 

2013) and can be used to perform simulations to help answering complicated questions that would 

otherwise be too time-consuming or expensive to investigate with an experimental approach 

(Hofmeyr 1986). Some of its applications include in silico hypothesis testing, guiding experimental 

design (Ives et al. 1997; Feist et al. 2009; Oberhardt et al. 2009) interrogation of multi-species 

relationships (Phalak et al. 2016; Carlson et al. 2018; Zhang et al. 2018; Schepens et al. 2019), 

network property discovery (Edwards et al. 1999) or the identification of novel drug targets and 

virulence factors (Becker et al. 2005; Jamshidi et al. 2007; Raghunathan et al. 2009). 

Metabolic networks can be defined as sets of reactions in which metabolites are either produced or 

consumed. The rate in which the concentration of a metabolite changes is equal to the difference 

between its production and consumption in the network and is, therefore, subjected to mass balance 

constraints. This is the fundamental basis of any metabolic model. The structure of a network can be 

represented mathematically in the form of a stoichiometry matrix storing information about the 

relationship between network reactions and their associated metabolites and will be described in 

more detail in the following section. The metabolites in a network can be considered either internal, 

if no net change in their concentration occurs within the system, or external, if their concentration is 

maintained at a constant level outside the system (Heinrich et al. 1996) (Figure 2-1). External 

metabolites are likely to be in permanent exchange across the system’s boundary. 

Figure 2-1below illustrates a simple hypothetical network were the letter ‘Sn’ is used to represent the 

concentration of internal (or variable) metabolites while ‘Xn’ represents that of external (and 

‘clamped’ or concentration-invariable) metabolites. 
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Figure 2-1 Schematic representation of a simple set of reactions 

There are two main types of models representing metabolic networks: structural and kinetic (or 

dynamic) metabolic models. While structural models study a system during an specific moment in 

time and take into account the stoichiometry and thermodynamics of metabolic reactions, kinetic 

models study how systems behave over time and, therefore, also include parameters regarding 

reaction kinetics. Construction of dynamic models requires determining kinetic parameters 

associated with each reaction and the intracellular concentration of the metabolites involved. 

Obtaining these data requires a great effort and so far, still not possible for networks containing 

several hundreds or thousands of reactions, as is the case of genome-scale networks. Furthermore, 

their mathematical analysis requires a much higher computational power. For these reasons, most 

genome-sale models are structural models while kinetic models are generally restricted to smaller 

networks (Poolman et al. 2013). Structural metabolic modelling is the type of modelling used for the 

purpose of this project. 

2.2 Structural metabolic modelling 

Structural metabolic models and their analysis depends on the following assumptions (Singh et al. 

2015): 

i) The metabolites in the system can be classified has concentration variable metabolites 

(internal) or metabolites which concentration remains unchanged independently of the 

actions taken by the system (external). 

ii) The rate in which the concentration of internal metabolites changes equals the sum of 

their rate of production and consumption. 

iii) The system can reach the steady state, where there is no net production or consumption 

of internal metabolites. 

iv) The reactions in the system can be classified as reversible or irreversible. 

The rates of change in the concentration of metabolites involved in these reactions can be expressed 

as the following set of differential equations, were ‘Sx’ represents metabolite concentrations; t 

represents time and ‘vx’ represents reaction fluxes: 

R1 R2 R3

R4

R5

R6 R7

X0 S1 2 S2 S3 S4 S5 X1

S6

R8
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In structural modelling, the stoichiometry of the system can be represented as a stoichiometry matrix, 

conventionally denoted as N: in this matrix, reactions are represented as columns and metabolites as 

rows, with each entry corresponding to the stoichiometric coefficient for a given metabolite in each 

given reaction, where positive values denote metabolite production, negative values denote 

consumption and a value of 0 indicates no involvement of the metabolite in the reaction (Hofmeyr 

1986; Heinrich et al. 1996; Poolman et al. 2007). This way, the structure of the metabolic network 

described in Figure 2-1 can be expressed as a stoichiometry matrix which compiles the 

stoichiometries of all reactions in the network (R1 to R8): 

 

The set of equations presented above can be represented in a matrix notation where the variation in 

the concentration of metabolites over time can be expressed as a result of multiplying the 

stoichiometry matrix (N) by a vector of reaction fluxes (v), as shown in the equation below (Equation 

2-1): 

 

2.2.1 The steady state assumption  

A system of metabolic reactions can be considered to remain in the steady state, hence without net 

changes in the concentration of internal metabolites. Taking into account the assumptions ii) and iii) 

N = 

1 −1 			0 			0 			0 			0 			0 			0
0 			2 −1 			0 			0 			0 			0 			0
0 			0 			1 −1 			1 			0 			0 			0
0 			0 			0 			1 −1 −1 			0 			0
0 			0 			0 			0 			0 			1 −1 −1
0 			0 			0 			0 			0 			0 			0 			1

1 −1 			0 			0 			0 			0 			0 			0
0 			2 −1 			0 			0 			0 			0 			0
0 			0 			1 −1 			1 			0 			0 			0
0 			0 			0 			1 −1 −1 			0 			0
0 			0 			0 			0 			0 			1 −1 −1
0 			0 			0 			0 			0 			0 			0 			1

*    

vR1
vR2
vR3
vR4
vR5
vR6
vR7
vR8

=    

dS1/dt
dS2/dt
dS3/dt
dS4/dt
dS5/dt
dS6/dt

dS1 /dt = v1 – v2 

dS2 /dt = 2v2 – v3 

dS3 /dt = v3 – v4 + v5 

dS4 /dt = v4 – v5 – v6 

dS5 /dt = v6 – v7 – v8 

dS6 /dt = v8 
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defined above, the system of differential equations derived from the reaction network described in 

Figure 2-1can now be re-defined as follows: 

 

At steady state, the net production of the variable metabolites is balanced with their net consumption 

and information about the relationships of reaction rates can be obtained by analyzing the system 

mathematically (Schuster et al. 2007). 

If described in a matrix notation, the system of differential equations described above can now be 

expressed as the following equation (Equation 2-2): 

 N * v = 0 

 were N represents the stoichiometry matrix, v represents the vector of reaction rates or fluxes 

and N * v = 0 denotes steady state conditions. This equation is under-determined, hence there is an 

infinite number of solutions that satisfy it. 

2.2.2 Null space analysis 

Since differential equations derived from a metabolic network are linear functions of reaction fluxes, 

solutions for the system of equations can be generated using null space analysis (Hofmeyr 1986; 

Poolman et al. 2007) by exploring solutions for Equation 2-2, thus the mathematical analysis of 

structural models is based on finding instances of v that satisfy N * v = 0. The v vector is not unique, 

since there would be infinite number of v vectors that satisfy this equation. Structural analysis 

identifies individual instances of v that satisfy this equation and the properties that any v vector must 

have for any steady state. Null space analysis identifies the invariant properties of all possible 

instances of v applying standard techniques of linear algebra to the identification of a null space or 

kernel matrix for N, conventionally denoted as K. Any set of steady state fluxes can be represented 

as a linear combination of the columns in the kernel. In K, reactions are represented as rows while 

the number of columns denotes the dimension of the solution space containing all possible steady 

states. Hence, the kernel matrix corresponding to the network represented in Figure 2-1is: 

dS1 /dt = 0 = v1 – v2 

dS2 /dt = 0 = 2v2 – v3 

dS3 /dt = 0 = v3 – v4 + v5 

dS4 /dt = 0 = v4 – v5 – v6 

dS5 /dt = 0 = v6 – v7 – v8 

dS6 /dt = 0 = v8 

 
 
 



Chapter II. General methods 
 

 31 

 

The investigation of solutions for Equation 2-2 leads to the identification of the following invariant 

properties of the network: 

i) Dead reactions, or reactions which row vector in K contains solely zero elements. These 

reactions cannot carry flux in the steady state. For example, by calculating K, it is 

possible to readily identify reaction R8 in the metabolic network represented in Figure 

2-1, with row vector [0 0], as a dead reaction which could not carry flux in any steady 

state solution. 

ii) Enzyme or reaction subsets (Pfeiffer et al. 1999), or sets of reactions that must carry 

flux in a fixed ratio in any steady state solution. The non-zero elements in the row vectors 

of K for these reactions are scalar multiples of each other and, therefore, keep a constant 

ratio. Thus, reactions R1, R2, R3, R6 and R7 in Figure 2-1, which all share the same K row 

vector independently of the coefficients sign ([±1 ±1]), form an enzyme or reaction 

subset, since all must carry flux in a fixed proportion in the steady state. 

Any feasible set of reaction fluxes at steady state will be a linear combination of the matrix kernel, 

which forms the basis for the null space of the stoichiometry matrix. It is important to keep in mind 

that null space analysis does not provide an unique solution for the system, but defines the space 

containing all possible solutions. It also does not take into account thermodynamic considerations 

and, therefore, can be misleading when identifying the impact of enzyme deletions. 

Although in metabolic modelling the term null space generally refers to the right null space of the 

stoichiometry matrix (N) containing all steady-state flux solutions, the left null space reflects the 

moiety conservation relationships that are true at all states, not just the steady-state and corresponds 

to the right null space or kernel of the transpose of N. Moieties presenting the same coefficients in 

the left null space matrix are conserved moieties. Further study of the left null space is out of the 

scope of this project. 

2.2.3 Elementary modes analysis 

Elementary modes are minimal steady-state routes through the system which cannot be decomposed 

further, with all reactions involved working in the thermodynamically-favored manner. The concept 

of elementary modes was first proposed by Schuster et al. in 1999 and was achieved by exploiting 

K =  

			1 −1	
			1 −1	
			1 −1	
				0 −1	
−1 			0	
			1 −1	
−1 			1	
			0 		0
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the fact that columns on the K matrix represent minimal independent routes through the network 

(although they do not take into account the reversibility of reactions) (Schuster et al. 1999). While 

determining the kernel of a stoichiometry matrix is a computationally simple task, calculation of 

elementary modes is subjected to combinatorial explosion and, therefore, it is conventionally applied 

to networks of small size.  

Calculating the elementary modes of a network checks for the existence of feasible routes through 

the system. Since each elementary mode has an overall net stoichiometry, they can be used to identify 

the most productive pathways for production of compounds of interest. For example, this type of 

analysis has been used before in E. coli to identify the most efficient routes for production of by-

products such as DAHP (Trinh et al. 2008) and ethanol (Van Dien et al. 2002); or to obtain a deeper 

understanding of the metabolic pathways occurring in mitochondria (Nicolae et al. 2015) etc. 

This way, applying elementary modes analysis to the metabolic network described in Figure 2-1 two 

independent minimal routes through the system were defined (Figure 2-2): 

 

Figure 2-2 Elementary modes identified in the metabolic network described in Figure 2-1 

Reactions involved in the elementary mode are represented in red. A): elementary mode converting the external 

metabolite X0 into the external metabolite X1. B) Elementary mode representing an internal metabolic cycle 

were S3 and S4 are interconverted without net production or consumption of either, thus this mode has no net 

stoichiometry. 

2.2.4 Linear programming-based analysis  

Another type of mathematical analysis that can be applied to structural metabolic models is linear 

programming-based (LP-based) analysis, which identifies instances of v that satisfy the steady-state 

R1 R2 R3

R4

R5

R6 R7

X0 S1 2 S2 S3 S4 S5 X1

S6

R8

R1 R2 R3

R4

R5

R6 R7

X0 S1 2 S2 S3 S4 S5 X1

S6

R8

A)
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assumption (N * v = 0) for a given objective function, while also satisfying additional constraints 

defined by the user and thus identifies specific flux patterns through the network (Fell et al. 1986; 

Edwards et al. 2002). During LP-based analysis, the steady-state constraint is maintained while a 

specific objective is defined, such as maximizing the production of biomass per unit of substrate 

consumed (Varma et al. 1994; Schuster et al. 2008) or minimizing the total net flux through the 

system, which has been utilized as a proxy for reducing the enzymatic cost of a metabolic process 

(Holzhutter 2006; Poolman et al. 2009) by assuming flux through the network to be equivalent to 

enzymatic activity. These correspond to hypothetical biological objectives followed by the organism 

from which the model is derived. Also, further constraints are applied to single or multiple reaction 

fluxes by fixing the value, or defining the range of values, these fluxes can take. This is useful to, for 

example, explore the behavior of the system under specific conditions (e.g. in the presence or absence 

of certain substrates or electron acceptors) or to study specific processes, such as production of ATP 

or production of certain by-products from certain substrates. An example of a generic LP formulation 

is described below (Equation 2-3): 

 

    Minimize or maximize:             

 

subject to        

 

where Vtarget represents a target reaction, being the objective of the LP formulation to either minimize 

or maximize flux through this reaction; v is the vector of reaction fluxes and N is the stoichiometry 

matrix, with n rows (metabolites) and m columns (reactions), therefore, constraining the LP to obey 

the steady state assumption, while VR defines the flux through a selected reaction, being constraint 

between a lower (min) and an upper (max) flux bound. 

The objective value of a LP-based analysis solution provides valuable information. For example, if 

the objective of the analysis is to minimise the total net flux through the system, a higher objective 

value indicates that the network needs to invest more flux to satisfy the constraints imposed in the 

analysis. This value can be used to compare the efficiency of solutions obtained upon different 

constraints. 

 

Each solution obtained from solving a LP problem is an optimal flux distribution for the given 

objective, but it is not unique. Multiple optimal and sub-optimal solutions might exist. Furthermore, 

the information provided by a single solution gives very limited insight into the system’s behavior 

and the way reaction fluxes might respond in order to adapt to the changing conditions or to fulfill 

certain demands. The same LP problem can be repeatedly solved by varying a single constraint at a 

Nn,m ∙
 
v = 0

 
 

min  ≤  v
R
  ≤  max 

V
target    
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time or by sequentially incrementing one or more constraints, thus ‘scanning’ the model under 

constraints that mimic different environmental or physiological conditions. This way, a set of 

solutions can be obtained and used to identify coordinated responses (e.g. reactions that respond to 

a sequential increase in the ATP demand). This allows for a better understanding of the range of 

metabolic responses that can be exhibited by the system and, therefore, by the organism it represents. 

2.3 Software and metabolic modelling tools 

2.3.1 The Python programming language 

Python (M. Lutz 1999; Lutz 2001) is a multipurpose, high-level programming language first released 

in 1991. It is free, open-sourced and compatible with most operative systems. With a clear and 

readable syntax, Python is a less error prone software with a large collection of extensions available 

for different purposes, including statistical, numerical and scientific tools like those found on the 

SciPy and NumPy extensions. These characteristics make Phyton an ideal programming language 

for the development of software packages such as ScrumPy. 

2.3.2 ScrumPy: metabolic modelling with Python 

ScrumPy (Poolman 2006) is a software package for the reconstruction and analysis of GSMs. It is 

based on the Python programming language, which is also used as the primary user interface. 

ScrumPy is a powerful metabolic modelling tool that has been used as the sole modelling tool for 

several PhD projects and publications (Poolman et al. 2009; Poolman et al. 2013; Hartman et al. 

2014) and can be applied for both structural and kinetic modelling. This package interrogates BioCyc 

(Karp et al. 2002) databases and allows null space, elementary modes and linear programming-based 

analysis of metabolic systems using the Gnu Linear Programming Kit, 

http://www.gnu.org/software/glpk/. ScrumPy is released under the Gnu Public License, and available 

for download from http://mudshark.brookes.ac.uk/ScrumPy. ScrumPy was the software chosen for 

this project since it provides complete access to the lower-level data structures in the model while 

effectively hiding them when this is not needed. This leads to a very flexible system, facilitating the 

production of minor variants on standard analyses for specific purposes while still maintaining the 

possibility of implementing entirely novel algorithms. ScrumPy also allows examination of the 

properties of a stoichiometry matrix independently from the rest of the model. 

2.4 Construction, curation and analysis of the genome-
scale model 

This chapter describes the methods utilized for construction, curation and analysis of a genome-scale 

model of S. epidermidis. The GSM was constructed on the basis of a PGDB of the S. epidermidis 

strain RP62A. Using ScrumPy, applying the modelling techniques previously described in Section 
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2.2 (Poolman et al. 2009; Poolman et al. 2013; Hartman et al. 2014) and using specialised databases 

and the primary literature, a GSM was generated, curated and analysed for its general properties. 

Several checks for its general quality assessment were also performed and are described in the 

following sections. 

The criteria considered to choose an appropriate S. epidermidis strain for the construction of a 

genome-scale metabolic model for this project were the following: 

a)  the genome annotation of the strain should be fully completed and published. 

b)  it should be a clinical strain, involved in foreign body associated infections. 

c) it should be described as a strongly adherent biofilm-forming strain in the primary literature. 

d) it should be available and sequenced in-house. 

e) it should have been screened, together with the rest of the local NAS collection, for biofilm 

formation and described as a ‘very strong’ biofilm former. 

f) it should be included in one of the main clusters of S. epidermidis isolates from the local 

NAS collection (Section 1.3.2). 

g) it should be potentially transformable. 

S. epidermidis RP62A (DSM 28319, ATCC 35984) is a biofilm-producing strain isolated in 

Memphis, Tennessee (United States) during a sepsis outbreak associated with intravascular catheters 

(1979-1980), whose main pathogenic feature is its ability for cells to accumulate and form biofilms, 

causing foreign-body infections (Gill et al. 2005). This strain, as tested in our laboratory, meets all 

of the above criteria and was therefore selected for construction of a genome-scale metabolic model 

of S. epidermidis 

2.4.1 Genome annotation, databases and tools 

Annotated genomes and biochemical databases are crucial for the construction and curation of 

GSMs. A genome annotation assigns specific functions to the sequenced genes of a given organism, 

while metabolic and biochemical databases generally contain information about the association 

between genes encoding metabolic enzymes, proteins, enzymes, reactions and metabolites. The 

construction and curation of the GSM presented on this thesis relied on the extraction and analysis 

of information from several publicly available databases described here: 

 

 BioCyc (Caspi et al. 2012), (Karp et al. 2017) is a collection of several thousands of 

organism-specific Pathway/Genome Databases (PGDBs). Single PGDBs are created 

computationally by the PathoLogic component of the Pathway Tools software (Karp et al. 2011; 

Karp et al. 2016) using MetaCyc (Caspi et al. 2016). These are collections of database entries such 

as reactions, metabolites and pathways predicted from the specific genome annotation of each 

organism plus reactions artificially added by the Pathway Tools software during the ‘gap-filling’ 

process aimed at minimising the effect of misannotated genes. While this avoids the presence of gaps 
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in the network, it introduces the risk of overestimating the metabolic potential of the organism and 

the biological basis of the inclusion of several of these reactions often needs to be verified by 

consulting alternative databases or the specialised literature. Various versions of the BioCyc PGDB 

for Staphylococcus epidermidis RP62A derived from its annotated genome available at RefSeq were 

utilised for model construction and curation during the project (Section 2.4.2.2). 

 

 The MetaCyc database (Karp et al. 2011; Caspi et al. 2012) is a PGDB that describes 

metabolic pathways and enzymes from all domains of life derived from over 46,000 publications. 

The majority these pathways have been experimentally determined. This is, to date, the largest 

curated collection of metabolic pathways. MetaCyC was used for manual curation of the GSM. 

 

 KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al. 2000; Kanehisa et al. 

2002) is a collection of databases useful for understanding high-level functions of a biological system 

combining genomic and biochemical information. It also includes information at the systems level 

and regarding the effect of diseases and drugs. KEGG has been found to contain more compound 

name inconsistencies than BioCyc. 

 

 BRENDA  (Braunschweig Enzyme Database) (Schomburg et al. 2000; Jeske et al. 2018) is 

the main publicly available collection of enzymes and their functionality which data has been directly 

extracted from literature and critically evaluated by experts. It contains useful information for model 

curation, including preferred enzyme substrates and cofactors, reaction directionality and 

reversibility and several kinetic parameters. BRENDA is available at www.brenda-enzymes.org. 

 

 eQuilibrator (Flamholz et al. 2012) is a web interface which allows the analysis of reactions 

under several conditions (e.g. pH, temperature, ionic strength) and provides their corresponding 

thermodynamic parameters. These can be used to determine, for example, the directionality or 

reversibility of reactions for which data is either missing or is contradictory in the biochemical 

databases. 

2.4.2 Model construction and structure 

In an initial step, reactions of the model were extracted from the organism specific PGDB with the 

ScrumPy module PyoCyc. The model was generated and defined in a modular manner as instructed 

in Appendix A, Section A.1.1. Splitting certain sets of reactions into different modules allowed for 

specific analysis of sections with either high metabolic impact (e.g. the electron transport chain) or 

special interest for the aims of  this project (e.g. study of production of biofilm and planktonic 

biomass components), as well as facilitating the study of the system under different conditions (e.g. 

utilising different media). The resulting model consisted of seven modules and are described on this 

section (Figure 2-3): 
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1. A ‘top-level’ module, which primary function is to import all other modules. 

2. Automatically generated reactions (derived from the PGDB) 

3. Transporters for media components 

4. Transporters for planktonic biomass components 

5. Transporters for biofilm biomass components 

6. Reactions from the Electron Transport Chain (ETC) 

7. Other additional reactions (Extras) 

 

Figure 2-3 Modular structure of the S. epidermidis RP62A GSM 

2.4.2.1 ‘Top-level’ module 

This module specifies that the model is a structural model, the type of data, which metabolites (if 

any) should be considered as external, and finally, imports the other modules described in multiple 

files. 

2.4.2.2 Automatically generated reactions 

The initial reaction set corresponding to ‘Staphylococcus epidermidis, strain RP62A’ was extracted 

from the PGDB flat files obtained from the BioCyc ftp site (Karp et al. 2002; Caspi et al. 2016). The 

PGDB used (v. 20.1) had not undergone any manual curation or review (tier 3) and may therefore 

contain errors, which emphasises the need for subsequent manual curation. Reactions present in this 

PGDB version were later compared with those in a newer version (v. 20.5) and updated accordingly 

if needed. However, the most recent version available during the length of this project (v. 22.6) was 

not used, since it appeared to be less complete: e.g. reactions of the anaerobic respiration seemed to 

be missing. 

2.4.2.3 Transporters  

Lack of reliable annotation data for transporters is one of the main challenges in the construction of 

GSMs. The transporters defined in the PGDB were ambiguous and the data available was far from 
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complete. Thus, all media and biomass transporters were manually included in the model and 

described as reactions importing and/or exporting single compounds. Transporting reactions should 

be updated in the future according to improvements in the databases and more accurate data available 

at the time. 

 

In the GSM, transport reactions are differentiated from others by addition of the suffix ‘_tx’ to the 

reaction name. All external counterparts of internal compounds were differentiated by addition of 

the prefix ‘x_’ to the metabolite name. All transporting reactions were defined with the external 

species on the left hand side, so that a positive flux represents import into the system and a negative 

flux represents export outside the system. 

 

Transporters for planktonic biomass components 

Transporters for individual components of the planktonic biomass were included here. The suffix 

‘_bm_tx’ was assigned to these reactions for accounting purposes, as described in Poolman et al. 

(2013). 

Transporters for biofilm biomass components 

Transporters for individual components of the biofilm biomass were added to this module. The suffix 

‘_bf_bm_tx’ was assigned to these reactions for accounting purposes. 

Transporters for media components 

This module contains transport reactions for the import of each compound present in the media. The 

suffix ‘_mm_tx’ was assigned to these reactions for accounting purposes. 

2.4.2.4 Electron transport chain 

In order to facilitate specific analysis of the electron transport chain (ETC), the ATP synthase 

reaction and those involved in generation of the proton motive force (PMF) were placed in an 

independent module. These reactions were initially extracted from the PGDB and modified as 

follows: most reactions were atomically unbalanced, thus their stoichiometry was corrected as per 

MetaCyc vs 22.6. Reaction dependency on ubiquinones was substituted for menaquinones, since 

these are the only quinones known to be present in staphylococci (Sasarman et al. 1974; Burke et al. 

1975; Tynecka et al. 1999; McNamara et al. 2000). 

2.4.2.5 Additional reactions 

Additional reactions that were required for the individual synthesis of each biomass component were 

added in a module named ‘Extras’ after confirming that genes for the corresponding enzymes were 
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present in the genome or the existence of experimental evidence supporting their addition. These 

included, among others, reactions involved in the synthesis and degradation of ‘glycogen’ (Section 

2.4.3.3), and reactions involved in the synthesis of the biofilm polymers PIA1 and PIA2 (Section 

2.5). Specific reactions needed for completion of biosynthesis of amino acids were also added, with 

the basis for their inclusion thoroughly described in Chapter 4 and a generic irreversible ATPase 

reaction (ATP hydrolysing) was included too. Finally, additional reactions for completion of cell 

membrane and cell wall synthesis were added: synthesis of cell membrane lipids (palmitate, 

phosphatidic acid, 1,2-diacylglycerol, CDP-diacylglycerol, phosphatidyl-glycerol and cardiolipin) 

involves reactions including compounds of undefined atomic composition, which inclusion in the 

model could complicate identification of potential errors leading to stoichiometry inconsistencies 

(Section 2.4.3.2). As a way to overcome this problem, a generic lumped reaction synthesising 

palmitate was included on this module:  

8 ACETYL-COA + 14 NADPH + 7 ATP + 6 PROTON + WATER ¬® PALMITATE + 14 

NADP + 8 CO-A + 7 ADP 

This made possible to describe the synthesis of the other lipid-containing compounds as derivatives 

from palmitate. Note that lumped reactions were represented with lower case to differentiate them 

from reactions obtained from databases.  

The same problem was encountered regarding synthesis of cell wall components (peptidoglycan, 

wall-teichoic acid and lipoteichoic acid). However, their production is important for biofilm 

formation in staphylococci (Arciola et al. 2012; Becker et al. 2014), and so, their full biosynthetic 

pathways were included, since they will be relevant for future investigations. These pathways are 

well described on MetaCyc for staphylococci (S. aureus) and most of their reactions were already 

present in the PGDB and therefore in the model. However, the peptidoglycan biosynthetic pathway 

derived from the PGBD led to production of diaminopimelate-containing peptidoglycan, while it is 

known that staphylococci produce the lysine-containing type (Somerville 2016). Therefore, some 

reactions were substituted for their S. aureus-specific equivalents on MetaCyc. 

2.4.3 Model curation 

The main aspects of the curation process are explained here in detail. In addition, several quality 

checks were undertaken in order to ensure consistency between the in silico behaviour of the GSM 

and specific biological features of the modelled organism (e.g. production of experimentally 

determined biomass components) and are described on the following section. The main steps 

followed during model curation are summarized in Figure 2-4 and explained below. 
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Figure 2-4 Diagram describing the steps that integrate the process of metabolic model construction and 

refinement.  

Adapted from Cell Systems Modelling Group, Oxford Brookes and reproduced here with permission. Purple 

boxes: aspects or sections of the model that require especial attention during the curation process. Blue boxes: 

actions undertaken. 

2.4.3.1 Correction of atomically unbalanced reactions 

This step deals with simple material imbalances which are relatively easy to detect. Reactions with 

wrong stoichiometry derive from errors in the databases used for construction of the model. For 

example, the reaction RXN-8635 extracted from BioCyc version 20.1 presented the following 

stoichiometry: 

HYDROGEN-PEROXIDE ® 2 WATER + CPD-8653 + CPD-8890 

where CPD-8653 is betanidin (with empirical formula H14C18O8N2) and CPD-8890 is betanidin 

quinone (with empirical formula H12C18O8N2). This stoichiometry suggests that hydrogen-peroxide 

(H2O2) dissociates into H2O, betanidin and betanidin quinone, which is clearly not correct. This 

inconsistency can be resolved by removing the molecule of betanidin from the right hand side of the 

equation and adding it to the left hand side,  thus allowing hydrogen-peroxide to oxidize betanidin 

to betanidin quinone while generating two molecules of H2O. 

 

Sorting out atomic imbalances also implied dealing with ‘unknown metabolites’: some well-known 

metabolites were missing assigned empirical formulae and this was simply fixed by manual addition. 

For those with assigned formulae missing in BioCyc but present in MetaCyc, the information was 

updated accordingly. For others, relative empirical formulae with respect to related compounds had 
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to be defined (e.g. reduced vs oxidised compound forms). Reactions involved with non-metabolic 

species (e.g. ‘Damaged-DNA-Pyrimidine’) were removed, while generic unknown compounds such 

as ‘Amino-Acids’ or ‘Aldehydes’ were either substituted for specific metabolites in 

stoichiometrically balanced reactions or removed. In this manner ‘Quinones’ and ‘ETC-Quinones’ 

were substituted for ‘MENAQUINONE’ and ‘D-GLC’ for ‘GLC’ (as per the official metabolite 

identifier for glucose in ByoCyc), etc. Atomically unbalanced reactions were investigated and 

corrected by referring to the primary literature and online databases MetaCyc (Caspi et al. 2014), 

BRENDA (Schomburg et al. 2000) and KEGG (Kanehisa et al. 2002). 

2.4.3.2 Material consistency of the model 

Identifying and resolving material inconsistencies caused by the presence of metabolites with 

unknown empirical formulae is a fairly difficult task. Gevorgyan et al. proposed a method capable 

of detecting these inconsistencies by considering only the stoichiometry of the reactions (Gevorgyan 

et al. 2008). They described an algorithm that, when applied to the analysis of the left null space of 

the stoichiometry matrix (Section 2.2.1), could identify the metabolites that were unconserved across 

the system, even when their atomic composition was not known. For instance, given three 

metabolites (A, B, and C) of atomic masses different to zero, the presence of a set of two reactions 

such as the ones described below would constitute a stoichiometric inconsistency of the model, since 

both statements could not be true at the same time: 

A ® B 

A ® B + C 

2.4.3.3 Synthesis of polymers 

In order to avoid introduction of mass inconsistencies, polymer-synthesising reactions were treated 

in the following manner: polymers were assigned the empirical formulae of their corresponding 

monomeric units and the stoichiometry of the reactions was adjusted accordingly. For example, two 

reactions involved in the synthesis and degradation of the GLC polymer ‘glycogen’, initially 

described in MetaCyc as: 

Glycogen synthesis: 

ADP-D-GLC + 1-4-alpha-D-glucan  ¬® ADP + 1-4-alpha-D-glucan 

Glycogen degradation: 

Glycogen + Pi  ®  CPD0-971 + GLC-1-P 

being CPD0-971 a glycogen dextrin, these reactions have net stoichiometries which allow an overall 

conversion of ADP-D-GLC into ADP, and Pi into GLC-1-P, clearly violating the principle of mass 

conservation: 
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Glycogen synthesis: 

ADP-D-GLC  ¬®  ADP  

and 

Glycogen degradation: 

Pi  ®  GLC-1-P 

 

This problem was solved by considering glycogen to be made of one unit of the monomer GLC and 

re-writing the stoichiometry of the reactions accordingly: 

Glycogen synthesis: 

ADP-D-GLC + WATER  ¬®  ADP + Glycogen + PROTON 

Glycogen degradation: 

Glycogen + Pi  ®  GLC-1-P + WATER 

Other polymers specific to this model were also redefined to solve inconsistencies: in the same 

manner as described for glycogen, reactions involved in the synthesis of the biofilm polymers PIA1 

(poly-b(1-6)NAcGlc) and PIA2 (deacetylated PIA1) were included in the model. The empirical 

formula for PIA1 was considered to be that of its monomeric unit NAcGlc, and the reactions were 

defined as follows: 

PIA1 synthesis: 

UDP-N-ACETYL-D-GLUCOSAMINE + WATER ® PROTON + PIA1 + UDP 

PIA2 synthesis: 

PIA1 + WATER ® PIA2 + ACET 

A detailed description of the involvement of these PIA polymers in biofilm production, their 

biochemical composition and their biosynthetic mechanisms is provided in Chapter 0, Section 1.7.4. 

2.4.3.4 Addition of transporters for cell biomass components 

One common way to analyse the production of biomass by a GSM is to define a single lumped 

biomass equation which specifies the relative proportion of each macromolecular (or 

micromolecular) biomass component per unit of biomass. This model includes individual 
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transporters for each single micromolecular biomass component and instead of computing biomass 

production by defining a biomass equation containing fixed proportions of biomass components, a 

dictionary of fluxes for these exporters is specified and used as a constrain during LP-based analysis 

of the system. This allows for a higher degree of detail and flexibility in the study of biomass 

synthesis since it is possible to, for example, fix the lower flux bounds of these exporters while 

leaving their upper reaction fluxes unbound. This way, the system is allowed to vary the composition 

of the biomass produced in response to changing environmental conditions, which is closer to the 

biological behaviour of the modelled organism. 

Due to the lack of detailed biomass composition data available for S. epidermidis, transporters for 

biomass components were added according to the cell composition described in a previous GSM of 

S. aureus (Heinemann et al. 2005): this consisted of a representative average biomass composition 

derived from previously published data for various S. aureus strains obtained in several different 

media and under various conditions. Some modifications were introduced, either for simplicity or 

accuracy, based upon currently available biochemical data for S. epidermidis. In summary, these 

were: inclusion of free amino acids described in the pool of solutes and wall-associated surface 

proteins within the protein section; removal of salts from the pool of solutes, since they are not 

actively involved in any reaction in the model except with their own transport; substitution of GLC 

equivalents for glycogen as main carbohydrate storage compound; removal of lysyl-

phosphatidylglycerol from the lipid section, since it was only present as traces in the cell membrane 

of S. epidermidis (Nahaie et al. 1984); and finally, modification of cell wall composition to include 

the two main polymers in the cell wall of staphylococci (Somerville 2016): a D-D crosslinked 

peptidoglycan and a peptidoglycan-wall teichoic acid complex, both with complete biosynthetic 

pathways specifically described for S. aureus in MetaCyc. For further details on the specific biomass 

composition utilised during this project see Appendix B (Section 9.2, Table 9-1). 

2.4.4 Fundamental validation of the model 

After construction, the model was analysed for its properties and several quality checks were 

performed in order to assure its quality and consistency. The results obtained are presented below, 

with some specific aspects of the validation process explained in greater detail. 

2.4.4.1 Model analysis for fundamental validation 

Unless stated otherwise, the model was generally analysed by LP as shown in Equation 2-4, selecting 

minimization of the absolute sum of total fluxes as the objective function and considering this as a 

proxy for minimising protein investment. The solutions allowed were further constrained by setting 

the flux through the reactions exporting biomass precursors to meet their proportions experimentally 

described in the biomass. 

The LP was defined as follows (Equation 2-4): 
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minimize:  ∑  |v|m
i=1   

 

subject to        

 

where v is the vector of reaction fluxes and N is the stoichiometry matrix, with n rows (metabolites) 

and m columns (reactions) and, therefore, Nn,m ∙
 
v = 0 defines the steady state assumption. vk…m  

defines the rates of flux through the biomass transporter reactions from the kth to the mth reaction of  

N, and vATPase defines the flux through a generic ATPase reaction, included in the model to meet the 

energy demand for cell growth and maintenance (e.g. polymerisation of components in the biomass 

etc). 

2.4.4.2 Model-wide conservation of mass 

The model was evaluated for mass conservation in the following manner: the flux through all media 

transporting reactions was constrained to zero, so the model worked as a closed system, while the 

flux of each exporter for biomass components was set to an arbitrary negative value one at a time. 

The LP was then solved as described in Equation 2-4. The existence of a feasible solution reflected 

a violation of mass conservation. In such a case, reactions in the solution were carefully examined, 

checked against thermodynamic data and corrected or removed as appropriate.  

2.4.4.3 Model-wide conservation of energy and redox 

The model was evaluated for conservation of energy in the following manner: the flux through all 

media transporting reactions was constrained to zero, so the model worked as a closed system, while 

the flux through the generic ATPase reaction was set to an arbitrary positive value. The LP was then 

solved: the existence of a feasible solution reflected a violation of energy conservation. In such a 

case, reactions in the solution were carefully examined, checked against thermodynamic data and 

corrected or removed as appropriate. A similar procedure was used to ensure redox conservation by 

detecting oxidation of the reducing equivalents NADH and NADPH.  

2.4.4.4 Feasibility of biomass production 

The capability of the model to produce each single biomass component at a time was investigated: if 

the LP had no feasible solution, two possibilities were considered: i) missing reactions could be 

causing a discontinuity in the network, thus preventing biosynthesis of the compound, or ii) all 

reactions needed for its synthesis were present but some could exhibit wrong directionality or 

reversibility. In the first case, missing reactions were added to the model and in the latter, candidate 

reactions for thermodynamic re-definition were identified in the following manner: all reactions in 

the model were temporarily declared reversible and the LP problem was solved again. If a feasible 
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solution was found, reactions previously defined as irreversible, which flux sign had changed in the 

new solution, therefore, working in the opposite direction were evaluated against thermodynamic 

data and their reversibility or directionality was then re-defined as corresponded. Energy and redox 

conservation properties were re-checked after each alteration. 

2.4.4.5 Definition of auxotrophies and essential media components 

The LP-based analysis technique was used to check for the essentiality of media components. This 

allowed defining possible auxotrophies to be compared with experimental data for model curation 

and to detect possible gaps in the network due to missing reactions that needed to be included: initial 

investigations considering an in silico Glc-based minimal medium with NH4
+ as sole N source 

demonstrated that the model was not able to account for the synthesis of several biomass components, 

including the amino acids Asn, Cys, Met and Phe. Since staphylococci have been reported to present 

a wide range of amino acid, purine and vitamin auxotrophies, both for growth and biofilm production 

(Knight 1937; Emmett et al. 1975), it was difficult to discern if these auxotrophies represented real 

biological features of the organism or reflected errors or gaps in the system. Therefore, experimental 

data on minimal growth requirements was obtained and used for further model refinement (Chapter 

4). After this, the model was again analyzed to check for the essentiality of media components: it 

could finally reproduce synthesis of each individual biomass component utilising an in silico minimal 

medium composed of Glc, core set substrates (NH4
+, SO4

-2 and HPO4
-2), H2O and solely 

supplemented with the vitamin niacin. If niacin is not provided, the system cannot account for the 

synthesis of NAD, NADH, NADP or NADPH. 

2.4.4.6 Other quality checks 

Inconsistent reaction subsets define reactions which cannot carry flux at the same time in any steady 

state solution. They can represent potential errors in the description of the model due to missing 

reactions or reactions defined inappropriately. Determining the inconsistent reaction subsets in the 

model allowed identification of discontinuities in the network (i.e. caused by metabolite name 

inconsistencies) and reactions with inappropriate directionality or reversibility. These 

inconsistencies were resolved by addition of missing reactions or by modifying existing reactions 

upon evaluation of information from the databases (MetaCyc, BRENDA and eQuilibrator (Flamholz 

et al. 2012)) and the primary literature. 

2.5 General properties of the model 

The general model properties where examined by null space and LP-based analysis of the 

stoichiometry matrix and are summarized in Table 2-1:
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Table 2-1 General properties of the GSM for S. epidermidis RP62A 

FEATURES OF THE GSM BEFORE 
CURATION AFTER CURATION 

Reactions excluding transporters 1264 880 

Transporters 42  72 

Reactions associated with identifiable 
genes Not computed 606 

Metabolites 1411 859 

Dead reactions 767 339 

Orphan metabolites 624 307 

Metabolites with undefined empirical 
formulae 564 0 

Unbalanced reactions 579 0 

Atomic balance for C, N, S, P, O, H No Yes 

Stoichiometry inconsistencies Yes No 

Reaction subsets 388 406 

Inconsistent reaction subsets 29 0 

Mass, energy and redox conservation No Yes 

Biomass production 23 out of 49 
components 

All components except 
niacin (auxotrophy) 

 

This table summarizes how the properties of model have been modified throughout the curation process and 

compares the characteristic of the draft model with its final curated version.
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Iterative refinement of the initial draft model automatically derived from the PGDB of S. epidermidis 

RP62A into the final GSM presented here implied removal of 384 reactions and 552 metabolites in 

order to deal with problems such as presence of reactions wrongly included in the PGDB for this 

organism, solve inconsistencies derived from the use of multiple names to refer to single compounds,  

or deal with reactions with incompatible stoichiometries, as already described in this chapter. Over 

one third of the reactions of the final model are dead and over a third of the metabolites present are 

identified as ‘orphan’. This is not an unusual result and it is mainly due to the genetic and metabolic 

information available for this organism being incomplete. 

 

Several quality checks were performed in order to assure the quality and coherence of the GSM: after 

curation, all reactions were atomically balanced for those elements accounting for the major atomic 

composition of the biomass: carbon (C), nitrogen (N), phosphorous (P), sulphur (S), oxygen (O) and 

hydrogen (H) (Section 2.4.3.1). An artificial metabolite (x_Awork) was introduced as a product of 

the ATPase reaction for accounting purposes and has no mass and no associated empirical formulae. 

Therefore, an undetermined atomic imbalance was introduced related to this compound but has no 

real significance. For the same reasons, this is also the sole metabolite for which overall 

stoichiometry is not conserved throughout the network but this does not reflect a real error in the 

model description (Section 2.4.3.2). Furthermore, the model presented several mass, energy and 

redox inconsistencies, all of which were eliminated during the curation process following the 

methods described in Sections 2.4.4.2 and 2.4.4.3. Finally, a total of 29 inconsistent subsets were 

determined, investigated and resolved (Section 2.4.4.6). 

 

In summary, a GSM of S. epidermidis RP62A has been constructed, curated and analysed for its 

fundamental properties. The model is conserved for mass, energy and redox and free of 

stoichiometric inconsistencies and can account for production of each individual biomass component 

utilising an in silico Glc-based minimal medium supplemented with niacin. This chapter described 

the construction, curation and validation processes of the GSM and established its good quality, 

hence supporting its use as a tool to study the metabolism of S. epidermidis RP62A. 

 

Relevant code to the work described in this chapter can be found in Appendix A (Sections 9.1.2.1, 

9.1.2.2, 9.1.2.4 and 9.1.2.7); 
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3 Fundamental characterisation of the genome-
scale model 

3.1 Introduction 

Bacteria are capable of adjusting their metabolism to maintain required ATP yields upon changes in 

environmental conditions such as variation in the availability of nutrients or electron acceptors 

(Uribe-Alvarez et al. 2016), therefore, understanding the mechanisms behind these processes gives 

useful insight into their ability to adapt to different hosts and environments (e.g. growing on the skin 

vs growing in joints in the human body).  

 
The previous chapter described the general properties of the model constructed for S. epidermidis 

RP62A and how several quality checks applied demonstrated its consistency, hence supporting its 

application to the study of the bacterial metabolism. Here we describe how the model was used to 

investigate biologically relevant metabolic states. The analysis undertaken allowed comparison of 

the model’s behaviour with biological features and experimentally described strategies exerted by 

staphylococci, such as the functioning of the electron transport chain and utilisation of various C 

sources for energy production. Specifically, the model was utilised to account for: i) Glc, Glt and Ac 

utilisation for ATP synthesis; ii) production of planktonic biomass; and iii) production of acetoin and 

butanediol as well as their utilisation as C sources, as has been described on staphylococcal biofilms. 

During these analysis, the system was used to explore likely responses to changes in the availability 

of electron acceptors (O2 and NO3
-). 

 

The relevant background for these investigations is described in Chapter 0, Section 1.4. 

3.2 Methods 

3.2.1 Model analysis for ATP production 

LP-based analysis of the model was applied to study the capacity of the system to generate ATP from 

various C sources without considering biomass production, thus allowing definition of the system’s 

maximum theoretical ATP yields. The analysis assumed that the in silico medium available to the 

system was a minimal medium composed of SO4
-2, HPO4

-2, NH4
+, H2O, niacin and the C source/s 

relevant to each particular study, plus additional NO3
- in order to enable anaerobic respiration. The 

model utilised for this work was Sepi_MinMed.spy unless stated otherwise. The  LP formulation 

applied was described as follows (Equation 3-1):  
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i) minimize:  ∑  |v|m
i=1  

or 

ii) minimize:   

 

 subject to   

 

where the flux through the ATPase reaction was set to 1, forcing the system to consume 1 unit of 

ATP. While this value does not have a physiological significance it was chosen as the ATPase flux 

constraint in all analysis for production of ATP in this chapter in order to facilitate the comparison 

of the results obtained. The LP was solved twice, selecting as objective function either: i) 

minimization of the sum of total fluxes through the network as a proxy for minimizing the enzymatic 

cost (based on the speculation that a higher flux would be equivalent to a higher enzymatic activity); 

or ii) minimization of flux through the C source importer, thus optimising its utilisation for ATP 

production, since by reducing the consumption rate of these substrates to the minimum while 

maintaining the ATP demand constant the solution obtained will produce the higher ATP per unit of 

C source yield. The analysis was performed in aerobic and anaerobic conditions and in the presence 

and absence of NO3
-. 

Relevant code to the work described in this chapter can be found in Appendix A, Sections 9.1.2.1, 

9.1.2.3, 9.1.2.6, 9.1.3.1 and 9.1.3.2) 

3.3 Results 

3.3.1 Characterisation of the electron transport chain 

Model analysis 

Reactions involved in the ETC were re-written as a stand-alone module, which included all reactions 

present in the ETC module described in Chapter 2, Section 2.4.2, plus those allowing regeneration 

of oxidized cythochromes via reduction of either NO3
- or NO2

- during anaerobic respiration. This 

allows analysis of the ETC as an independent system, which was needed in order to ensure its correct 

functioning as part of the model curation process. Its analysis identified all independent minimal 

routes for ATP synthesis through this subnetwork by calculating its elementary modes (EMs). This 

allowed comparison of the ATP production efficiency of these routes by calculating their net 

stoichiometries and their ATP/NADH ratios. An artificial metabolite (x_Awork) was introduced in 

the stand-alone module as a product of the ATPase reaction. This was purely done for accounting 

purposes, since it allowed identifying the flux through the ATPase reaction from the net 
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stoichiometry of the calculated EMs. Thus production of one unit of x_Awork would denote one unit 

of flux through the ATPase reaction (sole ATP consuming reaction in this system), and therefore, 1 

unit of flux through the ATP synthase reaction. Since x_Awork as no mass or associated empirical 

formulae, stoichiometric imbalances related to this compound can be considered trivial. For 

completion, the NO3
- and NO2

- transporters of the stand-alone ETC were defined as reversible, 

although were made irreversible during further analysis of the model, with NO3
- being imported and 

NO2
- exported as corresponded, according to the specific conditions considered in each study. 

 

Results 

The figures shown below describe the reactions contained in this module and their potential 

interaction patterns: while Figure 3-1 represents the menaquinone-dependent NO3
- reduction 

mechanism described for staphylococci (Chapter 0, Section 1.4.1), Figure 3-2 represents its 

cytochrome-dependent alternative (Chapter 0, Section 1.4.1). For simplicity, H2O and internal 

protons are not shown in these diagrams. 

 
Figure 3-1 Reactions of the ETC representing the menaquinone-dependent NO3

- reduction mechanism 

described for staphylococci.  

The abbreviations shown in this figure stand for the following: AWork = artificial external metabolite 

introduced as a product of the ATPase reaction for accounting purposes with no mass or associated empirical 

formulae; Mena = menaquinone; Cyto = cytochrome; red = reduced; ox = oxidised. The NO3- reduction 

mechanism represented here is functionally linked to the oxidation of menaquinones and can work without 

directly involving the action of cytochromes (Sasarman et al. 1974; Uribe-Alvarez et al. 2016). 
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Figure 3-2 Reactions of the ETC alternative mechanism of NO3

- reduction via cytochromes described for 

staphylococci 

The abbreviations shown in this figure stand for the following: AWork = artificial external metabolite 

introduced as a product of the ATPase reaction for accounting purposes with no mass or associated empirical 

formulae; Mena = menaquinone; Cyto = cytochrome; red = reduced; ox = oxidised. Here, NO3- is directly 

reduced upon interaction with cytochromes which get oxidised and are brought back to their reduced state by 

oxidising menaquinones (Sasarman et al. 1974; Burke et al. 1975; Heinemann et al. 2005). 

 

If the ETC follows the menaquinone-dependent NO3
- reduction mechanism, the NO2

- produced could 

be either reduced further to NH4
+ via interaction with cytochromes or be excreted out of the system. 

However, the cytochrome-dependent mechanism does not allow the resulting NO2
- to be reduced 

further, hence its excretion becomes mandatory. 

 

A total of 6 EMs were determined during the analysis, presenting 4 different net stoichiometries. 

Their net stoichiometries were calculated and are described below. The ATP/NADH and P/O ratios 

of these modes were calculated in the following manner: for example, in EM1 (below), 4 molecules 

of NADH were oxidized to NAD and 9 molecules of ATP were produced (denoted by Awork). Thus, 

its associated ATP/NADH ratio would correspond to 9 ATP /4 NADH = 2.25. Since 2 molecules of 

O2 are consumed in the process and this is equivalent to 4 half molecules of O2 (4 O), the P/O ratio 

for EM1 would be 9 ATP / 4 O = 2.25. 
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 Net stoichiometry and ratios of modes utilising O2 as final electron acceptor 

EM1:  2 O2 + 4 NADH + 4 H+  ®  4 NAD + 9 Awork + 4 H2O 

ATP/NADH ratio = 2.25; P/O ratio = 2.25 

Net stoichiometry and ratios of modes utilising NO3
- as final electron acceptor 

EM2: 2 NO3
- + 8 NADH + 12 H+ ® 2 NH4

+ + 8 NAD + 15 Awork + 6 H2O 

ATP/NADH ratio = 1.87 

EM3: 4 NO3
- + 4 NADH + 4 H+ ® 4 NO2

-
  + 4 NAD + 7 Awork + 4 H2O 

ATP/NADH ratio = 1.75 

Net stoichiometry and ratios of modes utilising NO2
- as final electron acceptor 

EM4: 4 NO2
- + 12 NADH + 20 H+ ® 4 NH4

+ + 12 NAD + 23 Awork + 8 H2O 

ATP/NADH ratio = 1.92 

The excretion of protons as H2O in all EMs is compensated by the import of external protons via the 

ATP synthase reaction. 

3.3.2 Metabolic responses for ATP production under a range of 
environmental conditions 

3.3.2.1 ATP production from glucose 

In order to investigate the ability of the system to obtain energy from Glc and reproduce the behaviour 

described for staphylococci during the first metabolic state (Somerville et al. 2003; Sadykov et al. 

2013; Somerville 2016), an in silico study was performed were the system was analysed for ATP 

production utilising a Glc-based minimal medium. 

 
Model analysis 

The model was analysed as described in Section 3.3.2, considering Glc as the sole C source available 

for ATP synthesis and in the presence and the absence of O2 and NO3
-. 

 

Results 

The optimal solutions obtained for the conditions tested are compared in Table 3-1: 
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Table 3-1 Model responses for production of ATP from Glc considering two alternative analysis 

objectives in the presence and absence of electron acceptors 

Analysis 
objective 

Minimization of total net flux through the 
network Minimization of Glc import 

Electron 
acceptor 
available 

ATP 
per 
C 

ATP 
per 
Glc 

P/O 
ratios 

Metabolic 
strategy followed 

ATP 
per 
C 

ATP 
per 
Glc 

P/O 
ratios 

Metabolic strategy 
followed 

O2 2.00 12.00 2.00 
3.00 

Oxidation to Ac + 
ETC with O2 4.33 26.00 1.83 

2.17 
Glycolysis + TCA 
cycle + ETC with O2 

NO3- 1.75 10.5 - Oxidation to Ac + 
ETC with NO3

- 3.58 21.5 - 
Glycolysis + TCA 
cycle + ETC with 
NO3

- 

None 0.667 4.00 - 
Fermentation to 
butanoate and 
Form 

0.667 4.00 - Fermentation to 
butanoate and Form 

 

Conditions set: presence of O2, anaerobiosis and presence and absence of NO3-. When both O2 and NO3- are 

available, O2 was the only electron acceptor utilised, thus this condition was omitted from the table. For those 

conditions showing two P/O ratio values, the first value corresponds to the oxidative plus substrate level 

phosphorylation and the second one to the oxidative phosphorylation only. 

These LP analysis solutions are represented in diagrams and described in further detail below (Figure 

3-3 to Figure 3-6. 
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Figure 3-3 ATP production from Glc in the presence of O2 when total flux through the system was minimised. 
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Figure 3-4 ATP production from Glc in the presence of NO3- when total flux through the system was minimised.
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Figure 3-5 ATP production from Glc in the presence of O2 and NO3- when the import of Glc was minimised.  
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Figure 3-6 ATP production in the presence of Glc and the absence of O2 and NO3- for both objective functions: minimisation of net total flux through and minimisation of Glc 
consumption) 
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In the response obtained for ATP production from Glc in the presence of O2 when total flux through 

the system was minimised (Figure 3-3), Glc underwent glycolysis and the Pyr produced was oxidized 

to Ac via AcCoA by Ac-CoA ligase (EC 6.2.1.1) working in the reverse direction, rather than by the 

Pta-AckA pathway commonly described for staphylococci (Somerville et al. 2003; Sadykov et al. 

2013; Somerville 2016; Halsey et al. 2017) (Chapter 0, Section 1.4.2.1). Since the Ac-CoA reaction 

presents the same net stoichiometry as this pathway, it was prioritised by the system in order to 

reduce the total net flux through the network. The NADH generated entered the ETC, where electrons 

were finally transferred to O2 and NAD was regenerated to maintain the glycolytic flux and redox 

balance. 12 molecules of ATP were produced per molecule of Glc consumed. The protons excreted 

with Ac contributed to the PMF that pumps the ATP synthase. 

 

When O2 was absent but NO3
- was available, a similar response was observed (Figure 3-4), however, 

in this case NO3
- was utilised as the ultimate electron acceptor of the ETC, generating 10.5 molecules 

of ATP per Glc consumed. Here, the protons excreted with Ac (but not NH4
+) contributed to generate 

the PMF that enabled flux through the ATP synthase. This solution matches experimental 

observations published by Uribe-Alvarez et al. 2016, where the menaquinone-dependent NO3
--

reducing mechanism was seen to be favoured in vitro over its cytochrome-NO3
- reducing alternative, 

as previously described in Section 1.4.1 

 

When metabolism was re-directed to optimise Glc utilisation for energy production (Figure 3-5), the 

model catabolised Glc via glycolysis and the TCA cycle. O2 was utilised as the final electron acceptor 

of the ETC, with the subsequent generation of 26 ATP molecules per molecule of Glc. When O2 was 

not available, a similar response was observed (data not shown), utilising NO3
- as the ultimate 

electron acceptor and generating 21.5 molecules of ATP per Glc consumed. Since the TCA cycle of 

prokaryotes works with a NADPH-dependent isocitrate-dh (MetaCyc vs 22.6), the action of a 

transhydrogenase becomes mandatory in order to allow the NADPH produced to be ‘translated’ into 

NADH, as was shown in this response. The NADH produced entered the ETC for ATP production 

and regeneration of NAD for the glycolytic process. 

 

When neither O2 or NO3
- were available (Figure 3-6), Glc was fermented to Form, Ac and butanoate. 

Ac was not excreted to the medium but rather utilised to regenerate AcCoA during reduction of 

butyryl-CoA to butanoate. This strategy was less efficient than previous responses, with only 4 

molecules of ATP being produced per Glc consumed. 

 

When a further constraint was applied and the flux through the Form exporter was set to zero, the 

model fermented all Glc to Lac in a less efficient process, generating only 2 molecules of ATP. This 

proves than even though Glc fermentation to Lac is possible (as reported in the literature 

(Sivakanesan et al. 1980; Fuchs et al. 2007)), it is less efficient than other alternative fermentative 
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responses, not only from an energetic point of view, but also with respect to the total net flux through 

the network, since the objective value of this response is higher than that obtained during 

fermentation to butanoate and Form. Protons excreted with butanoate and Form did not contribute to 

the PMF needed to pump the ATP synthase. Note that, while the LP-based analysis solution obtained 

for minimisation of Glc consumption was similar to the one obtained for minimisation of total net 

flux through the network, in this case the action of the Pyr kinase was substituted by two alternative 

reactions with the same net stoichiometry, yielding a solution with a slightly higher total net flux (+ 

0.5 mmol/gDW/h, where DW indicates dry weight) but the same Glc consumption rate. 

 

Although Lac and Ac excretion was not observed in the absence of electron acceptors (Figure 3-6), 

this does not rule out the possibility that it would occur in other optimal or sub-optimal solutions. In 

fact, 4 out of the 7 reactions involved with the pathway of Pyr fermentation to butanoate are catalysed 

by enzymes with no associated genes and, therefore, have been included in the database via automatic 

gap-filling. Blocking flux through the short chain acyl-CoA-dh (EC 1.3.8.1) reaction, with no 

associated gene, prevented fermentation to butanoate or butanol and led to Form, Ac and EtHO 

production and excretion ( Table 3-2 and Figure 3-7).  
 

Table 3-2 Model response for production of ATP from Glc considering two alternative analysis 

objectives in the absence of electron acceptors 

 

Analysis objective 
Minimization of total flux or  

minimization of Glc import 

Electron acceptor 
available ATP per C ATP per Glc P/O ratios By-products exported 

None 0.5 3.0 - Ac, EtHO, Form 
 

Conditions set: absence of O2 and NO3- and blocking of flux through the short chain acyl-CoA-dh reaction. 
The responses obtained considering either of the alternative analysis objectives presented the same main 
characteristics. 
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Figure 3-7 ATP production in the presence of Glc and the absence of O2 and NO3- when total flux through the system was minimised and flux through the reaction catalysed by the 

short chain acyl-CoA-dh (EC 1.3.8.1) was blocked.
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Blocking flux through the short chain acyl-CoA-dh reaction led to Form, Ac and EtHO production 

and excretion (Figure 3-7). ATP was generated via glycolysis and Pyr fermentation to Ac and the 

redox balance was maintained via NADH oxidation to NAD during Pyr fermentation to EtHO. This 

optimal solution did not involve the activity of the ATP synthase. Although less efficient that the 

previous response (Figure 3-6), since 3 ATP molecules were generated instead of 4, this one is 

potentially more consistent with the observed biological behaviour of staphylococci (Sivakanesan et 

al. 1980; Fuchs et al. 2007) but the fact that the living organism could follow different metabolic 

strategies (including the one described here) upon variation in the experimental conditions cannot be 

ruled out. Therefore, no alterations to the system were introduced at this stage and the current version 

of the model includes this reaction. This should be considered when developing future work, and the 

model modified accordingly if necessary. 

3.3.2.2 ATP production from glutamate 

The only experimental work describing a specific P/O ratio for staphylococci gave a value of 1.5 for 

both substrate level and oxidative phosphorylation, and was obtained from a nutrient-depleted S. 

aureus culture supplemented with Glt as sole C source (Tynecka et al. 1999; Heinemann et al. 2005). 

In order to compare the system’s behaviour with these in vitro data, the model was analysed for 

production of ATP from Glt. 

Model analysis 

For this purpose, the model was analysed for ATP production as described in Section 3.3.2, with Glt 

substituting Glc as the sole C source present in the in silico minimal medium. 

 

Results 

These LP analysis solutions are represented in diagrams and described in further detail in Figure 3-

8 to Figure 3-9. 

The P/O ratios associated with these responses are summarised in Table 3-3: 

Table 3-3 P/O ratios calculated for the LP analysis solutions obtained for ATP production from Glt 

considering two alternative analysis objectives in the presence of O2 

 

P/O ratios Minimization of total flux Minimization of Glt import 

Oxidative 
phosphorylation 2.25 1.83 

Oxidative plus substrate 
level phosphorylation 2.75 2.06 
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Figure 3-8 ATP production from Glt in the presence of O2 when total flux through the system was minimised.
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Figure 3-9 ATP production from Glt in the presence of O2 and NO3- when the import of Glt was minimised.



Chapter III. Fundamental characterisation of the genome-scale model 
 

 64 

When Glt was the only C source available (Figure 3-8), it was metabolised to 2-KG by a NAD-

dependent Glt-dh. The 2-KG was further metabolised to Suc by reactions of the TCA cycle, 

generating ATP and more NADH. The NADH produced was then oxidized in the ETC during aerobic 

respiration, regenerating NAD. 5.5 molecules of ATP were produced per molecule of Glt consumed 

in the process. The protons excreted with Suc (but not NH4
+) contributed to the PMF that pumps the 

ATP synthase. 

 

When the metabolism was re-directed to optimise Glt consumption for energy production (Figure 3-

9), the model initially catabolised Glt in the same manner as when the total net flux through the 

system was reduced. However, this was used to fuel the whole TCA cycle, utilising part of the Mal 

generated in the process to obtain more Pyr and AcCoA, thus maintaining flux through the cycle. 

The NADH produced was then oxidized in the ETC during aerobic respiration, which regenerated 

NAD and produced more ATP. 20.3 ATP molecules were obtained per molecule of Glt. The protons 

associated with the NH4
+ excreted in this solution did not contribute to the PMF that pumps the ATP 

synthase. This was assessed by multiplying the number of protons excreted by the reactions of the 

ETC involved in generating the PMF needed to pump the ATP synthase by the flux they carry in this 

solution. These number was equivalent to that obtained by multiplying the protons imported by the 

ATP synthase reaction by its net flux. Therefore, it could be concluded that no other excreted protons 

contributed to the PMF needed for the action of the ATP synthase in this solution. 

 

These two strategies for Glt utilisation might be of importance under conditions in which Glc and 

subsequently the main glycogenic amino acids (Ala, Ser, Thr and Gly) have been depleted from the 

media. 

3.3.2.3 ATP production from acetate 

In order to investigate the ability of the system to reproduce the strategy for ATP synthesis described 

for staphylococci during the second metabolic state (Somerville et al. 2003; Sadykov et al. 2013; 

Somerville 2016), the model was analysed for ATP production reproducing the conditions found 

during stationary growth phase (Glc depletion and Ac accumulation). 

 

Model analysis 

In order to study the ability of the model to utilise Ac for ATP synthesis, the LP described in Section 

3.2.1 was solved again considering minimisation of total flux as the objective function, constraining 

flux through the Glc medium importer to 0 and temporarily allowing Ac uptake by re-defining its 

exporter as a temporarily reversible reaction. 

 

Results 

The LP-based analysis solution obtained is described in Figure 3-10. 



Chapter III. Fundamental characterisation of the genome-scale model 
 

 

65 

 
Figure 3-10 ATP production in the presence of O2 and NO3- with Ac as sole C source and minimising total flux through the system  
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In the solution obtained in the presence of both electron acceptors when Ac was the sole C source 

available (Figure 3-10), Ac was imported and fed into the TCA cycle prior conversion to AcCoA in 

an ATP-consuming reaction catalysed by the AcCoA ligase (EC 6.2.1.13). The NADH generated in 

the TCA cycle entered the ETC during aerobic respiration, allowing further ATP production and 

maintaining the redox balance. This strategy presented a P/O ratio of 1.75, for both, the total and the 

oxidative phosphorylation and achieved production of 7 molecules of ATP per molecule of Ac 

consumed. Furthermore, it is consistent with the second metabolic state described for staphylococci 

upon total Glc depletion (Chapter 0, Section 1.4.2.2).  

 

3.3.3 Biofilm energy metabolism: production of acetoin and 
butanediol and their utilisation for ATP synthesis 

Having defined possible ATP production strategies that reproduce physiological behaviours 

described for staphylococcal planktonic cultures under a range of environmental conditions we now 

turn to looking at ATP production in the biofilm state. As described in Chapter 0, Section 1.4.4, cells 

growing in biofilms divert C metabolism to acetoin and butanediol production during the exponential 

growth phase. This has been suggested to help prevent excessive media acidification caused by the 

excretion of Ac, Lac and Form and to help restore the redox imbalance caused by Pyr utilisation for 

Form synthesis by regenerating NAD (Zhu et al. 2007). These compounds can subsequently be taken 

up and utilised to obtain energy during the stationary growth phase (Zhu et al. 2007). Interestingly, 

inhibition of these strategies has been shown to prevent biofilm formation (Cassat et al. 2006). 

3.3.3.1 Production of acetoin and butanediol 

Model analysis 

In order to check if the system could reproduce organism’s behaviour described above, the model 

was initially tested for its capability to produce acetoin and butanediol from Glc. Once this was 

confirmed, it was analysed again for ATP production by a LP set up as previously described in 

Section 3.2.1 and considering anaerobic conditions. However, the optimisation criteria selected was 

minimisation of flux through the exporters of charged metabolic by-products, assuming this could 

be a proxy for minimising acidification of the medium. 

 

Results 

The optimal solution obtained involved Glc fermentation to butanol, a uncharged compound. In this 

solution, the NAD consumed during glycolysis was regenerated via oxidation of NADH by the 2-

hydroxyacyl-CoA-dh and the NAD-dependent menaquinone-oxidoreductase, involved in Pyr 

fermentation to butanoate. Blockage of flux through either the butanol exporter or the short chain 

acyl-CoA-dh (EC 1.3.8.1) reaction stopped Pyr fermentation to butanol or butanoate and produced a 

new optimal solution involving production and excretion of EtHO, another neutral  by-product. 



Chapter III. Fundamental characterisation of the genome-scale model 
 

 67 

3.3.3.2 Utilisation of metabolic by-products for ATP production 

As described in section 1.7.5, staphylococcal cells growing in biofilms ferment Pyr, producing a 

range of by-products which include Ac, Form, Lac (Resch et al. 2005; Zhu et al. 2007) and later on, 

acetoin and butanediol (Yao et al. 2005; Xiao et al. 2007). These metabolites are then available for 

use to obtain energy during stationary phase prior conversion to AcCoA (Zhu et al. 2007). The work 

presented in this section studies the system’s potential to utilise these by-products for energy 

production under a range of conditions occurring in biofilms growing on abiotic surfaces in joints: 

since biofilms consist of several cell layers, it is reasonable to assume that cells in different biofilm 

depths will encounter different biochemical environments, which would influence their biomass 

composition and the metabolic processes they perform, leading to a certain level of metabolic cross-

feeding between them. Thus, cells in the upper biofilm layers would be exposed to higher O2 and 

Glc levels than cells in the bottom layers etc. These situations were reproduced during the analysis 

described below. A more detailed analysis of the metabolic processes exerted by cells in different 

biofilm areas and their interactions is out of the scope of this project but will be an interesting work 

to perform in the future. 

 

Model analysis 

The model is able to produce and export the following metabolic by-products: NH4
+, CO2, Ac, Form, 

butanoate, Lac, Suc, EtHO, 2-KG, butanol, butanediol and acetoin. In order to understand which of 

them, if available, would be preferentially used for ATP production, a LP was set up as previously 

described in Section 3.2.1, utilising the same Glc-based minimal medium and considering 

minimisation of total flux as the objective function. By-product-transporting reactions were re-

defined, allowing not only excretion but also uptake of these compounds, hence mimicking 

conditions in which cells could already have conducted fermentation of C sources and the resulting 

by-products are available for uptake and use for energy production. The LP was modified as 

corresponded  and re-solved in order to explore the system’s behaviour under a set of possible states 

encountered in different areas of biofilms growing in the intra-articular space. 

Results 

a) Cells growing in the top layers of a biofilm: these cells could still be exposed to O2, 

NO3
- and Glc, and potentially, to metabolic by-products produced by cells in deeper layers, hence 

exerting a fermentative behaviour. Under these conditions, acetoin was the preferred substrate 

utilised by the system: an optimal solution was obtained in which acetoin was oxidised to AcCoA 

via action of the acetoin-dh and the acetald-dh, and AcCoA was in turn oxidised to Ac by the Ac-

CoA ligase. This process generated ATP and NADH, while reactions of the ETC worked with O2 as 

final electron acceptor regenerating NAD and generating further ATP via oxidative phosphorylation. 

This solution presented the following net stoichiometry: 
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1 O2  +  1 ACETOIN  ®  2 Ac  +  2 H+ 

with 6 ATP molecules produced per molecule of acetoin oxidized. 

 

 b) Cells growing in the middle layers of a biofilm: these cells would probably be growing 

under anaerobic conditions and upon Glc depletion, but NO3
- (present in blood and synovial fluid) 

could still be available if not used-up by cells in the top layers. The solution obtained considering 

these conditions was similar to the one above, but included and extra step were butanediol was 

uptaken and oxidised to acetoin via the butanediol-dh. It also involved reactions of anaerobic 

respiration, with NO3
- being utilised as final electron acceptor. Its net stoichiometry is shown below: 

1 ACETOIN + 2 BUTANEDIOL + 2 NO3
-
 + 4 H+  ®  6 Ac  + 2 NH4

+  

with 19 ATP molecules produced per each molecule of acetoin and pair of butanediol molecules 

consumed. 

 

 c) Cells growing in the bottom layers of a biofilm: it is sensible to assume that the 

environment encountered by cells in this region of the biofilm has been depleted of Glc and, possibly, 

of both electron acceptors. Upon constraining flux to zero for their importers, the LP solution 

obtained showed uptake and fermentation of acetoin to butanoate, with AcCoA being produced from 

acetoin in the same manner as before, now following the same catabolic route as seen for production 

of ATP from Glc in absence of electron acceptors (Section 3.3.2.1, Figure 3-6). This led to the 

excretion of butanoate (butyric-acid), with the butyryl-CoA-dh re-oxidising menaquinones in order 

to allow further oxidation of NADH. These reactions generated a chemiosmotic gradient that fuelled 

the ATP synthase. The net stoichiometry of this solution is:  

1 ACETOIN ®  1 BUTYRIC ACID + 1 H+ 

with 2 ATP molecules produced per molecule of acetoin consumed. 

3.3.4 Metabolic responses for production of planktonic biomass 
under a range of environmental conditions 

LP-based analysis was used to investigate the capacity of the model to generate biomass for general 

quality assessment. The in silico medium considered during the analysis was the minimal medium 

previously defined in section 3.2.1, and the LP was solved several times, mimicking aerobic and 

anaerobic conditions and presence and absence of NO3
-. 

 

Model analysis 

The behaviour of the model during biomass production in presence and absence of O2 and NO3
- was 

studied. For this purpose, a LP was defined as described in Equation 2-4 (Chapter 2, Section 2.4.4.1), 

were the flux through the exporters of biomass components was set to meet the proportions described 

in the biomass composition of the cell in order to allow production of planktonic biomass. The flux 

through the ATPase reaction was constrained to meet the growth-associated (GAM) and non-growth 
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associated (NGAM) maintenance costs. To the best of our knowledge, there is no data currently 

available regarding ATP requirements for staphylococci. Heinemann et al. (2005) considered values 

of 40 mmol ATP/gDW/h and 5 mmol ATP/gDW/h for the GAM and NGAM costs respectively 

during LP-based analysis of their S. aureus N315 model. Since this compared reasonably well to 

experimentally determined values for several bacteria (Stephanopoulos 1998), they were also 

adopted on this study. Specific growth rates for S. epidermidis are not available: in the past, authors 

have assumed values of 1.6 gDW/h for S. aureus (Heinemann et al. 2005) and 0.91 gDW/h for S. 

enterica sv. Typhimurium (Hartman et al. 2014) based on measurements from E. coli (Bauchop et 

al. 1960; Feist et al. 2007). For simplicity, since NAS are known to typically grow at a slower pace 

than S. aureus, here we assumed a value of 1 gDW/h for S. epidermidis RP62A. The results obtained 

are summarised in Table 3-4. For completeness, a solution for planktonic biomass in the absence of 

electron acceptors obtained upon blocking flux through the reaction catalysed by the short chain 

acyl-CoA-dh was also obtained, and the main features of this response are summarised in Table 3-5. 

 

Results 

Table 3-4 Characterisation of the model behaviour for production of planktonic cell biomass in the 

presence and absence of O2 and NO3
- considering minimisation of total net flux through the network as 

the objective of the analysis 

Electron 
acceptor 
available 

Reactions 
carrying flux 

(n) 

Objective 
value 

O2  
uptake 

NO3
-
 

uptake 
Glc 

uptake 
NH4

+ 
uptake 

By-products 
exported 

O2 343 397 11.0 0.00 8.50 7.25 Ac, Form, CO2  

NO3
- 344 398 0.00 6.31 9.29 0.94 Ac, Form, CO2 

None 346 530 0.00 0.00 19.9 7.25 Form, CO2, butanol, 
butanoate 

 

Unit of the objective value and the uptake rates: mmol/gDW/h. The strategy followed by the system in the 

presence of both O2 and NO3- is identical to that described in sole presence of O2, hence data regarding this 

solution were omitted. 

 

Table 3-5 Characterisation of the model behaviour for production of planktonic cell biomass in the 

presence and absence of O2 and NO3
- upon blocking flux through the short chain acyl-CoA-dh reaction 

while minimising total net flux through the network 

Electron 
acceptor 
available 

Reactions 
carrying flux 

(n) 

Objective 
value 

O2 
uptake 

NO3
-
 

uptake 
Glc 

uptake 
NH4

+ 
uptake 

By-products 
exported 

None 340 798 0.00 0.00 25.2 7.25 Ac, Form, EtHO, CO2 
 

Unit of the objective value and the uptake rates: mmol/gDW/h  
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3.4 Discussion 

3.4.1 Characterisation of the ETC 

Two conclusions can immediately be derived from these results: i) as expected, ATP production with 

utilisation of O2 as final electron acceptor (EM1) is a more efficient process than utilisation of NO3
-

, and yielded a higher ATP/NADH ratio; ii) the reduction of NO2
-
 or NO3

-
 to NH4

+ (EM2 and EM4) 

is more efficient than the sole reduction of NO3
- to NO2

-
 (EM3). The P/O ratio obtained for EM1 

(2.25) falls within the expected value range of 2 to 3 (Garrett 2010; Ferrier 2014) and its associated 

ATP/NADH ratio (2.25) is in reasonable agreement with the ATP/NADH ratio described for S. 

aureus (Wilkinson 1997; Heinemann et al. 2005). The same is true for those modes where anaerobic 

respiration leads to production of NH4
+ (EM2 and EM4). Thus these results seems to indicate that 

flux through the set of reactions included in modes EM1, 2 and 4 would be prioritized over those in 

EM3 in the biological organism, since these routes produce energy more efficiently and match 

experimentally determined parameters more accurately. These results prove that the model is capable 

of conducting aerobic and anaerobic respiration yielding reasonable ATP/NADH and P/O ratios, 

successfully reproducing this metabolic aspect of the organism. 

3.4.2 Metabolic responses for ATP under a range of environmental 
conditions 

3.4.2.1 ATP production from glucose 

The physiological behaviour observed in staphylococci during exponential growth phase in the 

presence of O2 and Glc is consistent with the LP solution that considered minimisation of total flux 

through the system as optimisation criteria ( 

Figure 3-3). This confirms that repression of the TCA cycle and diversion of central C flux into Ac 

production is an optimal strategy for balancing energy production and reduction of the total net flux 

through the system (proxy for the enzymatic activity associated with the model response (Section 

2.2.4)), thus supporting this hypothesis as proposed by others (Molenaar et al. 2009; Basan et al. 

2015). Moreover, this response was reproduced by the system without the need to artificially 

blocking flux through reactions of the TCA cycle (as was the case during the analyses performed by 

Heinemann et al. in 2005). This demonstrates that metabolic modelling can be used to anticipate the 

occurrence of mechanisms which implement optimal strategies defined mathematically, such as 

metabolic control strategies based on the regulation of transcriptional patterns influencing enzymatic 

catalysis, as occurs during catabolic repression via downregulation of enzymes of the TCA cycle 

(Blumenthal 1972; Somerville et al. 2002; Somerville et al. 2003; Deutscher 2008). 
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Selecting minimisation of Glc import as objective function led to an optimal solution in which the 

highest ATP yield per molecule of Glc was achieved: involving glycolysis, the TCA cycle and 

aerobic respiration ( 

Figure 3-5), this strategy optimises Glc usage for energy production and makes sense, from a 

metabolic point of view, when the availability of Glc is limited. This accurately reproduces the 

organism’s ability to adapt to conditions where the availability of C sources is limited by obtaining 

higher energy yields per molecule of C source consumed. 

 

Results also suggested that if both O2 and NO3
- are available, O2 would be the preferred final electron 

acceptor of the ETC. This allows for a higher amount of ATP produced per Glc consumed and is in 

line with previous results described in Section 3.3.1 (elementary mods of the ETC stand-alone 

module), which showed that ATP production via aerobic respiration was more cost-effective (higher 

ATP/NADH ratio) than via anaerobic respiration.  

In the absence of electron acceptors, the system fermented Glc to Form, Ac and butanoate, excreting 

Form and butanoate (Figure 3-6). Even though experimental data for S. epidermidis reports Glc being 

fermented mainly to Lac and trace amounts of Ac, Form and CO2 (Sivakanesan et al. 1980), it is 

possible that the fermentation strategies shown by the organism could be strain-dependent and also 

vary in response to changes in the environment. The model is capable of fermenting Glc to Lac or to 

Form, Ac and EtHO, as shown when further constraints were applied, exerting a behaviour more 

consistent with the in vitro observations for staphylococci described to date (Sivakanesan et al. 1980; 

Fuchs et al. 2007) (Figure 3-7). These responses seem less efficient, both from an energetic and a 

protein-salvage point of view but could be consistent with optimal strategies for other unknown 

biological objectives of the cell (Sivakanesan et al. 1980; Fuchs et al. 2007). 

 

Some of the responses involving functioning of the ETC showed that the net proton export associated 

with excretion of charged by-products contributed to the PMF fuelling the ATP synthase (Figure 3-8 

and Figure 3-9). This behaviour, although unexpected, could be considered plausible since there is 

no clear data available on this matter. Further studies on the coupling of the ETC and phosphorylation 

are required. Moreover, data available regarding the presence and functioning of electrogenic and 

electroneutral proton/substrate symporters in S. epidermidis is scarce and incomplete. Therefore, it 

is currently not possible to accurately define if or how the transport of these compounds contributes 

to the PMF and the subsequent phosphorylation process. 

3.4.2.2 ATP production from glutamate 

Despite not producing a P/O ratio of 1.5 as described in the literature (Tynecka et al. 1999; 

Heinemann et al. 2005), the P/O ratios obtained on these analyses were close to this value, especially 

when the optimisation criteria considered was to minimise Glt consumption. The static nature of the 

model, which does not take into account kinetic parameters, could explain the differences between 
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the in vitro and the in silico results, since LP-based analysis of a structural model is insufficient to 

consider the variability of the complex biological system. It is also worth noticing that this 

experimentally obtained P/O ratio of 1.5 was reported without confidence limits, hence its accuracy 

is difficult to assess. It is however interesting to explore how ATP can be generated from Glt, since 

this amino acid is, together with Gln, central to N assimilation and the biosynthesis of other amino 

acids (Reitzer 2003; Somerville 2016) and constitutes the main link between C and N metabolism.  

3.4.2.3 ATP production from acetate 

Available experimental data indicate that during the post-exponential growth phase, S. aureus 

converts acetyl-P to AcCoA via the P-acetyl transferase (Pta), although there is insufficient data to 

confirm the activity of the Ac kinase (ackA) converting Ac to acetyl-P at this stage (Somerville et 

al. 2003), while direct conversion of Ac to AcCoA by the AcCoA ligase was confirmed, as well as 

AcCoA entering the TCA cycle (Somerville et al. 2003). Hence the solution obtained in this analysis, 

were Ac is metabolised via the AcCoA ligase and the TCA cycle (Figure 3-10), is consistent with 

the metabolic behaviour described for staphylococci during the post-exponential growth phase. 

3.4.3 Biofilm energy metabolism: production of acetoin and 
butanediol and utilisation for ATP synthesis 

3.4.3.1 Production of acetoin and butanediol 

In the optimal solution obtained for ATP production while minimising flux through the exporters of 

charged by-products Glc was fermented to butanol, an uncharged compound. This response, despite 

not involving acetoin or butanediol production is optimal for generating energy while minimising 

the excretion of protons and would indeed help prevent acidification of the media if implemented by 

the living organism. When extra constraints were applied and flux through either the butanol exporter 

or the short chain acyl-CoA-dh were blocked, the system fermented Pyr to EtHO, a by-product which 

excretion again does not involve the excretion of protons. A limitation of the LP-based analysis 

technique applied here consists in the complexity of solving a LP problem that simultaneously or 

sequentially considers two or more optimisation criteria (e.g. minimisation of flux through certain 

exporters and minimisation of total net flux through the system). Furthermore, we currently lack the 

knowledge to identify the real biological objective followed by an organism and our analysis are 

based on speculations. Hence based on these results, and despite acetoin and butanediol production 

not being included in the optimal responses obtained here, their potential involvement in other 

alternative optimal solutions and in metabolic strategies designed to minimise the export of protons 

while simultaneously optimising other biological objectives cannot be ruled out. 
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3.4.3.2 Utilisation of metabolic by-products for ATP production 

Heterogeneous environments have been described across the structure of bacterial biofilms, with 

lower layers encountering nutrient restrictions that impair growth, and peripheral layers exhibiting 

conditions closer to those that fully support planktonic growth (Brauner et al. 2016; Dengler 

Haunreiter et al. 2019). The results obtained during the study of ATP synthesis under a range of 

conditions resembling these chemical environments (Section 3.3.3.2) again exemplified the 

robustness and adaptability of the organism’s metabolic network, providing insight about possible 

routes for by-product utilisation towards ATP production on RP62A biofilms. This work could be 

expanded in the future in order to gain further insight into the energy metabolism of biofilms. 

3.4.4 Metabolic responses for production of planktonic biomass 
under a range of environmental conditions 

The results obtained showed an optimal solution consisting on 343 reactions including transporters 

(36% of total reactions) required for growth and maintenance in the presence of O2 and NO3
-. These 

corresponded to 286 reactions excluding transporters, from which 225 (78.7%) were associated with 

identifiable genes. A total of 7.25 mmol/gDW/h of N were taken up as NH4
+ from the medium and 

were utilised, together with 2-KG, to obtain Glt by the NAD-dependent Glt-dh (EC-1.4.1.2), being 

later on consumed for the biosynthesis of amino acids. 8.5 mmol/gDW/h of Glc were taken up and 

used to produce ATP and provide more C for anabolic processes. 

 

As expected, in aerobic conditions the optimal solution obtained did not involve NO3
- uptake. This 

is in line with previous findings were O2 was identified as the most efficient final electron acceptor 

for ATP production by calculation of the elementary modes of the ETC (Section 3.3.1). The by-

products excreted on this process were Ac, Form and CO2. When NO3
- was the only electron acceptor 

available, the solution obtained was similar. Unsurprisingly, when neither O2 nor NO3
- were 

available, the objective value increased substantially (+33.5%) and so did the Glc demand (+134%).  

 

In all solutions, 2 µmol/gDW/h of niacin were consumed, since this was essential for NAD and 

NADP production. Its contribution to the final cell N content was so small that could be dismissed. 

In order to produce biomass, the system unconditionally exported 7 µmol/gDW/h of autoinducer-2 

or (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran. Generated in the S-adenosyl-L-

methionine cycle, this compound is produced from the pool of L-methionine that is not directly 

utilised as a protein-building block. This molecule acts as the major methyl donor in the cells 

(MetaCyc vs 22.6 (Caspi et al. 2014)), and is involved in the last step of menaquinone biosynthesis 

(methylation of demethylmenaquinones). It has also been described as one of the key molecules 

involved in quorum sensing (Miller et al. 2001), being an universal signalling molecule for cell 

growth both in Gram-positive and Gram-negative bacteria (Zhu et al. 2003). Therefore, model 

analysis provided a metabolic link between cell growth and the excretion of autoinducer-2: since this 



Chapter III. Fundamental characterisation of the genome-scale model 
 

 74 

compound is generated as a by-product during synthesis of menaquinones and is not metabolised 

further by the system, it needs to be unconditionally excreted in order to allow production of 

planktonic biomass in silico while complying with the steady state assumption. Therefore, it makes 

sense that, if autoinducer-2 is excreted as a result of menaquinone synthesis during cell growth, 

higher levels of this compound in the media will correspond to higher bacterial growth, and, hence 

higher cell densities in the culture. The concentration of this molecule will eventually reach a certain 

threshold level, inducing a quorum sensing regulatory response in adjacent cells. This is in line with 

data describing this molecule as an intercellular signal for cellular density (De Kievit et al. 2001; 

Miller et al. 2001; Zhu et al. 2003). 

3.5 Conclusion 

The results presented in this chapter demonstrate that the model exhibits strategies which are close 

to the organism’s behaviour in vitro. For example, the network is able to produce all biomass 

components in the experimentally observed proportions described for staphylococci. It is also 

capable of performing aerobic and anaerobic respiration, yielding reasonable ATP/NADH and P/O 

ratios. Additionally, investigation of ATP production under a wide set of conditions showed that the 

system successfully reproduces several other physiological responses, such as the strategies observed 

in staphylococci during: i) the exponential growth phase in the presence of Glc and O2, which 

involves suppression of the TCA cycle and Ac excretion; ii) the post-exponential growth phase upon 

Glc depletion, with Ac being imported and fed into the TCA cycle via AcCoA; iii) the fermentative 

behaviour observed in the absence of electron acceptors; and iv) ATP production from acetoin and 

butanediol, as has been described on staphylococcal biofilms. Furthermore, the association stablished 

in silico between biomass production and excretion of autoinducer-2 coincides with the role of this 

molecule as an intercellular signal for growth. This exemplifies how LP-based analysis of a GSM 

could provide a mathematical explanation for these type of biological observations, helping us to 

understand their metabolic basis or implications. 

 Finally, a very interesting conclusion can be derived from these results: metabolic modelling is able 

to suggest strategies that organisms would follow in order to optimise certain biological objectives, 

thus anticipating regulatory and transcriptional patters (e.g. the oxidation of Glc to Ac in the presence 

of O2 and consequent generation of ATP via substrate level phosphorylation as a way to produce 

energy while minimising total net flux through the system, which the biological organism achieves 

by repressing the enzymes of the TCA cycle). 

In summary, the in silico results obtained during LP-based analysis of the system upon a wide set of 

constraints are highly consistent with the physiological behaviour of the organism, which supports 

the biological significant of findings derived from analysing this model and validates its use as an in 

silico proxy to study the metabolism of S. epidermidis RP62A. 
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4 Model refinement and validation: minimal 
growth requirements 

4.1 Introduction 

Comparing model-predicted minimal growth requirements with experimental data is a common way 

to improve and validate GSMs, as exemplified by previous studies in which minimal growth 

requirements were computed for published GSMs of staphylococci and compared with experimental 

results for the purpose of model refinement and validation. This chapter describes the acquisition 

and analysis of experimental data for curation of reactions leading to production of vitamins and 

amino acids included in the biomass composition of the cell. Moreover, since proteins are key 

components of certain biofilm types and amino acids seem to be important for biofilm metabolism 

(Zhu et al. 2007), minimising inconsistencies between the model and the organism’s capabilities in 

terms of amino acids biosynthesis and catabolism is key to ensures that in silico results can be trusted. 

In many cases, staphylococcal strains which have been described as auxotrophic under certain 

circumstances seemed to revert to a prototrophic state upon environmental changes, exemplifying 

the ability of these organisms to adapt their metabolism to grow on a range of niches and colonise 

different hosts (Gladstone 1937; Emmett et al. 1975; Somerville 2016) using mechanisms not yet 

fully understood. 

Initially, RP62A was tested in vitro for its ability to produce biomass upon removal of single amino 

acids and vitamins from a chemically defined medium. The impact of nutrient deprivation on biofilm 

formation was also assessed. The laboratory strain was checked for possible mutations which could 

have had affected these in vitro results. The genome of the modelled organism was thoroughly 

examined in order to define the biosynthetic potential of the strain and the model was modified 

accordingly, thus minimising the impact of excessive gap-filling propagated from construction of the 

PGDB or completing the network with reactions initially absent. The model was then re-analysed for 

biomass production. Finally, the effect of removing single compounds from the in silico medium on 

the objective value and the Glc consumption was calculated with respect to the solution obtained on 

the un-modified medium. These datasets were considered together and used to perform several 

rounds of manual curation. After this, the system was re-analysed and the results obtained were used 

to design new validation experiments presented in Chapter 5. 

4.1.1 Use of experimental data to validate GSMs of staphylococci 

Experimentally-defined auxotrophies and minimal growth requirements identified with GSMs of S. 

aureus N315 are summarised and compared in Table 4-1 (below) and described in detail in this 

section:
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Table 4-1 Comparison of minimal growth requirements for S. aureus N315 identified by analysis of four 

different GSMs 

 

Auxotrophies reported by Lee et al. (2009) are general for drug-resistant S. aureus and not specific for S. 

aureus N315. 

 

In 2005, Heinemann et al. generated a GSM for the S. aureus strain N315, which genome annotation 

contains completed biosynthetic pathways for all amino acids (Kuroda et al. 2001; Heinemann et al. 

2005). Accordingly, this GSM was capable of simulating bacterial growth without their 

supplementation. The model predicted an auxotrophy for niacin (needed for the synthesis of NAD 

and NADP), while biotin and thiamine, which had been described as essential vitamins for S. aureus 

in the literature, represent prosthetic groups and were not directly involved in any reaction leading 

to biomass production. Another GSM for S. aureus N315, constructed by Becker and Palsson  in 

2005, described the following compounds as feasible single N sources for growth: Ala, Arg, Asp, 

Glt, Gly, Pro, Ser, Thr and ornithine (Becker et al. 2005). From those, four (Ala, Arg, Gly and Pro) 

have been reported has essential in vitro (Kuroda et al. 2001). The vitamins thiamine and niacin were 

defined as essential by both the model and experimental results, while biotin only appeared to be 

essential in vitro. 

 

Four years later, Lee et al. generated a new GSM for N315 and adapted it for 12 other S. aureus 

strains (Lee et al. 2009). After comparing in vitro minimal growth requirements for these strains with 

a previously published minimal medium for staphylococci (Rudin et al. 1974), the study concluded 

that Pro could not be synthesised by any of them and had to be supplemented in the media together 

with Ser, which synthetic pathway appear to be incomplete. Regarding essentiality of vitamins, a 

synthetic pathway was found for biotin (from pimelate) but not for niacin or thiamine, which were 

GSM Strain Auxotrophies identified 
by analysis of the GSM 

Essential amino acids 
documented 
experimentally and 
reported by these authors 

Biosynthetic pathways 
lacking in the genome 
reported by these authors 

iMH551 
Heinemann 
et al. (2005) 

S. aureus 
N315 

None (Heinemann et al. 
2005) None (Gladstone 1937) None (Kuroda et al. 2001) 

iSB619 
Becker and 
Palsson 
(2005) 

S. aureus 
N315 

Growth without an 
additional N source is 
possible if any one of the 
following amino acids or 
derivatives is provided: 
Ala, Arg, Asp, Glt, Gly, 
Pro, Ser, Thr or ornithine 
(Becker et al. 2005). 

 
Ala, Arg, Gly, Ile, Pro and 
Val (Kuroda et al. 2001) 
 

None (Kuroda et al. 2001) 

Lee et al. 
(2009) 

S. aureus 
N315 

Pro and Ser (Lee et al. 
2009) 

Arg, Cys, Glt, Leu, Phe, 
Pro, Thr, Val (Rudin et al. 
1974) 

Pro and Ser (although a by-
pass is present to obtain Pro 
from ornithine (Lee et al. 
2009)). 

Bosi et al. 
(2015) 

S. aureus 
N315 Leu (Bosi et al. 2016) 

Arg, Asn, Cys, His, Leu, 
Met, Phe, Pro, Ser, Thr, Trp 
and Tyr (Bosi et al. 2016) 

None (Kuroda et al. 2001) 
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then included in the in silico minimal medium. 

Finally, in 2015, Bosi et al constructed GSMs for 64 S. aureus strains (including N315) and used 

them to study a possible effect of the genomic presence and absence of amino acid’s biosynthetic 

pathways in niche adaptation (Bosi et al. 2016). Analysis of these models concluded that all strains 

needed thiamine and niacin to grow in Glc-based minimal media. Analysis of the GSM for strain 

N315 indicated that in the presence of NH3, both NH3 and the amino acid Leu were uptaken for 

biomass production. Several other strains presented strain-specific needs for amino acids, vitamins 

and even nucleotides. These authors reported growth in vitro for N315 in a M9-based minimal 

medium containing Arg, Asn, Cys, His, Met, Phe, Trp and Tyr and further supplemented with Leu, 

Pro, Ser, Thr and the vitamins thiamine and niacin. 

The discrepancies observed when minimal growth requirements were defined for the same organism 

by analysing different GSMs (Table 4-1) could be explained as a consequence of the utilization of 

different metabolic databases and modelling techniques for model construction and analysis, which 

in turn involve different degrees of automatic-gap filling, and the thoroughness of the subsequent 

manual curation process applied to these models. Generally speaking, a certain degree of variation 

between model predictions and experimental results is expected, and acceptable as long as these 

discrepancies are thoroughly investigated and can be explained in a reasonable manner (e.g. as a 

result of gene regulation). 

4.1.2 Comparison between minimal growth requirements for S. 
epidermidis RP62A defined in vitro and by LP-based analysis 
of the GSM 

LP-based analysis of the model for biomass production after fundamental curation defined 

auxotrophies for Asn, Cys, Met and Phe (Chapter 2, Section 2.4.4.5). Due to the high degree of 

variability when reporting auxotrophies for staphylococci (Knight 1937; Emmett et al. 1975) it was 

difficult to discern if these represented real biological auxotrophies or reflected errors or gaps in the 

network based solely in comparison with the unique experimental dataset available for RP62A 

(Hussain et al. 1991) described in Chapter 0, Section 1.5.1. Therefore, new experimental data on this 

matter was obtained and used for further model refinement together with exhaustive examination of 

the genome content and identification of possible mutations in the laboratory strain used in this 

project. 

 

The table below (Table 4-2) summarises the level of agreement between model-predicted 

auxotrophies for amino acids, published experimental data and the in vitro findings obtained during 

the work presented on this and the following chapter (Chapter 5). Note that after curation, 

auxotrophies described in silico completely match those defined in vitro: 
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Table 4-2 Comparison between the biosynthetic potential for amino acids encoded in the genome of S. 

epidermidis RP62A, experimentally reported auxotrophies and auxotrophies defined by model analysis. 

 

 

After curation, none of the amino acids were essential according to model analysis results. 

 

Discrepancies between the two experimental datasets are believed a result of pathway repression 

caused by regulatory events and so is the in vitro absence of growth without Pro observed in this 

study. 

 

Amino acid Absence of biosynthetic 
genes in RP62A  

Auxotrophy 
reported by 
Husain et al. (1991)  

Auxotrophy 
experimentally 
determined in this 
study 

Essentiality 
according to 
model analysis 
before curation 

Ala No No No, but its absence 
delays growth. No 

Arg 

No, however, the urea cycle is 
broken, which could affect 
regeneration of ornithine from 
Arg. 

Yes No, but its absence 
delays growth. No 

Asn No No No Yes 

Asp No No No No 

Cys No Yes No Yes 

Glt No No No, but its absence 
delays growth. No 

Gly No No No No 
His No No No No 

Ile No No, but its absence 
delays growth. No No 

Leu No No, but its absence 
delays growth. 

No, but its absence 
delays growth. No 

Lys No No No No 
Met No No No Yes 
Phe No No No Yes 

Pro 

No: de novo synthesis from 
Glt is absent, however, a 
biosynthetic bypass through 
ornithine is present. 

No No No 

Ser No No No No 

Thr No No, but its absence 
delays growth. 

No, but its absence 
delays growth. No 

Tyr No No, but its absence 
delays growth. No No 

Trp No Yes No, but its absence 
delays growth. No 

Val No Yes No, but its absence 
delays growth. No 
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4.2 Methods 

4.2.1 Experimental assessment of minimal growth requirements in 
S. epidermidis RP62A 

4.2.1.1 Minimal media composition 

A minimal medium for RP62A, referred here as MM medium, was defined in the following manner: 

the concentration of salts, trace elements, amino acids and vitamins (thiamine, niacin and biotin) 

were based on those utilised by Hussain et al. for the preparation of HHW medium (a chemically-

defined rich medium optimized for growth and biofilm formation of NAS containing 18 amino acids) 

(Hussain et al. 1991). Gln was not added to the MM medium recipe, since it can typically be obtained 

from Glt and was not present in HHW medium. However, Asn, which was also absent in the HHW 

medium recipe, was included in the MM medium formulation, since analysis of the GSM initially 

predicted an auxotrophy for it (data not shown). The concentration of Glc utilised was reduced to 

11.11 mmol (0.2%) in comparison to than in HHW medium (55.55 mmol (1%)), since higher Glc 

concentrations (1%, 2.7%, 5% or 10%) have been reported to encourage phenotypic changes and 

induce biofilm formation  (Lim et al. 2004; Otto 2008; Agarwal et al. 2013; Fernanda Cristina 

Possamai Rossatto 2017). Other compounds present in HHW medium but not defined as essential 

by analysis of the GSM or the literature (i.e. adenine sulphate, guanine hydrochloride and other 

vitamins) were not included on the MM medium formulation. Note that throughout this document, 

the term ‘MM medium base’ refers to the composition of the standard MM medium described below 

(Table 4-3) without amino acids. In order to minimise variation between media batches, large stock 

solutions of medium components were prepared at the following concentrations in comparison to 

their final concentration in MM medium: i) salt components (x 100), ii) Glc (x 20), iii) amino acid 

mix in the standard medium (x 25), iv) individual amino acid stocks (x 25), v) vitamins (x 1000). 

These were stored according to the manufactures instructions and brought back to room temperature 

(when corresponded) before preparing fresh media at the beginning of each experiment. 
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Table 4-3 Composition of the standard MM medium formulated for minimal growth requirement 

experiments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MM medium composition (per L) mmol 

Ammonium iron(II) sulphate hexahydrate 
((NH4

+)2SO4·FeSO4·6H₂O) 
0.21 

Calcium chloride anhydrous (CaCl2) 0.45   

Disodium hydrogen phosphate anhydrous 
(Na2HPO4) 

56.1 

Magnesium sulphate anhydrous (MgSO4) 2.03 
Manganese sulfate monohydrate (MnSO4·H2O) 0.29  
Potassium dihydrogen phosphate (KH2PO4) 22.0 

Glc 11.1 
L-Ala  1.12 
L-Arg  0.57 
L-Asn  1.13 
L-Asp 1.13 
L-Cys  0.41 
Gly  1.33 
L-Glt 1.02 
L-His  0.64 
L-Ile  1.14 
L-Leu  1.14 
L-Lys  0.68 
L-Met  0.67 
L-Phe  0.60 
L-Pro  1.30 
L-Ser  0.95 
L-Thr  1.26 
L-Trp 0.49 
L-Tyr 0.55 
L-Val  1.28 
Biotin  0.04 
Nicotinic acid (niacin)  0.16 
Thiamine hydrochloride  0.59 
Final pH 7.2 ± 0.2 at 25°C (adjusted with NaOH 0.1M) 
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4.2.1.2 Inoculum and bacterial strains 

The S. epidermidis RP62A strain used for the experimental work of the entire project was purchased 

from NCTC. A 25% glycerol stock of this strain was streaked out on BHI agar (an undefined rich 

medium) and incubated overnight at 37C. 10 ml of fresh BHI broth were inoculated with 3 individual 

colonies and incubated for 18 hours (overnight) at 37C, shaking (180 rpm). Cells from the overnight 

culture were recovered by centrifugation at 3000 rcf for 5 minutes. Bacterial pellets were washed 

twice with sterile PBS in order to remove carry over of essential nutrients and finally re-suspended 

with PBS up to the original sample volume. An approximate concentration of 1.5*108 CFU/ml for 

the bacterial inoculum was estimated by serial dilution and cell counting. 

4.2.1.3 Experimental setup 

Batches of media for growth tests were prepared in the following manner: MM medium from which 

each individual vitamin or amino acid was omitted at a time, hence refereed here as MM- medium, 

was used to test individual auxotrophies. BHI broth was used to monitor growth in a rich medium. 

Unmodified MM medium was used as a positive control for growth in the standard formulation. Non-

inoculated MM broth and BHI broth were used as sterility controls. Finally, two more test samples 

were included in order to obtain additional data for model refinement: MM- medium lacking a 

combination of Cys and Met, for the study of sulphur metabolism, and MM- medium lacking Asn 

and Asp, for rigorous investigation of Asn biosynthesis, which was initially described as essential by 

LP-based analysis of the model. 

A cell inoculum was obtained as described above and added in a 1/100 proportion to 2 ml of each 

test medium, given an approximate final cell concentration of 1.5*106 CFU/ml in the test samples. 

150 ul of each sample were then added to three independent wells in a 96 well plate and incubated 

at 37OC and 180 rpm for 48 hours. Cell growth was monitored by measuring optical density 

spectrophotometrically at 600 nm (A600) at times 0, 4, 6, 8, 24, 25, 26 and 48 hours. Cultures were 

grown in triplicates and three individual 96 well plates were set up as explained above. The resulting 

growth data were expressed as the means from these three independent biological replicates, with a 

total of 9 individual measurements per growth condition. Background levels were calculated by 

averaging values obtained for the sterility controls in BHI and MM medium and were then subtracted 

from the absorbance measurements of the tests samples as corresponded. For the sole condition 

where removal of a single amino acid (Ala) led to an apparent growth delay combined with and a 

lower maximum A600 value than that measured for cultures in the standard MM medium, the statistical 

significance of this reduction in maximum growth was checked by performing a Student’s t-test. 
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4.2.2 Assessment of the impact of amino acid deprivation on 
biofilm formation 

At the end of the experiment described in Section 4.2.1, the level of biofilm formation on the cultured 

plates was assessed with the crystal violet staining method in order to investigate the effect of amino 

acid deprivation on biofilm formation: 

4.2.2.1 Crystal violet biofilm staining method  

A modified microtiter plate-based method for the staining and quantification of biofilm biomass was 

used. This method is based upon incubation of NAS cultures in 96 well plates as previously described 

by other authors (Christensen et al. 1985; Stepanovic et al. 2007; Baldan et al. 2012) and the protocol 

followed was carefully optimised before the start of this project in order to enable reproducible 

growth and biofilm formation in NAS. In summary, at the end of the incubation period (Section 

4.2.1.3) the wells in the cultured plates were gently washed twice with PBS to ensure removal of 

planktonic cells. The remaining bacterial biomass that continued to be adhered to the well surfaces 

was considered biofilm biomass and was fixed with 100% ethanol for 15 minutes. Then, the ethanol 

was discarded and the biofilms were air-dried before being stained with a 2% crystal violet solution 

for 5 minutes. After this, excess dye was removed and the dye that remained staining the biofilm 

biomass was re-solubilised in 33% glacial acetic acid before measuring its absorbance at 595nm. The 

optical density readings obtained were directly proportional to the amount of dye retained by the 

biofilm biomass present on the wells, and therefore, directly proportional to the amount of biofilm 

produced. Thus the A595 values obtained upon staining of the biofilms were used to calculate the 

relative level of biofilm formation in each sample. For this, the absorbance values were normalised 

to 100 with respect to the highest value measured on the plates. The effect of single amino acid 

removal on biofilm formation was visualised by plotting these values on a bar diagram and the 

variations observed with respect to the biofilm formation level exhibited by cultures growing in the 

standard MM medium were calculated and expressed as percentages (Appendix C, Section 9.3.2, 

Table 9-3). 

4.2.3 Comparison between experimental data and in silico results 

4.2.3.1 Model analysis for essentiality of media components 

The LP-based analysis technique was used as described in Chapter 2, Section 2.4.4.1 and Appendix 

A, Section 9.1.2.7 to check for essentiality of media components. Initially, the model failed to 

produce several of the biomass components (described in Section 2.4.3.4), exhibiting auxotrophies 

for niacin and the amino acids Asn, Cys, Met and Phe. These results were compared with the 

experimental data and the discrepancies identified were thoroughly investigated. Finally, the model 

was modified as corresponded and re-analysed. This process was repeated until the system’s 
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behaviour agreed with the conclusions of the investigations performed, thus refining the GSM, and 

the remaining discrepancies could be explained in a reasonable manner. Extensive manual curation 

finally led to the model producing each individual biomass component from an in silico minimal 

medium composed solely of Glc, core set substrates, H2O and supplemented with the vitamin niacin. 

4.2.3.2 Study of the biosynthetic potential encoded in the genome of the 

organism 

The presence or absence of key metabolic enzymes encoded in the genome of the reference strain 

from which the model is derived was studied as follows: when identified, the absence of reactions 

causing discontinuities in the network was corroborated by interrogation of the databases KEGG and 

BRENDA and the relevant literature. If, according to any of these sources, relevant enzymes 

catabolising missing reactions were reported as present on S. epidermidis RP62A, their 

corresponding amino acid sequences were retrieved from BRENDA and the Artemis software 

(release 16.0.0) (Carver et al. 2011) was then used to search for possible matching sequences in the 

genome of the reference strain. If matches were found, thus evidencing the existence of the enzymes 

in the organism, the reactions catalysed by them were included in the model. 

4.2.3.3 Identification of possible mutations in the laboratory strain 

A possible source for discrepancies between the behaviour of the model and the experimental results 

could be the incidence of mutations on genes encoding key biosynthetic enzymes in the laboratory 

strain with respect to the reference strain. In order to explore this possibility, the presence of genomic 

differences between the RP62A reference strain and the laboratory strain was investigated. The 

genome sequence of the reference strain was downloaded from RefSeq (NCBI). Whole-genome 

sequencing data for  the laboratory strain was obtained with Illumina® NextSeq by other members of 

the team (Claire Hill and Emma Manners). Both genome sequences were automatically annotated 

with Prokka (v. 1.11) (Seemann 2014) and subsequently compared with Roary: the pangenome 

pipeline (Page et al. 2015), applying default parameters. Amino acid sequences of biosynthesising 

enzymes of interest were extracted from either BRENDA (Jeske et al. 2018), BioCyc (Karp et al. 

2017) or KEGG (Kanehisa et al. 2000). ACT: the Artemis Comparison Tool (Carver et al. 2005) was 

then used to identify and extract the corresponding amino acid sequences in both the reference and 

the laboratory strain and the incidence of possible mutations in the laboratory strain with respect to 

the reference strain was assessed with SeaView: a multiplatform graphical user interface for 

sequence alignment (v. 4) (Gouy et al. 2009). Finally, the Pfam protein families database (v. 32.0) 

(El-Gebali et al. 2018) was used to identify important areas of protein activity, indicating sequence 

regions where the incidence of mutations could alter or prevent the functionality of the enzyme. No 

significant mutations were found on any of the enzymes investigated. 
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4.2.3.4 Model refinement 

Model requirements for biomass production defined by LP-based analysis were compared with the 

experimental data: for those amino acids defined as essential in silico and non-essential in vitro 

exhaustive investigation of the RP62A genome was conducted, focusing on their corresponding 

biosynthetic pathways. When all genes were present in the genome but reactions were missing in the 

network these were added to the model, which was then re-analysed for biomass production. If the 

compound was still not produced by the system, the stoichiometry and directionality of reactions 

potentially leading to its synthesis were checked and corrected as corresponded, following the 

methods described in Section 2.4.4.4. However, if an auxotrophy was detected experimentally for a 

certain compound but its full biosynthetic pathways was present in the genome and the model, the 

sequences of these biosynthetic enzymes were analysed for the incidence of mutations in the 

laboratory strain that could explain the in vitro results (Section 4.2.3.3). As a result of this work, 

several reactions were introduced, modified or removed from the system. Specific details can be 

found in Appendix D, Section 9.4. 

4.2.3.5 Computation of the effect of single amino acid deprivation on 

biomass production by LP-based analysis 

LP was used to analyse the effect of single amino acid deprivation on biomass production when 

compared to biomass production in a standard in silico MM medium: the model was initially 

analysed for production of cell biomass while satisfying the GAM and NGAM cell demand in a 

similar fashion as described in Chapter 3, Section 3.3.4. The LP was re-solved blocking the import 

of either NH4
+ or each single amino acid at a time, as well as in the absence of all amino acids. The 

effects caused on: i) the objective value (total net flux through the system (mmol/gDW/h)) and ii) 

Glc consumption (mmol/gDW/h) were calculated for all solutions. For simplicity, the results were 

filtered so only changes in reaction fluxes > 1e-3 mmol/gDW/h were taken into consideration. The in 

silico MM medium includes the same components as the medium used in vitro with the exception of 

salts and the vitamins biotin and thiamine since they are not involved in any biosynthetic reactions 

in the system or considered on the biomass composition of the cell. The model file used for this work 

was Sepi_MM.spy. 

 

Relevant code to the work described in this chapter can be found in Appendix A, Sections 9.1.2.4, 

9.1.2.5, 9.1.3.1 and 9.1.3.2. 
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4.3 Results 

4.3.1 Experimental assessment of requirements for vitamins and 
amino acids in S. epidermidis RP62A 

Although experimental growth requirements for RP62A had been previously described by Hussain 

et al. in 1991 (Chapter 0, Section 1.5.1), the lack of whole-genome sequencing data available for that 

specific strain makes it impossible to determine if it presented any genetic differences with the 

RP62A reference strain from which this GSM is derived. As this could be a potential cause of 

variation on the organism’s growth phenotype, minimal growth requirement experiments were 

repeated with a S. epidermidis RP62A strain purchased from NCTC (the laboratory strain for this 

project). For completion, and in order to identify any possible genetic differences between this and 

the reference strain, their genome sequences were compared (Section 4.3.2). 

The in vitro minimal growth requirements for RP62A were investigated as described in Section 4.2.1. 

The effect caused by deprivation of single amino acids on bacterial growth can be summarised as 

follows: inspection and measurement of A600 values of the samples over time showed clear 

differences in growth between the media tested (Figure 4-1 and Figure 4-2) and are presented in 

Table 4-4. The effect on growth caused by deprivation of single vitamins is shown in Appendix C, 

Section, 9.3.1, Figure 9-2. 
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Figure 4-1 Growth curves for S. epidermidis RP62A in four representative modified MM- medium 

samples presenting no apparent delay or a slight delay in growth in comparison to cultures on standard 

MM medium.  

Legend: purple dashed line (MM) = standard MM medium; yellow line (MM (-) Ile) = MM medium without Ile; grey line 

(MM (-) Asp) = MM medium without Asp; blue line (MM (-) Gly) = MM medium without Gly; green line (MM (-) Cys) 

= MM medium without Cys. Each data point corresponds to the mean A600 value of three independent biological replicates. 

Error bars = SEM. 

For practical reasons, Figure 4-1 above shows growth data for four representative test media samples 

presenting no apparent delay in growth or a slight growth delay when compared with growth in the 

standard MM medium. A similar figure can be found in Appendix C, Section 9.3.1, Figure 9-1, 

including growth curves for BHI and all modified MM- medium samples presenting a similar pattern 

to those in Figure 4-1. These corresponded to cultures grown in MM- medium lacking the following 

individual amino acids: Asn, Asp, Cys, Gly, His, Ile, Lys, Met, Phe, Ser, Tyr and both Asn and Asp. 
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Figure 4-2 Growth curves for S. epidermidis RP62A in all modified MM- medium samples exhibiting an 

apparent growth delay in comparison to cultures on standard MM medium.  

Legend: purple dashed line (MM) = standard MM medium; green line (MM (-) Cys and Met) = MM medium without Cys 

and Met; black line (MM (-) Pro) = MM medium without Pro; light brown line (MM (-) Val) = MM medium without Val; 

blue line (MM (-) Arg) = MM medium without Arg; dark brown line (MM (-) Trp) = MM medium without Trp; pink line 

(MM (-) Glt) = MM medium without Glt; grey line (MM (-) Leu) = MM medium without Leu; orange line (MM (-) Thr) 

= MM medium without Thr; yellow line (MM (-) Ala) = MM medium without Ala. Each data point corresponds to the 

mean A600 value of three independent biological replicates. Error bars = SEM. 

Table 4-4 Summary of the in vitro growth effects observed upon removal of single amino acids from the 

MM medium compared with the experimental observations produced by Hussain et al. (1991).  

Effect of single    
amino acid 
deprivation 

Growth apparently delayed or 
absent by 18 hours 

No apparent growth 
by 24 hours 

No apparent growth 
by 48 hours 

Hussain et al. 
(1991)  Arg, Cys, Ile, Leu, Thr, Trp, Tyr, Val Non-reported Arg, Cys, Trp, Val 

This study Ala, Arg, Glt, Leu, Pro, Thr, Trp, Val Pro, Val Pro 

 

There are multiple valuable parameters of bacterial growth curves (Zwietering et al. 1990) to be 

considered when studying bacterial growth. Some of these are: i) the maximum A600 value of the 

growth curve or maximum measurement of growth for a given culture; ii) the specific growth rate, 

given by the slope of the line fitting the growth curve section that is approximately linear during the 

exponential growth phase; and iii) the duration of the lag phase, or the length of the incubation period 
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before growth begins, in which cells are active but not yet dividing. In this experiment, no growth 

was detected in the sterility controls for BHI and MM medium. Cells in standard MM medium 

presented a maximum A600 value of 2.79 ± 0.05 SD; CI95% = [2.89, 2.68]), a specific growth rate of  

0.23 h-1 ± 0.02 h-1 SD; CI95% = [0.26, 0.19]) and a lag phase lasting between 4 and 6 hours. From 

those cultures exhibiting an apparent delay in growth in comparison to standard MM medium, MM- 

medium without Ala also plateaued at a A600 value (1.65 ± 0.28 SD; CI95% = [2.20,1.10]) significantly 

lower at the 95% confidence level (P=0.0023) than those in standard MM medium (2.79 ± 0.05 SD; 

CI95% = [2.89, 2.68]). By time 48 hours, only samples in MM- medium lacking Pro still presented a 

lack of growth, with an A600 of 0.11 ± 0.00 SD. 

4.3.2 Impact of amino acid deprivation on biofilm formation  

Removal of single amino acids from the MM medium caused changes not only in the kinetics of 

cellular growth but also in the cellular phenotype. Specifically, the effect of nutrient deprivation on 

biofilm formation was assessed at the end of the incubation period of samples being monitored during 

the study of growth requirements for RP62A (Section 4.3.1): following the method described in 

Section 4.2.2, the relative levels of biofilm formation were obtained for cultures in standard MM 

medium and in modified MM- medium (Figure 4-3) and are summarised in Appendix C, Section 

9.3.2, Table 9-3. 
 

 
Figure 4-3 Relative levels of biofilm formation in S. epidermidis RP62A cultures growing on standard 

MM medium and modified MM- medium lacking single amino acids 

Legend: values correspond to the mean of three independent biological replicates per test condition and have been 

normalised in a scale 0-100, taking the highest A595 value measured on these experiments as 100. Legend: purple bar (MM) 

= biofilm formation in standard MM medium; blue bars (MM (-) ‘compound name’) = biofilm formation in MM medium 

without ‘compound name’. Error bars = SEM. For reference, the A600 values corresponding to these cultures prior staining 
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of the biofilm biomass are displayed at the top of the figure. 

The effect of amino acid deprivation on cell growth and biofilm formation are compared below 

(Table 4-5): 

Table 4-5 Summary of the effects caused by removal of single amino acids from the standard MM 

medium on S. epidermidis RP62A cell growth and cell phenotype. 

Effects caused by removal of single amino 

acids 

 Effect on cell growth 

Apparent delay No apparent delay 

Variation in biofilm 

formation with respect 

to the standard MM 

medium 

Increase Ala, Thr Asn, Asp, Ile, Met 

Decrease 
Arg, Glt, Leu, Pro, Trp, 

Val 

Cys, His, Lys, Phe, Gly, 

Ser, Tyr 

 

4.3.3 Comparison between experimental data and in silico results 

4.3.3.1  Model validation and refinement 

As a result of the work described in Section 4.2.3, several reactions were introduced, modified or 

removed from the system. The data obtained from these investigations is compared and summarised 

in Table 4-6 for amino acids and in Appendix C, Section 9.3.1, Table 9-2 for vitamins. A more 

detailed description of the outcome of this study, the consequent changes applied to the model and 

its behaviour before and after curation is provided in Appendix D, Section 9.4.1. 
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Table 4-6 Comparison between the biosynthetic potential for amino acids encoded in the genome of S. 

epidermidis RP62A, amino acids auxotrophies reported experimentally and proposed explanations for 

the discrepancies encountered. 

 
 

Amino acid 
Absence of 
biosynthetic 
genes in RP62A 

Auxotrophy 
reported by 
Hussain et al. 
(1991)  

Auxotrophy 
experimentally 
determined in 
this study 

Proposed explanation for discrepancies 
between experimental datasets 

Arg 

No, however, the 
urea cycle is 
broken, which 
could affect 
regeneration of 
ornithine from 
Arg. 

Yes 
No, but its 
absence delays 
growth. 

Presence of a biosynthetic pathway for Arg 
and absence of obvious mutations on these 
genes indicate that the lack of growth 
without Arg detected by Hussain et al. is 
likely to be an effect of regulation. 

Cys No Yes No 
Normal growth observed without Cys and 
the presence of a biosynthetic pathway for 
it indicates lack of essentiality. 

Pro 

No: de novo 
synthesis is 
absent, however, a 
biosynthetic 
bypass through 
ornithine is 
present. 

No Yes 

Presence of a biosynthetic bypass and 
detection of growth without Pro by Hussain 
et al. (1991) and later experiments (Chapter 
5, Section 5.3.2) indicate that the lack of 
growth detected on this study is likely due 
to regulatory processes or the impossibility 
of the cells to use the ornithine bypass 
under these conditions. 

Trp No Yes 
No, but its 
absence delays 
growth. 

Presence of a biosynthetic pathway for Trp 
and absence of obvious mutations on these 
genes indicate that the lack of growth 
without Trp detected by Hussain et al. 
(1991) is likely to be an effect of 
regulation. 

Val No Yes 
No, but its 
absence delays 
growth. 

Presence of a biosynthetic pathway for Val 
and absence of obvious mutations indicate 
that lack of growth without this amino acid 
detected by Hussain et al. (1991) is likely 
to be an effect of regulation. 
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4.3.3.2  Model analysis for interpretation of experimental results 

The in silico effect of the removal of amino acids on the objective value (total net flux) and the Glc 

uptake for production of cell biomass were calculated as described in Section 4.2.3.5. Total net flux 

through the system was considered as a proxy for the enzymatic cost of the metabolic response. 

Computing this parameter and the Glc uptake rate for each solution could help explain the 

experimentally observed effects of nutrient deprivation: if removal of a certain media component 

allows synthesis of biomass in silico but causes a substantial increase in the enzymatic cost, this 

could potentially be translated into growth being impaired in vitro, and the same could be true for 

instances where the Glc demand increases to levels where the Glc media concentration could become 

limiting for growth. 

 
The main discrepancy found between the system’s behaviour and the experimental results was the in 

vitro lack of growth on MM medium without Pro. The results derived from LP-based analysis of the 

model (Section 4.2.3.5) were studied in an attempt to identify a metabolic explanation for this and 

other changes observed in vitro. The effect of removing NH4
+ or each single amino acid at a time 

from the medium was calculated as the percentage of increase/decrease in the objective value and 

the Glc consumption rate with respect to values obtained in standard MM medium ( 

Table 4-7 and Table 4-8): 

Table 4-7 Summary of the effect caused by removal of single amino acids on the objective value and Glc 

consumption of the LP-based analysis solutions for biomass production in MM medium when the 

objective of the analysis was to minimise the total net flux through the network. 

In silico effect caused by removal of 

single amino acids from the standard 

MM medium  

Objective value 

(total net flux through the system) 

Increase No effect 

Glc 

consumption 

Increase 
Ala, Asp, His, Glt, Met, Phe, 

Ser, Trp, Tyr 
 

Decrease Thr  

No effect 
Arg, Asn, Cys, Ile, Leu, Lys, 

Pro, Val 
Gly 
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Table 4-8 In silico effect of the removal of amino acids and NH4+ on the objective value and the Glc 

uptake rate of responses for production of cell biomass in standard MM medium and modified MM 

medium when the objective of the analysis was to minimise the total net flux through the network. 
 

Compound removed Variation in the objective value (%) Variation in the Glc uptake (%) 

None - - 

All amino acids and NH4+ ∞ ∞ 

All amino acids 53.1 712 

Lys 2.34 0.00 

Glt 2.12 3.28 

Phe 1.91 14.5 

Tyr 1.58 14.5 

Cys and Met 1.55 1.53 

His 1.43 7.00 

Asn 1.10 0.00 

Ala 0.98 6.03 

Ile 0.915 0.00 

Leu 0.801 0.00 

Thr 0.624 -2.34 

Met 0.615 1.45 

Val 0.596 0.00 

Trp 0.479 2.19 

Arg 0.388 0.00 

Asp 0.219 5.62 

Ser 0.146 3.14 

Cys 0.131 0.00 

Pro 0.008 0.00 

Gly 0.00 0.00 

   NH4+ 0.00 0.00 
 

Units: mmol/gDW/h. The variation on the objective value and the Glc uptake rate was calculated has a 

percentage over the values obtained with the standard in silico MM medium (259 mmol/gDW/h = 100% ; and 

1.05 mmol Glc (/gDW/h) = 100%). 
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4.4 Discussion 

4.4.1 Experimental assessment of requirements for amino acids in 
S. epidermidis RP62A 

Effect of single amino acid deprivation on bacterial growth 
 
Examining the growth curves presented in Section 4.3.1, observations could be made on the effect 

of media and amino acid deprivation on cell growth:  

 Cultures grown in MM- medium without Ala plateaued at a significantly lower A600 value 

than those in standard MM medium (Section 4.3.1), indicating that this amino acid is highly 

important for cell growth. 

 Cells growing in MM- medium lacking Val presented the longest lag phase, lasting between 

30 and 48 hours, and the lowest specific growth rate (0.10 h-1), followed by cultures in MM- medium 

lacking both Cys and Met (0.11 h-1). This could be indicative of the organism being adapted to utilise 

these amino acids, and needing time to produce or re-activate the enzymes involved in their synthesis 

once these compounds are no longer provided with the media. Specifically, the low growth rate 

exhibited by cultures lacking both Cys and Met is likely due to cells needing to metabolise higher 

amounts of sulphate in order to synthesise these sulphur-containing amino acids. This would require 

the participation of a higher number of enzymes to support growth or, at least, an increase in their 

activity, together with an increase in the activity of the mechanisms mediating the uptake of sulphate. 

These events might involve upregulating gene expression, which will in turn take some time. 

 Removal of the amino acids Ala, Arg, Glt, Leu, Thr, Trp and Val caused an apparent delay 

in growth, while lack of Pro produced an ambiguous result for cell growth. These observations 

partially match previous findings by Hussain, Hastings and White, who reported a lack of growth or 

a growth delay in the absence of five of these eight amino acids (Arg, Leu, Thr, Trp and Val) (Hussain 

et al. 1991). The main discrepancies detected between both sets of experimental results correspond 

to the amino acids Pro and Cys: while these authors reported Pro deprivation to have no effect on 

cell growth and Cys to be essential for growth, the results obtained in this study were inconclusive 

on whether RP62A needed external Pro for growth under the conditions tested, while removal of Cys 

had no apparent effect. It is difficult to conclude if the A600  value exhibited by cultures lacking Pro 

is due to a very low level of bacterial growth or to other phenomena, such as changes in the chemical 

components of the medium, an interaction between media components and the bacterial cells or 

phenotypic changes induced in the cells under these circumstances (e.g. an increase in bacterial 

adhesion and cell clumping). Either way, if  bacterial growth is occurring in these sample, it is greatly 
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impaired. Thus, the ability of  S. epidermidis RP62A to grow without Pro was investigated further in 

the following chapter. 

 The absence of several amino acid resulted in an increase in the maximum A600 value 

exhibited by some cultures in comparison with those in standard MM medium. However, this was 

not associated with an increase in their growth rate or a decrease in their lag phase. For some of them, 

such as medium samples lacking Thr, this could be explained as the result of nutrient deprivation 

inducing an increase in the cell adhesion levels, leading to an increase in biofilm formation (Section 

4.4.2), however, for others (samples lacking Glt, Leu, His, Phe or Tyr), this was not the case and the 

reasons behind this effect remain unclear. 

4.4.2 Impact of amino acid deprivation on biofilm formation 

The results presented in Section 4.3.2 showed how single amino acid deprivation modified the level 

of biofilm formation in RP62A. However, and despite the fact that biofilm formation in S. aureus 

has been associated with extended growth lag phases and reduced growth rates in vivo (Dengler 

Haunreiter et al. 2019), no clear relationship could be stablished between the effects of amino acid 

removal observed on cell growth and biofilm formation in this study: for example, by time 48 hours, 

cultures growing in MM medium lacking certain single amino acids (Glt, Leu, His and Phe) 

presented A600 values equal or higher than that of those growing in standard MM medium, but 

exhibited a considerable decrease in their levels of biofilm formation. Specifically, removal of Glt 

and Leu seemed to have the greatest effect, with respective reductions in biofilm formation of 94.7% 

± 5.39 SD and 84.3% ± 1.92 SD. This is a strong indication of the importance of these amino acids 

in the production of biofilm in RP62A, at least, under the conditions considered in this study. On the 

other hand, removal of other amino acids, such as Ala, caused a substantial decrease in the maximum 

A600 value but did not lead to a decrease in biofilm formation. Finally, the lack of Arg, Pro and Val 

caused a decrease in the A600 values measured by time 48 hours while also leading to lower levels of 

biofilm formation in comparison with those achieved in MM medium. This made hard to differentiate 

between a real effect in biofilm formation or a lack of production of biofilm components as a direct 

cause of a reduction in cell growth. Furthermore, since these cultures presented an apparent growth 

delay and had not reached a growth plateau at the time biofilm formation was measured, it cannot be 

ruled out that the reduction observed in biofilm production could be a consequence of this 

phenomenon being delayed due to slow growth, and not necessarily being decreased. 

 

A possible explanation for instances in which nutrient removal led to an apparent reduction in cell 

growth and an increase in biofilm formation (e.g. absence of Ala) could be that the lack of these 

components is triggering a stress response leading to the production of EPS (exopolysaccharides, 
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lipids etc). Bacterial cells are known to produce these compounds under nutrient-restrictive 

conditions as a way to store them to be utilised as energy sources when needed. Production of EPS 

increases cell adhesion and cell clumping, which in turn facilitates the formation of biofilms. A 

phenomenon known as the ‘stringent response’ (Lister et al. 2014; Somerville 2016) consisting in 

the induction of genes linked to antibiotic resistance; expression of phenol-soluble modulins and 

biofilm formation; activation of genes involved in DNA repair and virulence; and repression of genes 

related to amino acid metabolism has been described during nutrient deprivation and other adverse 

conditions, such as heat shock, fatty acid starvation, iron and phosphate limitations (Boutte et al. 

2013; Somerville 2016). While Leu and Val starvation has been shown to induce the stringent 

response in S. aureus (Geiger et al. 2014; Somerville 2016), their removal from MM medium caused 

an apparent growth delay in RP62A but led to a reduction in biofilm formation. Despite levels of 

biofilm formation being low in cultures lacking Pro compared to those in cultures in MM medium, 

these still produced some biofilm biomass (Figure 4-3 ). Thus here we speculate that A600 values of 

0.11 ± 0.00 SD detected in these samples could correspond to an increase in the production of EPS 

in these cell, which could in turn have induced biofilm formation. Planktonic growth was not 

observed in these cultures. 

 

Changes observed on growth phenotype will surely be linked to a re-wiring of the organism’s 

metabolic network. It is, however, rather complicated to assign metabolic significance to these 

results. LP-based analysis specifically applied to the study of energy and biomass production on the 

biofilm state is described in Chapter 6. 

4.4.3 Comparison between experimental data and in silico results 

After extensive investigations leading to further refinement of the system, its capability to synthesise 

amino acids is now reconciled with the genome content of the organism, and, in summary, 

requirements for essential medium components are either correctly defined by LP-based analysis of 

the model or can be accounted for in a reasonable manner. 

 

The main discrepancy found between the system’s behaviour in silico and the experimental results 

is the organism’s lack of growth in MM medium without Pro. However, Husain et al. did report 

growth on Pro-deprived cultures. Furthermore, the path for de novo synthesis of Pro is missing in 

RP62A but the presence of genes encoding for a biosynthetic bypass should allow its biosynthesis 

from ornithine. In the past, authors who investigated growth requirements for staphylococci 

explained discrepancies between results related to the same organism as a consequence of a delay in 

the production or activation of vitamin and amino acid synthesising enzymes, which can occur when 

cells previously cultured on rich media have to adapt to grow in a nutrient-limiting environment 
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(Gladstone 1937). It is, therefore, plausible that enzymes involved in the biosynthesis of Pro 

remained inactivated or under-expressed under the conditions tested on this study. Whether the delay 

in growth observed upon removal of other amino acids is the result of a late induction of the 

corresponding biosynthesising genes or has other metabolic or regulatory causes is difficult to 

discern. 

 

As expected, the in silico removal of all amino acids from the standard MM medium had a dramatic 

effect on the objective value (total net flux through the system) and the Glc demand of the LP 

solutions obtained for biomass production (Table 4-8), increasing the former by 53.1% and the later 

by 712%, while sole removal of NH4
+ did not cause any changes, since NH4

+ is not utilised for 

biomass synthesis in the presence of amino acids. After comparing the outcome of these analyses 

with results from the in vitro growth study (Section 4.3.1) no clear relationship could be established 

between the in silico effect of amino acids removal on the objective value and Glc consumption rate 

and its in vitro effects on bacterial growth and biofilm production: 

 

 Although Pro was the only amino acid whose absence led to lack of growth in vitro by time 

48 hours, its removal from the in silico medium produced the smallest increase in the objective value 

(0.008%) (with the exception of Gly removal, which caused no changes), and had no effect on the 

rate of Glc uptake. 

 

 Removal of Glt and Lys caused the highest impact in the objective value, with a respective 

increase of 2.12% and 2.34%. While lack of Glt increased the Glc consumption rate by 3.28%, the 

absence of Lys had no effect on it. However, the in vitro effects of their removal were quite different: 

Glt deprivation caused an apparent delay in cell growth and a substantial decrease in biofilm 

formation (-94.7% ± 5.39 SD), while absence of Lys did not seem to delay growth and reduced 

biofilm formation by only 4.43% ± 10.64 SD. This indicates that changes on the total net flux through 

the system associated with the in silico responses on their own are not sufficient to explain alteration 

on cell growth and biofilm formation. 

  

 Removal of the amino acids Phe and Tyr caused the highest effect on the Glc consumption 

rate, with an increase of 14.5% and caused the objective value to increase between 1.5 and 2% in 

both cases. However, their corresponding in vitro effects were quite different: while lack of Phe or 

Tyr did not cause an apparent delay in cell growth, Phe removal reduced biofilm formation by 36.8% 

± 9.81 SD, while the absence of Tyr led to a much lower decrease in this parameter (-2.92% ± 4.56). 

Therefore, this again indicates that similar in silico changes on these parameters cannot be linked to 
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similar outcomes in vitro and are, on their own, insufficient to provide an explanation for the 

biological responses of the organism. 

 

 Finally, investigating the fate of sulphur-containing amino acids and sulphur metabolism in 

solutions described in Section 4.3.3.2 showed how the model did not take up sulphate as long as Cys 

was provided. This way, the absence of Met was compensated by synthesising this amino acid from 

Cys. Biomass production in the absence of Cys involved uptake of Met for its direct incorporation 

to the biomass and the utilisation of sulphate for Cys synthesis. When neither of them were present, 

the uptake of sulphate increased in order to allow synthesis of both amino acids. As expected, 

removal of Cys and Met led to an increase in the total net flux through the system (+1.55%), as well 

as to an increase in the Glc uptake rate for biomass production (+1.53%). The in vitro effect in growth 

observed in cultures in MM medium without both amino acids was an apparent growth delay and a 

decrease in the growth rate. However, removal of single amino acids such as Tyr or Phe caused 

higher increases on these in silico parameters without causing an apparent negative effect in cell 

growth in vitro. Therefore, this again exemplifies how these data alone are insufficient to explain the 

biological changes observed in RP62A. 

In summary, thorough investigation of these LP solutions led to the following conclusions: 

i. None of the amino acids are essential for growth in silico: removal of each single amino acid 

at a time from the MM medium does not prevent biomass production. 

ii. Removal of all amino acids in silico caused a severe increase on the total net flux through 

the system and the Glc demand for biomass synthesis. This could potentially impede growth 

under these conditions and was studied further in the following chapter. 

iii. The lack of effect observed in biomass production upon removal of Pro from the in silico 

MM medium is in conflict with the inconclusive result for growth observed in vitro, which 

was potentially explained as a result of regulation over biosynthesising genes. The small 

reduction in C and N associated with the removal of single amino acids from the media was 

considered negligible, since Glc is provided in the medium in sufficient amounts to support 

cell growth and the presence of 18 other amino acids should suffice to account for the N 

demand for growth. 

iv. Removal of single amino acids in silico can have similar effects on the total net flux and Glc 

consumption rate of LP solutions for biomass production but can lead to very different 

outcomes in vitro. Study of these parameters on their own is not sufficient to explain the 

biological behaviour of the organism, which again exemplifies how structural metabolic 

modelling by itself is insufficient to consider the variability of the complex biological 

system. 
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4.5 Conclusion 

Since, in principle, GSMs represent the full functionality of metabolic networks without considering 

regulation, predictions derived from their analysis might overestimate the ability of the organisms 

they represent to grow on nutrient-limited environments. This must be considered when trying to 

reconcile computational and experimental results. 

Certain discrepancies have been observed between the experimental results obtained here and 

previous phenotypic characterization of RP62A (Hussain et al. 1991). Taking into account several 

findings from authors studying growth requirements for staphylococci (Gladstone 1937; Knight 

1937; Emmett et al. 1975; Heinemann et al. 2005; Lee et al. 2009; Bosi et al. 2016),  a plausible 

explanation for this could be a delay in the production or activation of synthesizing enzymes as part 

of an adaptive response to a nutrient-limiting environment dependent on regulation of gene 

expression. Investigation of changes occurring on the levels of biofilm formation upon nutrient 

deprivation could not stablish a clear relationship between this phenomenon and the changes 

observed in cell growth. Further work on nutrient utilisation on biofilms is described in Chapter 6. 

After extensive curation based on genetic analysis and experimental data, the capabilities of the 

system are in good agreement with the gene content and the in vitro behaviour of the organism (Table 

4-6). Although the in vitro and in silico results for growth without Pro seem contradictory, further 

experimental work described in Chapter 5 showed that RP62A is in fact non-auxotrophic for Pro, 

which is also in agreement with previous findings by Husain et al. (Hussain et al. 1991). Hence, it 

can be concluded that RP62A appears to have no amino acid auxotrophies under the conditions tested 

and the behaviour of the GSM matches this observation. Computation of the total net flux through 

the system and Glc consumption rate associated to the in silico responses for biomass production 

upon amino acids removal is, by itself, insufficient to explain the in vitro effects observed on cell 

growth and biofilm formation. This is not surprising, since GSMs generally do not take into account 

kinetic parameters or regulatory events, and has to be regarded as a current limitation of modelling 

metabolism at the genome-scale level. 

Additional LP-based analysis of the GSM with a focus on N metabolism and amino acids utilisation 

for biomass production were performed and are described on the following chapter.  
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5 Analysis-guided experimental validation of the 
GSM on nitrogen metabolism and amino acid 
utilisation for biomass production 

5.1 Introduction 

Results form Chapter 4 regarding amino acid essentiality were generally in good agreement with the 

in silico results derived from model analysis. Only one clear discrepancy was found: this involved 

the ability of the system to synthesise biomass in the absence of Pro, for which the corresponding in 

vitro results were inconclusive. This chapter describes additional LP-based analysis of the GSM with 

a focus on N metabolism and amino acid utilisation for the synthesis of cell biomass (including Pro) 

and how results derived from these analysis could be used as a guide for experimental design and 

extended validation of the system. 

 

Specific background relevant to the work described in this chapter on the use of Pro and its 

metabolism is given below. Oher relevant background can be found in Chapter 1, Sections 1.6.1 and 

1.6.2. 

5.1.1 Investigation of proline essentiality 

The in vitro dependency on Pro for growth was the main discrepancy identified between the outcome 

of LP-based analysis for biomass production and the experiments described in Chapter 4. Therefore, 

this phenomenon was investigated further in this chapter. In order to better understand this matter, 

relevant literature and metabolic databases were investigated and the findings made are summarised 

below: 

5.1.1.1 Proline biosynthesis 

Study of the biosynthetic potential encoded in the genome of RP62A (Chapter 4, Section 4.3.2) 

showed that it lacks the enzymes involved in Pro biosynthesis from Glt via glutamyl-P but possesses 

three other enzymes which enable a bypass to obtain this amino acid from ornithine (Lee et al. 2009). 

The sole reaction leading to direct production of Pro in the system is catalysed by the ornithine 

cyclodeaminase (EC 4.3.1.12). As a result, the GSM was able to reproduce growth in MM- medium 

without Pro, utilising ornithine as a precursor for Pro synthesis. Ornithine is generally obtained from 

Arg, Gln and Glt. RP62A seems to lack the enzyme arginase (EC 3.5.3.1), which catalyses the 

hydrolysis of Arg to ornithine and urea in the urea cycle, although it can still produce ornithine from 
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Arg via citrulline (EC 3.5.3.6 and EC 2.1.3.3). Therefore, while the organism should be able to 

synthesise ornithine from Gln and Glt, the use of Arg could be partially compromised, thus adding 

stress to the synthesis of Pro under certain conditions (e.g.: if the availability of Gln and/or Glt is 

limited, as it is the case in MM medium). 

5.1.1.2  The osmoprotective role of proline 

In addition of its well-known proteogenic role, Pro has been described as having an important 

osmoprotective role in staphylococci growing in high osmolarity environments (Wetzel et al. 2011; 

Somerville 2016). However, the mechanisms through which transport and accumulation of 

osmolytes allows growth under these conditions is not fully understood yet (Graham et al. 1992). 

Therefore, the upregulation of genes involved in Pro uptake might suggest an adaptation for life in a 

variety of environments with high salt concentrations (Wetzel et al. 2011), including staphylococci 

preferred niches such as human and animal skin, mucous membranes and blood (Somerville 2016). 

Since RP62A was originally isolated from the human body, it is possible that, this strain could be 

adapted to import Pro rather than synthesising it. Therefore, cells could need time to adapt to a Pro-

deficient environment, with enzymes involved on Pro anabolism needing to be produced de novo or 

re-activated. 

5.1.1.3 Impact of carbon catabolite repression on proline biosynthesis 

Study of S. aureus metabolism showed that some of the pathways involved in amino acid catabolism 

are repressed in the presence of preferred C sources such as Glc (Townsend et al. 1996; Li et al. 

2010; Nuxoll et al. 2012; Halsey et al. 2017). Results obtained by Halsey et al. while studying S. 

aureus growth in HHW medium (Section 4.2.1.1) showed that, in a C rich environment, the 

catabolism of Arg and Pro and their interconversion was repressed via C catabolite repression 

(Halsey et al. 2017). However, both amino acids were still used for protein synthesis and needed to 

be supplemented in the medium. When cultures reached their maximum A600 value and Glc was 

exhausted from the medium, Arg catabolism remained repressed, suggesting that the urea cycle may 

be subjected not only to C catabolite repression but also to several other layers of regulation.  On the 

other hand, cultures initially grown on HHW medium without Glc efficiently catabolised both amino 

acids for Glt production, which functioned as the main amino donor for anabolic processes as well 

as the major C source for growth. In this case, removal of Arg or Pro from the medium did not impair 

growth. Thus since the Glc concentration of the standard MM medium (0.2% w/v (11.1 mmol)) used 

in the experiments described in Chapter 4 is similar to that in the HHW medium used by Halsey et 

al. (0.25% w/v (13.9 mmol)) (Halsey et al. 2017), C catabolite repression could partly explain the 
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impairment of growth upon Pro deprivation, and the apparent growth delay observed without Arg 

(Chapter 4, Section 4.3.1). 

5.1.2 Use of LP-based analysis to inform experimental design for 
hypothesis testing 

Taking the information described above into consideration, three main hypothesises can be proposed 

in order to explain lack of growth without Pro in MM medium: i) the availability of ornithine 

precursor-amino acids (Glt, Gln and Arg) is limited in MM medium and is insufficient to support 

Pro biosynthesis; ii) regulation of metabolic genes involved in Pro biosynthesis takes time, and cells 

still need to adapt to the new nutrient-limited environment, hence growth without Pro is delayed; 

and/ or iii) since Glc is present in MM medium, the catabolism of Arg and Pro is impaired due to C 

catabolite repression (Halsey et al. 2017). 

 

This chapter describes how LP-based analysis was used for designing the in vitro work performed to 

specifically study the ability of RP62A to: i) grow in the absence of Pro; ii) grow on a set of amino 

acids (Ala, Arg and Glt) defined as important for biomass production in silico; iii) grow on amino 

acids defined in silico as non-suitable N sources for RP62A, and; iv) utilise NH4
+

 as sole N source 

for biomass production. The results obtained in vitro and in silico where compared for further 

validation of the system. 

5.2 Methods 

5.2.1 Model analysis for the study of the in silico utilisation of 
amino acids for biomass production 

5.2.1.1 Overall uptake and excretion of amino acids and their uptake to 

demand ratio for biomass production 

LP-based analysis was applied to the calculation of the NH4
+ and amino acids import and export rates 

during production of cell biomass while satisfying the GAM and NGAM ATP demand (Chapter 3, 

Section 3.3.4) utilising an in silico MM medium. The overall uptake/excretion rates for amino acids 

during synthesis of planktonic biomass were calculated as the differences in flux between the amino 

acid medium importers and their biomass exporters. Their uptake to demand ratios were calculated 

by dividing the flux through each amino acid importer within the flux through their biomass exporter. 

The in silico medium considered in these analyses was MM medium (Chapter 4, Sections 4.2.1.1 

and 4.3.1) and the model file was Sepi_MM.spy. 



Chapter V. Analysis-guided experimental validation of the GSM on nitrogen metabolism and 
amino acid utilisation for biomass production 

 

 
 
 

102 

5.2.1.2 Contribution of individual amino acids to the total nitrogen and 

carbon uptake for biomass production 

LP-based analysis was used to calculate the individual contribution of each amino acid to the total N 

and C uptake for production of planktonic biomass while satisfying the GAM and NGAM ATP 

demand (Chapter 3, Section 3.3.4). 

5.2.1.3 Growth on single amino acids as nitrogen sources 

Using LP-based analysis, the system was tested for production of cell biomass while satisfying the 

growth-associated and non-growth associated ATP demand (Chapter 3, Section 3.3.4). In summary, 

the in silico MM medium was utilised as input and a blockage on the flux through the NH4
+ importer 

was imposed. The import of all amino acids was also blocked and this constraint was then removed 

for each single amino acid at a time and the analysis repeated in order to identify which of them 

could be used as single N sources. The effect of utilising single amino acids for biomass production 

was calculated as the percentage of increase in the objective value with respect of the objective value 

obtained in the presence of NH4
+ and the 19 amino acids. 

5.2.1.4 Nitrogen assimilation: glutamate biosynthesis from NH4+ 

In order to investigate how the system reproduces the organism’s capability to assimilate inorganic 

N from NH4
+, a LP-based analysis was set up with minimisation of total flux as the objective function 

and generating 1 mmol/gDW/h of Glt as the sole output, with NH4
+ and Glc as the only available N 

and C sources. The solution obtained was investigated and the analysis was repeated upon sequential 

blocking of flux through key reactions directly involved in Glt production until its synthesis from 

NH4
+ was no longer possible, thus defining a set of reactions that are essential for this process. Note 

that NO3
- is not present in MM medium but the model could potentially reduce NO3

-
 to NO2

- and this 

to NH4
+ if needed. The genes associated with these enzymes were investigated in order to determine 

if some of these reactions could have been incorporated as a result of automatic gap-filling but do 

not correspond to enzymes encoded by genes truly present in the organism and could be causing an 

overestimation of the system’s capacity to assimilate N. The possible incidence of mutations on these 

genes in the lab strain was also considered and evaluated following the methods previously described 

in Chapter 4, Sections 4.3.2 and 4.3.3. 

 

Relevant code to the work described in this chapter can be found in Appendix A, Sections 9.1.3.1 

and 9.1.3.2. 
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5.2.2 Experimental design based on the LP-based analysis results 

The experimental design for further validation of the model regarding the utilisation of amino acids 

for biomass production was guided by the results obtained by LP-based analysis on this matter. This 

work assessed the ability of the organism to: 

i. Grow in the absence of Pro, 

ii. Grow on single amino acids (Ala, Arg and Glt) and on a mixture of them, 

iii. Grow on a mixture of amino acids defined in silico as non-suitable N sources for RP62A, 

and, 

iv. Utilise NH4
+

 as sole N source. 

5.2.2.1 Bacterial inoculum 

The inoculum utilised for these set of experiments was prepared as previously described in Chapter  

4, Section 4.2.1.2. 

5.2.2.2 Media composition 

Note that throughout this document, the term ‘MM medium base’ refers to the composition of the 

standard MM medium described in Chapter 4, Section 4.2.1.1 without amino acids. The formulation 

of media batches utilised for growth tests is described below. 

i. Assessment of growth in the absence of Pro: 

  - Standard MM medium and MM- medium without Pro were prepared as described 

in Chapter  4, Sections 4.2.1.1 and 4.2.1.3. 

  - MM medium base (no amino acids) containing increased concentrations of amino 

acids which could potentially act as ornithine precursors (Arg and Glt) were prepared as described 

in point ii. 

 

ii. Assessment of growth on single amino acids (Ala, Arg and Glt) and on a mixture of them: 

  - Modified MM medium batches containing Ala, Arg or Glt or a mixture of the three 

as sole N source/s were prepared as follows: for simplicity, the total N concentration of the original 

MM medium (20.4 mmol) was maintained and achieved by supplementation with just one of these 

amino acids at a time or with a combination of the three as corresponded. This way, the test media 

were formulated as follows: 

a. MM medium with Glt as sole N source contained 20.40 mmol of Glt. 

b. MM medium with Ala as sole N source contained 20.40 mmol of Ala. 

c. MM with Arg as sole N source contained 5.10 mmol of Arg. 

d. MM medium with Ala, Arg and Glt contained 7.79 mmol of Ala, 0.341 mmol 
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of Arg and 11.3 mmol of Glt. This maintained the proportion of N supplied by 

each amino acid in line with their contribution to the total N uptake for biomass 

production when available together in silico. See LP-based analysis results 

presented in Section 5.3.2.2 (Table 5-9). 

 iii. Assessment of growth on a mixture of amino acids defined in silico as non-suitable N 

sources for RP62A: 

  - A modified test MM medium (tMM) including solely the 7 amino acids that, 

according to the results derived from model analysis, cannot be utilised N sources in Section 5.3.1.3 

was prepared as follows: for simplicity, the concentration of each amino acid present in the tMM 

medium was made 3.3 times higher than in the original MM medium (Table 5-1). This guaranteed 

that the total amount of N provided by the mixture was at least as high as in the original medium 

recipe including all 19 amino acids (20.68 vs 20.37 mmol of N respectively). 

 

Table 5-1 Concentration of amino acids present in tMM medium and their respective concentration in 

standard MM medium 

Amino acids identified 

as non-suitable N 

sources for BMP 

mmol of amino acid 

in the standard MM 

medium 

mmol of amino acid 

in the test MM 

medium (tMM) 

Ile 1.14 3.77 

Leu 1.14 3.77 

Lys 0.68 2.26 

Met 0.67 2.21 

Phe 0.60 2.00 

Trp 0.49 1.62 

Tyr 0.55 1.82 

 
 iv. Assessment of growth on NH4

+ as sole N source: 

  - For convenience, (NH4
+)2HPO4 was used as a supplementary source of NH4

+ to be 

added to the amino acid-free MM medium base. The test samples were formulated as follows:  

a. MM medium base supplemented with 18.7 mmol of NH4
+, thus providing a 

similar NH4
+

 concentration to that found in the M9 medium formulation 

commonly used for staphylococci (Onoue et al. 1997; Washburn et al. 2001; 

Wu et al. 2012) (Section 5.3.2.4). Here, the Glc concentration of the original 

MM medium was maintained unmodified at 0.2% w/v (11.10 mmol). 

b. MM medium supplemented with 18.7 mmol of NH4
+ and double Glc 
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concentration (0.4% w/v or 22.10 mmol) in order to account for a 

hypothetical dramatic increase on Glc demand if biofilm formation is to be 

triggered by the stringent response (Lister et al. 2014; Somerville 2016). 

c. MM medium supplemented with 60.6 mmol of NH4
+, thus providing a 

similar NH4
+ concentration to that in the AAM medium (Rudin et al. 1974) 

for staphylococci (Section 5.3.2.4), and increasing the original Glc 

concentration 10 times (2% w/v or 111 mmol) for the same reason as above. 

5.2.2.3 Experimental setup 

Cell inocula were obtained as described above and added in a proportion 1/100 to 15 ml sterile tubes 

containing 10 ml of the corresponding test medium, given an approximate final cell concentration of 

1.5*106 CFU/ml per sample. The tubes were incubated at 37 OC and 180 rpm for a period of 7 days. 

Cell growth was monitored by measuring absorbance spectrophotometrically at 600 nm (A600) every 

24 hours. Standard MM medium samples were inoculated and used as a positive control for growth. 

Non-inoculated standard MM medium and test media samples were used as sterility controls for each 

growth condition. All samples, including controls, were prepared as three independent biological 

replicates and the growth data obtained were expressed as the means from these replicates. Three 

extra replicates were prepared and incubated unopened. For these, growth presence or absence was 

monitored by visual inspection, thus reducing risk of obtaining a positive result for growth due to 

contamination to a minimum. Background levels were calculated by averaging values obtained for 

the sterility controls and were subtracted from the absorbance measurements of the tests samples as 

corresponded. At the end of the incubation period, those samples were growth was detected were 

streaked out on BHI agar in order to discard a possible contamination. All tubes were incubated for 

an extra period of 7 days and monitored again for growth by visual inspection after a total of 14 days 

of incubation. 

5.3 Results 

5.3.1 In silico utilisation of amino acids for biomass production 

These analysis investigated which amino acids were preferentially utilised by the system for biomass 

production. The results obtained showed which of them were taken up at a higher proportion than 

needed for their direct incorporation into the biomass. The proportion in which each amino acid 

contributed to the total N and C uptake for biomass synthesis was also identified. Furthermore, lists 

of amino acids which could and could not be utilised as sole N sources for growth were obtained, 

and, finally, the system was analysed for optimal responses for Glt synthesis from NH4
+. This work 
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expanded our understanding on the capabilities of the cell to metabolise amino acids and provided 

useful data to design experiments for further validation. 

5.3.1.1 Overall uptake and excretion of amino acids and their uptake to 

demand ratio for biomass production 

Calculation of the total uptake or excretion of amino acids and NH4
+ and their uptake to demand 

ratios during planktonic growth was performed as described in Section 5.2.1.1. The results obtained 

are summarised in Table 5-2: 
 

Table 5-2 Overall uptake or excretion of NH4
+ and amino acids during in silico production of planktonic 

biomass in standard MM medium and their uptake to demand ratios in the presence of O2. 

Compound 
Overall uptake/excretion 

(mmol/gDW/h) 

Ratio uptake to 

demand 

Glt 9.29 47.6 

Ala 1.75 9.26 

Thr 0.857 5.79 

Asp 0.366 2.40 

Arg 0.15 2.36 

Lys 0.103 1.44 

Met 0.007 1.09 

Asn 0.00 1.00 

Cys 0.00 1.00 

His 0.00 1.00 

Ile 0.00 1.00 

Leu 0.00 1.00 

Phe 0.00 1.00 

Pro 0.00 1.00 

Ser 0.00 1.00 

Trp 0.00 1.00 

Tyr 0.00 1.00 

Val 0.00 1.00 

Gly -0.190 0.00 

Gln -0.200 0.00 

  NH4+ -7.87 - 
 

A positive overall uptake/excretion value indicates compound net uptake, a negative value indicates net 

excretion and a value of 0 indicates that the compound was taken up at the same proportion as it was excreted 

in the biomass. An uptake to demand ratio value of 0 indicates lack of uptake, a value of 1 indicates that the 
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amino acid was taken up at the same proportion as it was excreted, while a value > 1 indicates that the amino 

acid was taken up at a higher proportion than it was incorporated into the biomass. 

The amino acids Asn, Cys, His, Ile, Leu, Phe, Pro, Ser, Trp, Tyr and Val presented uptake to demand 

ratios of 1and, therefore, were directly incorporated to the protein in the biomass. Amino acids with 

ratios of 0 (Gln and Gly) were not taken up from the medium, but rather produced by the network, 

and, finally, those amino acids with uptake to demand ratios >1 (Glt, Ala, Thr, Asp, Arg, Lys and 

Met) were imported and used for anabolic purposes. 

 

For completeness, since Cys and Met are the only sulphur containing amino acids, their fate during 

biomass production was investigated further: while Cys was taken up in the same proportion as it 

was incorporated into the biomass, Met was taken up at a slightly higher rate than it was excreted as 

protein (0.007 mmol/gDW/h). Study of the reactions involved in the LP solution showed that Met 

was being utilised to obtain homo-Ser via homo-Cys, producing 0.007 mmol/gDW/h of hydrogen 

sulphide (H2S) in the process, which was then excreted in order to balance the atoms of sulphur in 

the system. Finally, homo-Ser was used to produce Asp in a NAD and NADP reducing process which 

generate 0.007 mmol/gDW/h of NADH and NADPH respectively. Reduction of these co-substrates 

is advantageous, since they could then be utilised to either obtain ATP via the ETC (NADH) or in 

biosynthetic processes (NADPH). 

5.3.1.2 Contribution of individual amino acids to the total nitrogen and 

carbon uptake for biomass production 

This section focuses on understanding how the uptake of different amino acids contributes to the 

total N and C uptake for synthesise of planktonic biomass. The percentage in which each amino acid 

contributed to the N demand was calculated as described in Section 5.2.1.2 and the results obtained 

are summarised in Table 5-3:



Chapter V. Analysis-guided experimental validation of the GSM on nitrogen metabolism and 
amino acid utilisation for biomass production 

 

 
 
 

108 

Table 5-3 Contribution of each amino acid to the total N taken up for synthesis of planktonic biomass 

when NH4+ and all 19 amino acids were present in the standard MM medium in the presence of O2 and 

total net flux through the network was minimised. 

Amino acid  
Contribution to the  

total N uptake 
(%) 

Glt 56.2 

Ala 11.6 

Arg 6.19 

Thr 6.13 

Lys 4.00 

Asp 3.71 

Asn 2.04 

Leu 1.67 

Ile 1.59 

His 1.30 

Val 1.23 

Ser 1.17 

Phe 0.813 

Tyr 0.703 

Pro 0.688 

Met 0.539 

Trp 0.272 

Cys 0.114 

Gly 0.00 

Total 100 

 

For completeness, the uptake of N as either NH4
+ or amino acids when all amino acids were present 

or absent in the medium was investigated, as well as the excretion of N as different compounds under 

these conditions (Table 5-4):
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Table 5-4 Uptake and excretion of N for the production of planktonic biomass when amino acids were 

either absent (i) or present (ii) in MM medium in the presence of O2 while total net flux through the 

network was minimised 

 Without amino acids With amino acids 
N imported and exported during BMP mmol/gDW/h mmol/gDW/h 

N taken up as NH4+ from the medium + 7.25 0.00 

N taken up as amino acids from the medium 0.00 + 16.9 
N exported as amino acids in the biomass - 4.40 - 4.40 

N excreted as by-products (NH4+) 0.00 - 9.64 

N exported as other biomass components - 2.85 - 2.85 

N taken up minus N excreted 0.00 0.00 
 

These data show how Glt contributed to the total N uptake in a significantly higher proportion than 

any other amino acid, accounting for approximately 56% of the total N demand, followed by Ala 

which accounted for approximately a 12%. The rest of the amino acids contributed to this in the 

following order (from higher to lower): Arg, Thr, Lys, Asp, Asn, Leu, Ile, His, Val, Ser, Phe, Tyr, 

Pro, Met, Trp and Cys.  

 

The total N demand in the absence of amino acids was calculated by removing them from the in 

silico MM medium and re-solving the LP-based analysis for biomass production with NH4
+ as sole 

N source. Under these conditions, 7.25 mmol/gDW/h of NH4
+, and therefore 7.25 mmol/gDW/h of 

N, were taken up and fully consumed during biomass synthesis, with no N-containing by-products 

being excreted. When NH4
+ and all amino acids were available, the total N uptake increased up to 

16.9 mmol/gDW/h, with all N being taken up as amino acids and 9.64 mmol/gDW/h being excreted 

as NH4
+ as a result of amino acid catabolism. In both cases, 4.40 mmol/gDW/h of N were excreted 

as biomass protein and 2.85 mmol/gDW/h as other biomass products. 

 

The utilisation of amino acids as C sources to generate energy and biomass was studied as a way to 

understand the link between energy production and the system’s biosynthetic network. The 

percentage in which each amino acid contributed to the C demand for planktonic growth was 

calculated as described in Section 5.2.1.2 and the results obtained are summarised in Table 5-5:
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Table 5-5 Contribution of each amino acid to the total C uptake for synthesis of planktonic biomass 

when NH4+ and all 19 amino acids were present in the standard MM medium in the presence of O2 when 

total net flux through the network was minimised. 

Amino acid  

Contribution to 

the total C uptake 

(%) 

Glt 59.6 

Ala 7.41 

Thr 5.20 

Asp 3.15 

Lys 2.55 

Leu 2.12 

Ile 2.03 

Arg 1.97 

Phe 1.55 

Tyr 1.34 

Val 1.30 

Asn 0.868 

Ser 0.745 

Pro 0.73 

Met 0.572 

His 0.553 

Trp 0.317 

Cys 0.072 

Gly 0.00 

Total 100 

 

For completeness, the difference in the C obtained from Glc in the presence and absence of amino 

acids was investigated. For that, the same LP-based analysis was repeated, now blocking flux through 

all amino acid importers. The uptake and excretion of C as different compounds is compared for both 

solutions in Table 5-6:
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Table 5-6 Uptake and excretion of C for the production of planktonic biomass when amino acids were 

either absent (i) or present (ii) in MM medium in the presence of O2 when total net flux through the 

network was minimised. 
 

 Without amino acids With amino acids 
C imported and exported during BMP mmol/gDW/h mmol/gDW/h 

C taken up as Glc +51.03 +6.28 

C taken up as amino acids form the medium 0.00 +73.3 

C exported as amino acids in the biomass -16.5 -16.5 

C excreted as by-products -18.9 - 47.5 
C exported as other biomass components -15.6 -15.6 

C taken up minus C excreted 0.00 0.00 
 

The C uptake as Glc when this is the only available C source (i) was 51.03 mmol/gDW/h. From this, 

18.9 mmol/gDW/h were excreted as metabolic by-products (Ac, CO2 and Form). When Glc and all 

19 amino acids in the standard MM medium were available (ii), the import of C as Glc fell drastically, 

although some Glc was still utilised (accounting for the 7.89 % of the total C demand), while the 

import of C as amino acids (73.3 mmol/gDW/h) was higher than the import of C as Glc in (i). In 

consequence, the total C uptake of the process was much higher under these circumstances (+55.9 

%), and, therefore, so was the excretion of C as metabolic by-products (CO2 and Suc), maintaining 

the total amount of C uptaken equal to the amount of C excreted. In both cases, 16.5 mmol/ gDW/h 

of C were excreted as biomass protein and 15.6 mmol/gDW/h as other biomass components. 

5.3.1.3 Growth on single amino acids as nitrogen sources 

As already seen in this chapter, when amino acids are available, NH4
+ is not essential for growth. 

However, not all amino acids can be utilised by the system as sole N sources. Defining which single 

amino acids can and cannot be used for biomass production help us to complete our understanding 

of the cell metabolic capabilities, while providing useful data to design experimental assays for 

validation purposes. Thus each single amino acid was tested for its suitability as sole N source for 

growth support. The impact on the total net flux of the LP solution of growing in a single amino acid 

rather than in standard MM medium was calculated as described in Section 5.2.1.3. The results 

obtained are summarised in Table 5-7.
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Table 5-7 Variation on the total net flux of the LP solution when just a single N source was available at 

a time for production of planktonic biomass in the presence of O2 when total net flux through the 

network was minimised. 

N source available 
Objective value 
(mmol/gDW/h) 

Variation 
(%) 

Met 3468 1237 

  NH4+ 397 53.1 

Cys 384 48.3 

Gly 376 45.0 

Ser 369 42.2 

His 365 40.8 

Asn 364 40.3 

Asp 362 39.6 

Thr 350 35.1 

Val 350 34.8 

Ala 335 29.2 

Arg 329 26.8 

Pro 327 26.1 

Glt 320 23.9 

NH4+ and all amino acids 259 - 
 

The effect on the objective value (total net flux) was calculated with respect to the value obtained in the 

standard MM medium: 259 mmol/gDW/h = 100%. 

 

The results obtained showed that 13 of the 19 amino acids in MM medium could be utilised as single 

N sources for biomass production (Table 5-7), with those being: Ala, Arg, Asn, Asp, Cys, Glt, Gly, 

His, Met, Pro, Ser, Thr and Val. The remaining amino acids could not be used for this purpose when 

available either independently or in combination. 

 

Inspection of the organism-specific BioCyc and KEGG databases and the RP62A genome sequence 

showed that the system lacks the enzymatic machinery needed to fully catabolise Ile, Leu, Lys, Phe, 

Trp and Tyr, which explains why they could not support growth on their own. A complete pathway 

for the utilisation of Met is present, and all biomass components could be individually produced with 

Met as sole N source. However, LP-based analysis results showed that Met catabolism supported in 

silico biomass production in the absence of other N sources as long as the upper flux bounds for 

exporters of biomass components were relaxed and the system was allowed to export menaquinones 

at a higher rate than that required for the production of cell biomass. The catabolism of Met as sole 



Chapter V. Analysis-guided experimental validation of the GSM on nitrogen metabolism and 
amino acid utilisation for biomass production 

 

 
 
 

113 

N source also led to higher production and excretion rates of autoinducer-2 and H2S than those 

identified for growth in standard MM medium. Furthermore, this response was associated with a 

dramatic increase in the total net flux through the system (+1,237%) and the Glc uptake (+10,482%) 

when compared to growth in standard conditions. 

5.3.1.4 Nitrogen assimilation: glutamate biosynthesis from NH4+  

The ability of the system to utilise NH4
+ for Glt synthesis was investigated by applying the methods 

described in Section 5.2.1.4. This allowed us to identify which reactions are involved in the process, 

define their essentiality and compare these responses to bacterial biological strategies for the 

assimilation of N: initially, an optimal LP-based analysis solution was obtained, involving 64 

reactions and allowing synthesis of 1 mmol/gDW/h of Glt while consuming 1 mmol/gDW/h of NH4
+ 

and Glc and excreting CO2 and Form. In this solution, the system preferentially used two Glt 

dehydrogenases (Glt-dhs). These Glt-dhs were a NAD-dependent (EC 1.4.1.2) and a NADP-

dependent enzyme (EC 1.4.1.4), and generated Glt from NH4
+ and 2-KG, while respectively 

oxidising NADH and NADPH. These enzymes worked in combination with the Gln synthetase or 

GS (EC 6.3.1.2), producing Gln from Glt while consuming ATP and NH4
+, and an aminotransferase 

reaction (EC 4.3.2.10) from the His-biosynthesis pathway, regenerating Glt from Gln while 

producing intermediates for the synthesis of His. This formed a cycle of production and consumption 

between Glt and Gln. Re-solving the LP-based analysis while blocking each of the Glt-dhs at a time 

showed that they can work together or independently. When both Glt-dhs were blocked, a solution 

was obtained, involving the Gln synthase / Glt synthase (GS/GOGAT) cycle: this included both, the 

NADH-dependent Glt synthase or GOGAT (EC 1.4.1.14), which produced two molecules of Glt 

from Gln and 2-KG, and the GS (EC 6.3.1.2), which again regenerated Gln from Glt. When flux 

through the GOGAT reaction was blocked, a new solution was obtained, where this enzyme was 

replaced by its NADPH-dependent equivalent (EC 1.4.1.13). Upon blockage of flux through the EC 

1.4.1.13 reaction, one last feasible solution was obtained, were a ferredoxin-dependent Glt synthase 

(EC 1.4.7.1) took over the production of Glt. If flux was still allowed through the GOGAT reactions 

(EC 1.4.1.14/3) but the GS reaction was blocked, a final feasible solution was generated, involving 

the NADH-dependent GOGAT, and a GlcN-F6P aminotransferase (EC 5.3.1.19), which allowed 

conversion of Glt back to Gln while transforming GlcN-6P onto F6P. This, again, formed a cycle of 

production and consumption between Glt and Gln. Finally, blocking flux through this last 

aminotransferase reaction also prevented Glt synthesis. 
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The presence or absence in the genome of RP62A of genes encoding the enzymes involved in the 

solutions described above was investigated. There were no genes found encoding for the ferredoxin-

dependent Glt synthase (EC 1.4.7.1), thus its corresponding reaction was removed from the model. 

5.3.2 Experimental work for model validation on amino acid 
utilisation for biomass production 

This section exemplifies how model analysis can be used to orientate experimental design in order 

to investigate an hypothesis of interest and, in this case, to perform further validation of the model. 

For this purpose, a set of experiments were designed based on the LP-based analysis results described 

above. These assessed the ability of the organism to: 

i. Grow in the absence of Pro, 

ii. Grow on a set of key single amino acids (Ala, Arg and Glt) and on a mixture of them, 

iii. Grow on a mixture of amino acids defined in silico as non-suitable single N sources, and, 

iv. Utilise NH4
+

 as sole N source. 

5.3.2.1 Assessment of growth in the absence of proline 

In order to finally clarify whether or not Pro is essential for growth in RP62A, a final set of 

experiments was proposed based on the following criteria: 

 i. Adaptation to grow without Pro could take some time, since enzymes involved in its 

biosynthesis could either have to be re-activated or synthesised de novo via gene regulation (Section 

5.1.1.2). Therefore, cell growth in MM- medium without Pro was tested again, but this time 

monitored for longer than 48 hours, which was the incubation time of the growth experiments 

described in Chapter 4, Section 4.2.1. 

 ii. It is possible that the amount of amino acids in the standard MM medium which could act 

as ornithine precursors (Arg and Glt)  is not sufficient to support Pro synthesis when this amino acid 

is missing (Section 5.1.1.1). Therefore, their concentration was increased in the media formulated to 

test this hypothesis (Section 5.2.2.2). 

5.3.2.2 Assessment of growth on single amino acids (alanine, arginine and 

glutamate) and on a mixture of them 

Considering the results obtained from the LP-based analysis described in Sections 5.3.1.2,  and 

5.3.1.3, a set of amino acids could be selected for testing the ability of the organism to utilise them 

as sole N sources for growth in vitro for further validation purposes: within those amino acids that 

could act as single N sources, the three that contributed in a higher proportion towards the total N 

uptake for biomass production (Section 5.3.1.2, Table 5-3) were Glt (56.2%), Ala (11.6%) and Arg 
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(6.19%). Furthermore, when available individually, these amino acids yielded solutions with the 

lowest objective values, excepting Pro (Section 5.3.1.3, Table 5-7), suggesting that they could be 

potentially utilised for biomass production by the organism with the lowest associated enzymatic 

costs. These LP-based analysis solutions were investigated further and the data summarised below 

was used to design experiments to assess if growth on these amino acids is possible when provided 

independently or in combination (Table 5-8 and Table 5-9): 

 
Table 5-8 Main features of the LP-based analysis solutions obtained when Ala, Arg and Glt were 

available as sole N sources for biomass production in MM medium in the presence of O2 when total net 

flux through the network was minimised. 

Single N 
source 

available 

Reactions 
in 

solution 
(n) 

Objective 
value 

Amino acid 
uptake 

Glc 
uptake 

NH4+ 
export By-products exported 

Ala 341 335 15.6 2.04 -8.39 Ac, CO2, Form 

Arg 328 329 4.89 3.19 -12.3 CO2, Form 

Glt 330 320 9.34 2.21 -2.09 Ac, CO2, Form, Suc 
 

Units: mmol/gDW/h 

 

Table 5-9 Main features of the LP-based analysis solution obtained when a mixture of Ala, Arg and Glt 

was available as sole N source for biomass production in MM medium in the presence of O2 when total 

net flux through the network was minimised. 

N 
sources 

available 

Reactions 
in 

solution 
(n) 

Objective 
value 

Amino acid 
uptake 

Contribution to 
total N uptake 

(%) 

Glc 
uptake 

 

NH4+ 
export 

 

By-products 
exported 

Ala 
Arg 
Glt 

328 310 
5.96 
0.261 
8.62 

38.1 
6.68 
55.2 

2.09 -8.37 Ac, CO2, 
Form, Suc 

 

Units: mmol/gDW/h 

5.3.2.3 Assessment of growth on a mixture of amino acids defined as non-

suitable nitrogen sources for RP62A 

According to the LP-based analysis results described in Section 5.2.1.3, from the 19 amino acids 

present in MM medium, 6 amino acids (Ile, Leu, Lys, Phe, Trp and Tyr) cannot be utilised by the 

system as N sources to support growth when available either individually or in combination. 

Utilisation of Met is theoretically possible, but caused a big increase in the total net flux through the 
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system (+1,237%) and the Glc demand (+10,482%) when compared to growth in standard MM 

medium. This effect was far more dramatic than that observed on these parameters during growth on 

any other single amino acid or on NH4
+ as sole N source. Therefore, based on these results, Met was 

also considered as a non-suitable N source for RP62A during the design of this experimental work. 

5.3.2.4 Assessment of growth on NH4+ as sole nitrogen source 

The literature regarding minimal media without amino acids utilised to grow staphylococci was 

investigated: this showed that M9 medium (Onoue et al. 1997; Washburn et al. 2001; Wu et al. 2012) 

has been vastly used for this purpose and contains NH4
+ as NH4

+Cl at a concentration of 18.69 mmol 

and 22.2 mmol of Glc. In 1974, Rudin et al. utilised a chemically defined minimal medium (AAM) 

(Rudin et al. 1974) specifically developed for the isolation of amino acid-requiring mutants of S. 

aureus: in AAM 60.53 mmol of NH4
+ are provided as (NH4

+)2SO4 while the concentration of Glc is 

27.69 mmol. The standard MM medium utilised throughout this project contains as little as 0.03 

mmol of NH4
+ (provided as (NH4

+)2SO4·FeSO4·6H₂O), and a Glc concentration of 11.1 mmol. This 

means that the amount of NH4
+ provided in our medium will not suffice to account for the N demand 

for growth on its own. Therefore, this was taken into account when formulating the test media 

samples for in vitro evaluation of the ability of RP62A to grow utilising either NH4
+ as sole N source, 

single amino acids or a combination of just three amino acids as N sources, as explained in Section 

5.2.2.2. 

 

It is important to keep in mind that removing amino acids from the media might trigger physiological 

changes in the cells, such as inducing growth in the form of a biofilm and/or repression of amino 

acid metabolism due to the stringent response (Lister et al. 2014; Somerville 2016) which might in 

turn have unpredicted biological effects (e.g. an increase on the Glc demand). Furthermore, other 

studies have shown that biofilm production is significantly enhanced at high Glc concentrations (1%, 

2.7%, 5%, an even 10% (w/v)) (Lim et al. 2004; Agarwal et al. 2013; Fernanda Cristina Possamai 

Rossatto 2017), which again suggest that if a phenotypic change of this nature takes place, the Glc 

demand might increase significantly. 

5.3.2.5 Experimental results 

Taking into account the data summarised in Sections 5.3.2.1 to 5.3.2.4, an in vitro study was designed 

in which RP62A was monitored for growth in standard MM medium vs: 

i. MM- medium without Pro 

ii. MM medium base supplemented with either Ala, Arg or Glt or with a mixture of them, 

iii. MM medium base supplemented with a mixture of amino acids non-suitable as N sources 
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iv. MM medium base supplemented with a range of Glc and NH4
+ concentrations 

 

For further details on the composition of these media and the experimental set up see Section 5.2.2.2. 

The results obtained were used to construct growth curves for RP62A in these media (Figure 5-1 and 

Figure 5-2) and are summarised in Table 5-10. For clarity, since no growth was detected on any of 

the sterility controls neither on the samples containing the highest amount of Glc and NH4
+, their 

growth curves were not included in these figures.  

 

 

Figure 5-1 Growth curves for S. epidermidis RP62A cultures in modified MM medium samples in 

comparison to cultures in standard MM medium over a period of 7 days 

Legend: purple dashed line (MM) = standard MM medium; green line (MM Ala, Arg, Glt) = MM medium 

base supplemented with a mixture of Ala, Arg and Glt; light blue line (MM Ala) = MM medium base 

supplemented with Ala; yellow line (MM Arg) = MM medium base supplemented with Arg; dark blue line 

(MM Glt) = MM medium base supplemented with Glt. Each data point corresponds to the mean A600 value of 

three independent biological replicates. Error bars = SEM. 
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Figure 5-2 Growth curves for S. epidermidis RP62A cultures in modified MM medium samples in 

comparison to cultures in standard MM medium over a period of 7 days 

Legend: purple dashed line (MM) = standard MM medium; orange line (MM NH4+) = MM medium base 

supplemented with 15.1 mmol of NH4+; grey line (MM 0.4% Glc, NH4+) = MM medium base supplemented 

with 15.1 mmol of NH4+ and double the standard Glc concentration (22.1 mmol, 0.4% w/v); black line (MM 

(-) Pro) = MM- medium without Pro; red line (MM mixture of AAs defined as non-suitable N sources) = MM 

medium base containing no NH4+ and supplemented with a mixture of the amino acids defined as non-suitable 

N sources in Section 5.3.1.3. Each data point corresponds to the mean A600 value of three independent biological 

replicates. Error bars = SEM.
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Table 5-10 A600 values for S. epidermidis RP62A cultures in modified MM medium containing different 

N sources after 7 days of incubation 

Time: 7 days 
N source/s in the medium A600 

All amino acids in MM medium 1.08 ± 0.04 
Ala, Arg and Glt 0.73 ± 0.05 

Ala 0.00 ± 0.00 
Arg 0.00 ± 0.01 
Glt 0.00 ± 0.00 

Amino acids non-suitable as N 
sources 0.00 ± 0.00 

(NH4
+)2HPO4 0.00 ± 0.00 

 

Orange colour indicates that growth was observed in vitro while blue colour indicates lack of growth. Error 

values = SD. 

 

For comparison purposes, the A600 values for cultures in standard MM medium and MM- medium 

without Pro at time points 2, 3 and 7 days of incubation are shown below (Table 5-11): 

 
Table 5-11 A600 values for S. epidermidis RP62A cultures in MM medium and MM- medium without Pro 

after 2 and 7 days of incubation 

 MM 
medium 

MM- medium 
without Pro 

A600 
Day 2 1.06 ± 0.07 0.08 ± 0.00 

A600 
Day 3 0.97 ± 0.03 0.11 ± 0.00 

A600 
Day 7 1.08 ± 0.04 0.07 ± 0.01 

 

Error values = SD 

 

Interestingly, cells incubated in the absence of Pro reached a maximum A600 value of 0.11 ± 0.00 SD, 

which matched the maximum A600 value observed for samples incubated under the same conditions 

in previous experiments (Chapter 4). This, together with the fact that cultures in MM- medium 

without Pro presented a visible amount of biofilm biomass attached to the walls of the incubation 

tubes (Image 5-1) is in line with the hypothesis proposed in Chapter 4 that attributed this A600 value 

to cells undergoing a phenotypic change leading to an increase in their adhesive properties, causing 

higher levels of intercellular attachment and cell clumping, as is commonly observed during biofilm 

formation. Therefore, these results seem to indicate that cells cultured in standard MM- medium 
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without Pro do not grow but rather form biofilms, possibly, doing so as a response to the stress 

induced by nutrient deprivation. 

 

Image 5-1 Tube containing S. epidermidis RP62A in MM- medium without Pro after 2 days of incubation 

Biofilm formation observed on the bottom and the walls of the tube as white slimy material is pointed out by 

red arrows. 

 

As Image 5-2 shows, S. epidermidis cells were still present in these cultures, and no contamination 

was detected by eye on the plates. 

 
 

Image 5-2 BHI agar plate streaked out with a S. epidermidis RP62A culture in MM- medium without 

Pro after 7 days of incubation 

This plate was incubated at 37 OC for 24 hours and inspected by eye in order to discard contamination. 
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The only two media formulations that seemed to support growth in vitro were the standard MM 

medium (positive growth control) and the MM medium base containing a mixture of Ala, Arg and 

Glt. Cultures in standard MM medium presented an average A600 value of 1.15 ± 0.03 SD by day 1, 

when they seemed to have reached stationary phase, with values remaining around 1 after 7 days of 

incubation (1.08 ± 0.04 SD). In contrast, cultures growing in MM medium base with the three amino 

acid mixture only started to show growth after 3 days of incubation, and seemed to have reached 

stationary phase by day 5 (0.72 ± 0.04 SD) and continued exhibiting a similar A600 value by day 7 

(A600 = 0.73 ± 0.05 SD). All other samples presented A600 values below 0.0 throughout the whole 

experiment. No apparent changes on the turbidity of the cultures were detected by eye after 14 days 

of incubation, thus confirming that media that did not support growth by 7 days still did not support 

growth after doubling the incubation time. Furthermore, those samples that showed growth did also 

showed growth on their un-opened replicates, which helped to rule out a possible contamination of 

the samples monitored spectrophotometrically. 

 

Homogeneous S. epidermidis colonies could be seen on plates streaked out with cultures grown in 

MM medium base and a combination of Ala, Arg and Glt (Image 5-3), with no contaminants detected 

by eye, thus ruling out a possible contamination. 

 
 

Image 5-3 BHI agar plate streaked out with a S. epidermidis RP62A culture in MM medium base 

containing a combination of Ala, Arg and Glt after 7 days of incubation 

This plate was incubated at 37 OC for 24 hours and inspected by eye in order to discard contamination. 

 
The changes in the LP-based analysis solution for growth when the amino acid composition of the 

standard MM medium was modified were investigated, and the effects on the total net flux through 
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the system and the Glc uptake were compared in an attempt to identify possible explanations for the 

growth effects observed in vitro (Table 5-12): 

 
Table 5-12 Summary of the in silico effect of amino acid and NH4

+ removal from the standard MM 

medium on the total net flux through the system and the Glc demand for production of planktonic 

biomass in the presence of O2 

In silico N sources 
available  

Reactions 
in solution 

(n) 

Objective 
value 

(mmol/gDW/h) 
Variation 

(%) 
Glc consumed 
(mmol/gDW/h) 

Variation 
(%) 

All amino acids in MM 
medium 291 259 - 1.04 - 

Ala, Arg, Glt 328 310 19.7 2.09 101 

Ala 341 335 29.2 2.04 94.5 

Arg 328 329 26.8 3.19 204 

Glt 330 320 23.6 2.21 111 
Mixture of amino acids 

non-suitable as N 
sources 

- ∞ - - ∞ 

NH4
+ 343 397 53.1 8.50 712 

 

The variation on the objective value and the amount of Glc consumed was calculated has a percentage over the 

values obtained with the standard MM medium (291 mmol/gDW/h = 100% and 1.04 mmol Glc (/gDW/h) = 

100%). Rows in orange correspond to conditions that showed growth experimentally. Rows in blue correspond 

to conditions were growth was not observed. 

 

Although growth was observed in MM medium base and a mixture of Ala, Arg and Glt, these cultures 

presented an increased lag phase and a maximum A600 significantly lower at the 95% confidence level 

(P=0.003) than cultures grown in standard MM medium. When the corresponding in silico responses 

were compared, the solution associated with growth on the mix of amino acids presented an objective 

value (total net flux through the system) 19.7% higher than the solution obtained under standard 

conditions, and the Glc demand increased by 101%. For the remaining conditions tested, no growth 

was observed in vitro, while the in silico increase observed on these parameters was higher than on 

the amino acid mix, with the sole exception of growth on Ala, for which the Glc demand was lower. 
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5.4 Discussion 

5.4.1 In silico utilisation of amino acids for biomass production 

5.4.1.1 Overall uptake and excretion of amino acids and their uptake to 

demand ratio for biomass production 

The LP-based analysis results obtained for production of planktonic biomass while satisfying the 

GAM and NGAM ATP demand showed how several of the 19 amino acids available in the standard 

MM medium were taken up and catabolised for this purpose, with their consequent deamination 

leading to excretion of NH4
+. The following 11 amino acids: Asn, Cys, His, Ile, Leu, Phe, Pro, Ser, 

Trp, Tyr, Val presented uptake to demand ratios of 1, indicating their direct incorporation to the 

biomass protein without being metabolised further. Full catabolic pathways are absent for some of 

them (Ile, Leu, Phe, Trp and Tyr), which helps explain their lack of use for anabolic purposes. These 

results partly coincide with the in vitro observations for amino acid utilisation in S. aureus described 

by Halsey et al. (Halsey et al. 2017) (Chapter 0, Section 1.6.2), which indicated that 6 of those 11 

amino acids (Cys, Ile, Leu, Phe, Tyr and Val) were taken up and directly incorporated into biomass 

protein. Study of the fate of sulphur containing amino acids showed that, while Cys was not 

catabolised, a small amount of Met was utilised to obtain Asp via homo-Ser in a process that reduced 

NAD and NADP, which was advantageous, since these reduced cofactors could then be utilised in 

the ETC to obtain ATP (NADH) or in biosynthetic processes (NADPH). Amino acids with uptake 

to demand ratios of 0 were not imported from the medium, but instead produced by the system from 

other amino acids. This was the case of Gln and Gly: since Gln was not present in the medium it 

could only be incorporated to the biomass if synthesised from Glt. Gly, on the other hand, was 

supplied in the medium, but synthesising it as a by-product carried a lower associated total net flux 

than its uptake. Study of the reactions in the LP solution showed that Gly was obtained during the 

degradation of Thr in a reaction catalysed by a Thr-aldolase (EC 4.1.2.5). This process generated 

acetald, which could in turn be used for Ac-CoA and NADH production via the acetald-dh (EC 

1.2.1.10). Finally, those amino acids with uptake to demand ratios >1 were taken up by the system 

and catabolised to generate other compounds. These were, in decreasing order of utilisation: Glt, 

Ala, Thr, Asp, Arg, Lys and Met. The level at which the system catabolised Lys and Met was fairly 

low. The catabolism of Glt, Ala, Thr, Asp and Arg, has been described as important, not only for the 

synthesis of other amino acids, but also for central C metabolism processes and energy production: 

Glt catabolism is known to provide 2-KG to fuel the TCA cycle and gluconeogenesis while 

generating NADH for ATP synthesis via oxidative phosphorylation  (Tynecka et al. 1999; Halsey et 

al. 2017). Arg is usually utilised as a precursor for Glt while Ala and Thr (together with Gly and Ser) 
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are catabolised to Pyr to be used for ATP synthesis in the Pta/AckA pathway, leading to Ac 

production in a process that also generates NADH (Halsey et al. 2017). Finally, Asp seems to be 

important for the production of oxaloacetate in order to replenish the TCA cycle (Halsey et al. 2017). 

Therefore, the high level of utilisation of Glt, Ala, Thr, Asp and Arg to support growth in silico 

accurately reproduced the main features of the biological behaviour described for staphylococci 

growing under similar conditions. 

5.4.1.2 Contribution of individual amino acids to the total nitrogen and 

carbon uptake 

These data showed how Glt contributed to the total N imported for growth in a significantly higher 

proportion than any other amino acid, accounting for approximately 56% of the total N demand, 

followed by Ala, which accounted for approximately a 12%. While Arg and Thr each accounted for 

over a 6%, all remaining amino acids did so in percentages < 5% and in the following order (from 

higher to lower): Lys, Asp, Asn, Leu, Ile, His, Val, Ser, Phe, Tyr, Pro, Met, Trp and Cys (Section 

5.3.1.2, Table 5-3). Taking these values into account, it is clear that Glt was the main amino donor 

in the anabolism of other amino acids. 

 

The results obtained for the contribution of amino acids to the total C demand for growth were in 

line with those obtained for N, being relative to the number of C atoms present in each amino acid 

molecule. Glt and Ala again contributed to this demand in the higher proportions: Glt accounted for 

approximately the 60% and Ala for the 7% of the total C demand, followed by Thr (5%) and Asp 

(3%) etc. These data was also in line with the phenotypic utilisation of amino acids for growth 

described for staphylococci, where these are used to obtain energy and 2-KG, Pyr and oxaloacetate 

as key metabolic intermediaries in biomass synthesis (Tynecka et al. 1999; Halsey et al. 2017). 

 

Comparison of model responses for growth in presence and absence of amino acids showed that 

when Glc was the only C source available, its metabolism led to production and excretion of Ac, 

CO2 and Form.  In this case, production of Ac and CO2 indicated that the ATP demand for growth 

was being covered by Glc oxidation to Ac following the mechanism described in Chapter 3, Section 

3.3.2.1,  

Figure 3-3. Indeed, investigation of the LP solution showed how in this response ATP was generated 

together with Ac via Ac-CoA by the Ac-CoA ligase, while Form was generated as a by-product 

during the synthesis of co-factors (FAD). When Glc and all 19 amino acids in the MM medium were 

available, the C uptake increased by 55.9 %, and, in consequence, so did the excretion of metabolic 

by-products. In this case, the system produced CO2 and Suc, suggesting Glt utilisation for ATP 
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production by the mechanism described in Chapter 3, Section 3.3.2.1, Figure 3-8. Again, 

investigation of the LP response confirmed this hypothesis, showing how Glt was catabolised to 2-

KG, Suc-CoA and finally Suc, generating ATP via the Suc-CoA synthetase. These results suggested 

that ATP production is coupled with amino acid catabolism even in the presence of Glc when these 

are being utilised for growth support. 

 

The total N and C demands for growth when NH4
+ was available as sole N source were much lower 

than in the presence of the 19 amino acids supplied with the standard MM medium, with these figures 

rising by 133% and 55.9 % respectively (Section 5.3.1.2, Table 5-4 and Table 5-6). In this case, all 

N was taken up as amino acids and 9.64 mmol/gDW/h were excreted as NH4
+ as a result of amino 

acid catabolism. These results showed that although higher amounts of N and C were consumed 

when biomass was produced from Glc and amino acids rather than from Glc and NH4
+, the total net 

flux through the system decreased by 53.1% when amino acids were catabolised, and thus this was 

prioritised as an optimal solution (Section 5.3.2.5, Table 5-12). This implied following different 

metabolic routes, which finally led to an increase in the N and C demands and in the excretion of 

metabolic by-products. Furthermore, the total number of reactions involved in this response was also 

lower. Therefore, considering either total net flux or total number of reactions in the solution as 

proxies for enzymatic investment, these results indicate that amino acid uptake and catabolism for 

growth would be favoured in situations where this matches the real biological objective of the cell. 

A more detailed investigation of the reactions involved in these networks is out of the scope of this 

study. 

5.4.1.3 Growth on single amino acids as nitrogen sources 

From the 7 amino acids that cannot be utilised by the system as single N sources (Section 5.3.1.1, 

Table 5-7), 6 lack complete catabolic pathways (Ile, Leu, Lys, Phe, Trp and Tyr), explaining why 

they could not be used to support growth in silico. Since Glt was the main amino acid taken up from 

the medium and contributed in a higher proportion to the total N and C demand for biomass 

production (Section 5.3.1.2), it was expected that its use led to the solution with a lower objective 

value, while use of NH4
+ as sole N source had the highest associated objective value. This makes 

sense, since synthesising amino acids de novo involves the activity of a higher number of enzymes, 

being a more protein costly process than synthesising them from other amino acids. 

5.4.1.4 Nitrogen assimilation: glutamate biosynthesis from NH4+ 

The responses obtained for Glt synthesis from NH4
+ seemed to match standard bacterial behaviour: 

the most common mechanisms of bacterial N assimilation involve the action of the Glt-dh (Glt 
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dehydrogenase) or the GS/GOGAT (Gln synthetase/Glt synthase) cycle. For example, E. coli has 

been shown to primarily assimilate NH4
+

 via action of the Glt-dh, until the NH4
+

 concentration 

available falls below 1mmol, causing the affinity of the enzyme for this substrate to decrease and the 

GS/GOGAT system to take over (Amon et al. 2010). While the optimal LP-based analysis response 

obtained for Glt synthesis has not been specifically described in staphylococci, it still involved the 

action of a Glt-dh and the GS. Minimisation of the total net flux through the system was achieved by 

also allowing flux through other reactions (e.g. aminotransferases). The solution identified upon 

blocking flux through the Glt-dh reactions involved the GS/GOGA cycle, which accurately 

reproduced this bacterial strategy for Glt-synthesis. These results also showed how even though Glt 

synthesis would preferentially involve a cycle of production and consumption of Glt and Gln, 

catabolising Gln is not essential for this process. However, the action of either a Glt-dh or a GOGAT 

enzyme (NAD- or NADP-dependent) is always required, thus Glt synthesis always involves utilising 

2-KG as its precursor. 

 

5.4.2 Experimental work for model validation on amino acid 
utilisation for biomass production 

5.4.2.1 Assessment of growth in the absence of proline 

These experimental results finally proved that RP62A is capable of growing without Pro as long as 

sufficient amounts of ornithine-precursor amino acids (Arg, Gln and Glt) are available in the media. 

The ability of these organism to synthesise Pro was correctly described by the GSM in the first place, 

and here we speculate that the lack of growth observed on MM- medium without Pro was due to a 

limited availability of ornithine precursors, which impaired growth significantly and seemed to 

trigger a stress response that induced biofilm formation: although growth in MM- medium lacking 

Pro was not detected even after 7 days of incubation, cells still survived on these samples, and 

colonies could be recovered by the end of the experiment after their incubation on BHI agar. A small 

amount of bacterial biomass could be detected by eye on the bottom and the walls of the tubes, which 

could be compatible with the production of EPS and the formation of a biofilm, indicating that Pro 

deprivation under these conditions triggered phenotypic changes in the cells. A similar behaviour 

has been reported in staphylococci in response to amino acid starvation or other adverse conditions 

in what is known as the stringent response (Lister et al. 2014; Somerville 2016). This could explain 

the maximum A600 value of 0.11 ± 00 SD observed in these cultures during the experiments described 

here and in Chapter 4. The possible effect of catabolite C repression on these cultures was also 

considered, since Glc is present on samples formulated from MM medium base. However, both the 

medium containing a mixture of Ala, Arg and Glt as sole N source and the MM- medium without 
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Pro contained equal amounts of Glc, therefore, the regulatory effects derived from its presence should 

be similar in both cases. Thus it seems unlikely for the growth observed after 5 days of incubation 

on samples formulated with the mixture of Ala, Arg and Glt to be due to the de-repression of amino 

acid catabolism upon Glc consumption since a) no growth was observed before that time point, hence 

there is no reason to believe that the Glc concentration would have fallen by day 5, and b) no growth 

was observed on samples containing MM- medium without Pro even after 14 days of incubation. 

Hence the difference in concentration of ornithine-precursor amino acids between these two media 

remains the most plausible explanation for the differences in growth observed in vitro and explains 

the discrepancy detected between the positive in silico result for growth in the absence of Pro and 

the in vitro lack of growth in MM- medium lacking this amino acid. 

5.4.2.2 Assessment of growth on single amino acids (alanine, arginine and 

glutamate) and on a mixture of them 

Growth in the presence of these three amino acids combined was possible but cultures presented a 

lower maximum A600 value than those on standard MM medium and an extended lag phase. This 

indicated that even though growth was supported under these conditions, cells were dividing at a 

lower rate. Here we hypothesise that this decrease in growth could be a result of cells having to adapt 

to an amino acid-deficient environment, where plenty of biosynthetic enzymes would have to be 

either synthesised de novo or re-activated in order to allow production of every other amino acid 

lacking in the medium. As explained before, staphylococci seem to utilise these amino acids in the 

following manner (Halsey et al. 2017): while Ala can be catabolised for ATP synthesis producing 

Pyr and subsequently Ac, Glt enables functioning of the TCA cycle generating metabolic 

intermediates prior conversion to 2-KG, generating ATP and NADH in the process. Finally, Arg can 

be converted to citrulline, allowing production of Pro via ornithine, providing that its catabolism is 

not repressed by the presence of Glc in the media. Therefore, it is possible that, when these three 

amino acids are provided in sufficient amounts, cells are able to obtain enough biosynthetic 

precursors and energy to grow. Here we speculate that the lack of growth observed in vitro when 

these amino acids were provided individually, even after an extended incubation period of 14 days, 

could be due to cells not being able to cover the increased enzymatic cost and/or Glc demand 

associated to responses for growth under these conditions. Furthermore, since the intracellular space 

is limited and constitutes a vital resource that must be allocated strategically, there might not be 

enough free space to allow the simultaneous synthesis and functioning of all the enzymes required 

for these responses. A similar concept has been used to explain certain bacterial metabolic responses 

such as bacterial ‘overflow’ metabolism, which was proposed to be induced by protein membrane 

overcrowding (Kizil 2010). Further investigation of these responses is out of  the scope of this study. 
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5.4.2.3 Assessment of growth on a mixture of amino acids defined as non-

suitable nitrogen sources for RP62A and on NH4+ as sole nitrogen 

source 

As expected, the inability of the organism to grow solely in the presence of the 7 amino acids defined 

by LP-based analysis as non-suitable N sources was also confirmed in vitro. However, the lack of 

growth on samples containing NH4
+

 as sole N source contrasted with the system’s ability to reproduce 

growth in silico under these conditions. This could again be explained as either a consequence of: i) 

the severe increase on the total net flux through the system (+ 53.1%) and/or the increase in the Glc 

demand (+712%) associated with this response in comparison to growth on standard MM medium, 

and/or, ii) as a result of the effect of regulation on gene expression for enzymes involved in the 

biosynthesis of amino acids (Gladstone 1937; Knight 1937; Heinemann et al. 2005; Lee et al. 2009; 

Bosi et al. 2016) (Chapter 0, Section 1.5). 

5.4.2.4 The effect of Glc on amino acid metabolism 

While catabolite C repression has been described in staphylococci at similar Glc concentrations as 

the ones in the media used for this study (13.9 mmol (Halsey et al. 2017), 25.8 mmol (Sivakanesan 

et al. 1980), and 51.6 mmol (Tynecka et al. 1999) vs 11.1 mmol, 22.2 mmol and 111 mmol), its 

involvement in the in vitro responses observed here is unclear. Furthermore, we identified certain 

level of controversy between studies reporting the effects of C catabolite repression on 

staphylococcal amino acid metabolism, with some authors describing how the presence of Glc 

inhibited the metabolism of Arg and Pro but not that of Glt or Ser (Halsey et al. 2017), while others 

reported Glc to stop Glt catabolism (Tynecka et al. 1999) or Ser utilisation (Sivakanesan et al. 1980). 

On top of this, the biological objectives behind this phenomenon are partly obscure: while it is 

reasonable to assume that low amino acid concentrations would lead to a decrease in their metabolism 

and their direct incorporation into the biomass, thus favouring Glc consumption and utilisation of 

NH4
+ for anabolic processes and energy production, the reasons behind amino acid catabolic 

repression when amino acids are also available in excess are not so intuitive. Possible theories for 

this suggest that, since the intracellular volume is limited and Glc storage polymers are big in size, 

Glc consumption is maintained inside the cell as a way to control its intracellular concentration, 

effectively managing allocation of the intracellular space. Since enzyme kinetic parameters and 

complete transcriptomic datasets are hard to integrate in GSMs, these do not take into account the 

possible metabolic effects of catabolite C repression, which is one of the current limitations of 

genome-scale metabolic modelling. The lack of accurate information available regarding transporters 

for RP62A led to the inclusion of transporting reactions that do not take into account the symport of 
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compounds or the ATP demand associated with some of these processes. Thus since transport of 

certain amino acids could involve ATP consumption and import of Glc by the PTS system can 

effectively save some of the ATP needed for its phosphorylation during glycolysis, results derived 

from the analysis of the GSM could be overestimating the utilisation of amino acids over Glc when 

both are present in the in silico media. However, these are still useful to understand what will occur 

in media with a low Glc concentration or upon its depletion during the post-exponential growth 

phase. 

5.5 Conclusion 

The analyses described in this chapter have provided further insight into the system’s N and amino 

acid metabolism. The conclusions that can be derived from the validation work presented here are 

summarized in Table 5-13 and are the following:  
 

i. As correctly described  by the GSM in the first place, growth without Pro is possible when 

the medium contains sufficient amounts of ornithine precursors, such as Arg or Glt. The 

absence of growth detected during previous experimental work (Chapter 4) was presumably 

due to low concentrations of these amino acids in the medium and not to an error in the 

model. Feeding ornithine to cultures in MM- without Pro could have been a way to test the 

ability of RP62A to produce this amino acid from its direct precursor. 

ii. Growth in the presence of the three amino acids which contribute in the highest proportion 

to the total N uptake for biomass production (Ala, Arg and Glt) is possible, both in silico 

and in vitro. However, growth in the presence of these three amino acids supplemented 

independently or on NH4
+
 as sole N source was solely observed in silico. This discrepancy 

could be explained as a result of the increased Glc demand and total net flux associated with 

growth upon these conditions, and/or, as a result of the effect of regulation on genes 

involved in amino acid metabolism. If the assumption made throughout this work that 

considers total net flux through the system as a proxy for protein investment is accurate, 

these results would link growth under these conditions with a higher enzymatic cost and, 

therefore, an increased demand for cellular space that the biological organism might or 

might not be able to meet. 

iii. Absence of growth in a combination of the 7 amino acids defined by LP-based analysis as 

non-suitable N sources matches the behaviour of the organism in vitro. 

iv. Production of the energy needed for growth could be tightly coupled with amino acids 

catabolism even when Glc is present in the media.
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Table 5-13 Comparison of results derived from LP-based analysis of the model and the experimental 

work performed during this study 

Amino acids 
auxotrophies and 
utilization of N 
sources 

Experimental 
results 

Model LP-based 
analysis results 

Agreement 
between in 
silico and in 
vitro results 

Proposed 
explanation for 
disagreements 

Essential amino 
acids None None Yes NA 

Growth in a mixture 
of Ala, Arg and Glt Growth observed Growth allowed Yes NA 

Growth in Ala as 
sole N source 

No growth Growth allowed No 

Excessive Glc 
demand, protein 
cost and/or 
regulation of gene 
expression 

Growth in Arg as 
sole N source 

Growth in Glt as 
sole N source 

Growth in amino 
acids that cannot be 
utilized as single N 
sources for growth 

No growth 
detected on these 
amino acids 
combined 

No growth Yes NA 

Growth with NH4+ 
as sole N source No growth Growth allowed No 

Excessive Glc 
demand, protein 
cost and/or 
regulation of gene 
expression 

 

NA = Non-applicable 

 

This work exemplifies how the results derived from LP-based analysis of the model can be used to 

formulate hypothesis regarding certain characteristics of the organism (e.g. RP62A being capable of 

biosynthesizing Pro) and can successfully be applied to the design of experiments that test them in 

vitro. 

 

Overall, the results shown in Chapters 3 to 5 present a good level of coincidence between the in vitro 

data and the behavior of the model, with the disagreements encountered explained in a reasonable 

manner. This, together with the high level of manual curation applied, justifies using this GSM as a 

guiding tool for future experimental work and, to a certain extent, the assignment of biological 

significance to predictions derived from its analysis. 
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6 Applying model analysis to the study of the 
metabolism of RP62A cells growing on 
prosthetic joints 

6.1 Introduction 

Staphylococcal cells colonising prosthetic joints do so by forming biofilms on the surface of the 

implants and/or biological structures present in the intra-articular space (Chapter 0, Section 1.8). The 

metabolic shifts that allow cells to switch from production of planktonic biomass to synthesis of 

biofilm components, and to adapt to the O2 gradient encountered across biofilm structures 

(Wimpenny et al. 1983; Wimpenny et al. 2000) are still largely unknown. This chapter applies LP-

based analysis to the study of these strategies and defines potential metabolic routes involved in 

biofilm formation in S. epidermidis RP62A:  

 Since it is not practical to tackle production of several biofilm types in a single study 

(Chapter 0, Section 1.7), this work focuses on how PIA, the main biofilm matrix component of ica-

positive strains, is biosynthesised by RP62A in the intraarticular space (Chapter 0, Sections 1.7.3 and 

1.7.4). This way, LP was used to analyse the model for production of energy (ATP), planktonic 

biomass and PIA in synovial fluid, considering an array of O2 concentrations and in the presence and 

absence of NO3
-, thus replicating the conditions that cells encounter when growing as part of biofilms 

on prosthetic joints: initially, the system was analysed to obtain single solutions for the most extreme 

conditions studied, thus in full presence or absence of O2 and NO3
-. Once these single solutions were 

investigated, the model was ‘scanned’ (Chapter 2, Section 2.2.4) for production of ATP, planktonic 

biomass and PIA under a range of O2 concentrations, thus mimicking the O2 gradient found across 

biofilm layers. The reactions included in the scan solutions were extracted and used to generate 

submodels. Finally, since the net behaviour of a system can be expressed as a linear combination of 

elementary modes, these were computed on the reduced networks, thus defining all feasible minimal 

routes through the subsystems derived from the scan responses and allowing a more detailed 

investigation of these data. 

 

Biofilms are produced as part of a response to stress-inducing environmental factors (Sadykov et al. 

2008; Somerville 2016). Therefore, it is reasonable to assume that reducing the protein costs for 

cellular growth and survival is a plausible biological objective for bacteria in this phenotypic state. 

Thus the objective function chosen for the analysis presented in this chapter is minimisation of total 

net flux through the system. 
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6.1.1 Synthesis of PIA in the RP62A GSM 

The PGDB for RP62A used for model construction did not contain any of the reactions associated 

with the genes in the ica operon (Chapter 0, Section 1.7.4). However, these genes were identified 

during the annotation of the RP62A genome and were automatically assigned metabolic functions 

by protein homology with the E. coli genes of the pgaABCD locus (Wang et al. 2004), which 

promotes the synthesis of a polysaccharide adhesin similar to PIA, and required for biofilm 

formation. The functions assigned to these genes were: SERP_RS11285 = poly-beta-1,6-NAcGlc 

synthase (IcaAD); SERP_RS11295 = poly-beta-1,6-NAcGlc deacetylase (IcaB); SERP_RS11300 = 

poly-beta-1,6-NAcGlc export plasma membrane protein (IcaC); SERP_RS11290 = poly-beta-1,6-

NAcGlc synthesis protein (IcaD); and SERP_RS11280 = biofilm operon icaADBC transcriptional 

regulator (IcaR). Thus a set of reactions for PIA synthesis were manually included in the model: 

 

i. According to MetaCyc, IcaA presents a 35% amino acid identity and 57% similarity with 

the PgaC protein of E.coli. The pgaC gene encodes for a poly-beta-1,6-NAcGlc synthase 

(EC 2.4.1-) that catalyses the polymerization of single monomer units of UDP-NAcGlc to 

produce the linear polymer poly-beta-1,6-NAcGlc through the reaction described below: 

UDP-NAcGlc + NAcGlc ®  poly-beta-1,6-NAcGlc + UDP 

 In order to avoid introducing material inconsistencies due to the inclusion of metabolites 

 with undefined empirical formulae, as is the case of NAcGlc-based polymers, the reactions 

 involved in the direct synthesis of PIA were described following the logic explained in 

 Chapter 2, Section 2.4.4.3. Thus polymers were assigned the formulae of their monomeric 

 units and the stoichiometries of the reactions were adjusted accordingly. This way, an initial 

 PIA synthesising reaction was defined as follows: 

 UDP-NAcGlc + WATER ®  PIA1 + UDP + H 

 were PIA1 represents poly-beta-1,6-NAcGlc, with the same empirical formulae as NAcGlc. 

 A molecule of H2O and a proton had to be included on this reaction in order to assure its 

 atomic balance. 

ii. The icaB gene is homologous to the pgaB gene in E. coli, which encodes for a poly-beta-

1,6-NAcGlc deacetylase. According to BRENDA, the EC 3.1.1.59 is associated with these 

genes, and corresponds to the catalysis of the following reaction: 

 

poly-beta-1,6-NAcGlc + WATER ®  partially deacetylated poly-beta-1,6-NAcGlc + Ac 
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 thus a deacetylating reaction for PIA was defined as follows, and included in the model: 

PIA1 + WATER ®  PIA2 + Ac 

 were PIA2 represents a partially deacetylated NAcGlc polymer with the same empirical 

 formulae as one unit of glucosamine. 

iii. Finally, the homology of the icaC gene with the E. coli pgaD and pgaC genes involved in 

the transport of poly-N-NAcGlc to the periplasmic space was used as a base to introduce 

exporters for PIA1 and PIA2. Since this occurs without an associated ATP cost in E. coli, 

the PIA1 and PIA2 exporters were also described as non-energy consuming reactions. 

 

iv. Finally, the pgaA gene in E. coli codifies for an outer membrane porin, with no functional 

homology in S. epidermidis since this is a Gram-positive organism. Therefore, no further 

reactions were included in the system. 

6.1.2 Composition of the in silico synovial fluid  

According to the composition of the organic synovial fluid described in Chapter 0, Section 1.7.2.1, 

an in silico version of it could be defined as a medium containing the same components as the in 

silico standard MM medium (Chapter 4, Section 4.2.3.5) with the following additions: aminobutyric 

acid, citrulline, hyaluronate, ornithine, taurine, urea, ureate and NO3
-. 

 

Currently, there is no evidence of S. epidermidis RP62A being able to generate the enzyme 

hyaluronidase, a virulence factor of S. aureus which can break hyaluronic acid into glucuronic acid 

and NAcGlc. According to MetaCyc vs 23.0 and BRENDA vs 2019, the two main bacterial enzymes 

catalysing reactions were NAcGlc is consumed are EC 2.7.1.221 (N-acetylmuramate-1-kinase) and 

EC 2.7.1.162 (N-acetylhexosamine-1-kinase), both of which phosphorylate NAcGlc, producing 

NAcGlc-1P while consuming ATP. These enzymes have only been described in Pseudomonas putida 

and Bifidobacterium longum (respectively), and seem to be absent in S. epidermidis. In addition, no 

evidence of S. epidermidis RP62A being able to metabolise taurine or ureate was found. Taking this 

into account, only five of the eight compounds initially added to the standard MM medium in order 

to describe an in silico version of synovial fluid could potentially be utilised by the system 

(aminobutyric acid, citrulline, ornithine, urea and NO3
-). Therefore, these were the only compounds 

finally included in the in silico synovial fluid considered during the analyses described in this chapter. 
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6.2 Methods 

6.2.1 Model analysis for production of ATP, planktonic biomass 
and PIA in joints 

6.2.1.1 Metabolic responses for ATP and biomass production in the presence 

and absence of O2 and NO3-  

LP-based analysis was utilised to obtain model responses for three different processes: i) production 

of 45 mmol/gDW/h of ATP to cover the NGAM and GAM cell’s energy demand (Chapter 3, Section 

3.3.4), ii) synthesis of PIA (80% PIA 1 and 20% PIA2), and iii) synthesis of planktonic biomass. The 

LP formulations used were defined as follows (Equation 6-1): 

 

   minimize:  ∑  |v|m
i=1   

 

 

                      subject to 

 

 

where the notations and constraints are the same as in Equation 6-1 (Chapter 3, Section 3.2.1) with 

the following modifications: the flux through the ATPase reaction and reactions of N corresponding 

to exporters for biomass components (from k to m) were specified to allow production of either i) 45 

mmol/gDW/h of ATP, ii) 1 gram of PIA or iii) 1 gram of planktonic biomass. The export of 

compounds included in the composition of either planktonic biomass or PIA was enabled to vary in 

order to reproduce biological states closer to those found in vivo, were organisms may modify their 

biomass composition in response to changes in the environmental conditions, following the method 

previously described by others (Villanova et al. 2017). Thus the upper flux bounds of the constraints 

for these exporters were relaxed. Further constraints were added if the analysis so required (e.g. 

blocking flux through the O2 and/or the NO3
- importer). Finally, the percentage in which the 

consumption of each medium component contributed towards the total amount of C and N taken up 

in the process was calculated. 

6.2.1.2 Simulated variation in the O2 concentration during ATP and biomass 

production 

With a focus on studying individually model coordinated responses for either production of energy, 

Nn,m ∙
 
v = 0

 
 

ii) and iii)      v 
j 
≥  t

j	 ; k  ≤  j  ≤  m 
 

i)                   v
ATPase =  ATPase  = 45 
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PIA or planktonic biomass in response to changes in the O2 level, the LP-based analysis technique 

was applied as follows: the solution space was repeatedly scanned over increasing values for a given 

constraint (here O2 availability), as previously described by others (Poolman et al. 2009; Villanova 

et al. 2017). This method identifies those reactions which respond in a coordinated fashion to a 

changing constraint. The LP formulation utilised was defined in a similar manner as in Equation 6-1, 

with an additional constraint (Equation 6-2): 

   minimize:  ∑  |v|m
i=1   

 

 

   subject to        

  

 

 

 here, vO2_importer  =  £  O2limit  defines the upper flux limit for the O2 importer. This parameter 

increased in a linear fashion throughout the scan, ranging from zero to 12 mmol/gDW/h, value above 

which all reactions responding to the change in O2 concentration exhibited a constant flux. Again, 

further constraints were added if needed (e.g. block of NO3
- import or blocking flux through reactions 

involved in multiple optimal solutions). 

6.2.1.3 Generation of submodels and computation of elementary modes 

All reactions included in the dataset of solutions computed in each O2 scan were extracted and used 

to generate submodels. Therefore, each submodel included all reactions involved in the production 

of either ATP, PIA or planktonic biomass under the range of O2 concentrations tested. While some 

carried flux at a fixed rate, others varied their flux significantly throughout the scan. A change in 

flux indicates that these reactions are actively responding to the variation in the O2 concentration, 

which highlights their importance in the metabolic adaptation from aerobic to anaerobic conditions. 

Finally, the reduced number of reactions contained in each subnetwork allowed definition of all the 

stoichiometrically feasible minimal routes through these systems by computing their elementary 

modes following techniques previously described by others (Poolman et al. 2009; Villanova et al. 

2017). The large number of reactions in the submodels generated from results obtained with the O2 

scans for production of planktonic biomass did not allow the computation of elementary modes 

through these networks. 

 

Relevant code to the work performed in this chapter can be found in Appendix A, Section 9.1.3.3. 

Nn,m ∙
 
v = 0

 
 

ii) and iii)     v 
j 
≥  t

j	 ; k  ≤  j  ≤  m 
 

i)                  v
ATPase =  ATPase  = 45 

vO2_importer   £  O2limit  
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6.3 Results 

6.3.1 Production of ATP to cover the GAM and NGAM energy 
demand 

The results obtained applying the methods described in Section 6.2 to the study of ATP production 

in joints are described below. 

6.3.1.1 Metabolic responses for ATP production in synovial fluid in the 

presence and absence of O2 and NO3- 

Single solutions for ATP production under conditions reproduced by the constraints applied in the 

extreme points of the O2 scans, thus under either total availability or absence of O2 and NO3
-, were 

computed and the results obtained are presented in this section (Figure 6-1 to Figure 6-4). Greyed 

out reactions in these diagrams did not carry flux.  

 

.
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Figure 6-1 ATP production in synovial fluid in the presence of O2 when total flux through the system was minimised. 
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Figure 6-2 ATP production in synovial fluid in the presence of NO3- when total flux through the system was minimised.
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Figure 6-3 ATP production in synovial fluid  in the absence of O2 and NO3- when total flux through the system was minimised.
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Figure 6-4 ATP production in synovial fluid in the absence of electron acceptors under depletion of citrulline when total flux through the system was minimised.
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During production of ATP in synovial fluid in the presence of O2 when total flux through the system 

was minimise (Figure 6-1) 2-KG was obtained from Glt via action of a NAD-dependent Glt-dh. 2-

KG was then oxidised to Suc, generating ATP and NADH. This NADH entered the ETC during 

aerobic respiration, where NAD was regenerated. 1.1 molecules of ATP were produced per C (5.5 

molecules per Glt) in this response. The protons excreted with Suc contributed to the PMF that pumps 

the ATP synthase. 

 

When O2 was absent but NO3
- was available, a similar response was observed (Figure 6-2), however, 

in this case NO3
- was utilised as the ultimate electron acceptor of the ETC. This solution generated 

0.95 molecules of ATP per C (4.75 molecules of ATP per Glt), being slightly less efficient than 

following aerobic respiration. This response matches experimental observations where the 

menaquinone-dependent NO3
--reducing mechanism of the ETC is favour in vitro over its 

cytochrome-NO3
- reducing alternative (Uribe-Alvarez et al. 2016), as was previously described in 

Chapter 3, Section 3.3.2.1 during the study of ATP production from Glc. 

 

When neither O2 nor NO3
- were available (Figure 6-3), citrulline was taken up and metabolised to 

carbamoyl-P and ornithine by the ornithine carbamoyltransferase (EC 2.1.3.3), with these products 

being respectively degraded to CO2, NH4
+ and Pro, and ATP being generated in the process. These 

compounds were then excreted from the system. It is important to emphasise that citrulline-ornithine 

antiporters have been described in eukaryotic cells (Bradford et al. 1980), but not in staphylococci. 

Therefore, the deamination of ornithine to Pro and its subsequent excretion may not be involved in 

this process. The protons excreted with NH4
+ contributed to the PMF that pumps the ATP synthase.  

 

In the absence of electron acceptors and citrulline (Figure 6-4), Ser was deaminated generating Pyr, 

which was then transformed to AcCoA by the Pyr Form-lyase (EC 2.3.1.54). AcCoA was 

subsequently utilised to generate ATP, producing Ac by the Ac-CoA ligase (EC 6.2.1.1) working in 

the reversible manner in a similar way as described before in solutions for ATP production from Glc 

(Chapter 3, Section 3.3.2.1, Figures 3-3, 3-4, 3-6 and 3-7). The protons excreted with these by-

products contributed to the PMF that pumps the ATP synthase. 

 

The main parameters defining these responses are summarised in Table 6-1 and Table 6-2: 
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Table 6-1 Characterisation of the model behaviour for production of ATP in synovial fluid when total 

net flux through the network was minimised in the presence and absence of electron acceptors. 

 

Electron 

acceptor 

available 

Reactions 

carrying 

flux 

Objective 

value 

O2 

uptake 

NO3- 

uptake 

Total C 

uptake  

Total N 

uptake 

P/O 

ratio 

ATP/C 

ratio 

O2 13 188 8.18 0.00 40.9 8.18 
2.75  

2.25 
1.10 

NO3- 15 204 0.00 4.74 47.4 14.2 - 0.95 

None 10 330 0.00 0.00 180 90.0 - 0.25 
 

 

Units of the objective value and uptake rates = mmol/gDW/h. Conditions set: presence of O2, anaerobiosis and 

presence and absence of NO3-. When both O2 and NO3- are available, O2 is the only electron acceptor utilised, 

thus this condition was omitted from the table. For those conditions showing two P/O ratio values, the first 

value corresponds to the oxidative plus substrate level phosphorylation and the second one to the oxidative 

phosphorylation only. 

 

Table 6-2 Main N and C sources utilised and by-products excreted during production of ATP in synovial 

fluid when total net flux through the network was minimised in the presence and absence of electron 

acceptors.  

Electron 

acceptor 

available 

Compounds 

utilized 

Contribution to 

total N uptake (%) 

Contribution to 

total C uptake (%) 

By-products 

excreted 

O2 Glt 100 100 CO2, Suc 

NO3- 
Glt 66.7 100 

CO2, Suc 
NO3- 33.3 - 

None Citrulline 100 100 CO2, Pro 

 

As expected, ATP production was achieved with a lower total net flux through the system by utilising 

O2 as the final electron acceptor. When either of the electron acceptors were available, Glt was the 

preferred substrate utilised for ATP production, while citrulline took over when O2 and NO3
- were 

absent. The response obtained in the presence of O2 is identical to that found when studying the 

synthesis of ATP from Glt as sole C source considering minimising total net flux through the system 

as the objective of the analysis (Chapter 3, Section 3.3.2.2). For comparison purposes, the reactions 

involved in this solution are represented in Figure 6-1. 
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The ability of the system to generate ATP in a far more restricted environment, thus in the absence 

of electron acceptors and upon depletion of urea and all free amino acids (including aminobutyric 

acid, citrulline and ornithine) was already tested in Chapter 3, Section 3.3.2.1 (Figure 3-6). For 

comparison with other results presented in this chapter the main features of this response are 

summarised in Table 6-3. This showed that although feasible, synthesising ATP from Glc instead of 

Glt increased the total net flux through the system by 12.4%. 

 
Table 6-3 Characterisation of the model behaviour for production of ATP in the absence of O2 and NO3- 

with Glc and NH4+ as sole available C and N sources when total net flux through the network was 

minimised. 
 

Compounds 

generated 

Reactions 

carrying flux 

Objective 

value 

Increase in 

objective value 

(%) 

Total C 

uptake 

Total N 

uptake 

ATP/C 

ratio 

ATP 23 371 12.4 67.5 0.00 0.667 

 

Units: mmol/gDW/h. The increase in the objective value refers to the value initially obtained in standard 

synovial fluid. 

6.3.1.2 Simulated variation in the O2 concentration during ATP production: 

responsive reactions, subnetworks and elementary modes 

Once single solutions for ATP production under the most extreme conditions encountered by cells 

in joints were investigated, the system was analysed for production of ATP applying constraints that 

mimicked the O2 gradient found across the layers of a biofilm. Following the method described in 

Section 6.2.1.2, the model was ‘scanned’ for production of ATP simulating a range of O2 

concentrations, thus allowing the identification of coordinated responses for production of energy in 

response to changes in the O2 level. The results obtained are presented in this section. The main 

parameters defining these responses are summarised in Table 6-4: 

 
Table 6-4 Summary of data obtained with O2 scans for ATP production in synovial fluid in the presence 

and absence of NO3- when total net flux through the network was minimised. 
 

NO3- 

available 

Reactions 

active through 

the scans (n) 

Changers 

(n) 
Transporters in changers 

EMs in 

submodels 

(n) 

Yes 17 16 Glt, O2, NO3-, H2O, NH4+, CO2, Suc 2 

No 19 18 Glt, citrulline, O2, H2O, NH4+, CO2, Suc, Pro 2 

 

Changers = reactions with a total flux variation above a threshold of 0.01 mmol (/gDW/h)
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The only active reaction throughout both scans presenting fixed flux, hence not responding to 

changes in the upper flux bound for the O2 importer, was the ATPase reaction. 

 

Datasets obtained across model scans can be plotted, thus allowing for visualisation of the relative 

change in flux of the different reactions. For example, in order to investigate how reactions involved 

in aerobic and anaerobic respiration responded to changes in the O2 availability when NO3
- was 

present in the in silico medium, their fluxes across the O2 scan were plotted in Figure 6-5:  
 

 
Figure 6-5 Change in flux for responsive reactions involved in aerobic and anaerobic respiration during 

ATP production in synovial fluid over variation in the availability of O2 when NO3- was available and 

total net flux through the system was minimised. 
 

The values corresponding to the upper flux bound for the O2 importer are plotted in the X axis while reaction 

fluxes are plotted in the Y axis. Units: mmol/gDW/h. 

 

In the presence of NO3
-, when O2 was completely absent, the O2 importer and the cytochrome-c O2 

oxidase carried no flux, while flux through the NO3
- importer, the cytochrome-c-NO2

- reductase and 

the quinol-NO3
- reductase was maximum (approximately 5.00 mmol/gDW/h). Both sets of reactions 

changed flux in a mirror-like fashion, reaching equal fluxes of approximately 3.00 mmol/gDW/h, 

when the upper flux bound for the O2 importer was set at 3.00 mmol/gDW/h. Finally, when this 

upper flux bound reached a value of 8.00 mmol/gDW/h, NO3
-
 was no longer utilised and fluxes 

through the O2 importer and the cytochrome-c O2 oxidase reached a plateau, staying at that level. 

This indicated that the objective value (total net flux through the network) of the solution obtained 

when the O2 importer carried a flux of 8.00 mmol/gDW/h was the lowest possible and it did not 
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decrease any further when the system was allowed to utilise more O2, due to reactions involved in 

aerobic respiration reaching a saturation point. 

 

Responsive reactions (changers) 

Between 10 and 15 reactions (Table 6-1) were required for ATP production in the 4 single solutions 

corresponding to the constraints applied in the extreme points of the O2 scans, and between 17 and 

19 reactions were active throughout the whole range of conditions considered in these scans (Table 

6-4). From those, a total or 16 to 18 reactions responded to the variation in O2  with a total change in 

flux above a threshold of 0.01 mmol/gDW/h. A total of 13 reactions responded independently of the 

presence or absence of NO3
-. These corresponded to the transporters for O2, Glt, H2O, NH4

+, CO2 

and Suc plus those reactions involved in the catabolism of Glt to Suc, aerobic respiration and the 

ATP synthase. The following reactions responded depending on the presence or absence of NO3
-: 

when NO3
- was present, the NO3

- importer and the reactions involved in anaerobic respiration 

(cytochrome-c NO2
- reductase and quinol-NO3

- reductase) became responsive. Without NO3
-, those 

3 reactions became inactive and 5 extra reactions changed flux, corresponding to the uptake and 

catabolism of citrulline, including the Pro exporter.  

 

All reactions changing flux are included in Figure 6-1 to Figure 6-3. All reactions shown in these 

diagrams responded to the O2 variation, with the exception of the ATPase reaction, which flux was 

fixed as a constraint of the analysis in order to force the system to meet the NGAM and GAM ATP 

demand of the organism. 

 

Elementary modes 

The net stoichiometries corresponding to the elementary modes obtained from the submodels 

constructed as described in Section 6.2.1.3, hence derived from the reactions active at any point of 

these O2 scans are shown below and are classified depending on the electron acceptors utilised: 
 

 Net stoichiometry and ratios of modes with O2 as final electron acceptor 

 EM1: 2 O2 + 2 Glt  ®  2 CO2 + 2 NH4
+ + 2 Suc + 11 ATP 

 P/O = 2.75 

 ATP/C = 1.1 ; ATP/Glt = 5.5 
 

Net stoichiometry and ratios of modes utilising NO3
- as final electron acceptor 

EM2: 4 Glt + 2 NO3
- + 2 H2O + 4 H+ ®  4 CO2 + 6 NH4

+ + 4 Suc + 19 ATP 

 ATP/C = 0.95 ; ATP/Glt = 4.75 
 

Net stoichiometry and ratios of modes utilising neither O2 nor NO3
- 

 EM 3: 2 Citrulline + 2 H2O + 4 H+ ®  2 CO2 + 4 NH4
+ + 3 ATP + 2 Pro 

 ATP/C = 0.25 ; ATP/citrulline = 1.5 
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These modes summarise the net stoichiometry of the 4 solutions corresponding to the extreme points 

of the scans: while modes corresponding to EM1 and EM3 constitute the two possible minimal routes 

for ATP synthesis occurring in the absence of NO3
- and depending on whether O2 is present or absent, 

modes corresponding to EM1 and EM2 represent the two alternative routes for ATP synthesis 

depending on the presence of O2 when NO3
- is available. Interestingly, the production of Pro as a 

result of catabolising citrulline for ATP synthesis could be a factor contributing to the apparent 

growth delay described in the absence of Pro in previous chapters: since RP62A was originally 

isolated from a catheter infection (and presumably from a biofilm), it is plausible that these cells 

were adapted to utilise citrulline in this manner, hence obtaining Pro without the need to activate or 

produce enzymes involved in its synthesis from other amino acids. 

6.3.2 Production of PIA 

 The results obtained applying the methods defined in Section 6.2 to the study of PIA production in 

joints are described below. Note that in order to fully understand which reactions are purely involved 

in the synthesis of this polymer, production of ATP was not considered in these analysis and, 

therefore, no flux constraint was applied to the ATPase reaction. 

6.3.2.1 Metabolic responses for production of PIA in synovial fluid in the 

presence and absence of O2 and NO3- 

Single solutions for production of PIA under conditions reproduced by the constraints applied in the 

extreme points of the O2 scans, thus under either total availability or absence of O2 and NO3
-, were 

computed and the results obtained are presented in this section (Figure 6-6 to Figure 6-9). Greyed 

out reactions in these diagrams did not carry flux. 

 
.
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Figure 6-6 Production of PIA in synovial fluid in the presence of O2 and NO3- when total flux through the system was minimised.
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Figure 6-7 Production of PIA in synovial fluid in the presence of O2 and absence of NO3- when total flux through the system was minimised.
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Figure 6-8 Production of PIA in synovial fluid  in the presence of NO3- and absence of O2 when total flux through the system was minimised.



 
 
 
 
 

Chapter VI. Applying model response to variation analysis to the study of the metabolism of RP62A cells living in joints 
 

 150 

 

 
Figure 6-9 Production of PIA in synovial fluid in the absence of electron acceptor when total flux through the system was minimised.
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During production of PIA in synovial fluid in the presence of O2 and NO3
- when total flux through 

the system was minimised (Figure 6-6) Ala was degraded to Pyr by the Ala-dh (EC 1.4.1.1), 

generating NADH to be fed into the ETC, which was then fermented to Form by the Pyr Form-lyase 

(EC 2.3.1.54) while producing AcCoA. Glc was used to obtain GlcN-1P. AcCoA and GlcN-1P were 

consumed in the production of NAcGlc-1P and subsequently UDP-NAcGlc and PIA1, which was 

then partly deacetylated to PIA2, generating Ac. Interestingly, part of the Ac generated was used to 

produce more AcCoA by the Ac-CoA ligase (EC 6.2.1.1), helping to minimise total flux through the 

system. Functioning of the ETC via aerobic and anaerobic respiration, together with a small 

contribution from the excretion of both Ac and Form, generated the PMF needed for the ATP 

synthase to cover the ATP demand of the process. 

 

When O2 was the only electron acceptor available, a similar response was observed (Figure 6-7), but 

in this case there was no flux through reactions involved in anaerobic respiration and a small amount 

of Ser was degraded to produce more Pyr for AcCoA synthesis. All the Ac generated by deacetylation 

of PIA 1 was excreted out of the system instead of used to obtain more AcCoA. 

 

When NO3
- was the only electron acceptor available (Figure 6-8), part of the Pyr obtained from 

degradation of Ala was decarboxylated leading to production of AcCoA and generating more NADH 

to be feed into the ETC. Glc was utilised in the same manner as in the presence of O2, however, Ser 

uptake and catabolism was absent in this response. All the Ac generated by decarboxylation of PIA 

1 was excreted out of the system, contributing to generate the PMF that pumps the ATP synthase. 

 

In absence of O2 and NO3
- (Figure 6-9), Ala was no longer utilised. Glc was imported and 

metabolised for production of GlcN-1P in the same manner as in the presence of electron acceptors. 

Ser was deaminated producing Pyr, which was further metabolised via the Pyr Form-lyase (EC 

2.3.1.54) in the sole AcCoA-forming reaction of this solution, generating Form as a by-product. 

Citrulline was taken up and metabolised in a similar fashion as previously described for ATP 

synthesis under similar conditions (Section 6.3.1.1, Figure 6-3), finally leading to production and 

excretion of CO2, NH4
+ and Pro, generating ATP in the process. The excretion of charged by-

products (Ac and Form) contributed to create the PMF needed for functioning of the ATP synthase, 

generating more ATP. 

 

The main parameters defining these responses are summarised in Table 6-5 and Table 6-6: 
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Table 6-5 Characterisation of the model behaviour for production of PIA in synovial fluid when total 

net flux through the network was minimised in the presence and absence of electron acceptors. 
 

Electron 

acceptor 

available 

Reactions 

carrying flux 

(n) 

Objective 

value 

O2 

uptake 

NO3- 

uptake 

Total C 

uptake 

Total N 

uptake  

O2, NO3- 28 99.9 2.22 0.058 42.4 4.73 

O2 26 99.9 2.29 0.00 42.5 4.73 

NO3- 28 101 0.00 1.41 42.5 6.14 

None 27 128 0.00 0.00 79.2 23.1 
 

Units of the objective value and uptake rates: mmol/gDW/h. Conditions set: presence of O2, absence of O2 and 

presence and absence of NO3-. 

Table 6-6 Main N and C sources utilised and by-products excreted during production of PIA in synovial 

fluid when total net flux through the network was minimised in the presence and absence of electron 

acceptors. 
 

Electron 

acceptor 

available 

Compound 

utilized 

Contribution to 

total N uptake (%) 

Contribution to 

total C uptake (%) 

By-products 

excreted 

O2, NO3- 

Ala 98.8 33.1 

Ac, Form NO3- 1.24 - 

Glc - 66.9 

O2 

Ala 97.1 32.3 

Ac, Form Ser 2.94 0.929 

Glc - 66.7   

NO3- 

Ala 77.0 33.3 
Ac, CO2, 

Form NO3- 23.0 - 

Glc - 66.7 

None 

Citrulline 79.5 46.3 
Ac, CO2, 

Form, Pro Ser 20.5 17.9 

Glc - 35.8 

 

As expected, PIA production was achieved with a lower enzymatic cost by utilising O2 as the final 

electron acceptor. However, when both O2 and NO3
-
 were available, a very small amount of NO3

- 

was taken up, allowing functioning of reactions involved in aerobic and anaerobic respiration 

simultaneously, although this last ones at a very low rate (Table 6-5 and Figure 6-6). When O2 was 

the only electron acceptor it was utilised almost as efficiently, with a difference in the objective value 
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of both solutions lower than 0.01 mmol/gDW/h. PIA production in sole presence of NO3
- or in 

absence of both O2 and NO3
- was less efficient. 

 

When NO3
- was available, with or without O2, Glc and Ala were the main C sources utilised. The 

response obtained in the sole presence of O2 was very similar, although with a small contribution of 

Ser to the total C uptake (< 1.00%). In the absence of both, citrulline, Glc and Ser were consumed, 

with Ser utilisation increasing significantly under these circumstances (by 16.9 %). 

 

The ability of the system to produce PIA upon depletion of all free amino acids and urea was tested 

(Table 6-7), showing that, although presenting lower C and N uptake rates, synthesising PIA from 

Glc and NH4
+ increased the total net flux through the system by 32.0%. 

 

Table 6-7 Characterisation of the model behaviour for production of PIA in the absence of O2 and NO3- 

with Glc and NH4+ as sole C and N sources when total net flux through the network was minimised. 
 

Compounds 

generated 

Reactions 

carrying flux 

(n) 

Objective 

value 

Increase in 

objective value 

(%) 

Total C 

uptake 

Total N 

uptake 

PIA 37 169 32.0 53.7 4.73 
 

Units of the objective value and uptake rates: mmol/gDW/h. The increase in the objective value shown here 

refers to the value obtained in standard synovial fluid. 

6.3.2.2 Simulated variation in the O2 concentration during production of 

PIA: responsive reactions, subnetworks and elementary modes 

After identifying single solutions for the synthesis of PIA under the most extreme conditions 

encountered by cells in joints, the system was analysed for PIA production under constraints that 

mimicked the O2 gradient found across biofilm layers following the method described in Section 

6.2.1.2. This allowed identifying coordinated responses for PIA synthesis in response to changes in 

the O2 level. The results obtained are presented in this section. The main parameters defining these 

responses are summarised in Table 6-8:  
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Table 6-8 Summary of data obtained in the O2 scans for PIA production in synovial fluid when total net 

flux through the network was minimised in the presence and absence of NO3-. 
 

NO3- 

available 

Reactions 

active through 

the scans (n) 

Changers 

(n) 
Transporters in changers 

EMs in 

submodel 

(n) 

Yes 31 18 Ala, O2, NO3-, H2O, NH4+, CO2, Ac, Form 17 

No 46 33 
Ala, citrulline, Glc, Glt, Ser, O2, H2O, 

NH4+, CO2, Suc, Pro 
16 

 

Changers = reactions with a total change in flux above a threshold of 0.01 mmol (/gDW/h) 

 

Responsive reactions (changers) 

Between 28 and 26 reactions (Error! Reference source not found.) were required for PIA 

production in the 4 single solutions corresponding to the constraints applied in the extreme points of 

the O2 scans, and between 31 and 46 reactions were active throughout the whole range of conditions 

considered in the scans. From those, a total of 18 and 33 reactions responded to the simulated 

variation in O2 concentration with a change in flux above a threshold of 0.01 mmol (/gDW/h) and 

total of 10 reactions responded independently of the presence or absence of NO3
-. These 

corresponded to the transporters for Ala, O2, H2O, NH4
+, CO2, the Ala-dh reaction, reactions involved 

in aerobic respiration and the ATP synthase.  

 

The following reactions responded to the O2 variation depending on the presence or absence of NO3
-

: when this was present, the NO3
- importer and the reactions involved in anaerobic respiration 

(cytochrome-c NO2
- reductase and quinol-NO3

- reductase) became responsive, and so did reactions 

leading to synthesis of AcCoA from Pyr and Ac, and the exporters for Ac, Form and CO2. Without 

NO3
-, those 8 reactions became inactive and 15 other reactions changed flux, corresponding to the 

uptake and catabolism of citrulline, Ser, Glt and the whole glycolysis pathway from Glc to Pyr. Some 

but not all of the reactions changing flux are included in Figure 6-6 to Figure 6-9, corresponding to 

single solutions obtained in the extreme points of the scans (e.g. reactions involved in Glt degradation 

or glycolysis are absent). From the reactions shown in these diagrams, those leading to synthesis of 

PIA1 and PIA2 from AcCoA and GlcN-1P, and including synthesis of GlcN-1P from F6P, 

maintained a constant flux across the scans in order to comply with the fixed PIA demand. 

 

In order to facilitate the investigation of model responses to the changing O2 levels when NO3
- was 

absent, and therefore, between conditions that allowed aerobic respiration or forced the system to 

exert a fermentative behaviour, the flux through importers of medium components across the O2 scan 

were plotted in Figure 6-10: 



Chapter VI. Applying model response to variation analysis to the study of the metabolism of 

RP62A cells living in joints 

 

 155 

 
Figure 6-10 Change in flux for responsive importers of medium components involved in PIA synthesis 

in synovial fluid over variation in the availability of O2 in the absence of NO3- when total net flux through 

the network was minimised. 

The values corresponding to the upper flux bound for the O2 importer are plotted in the X axis while reaction 

fluxes are plotted in the Y axis. Units: mmol/gDW/h 

 

These data showed how the uptake of Glc was slightly higher at low O2 concentrations, allowing 

production of Pyr for AcCoA synthesis via glycolysis, and remaining constant after that in order to 

fulfil the GlcN-1P demand. Ser degradation to Pyr was maximum at lower O2 levels, and its 

contribution decreased in a mirror-like fashion with the activity of the glycolytic reactions, and later 

on, decreasing with the increasing degradation of Ala to Pyr, although small amounts of Ser were 

still consumed at the higher O2 levels. Citrulline degradation for ATP production was maximum at 

the lowest O2 level and it was progressively substituted by reactions involved in aerobic respiration, 

carrying no flux when the availability of O2 was higher. There were several intermediate solutions 

(corresponding to upper flux bounds for the O2 importer ranging from approximately 0.50 to 1.00 

mmol (/gDW/h), where a small amount of Glt was taken up and degraded to Suc in order to obtain 

ATP, thus decreasing citrulline utilisation at an equivalent proportion in these responses. Finally, the 

changes in flux observed when the upper flux bound for the O2 imported ranged between 1.20 mmol 

(/gDW/h) and 1.29 mmol (/gDW/h) represented alternative optimal solutions were, unlike in the 

majority of the dataset, Glt and Ser were respectively utilised to obtain ATP and AcCoA, partly 

substituting consumption of citrulline and completely stopping the uptake of Ala. If the system was 

analysed again, now blocking the flux through the Glt importer, new solutions were obtained in 

which the consumption of Ser decreased and utilisation of citrulline and Ala increased to levels in 
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line with those presented in solutions where the import of O2 was outside of this range (1.20 – 1.29 

mmol/gDW/h). These exhibited identical objective values as the original solutions for the exact same 

constraints (except for the block of flux through the Glt importer), indicating that are equally optimal 

for the same analysis objective (producing PIA while minimising total net flux through the network). 

Therefore, this exemplifies the existence of multiple optimal solutions for a given LP problem, as 

was previously mentioned in Section 2.2.4. However, in the interest of time and since solutions 

obtained at O2 levels around those values consistently involved utilisation of Ala for AcCoA 

synthesis, a more detailed investigation of alternative optimal solutions was considered out of the 

scope of this study. 

 

Elementary modes 

The net stoichiometries corresponding to the elementary modes obtained from the submodels 

constructed as described in Section 6.2.1.3, hence derived from the reactions active at any point of 

the O2 scans for PIA synthesis, are shown below and are classified depending on the electron 

acceptors utilised. Each elementary mode represents an independent route through the network: 

 

 Net stoichiometry of modes utilising O2 and NO3
- as final electron acceptors 

EM1: 1 O2 + 13 Glc + 4 NO3- + 9 Ala + 8 H+  ® 9 CO2 + 4 PIA2 + 9 PIA1 + 18 H2O 

EM2: 1 O2 + 6 Glc + 1 NO3- + 6 Ala + 1 H2O ® 1 NH4+ + 6 Ac + 6 PIA2 + 6 Form + 4 H+ 

EM3: 7 O2 + 19 Glc + 1 NO3- + 18 Ala ® 18 Ac + 19 PIA2 + 18 Form + 16 H+ 

EM4: 3 O2 + 14 Glc + 2 NO3- + 14 Ala ® 10 H+  + 2 NH4+ + 12 PIA2 + 2 PIA1 + 12 Ac + 14 Form 

 

 Net stoichiometry of modes utilising O2 as final electron acceptor 

EM5: 3 O2 + 5 Glc + 2 NH4+ + 3 Ala ® 3 CO2 + 2 PIA2 + 3 PIA1 + 8 H2O 

EM6: 6 O2 + 13 Glc + 1 NH4+ + 12 Ala ® 12 Ac + 1 H2O + 13 PIA2 + 12 Form + 12 H+ 

EM7: 4 O2 + 7 Glc + 3 NH4+ + 4 Ala ® 4 CO2 + 4 Ac + 7 PIA2 + 7 H2O 

EM8: 1 O2 + 2 Glc + 2 Ala ® 2 H2O + 2 Form + 2 PIA1 + 2 H+ 

EM9: 12 O2 + 37 Glc + 25 Ser + 8 Glt ® 8 CO2 + 8 Suc + 41 H+ + 33 Form + 41 H2O + 33 PIA1 

EM10: 4 O2 + 11 Glc + 11 Ser + 4 Glt ® 4 CO2 + 4 Suc + 11 H+ + 4 NH4+ + 11 PIA1 + 11 H2O + 11 Form 

EM11: 21 O2 + 73 Glc + 52 Ser + 14 Glt ® 14 CO2 + 14 Suc + 80 H+ + 66 Ac + 14 H2O + 66 PIA2 + 66 Form 

EM12: 7 O2 + 22 Glc + 22 Ser + 7 Glt ® 7 CO2 + 7 Suc + 22 H++ 22 Ac + 7 NH4+ + 22 PIA2 + 22 Form  

EM13: 4 O2 + 15 Glc + 3 Ser + 8 NH4+ ® 19 H2O + 11 PIA1 + 11 Form + 19 H+ 

EM14: 7 O2 + 29 Glc + 8 Ser + 14 NH4+ ® 22 Ac + 14 H2O + 22 PIA2 + 22 Form + 36 H+ 

EM15: 7 O2 + 16 Glc + 2 Ser + 14 Ala ® 16 Ac + 16 PIA2 + 16 Form + 16 H+ 

 

Net stoichiometry of modes utilising NO3
- as final electron acceptor 

EM16: 41 Glc + 11 NO3- + 44 Ala ® 22 H+ + 14 NH4+ + 27 PIA2 + 14 PIA1 + 30 Ac+ 44 Form 

EM17: 26 Glc + 7 NO3- + 26 Ala + 5 H2O ® 2 CO2 + 10 H+ + 7 NH4+ + 26 PIA2 + 26 Ac + 24 Form 
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EM18: 17 Glc + 6 NO3- + 12 Ala + 12 H+ ® 12 CO2 + 1 NH4+ + 5 PIA2 + 12 PIA1 + 23 H2O 

EM19: 13 Glc + 4 NO3- + 13 Ala ® 3 CO2 + 2 H+ + 4 NH4+ + 13 PIA1 + 12 H2O + 10 Form 

EM20: 3 Glc + 1 NO3- + 2 Ala + 2 H+® 2 CO2 + 2 Ac + 3 PIA2 + 2 H2O 

EM: 23 Glc + 6 NO3- + 24 Ala + 7 H2O ® 7 NH4+ + 24 Ac + 23 PIA2 + 24 Form + 12 H+ 

EM21: 67 Glc + 19 NO3- + 62 Ala ® 14 CO2 + 10 H+ + 14 NH4+ + 67 PIA2 + 62 Ac + 48 Form 

EM22: 29 Glc + 8 NO3- + 29 Ala ® 3 CO2 + 10 H+ + 8 NH4+ + 24 PIA2 + 26 Form + 24 Ac + 5 PIA1 

EM23: 46 Glc + 13 NO3- + 52 Ala ® 26 H+ + 6 Ac + 46 PIA1 + 27 H2O + 19 NH4+ + 52 Form 

 

 Net stoichiometry of modes utilising neither O2 nor NO3
- as final electron acceptors 

EM24: 3 Glc + 4 Citrulline + 3 Ser + 1 H2O + 5 H+ ® 4 CO2 + 3 PIA1 + 8 NH4+ + 4 Pro + 3 Form 

EM25: 6 Glc + 7 Citrulline + 6 Ser + 7 H2O + 8 H+ ® 7 CO2 + 14 NH4+ + 7 Pro + 6 PIA2 + 6 Ac + 6 Form 

 

 Net stoichiometry of modes utilising O2 as final electron acceptor involving citrulline 

degradation 

EM26: 6 Ser + 2 Ala + 8 H+ + 1 O2 + 8 Citrulline + 8 Glc ® 8 CO2 + 8 PIA1 + 16 NH4+ + 8 Pro + 8 Form 

EM27: 7 O2 + 41 Glc + 20 Ser + 14 Citrulline ® 14 CO2 + 20 H+ + 14 NH4+ + 14 Pro + 34 PIA2 + 34 Ac + 

34 Form 

EM28: 11 Ser + 11 H+ + 1 O2 + 1 Glt + 11 Citrulline + 11 Glc ® 12 CO2 + 1 Suc + 23 NH4+ + 11 Pro + 11 

Form + 11 PIA1 

EM29: 1 O2 + 18 Glc + 15 Ser + 19 Citrulline + 19 H+ ® 19 CO2 + 17 PIA1 + 36 NH4+ + 19 Pro + 17 Form 

EM30: 2 O2 + 9 Glc + 3 Ser + 2 Citrulline ® 2 CO2 + 7 H+ + 2 Pro + 7 Form + 9 H2O + 7 PIA1 

EM31: 1 O2 + 5 Glc + 2 Ser + 1 Citrulline ® 1 CO2 + 4 H+ + 4 Ac + 1 Pro + 1 H2O + 4 PIA2 + 4 Form  

 

The large number of modes obtained denotes the high versatility of these subnetworks, and therefore, 

of the system they derive from. Notice that, while different mechanisms can lead to ATP and AcCoA 

production, the only plausible way to obtain GlcN-1P involves metabolising Glc. Hence, Glc is 

consumed in every single mode, while the utilisation of several substrates, such as Ala, Ser, citrulline, 

Glt and Glc can be combined in different ways in order to obtain ATP and AcCoA. 

6.3.3 Production of planktonic biomass 

This section describes the results obtained applying the methods presented in Section 6.2 to the study 

of the synthesis of planktonic biomass under the environmental conditions found in joints. Since the 

objective of this work is to fully understand which processes are relevant for either ATP synthesis, 

production of PIA or biosynthesis of planktonic biomass, no flux constraint was applied to the 

ATPase reaction during the analyses performed for biomass production. 
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6.3.3.1 Metabolic responses for production of planktonic biomass in synovial 

fluid in the presence and absence of O2 and NO3- 

Single solutions for production of planktonic biomass obtained applying the constraints used at the 

extreme points of the O2 scans, thus under total availability or absence of O2 and in the presence or 

absence of NO3
- have been computed and the results obtained are presented in this section. The main 

parameters defining these responses are summarised in Table 6-9 and Table 6-10. 
 

Table 6-9 Characterisation of the model behaviour for production of planktonic biomass in synovial 

fluid when total net flux through the network was minimised in the presence and absence of electron 

acceptors. 
 

Electron 

acceptor 

available 

Reactions 

carrying flux 

Objective 

value 
O2 uptake NO3- uptake 

Total C 

uptake 

Total  N 

uptake 

O2, NO3- 287 71.0 1.49 0.00 40.4 9.96 

O2 290 71.0 1.48 0.00 40.3 9.77 

NO3- 290 72.0 0.00 0.856 41.4 10.86 

None 287 85.0 0.00 0.00 63.4 21.0 
 

Units of the objective value and uptake rates: mmol/gDW/h. Conditions set: presence of O2, absence of O2 and 

presence and absence of NO3- 

 

Planktonic biomass was produced with a lower associated total net flux through the system by 

utilising O2 as the final electron acceptor. When both O2 and NO3
-
 were available, only O2 was 

utilised. The responses obtained in sole presence of NO3
- or in the absence of both O2 and NO3

- were 

less efficient.
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Table 6-10 Main N and C sources utilised and by-products excreted during production of planktonic 

biomass in synovial fluid when total net flux through the network was minimised in the presence and 

absence of electron acceptors. 
 

Electron 

acceptor 

available 

Compound 

utilized 

Contribution to 

total N uptake (%) 

Contribution to 

total C uptake (%) 

By-products 

excreted 

O2, NO3- 

Gln 20.6 12.6 

CO2, Form, 

Suc 

Ala 20.1 14.8 

Thr 8.66 8.53 

Asp 7.61 7.49 

Lys 6.70 5.02 

Glc - 16.1 

O2 

Ala 20.4 14.9 

CO2, Form, 

Suc 

Gln 19.7 12.0 

Thr 8.83 8.57 

Asp 6.55 6.36 

Lys 6.92 5.04 

Glt 5.59 6.78 

Glc - 17.1 

NO3- 

Ala 18.4 14.5 

CO2, Form, 

Suc 

Gln 17.8 11.6 

Thr 7.94 8.33 

NO3- 7.88 - 

Glt 7.18 9.40 

Glc - 16.6 

None 

Citrulline 56.7 37.6 

CO2, Form, 

Suc, Pro 

Ser 10.7 10.6 

Glt 5.17 8.58 

Gln 4.80 0.506 

Thr 3.44 4.57 

Glc - 10.2 
 

When several N and/or C sources were taken up, data corresponding to at least the five compounds contributing 

to these total uptakes in the highest proportions were included in the table. 

 

In presence of O2, Ala and Gln were the main N sources consumed, followed by Thr, Asp and Lys 

etc. This compares well with the amino acids defined as contributing in the higher proportion to the 

N and C demand for planktonic growth in Chapter 5, Section 5.3.1.2, where Glt, Ala, Arg, Thr and 

Lys were shown to account for the majority of the N demand, and Glt, Ala, Thr, Asp and Lys for the 
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C demand. When only NO3
- was available, the contribution of Glt increased over that of Asp and 

Lys. In the absence of both electron acceptors, citrulline and Ser became the main N sources utilised, 

followed by Glt, Gln and Thr. This led to Pro being produced and excreted out of the system. 

 

The model was also capable of synthesising biomass under highly restrictive conditions (absence of 

amino acids and electron acceptors), and the main features of this response are shown in Table 6-11. 

However, the dramatic increase in the total net flux associated with this response when compare to 

growth in synovial fluid (+227%), suggests that planktonic growth could be reduced or impaired 

under these conditions in vivo, for example, in cells living in the bottom layers of a biofilm. 
 

Table 6-11 Characterisation of the model behaviour for production of planktonic biomass in the absence 

of O2 and NO3- with Glc and NH4+ as sole C and N sources when total net flux through the network was 

minimised. 
 

Compounds 

generated 

Reactions 

carrying flux 

Objective 

value 

Increase in 

objective value 

(%) 

Total C 

uptake  

Total N 

uptake 

Planktonic 

biomass 
338 278 227 60.7 7.25 

 

Units of the objective value and uptake rates: mmol/gDW/h. The increase in the objective value shown here 

refers to the value obtained in standard synovial fluid. 

 

6.3.3.2 Simulated variation in the O2 concentration during production of 

planktonic biomass: responsive reactions, subnetworks and 

elementary modes 

The system was analysed for production of planktonic biomass applying constraints that mimicked 

the O2 gradient found across biofilm layers following the method described in Section 6.2.1.2. The 

transporters which responded to the variation in the O2 level are reported in Table 6-12. These give 

an indication towards which areas of metabolism respond to changing conditions during synthesis of 

planktonic biomass, and could potentially be confirmed experimentally in the future. An overview 

of the reactions responding depending on the presence or absence of NO3
- is given below.
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Table 6-12 Summary of data obtained with O2 scans for production of planktonic biomass in synovial 

fluid and the presence and absence of NO3- when total net flux through the network was minimised. 
 

NO3- 

available 

Reactions 

active through 

the scans (n) 

Changers 

(n) 
Transporters in changers 

EMs in 

submodels (n) 

Yes 294 23 Glt, O2, NO3-, H2O, NH4+, CO2, Form, Suc Non-computed 

No 306 69 
Ala, Arg, Citrulline, Glc, Glt, Ser, Thr, O2, 

H2O, NH4+, CO2, Form, Suc, Pro 
Non-computed 

 

Changers = reactions with a total change in flux above a threshold of 0.01 mmol (/gDW/h) 

 

Responsive reactions (changers) 

Between 290 and 287 reactions (Table 6-9) were required for planktonic biomass production under 

the conditions corresponding to the constraints applied at the extremes of both scans. 294 and 306 

reactions were active throughout the whole range of conditions considered in the scans. From those, 

a total of 23 to 69 reactions responded to the variation in the availability of O2 with a change in flux 

above a threshold of 0.01 mmol (/gDW/h).  

 

20 reactions responded to the O2 variation in both O2 scans, the one performed considering NO3
- as 

available and the one performed constraining its import to zero: these corresponded to transporters 

for Glt, O2, H2O, NH4
+, CO2, Form and Suc, reactions involved in aerobic respiration, and those 

catalysed by the ATP synthase, an Ala-dh (producing Pyr and NADH), an Ala-aminotransferase 

(transforming Glt and Pyr to Ala and 2-KG), the NADP-dependant Glt-dh (regenerating NADPH 

and producing 2-KG), the 2-KG-dh and Suc-CoA-synthase from the TCA cycle (generating Suc, 

NADH and ATP), two reactions from the mevalonate biosynthetic and degradation pathways (acting 

as a transhydrogenase system (EC 1.1.1.34 and EC 1.1.1.88), which re-oxidised excess of NADPH 

and generated NADH), and the Pyr-dh and Pyr Form-lyase (producing AcCoA form Pyr). Therefore, 

this indicates that these reactions are important for environmental adaptation regardless of whether 

the system still able to perform anaerobic respiration or is forced to produce fermentative responses. 

The following reactions responded to the O2 variation depending the availability of NO3
-: when NO3

- 

was available, the NO3
- importer and the reactions involved in anaerobic respiration (cytochrome-c 

NO2
- reductase and quinol-NO3

- reductase) became responsive. When NO3
- was unavailable, those 3 

reactions remained inactive and 46 new reactions changed flux, corresponding to the uptake of 

several amino acids (Ala, Arg, Ser, Thr and citrulline), the excretion of Pro, the degradation of 

citrulline and Ser (producing ATP and Pyr respectively), several dehydrogenases, deaminase 

reactions and those involved in the complete PPP (within others). Most of these processes involved 

production of NADPH and precursor metabolites (e.g. ribose-5-P etc.). 237 reactions maintained a 
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constant flux across both scans, complying with the fixed biomass demand independently of the 

environmental conditions. 

6.4 Discussion 

6.4.1 ATP production in joints 

6.4.1.1  Metabolic responses for ATP production in synovial fluid in the 

presence and absence of O2 and NO3- 

In summary, in the presence of O2, the system took up Glt and metabolised it to 2-KG generating 

NADH. 2-KG was further metabolised via reactions of the TCA cycle, producing ATP and NADH 

to be fed into the aerobic ETC while excreting Suc. When only NO3
-
 was available, this acted as the 

final electron acceptor in a similar solution that involved the anaerobic ETC instead. In the absence 

of both electron acceptors, citrulline was catabolised to carbamoyl-P and ornithine, being these 

compounds further degraded to CO2, Pro and NH4
+, while generating ATP in a process that, to our 

knowledge has not been described before as important for energy production in staphylococcal cells 

living in joints. Interestingly, upon citrulline deprivation, the system did not import Arg in order to 

obtain citrulline for ATP synthesis via Arg deamination (EC 3.5.3.6), which has been shown to be 

important (although not essential) for biofilm formation in Staphylococci (Zhu et al. 2007) (Chapter 

0, Section 1.6.3). Instead, Ser was deaminated to Pyr, which was further catabolised to Form and 

AcCoA, with this final compound being used to synthesise ATP while producing Ac. The excretion 

of charged by-products (Ac, Form, NH4
+ and Suc) contributed to generate the PMF which allowed 

functioning of the ATP synthase, as was described when investigating the synthesis of ATP from 

several substrates in Chapter 3, Section 3.3.2. 

6.4.1.2 Simulated variation in the O2 concentration during ATP production: 

responsive reactions, subnetworks and elementary modes 

Results derived from the O2 scan performed in the presence of NO3
-
 (Section 6.3.1.2), specifically 

highlighted the importance of the Glt uptake and metabolism for ATP synthesis in RP62A, and 

showed how reactions involved in aerobic and anaerobic respiration changed flux in a mirror-like 

fashion when responding to the variation in the availability of O2. These data showed that, even in 

the presence of Glc, the system preferentially consumed free amino acids for ATP production. 

Despite glycolysis and the TCA cycle being pathways traditionally described as leading to the 

greatest ATP/C yields, when other plausible biological objectives such as minimising protein cost 

are considered (represented here by minimisation of the total net flux through the system as a proxy), 

alternative catabolic routes take over. In presence of O2 or NO3
-, Glt degradation generated ATP and 

NADH to be fed to the ETC, while in their absence, citrulline (or Ser) degradation allowed an optimal 
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balance between ATP synthesis and total net flux minimisation. In summary, this work identifies the 

ATP synthase reaction and reactions involved in Glt degradation, aerobic and anaerobic respiration 

and citrulline and Ser degradation as important for adaptation to energy production in the array of 

conditions found in joints, and suggests that reaction involved in aerobic and anaerobic respiration 

are simultaneously active throughout a wide range of O2 levels. 

 

These observations are consistent with the model behaviour described in Chapter 3, Section 3.3.2.2, 

where the production of ATP from Glt in the presence of O2 was investigated, and, moreover, the 

importance of Glt catabolism for ATP synthesis defined in this chapter could constitute a plausible 

explanation for the drastic reduction in biofilm formation described in Chapter 4, Section 4.3.2, were 

Glt deprivation caused the greatest decrease in biofilm formation in RP62A cultures grown in MM 

medium when single amino acids were removed from the standard medium formulation at a time. 

6.4.2 PIA production in joints 

6.4.2.1 Metabolic responses for production of PIA in synovial fluid in the 

presence and absence of O2 and NO3- 

In all conditions, Glc was used to obtain the GlcN-1P consumed together with AcCoA in the 

synthesis of UDP-NAcGlc, which was further metabolised to PIA1, while PIA1 was partly 

deacetylated to PIA2, generating Ac before these polymers were finally excreted. This is an accurate 

representation of the biological process of PIA synthesis described for staphylococci (Chapter 0, 

Section 1.7.4) (Heilmann et al. 1996; Gerke et al. 1998; Lee et al. 2016; Somerville 2016), in which 

the transamination of F6P to GlcN-6P directs C to the synthesis of amino sugars and away from 

glycolysis (Somerville 2016), UDP-NAcGlc is produced via acetylation and activation of GlcN-1P, 

an initial polymer is synthesised by the polymerisation of NAcGlc donated by UDP-NAcGlc, being 

then partly deacetylated and finally excreted from the cell. Some particular features of the model 

responses obtained during this work are: i) the simultaneous functioning of aerobic and anaerobic 

respiration when both O2 and NO3
- are available; ii) the utilisation of part of the Ac generated during 

the deacetylation of PIA1 to obtain more AcCoA; and, iii) the use of Ser to obtain AcCoA both in 

aerobic and anaerobic conditions. Interestingly, these coincide with the following biological 

observations in staphylococci: i) the expression of both cytochromes and the nitrate reductase has 

been detected in microaerobic conditions in S. epidermidis (Uribe-Alvarez et al. 2016), implying the 

simultaneous functioning of the aerobic and anaerobic version of the ETC; ii) staphylococci are 

known to consume Ac and use it to obtain AcCoA, specially during the post-exponential growth state 

(Somerville et al. 2003; Sadykov et al. 2013; Somerville 2016; Halsey et al. 2017); and, iii) the use 

of Ser to obtain ATP and AcCoA via Pyr has also been described in S. epidermidis both in the 

presence and absence of O2 (Sivakanesan et al. 1980). The contribution of the excretion of charged 

by-products (Ac and Form) to generate the PMF which allows functioning of the ATP synthase in a 
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similar way as described during the study of ATP synthesis in Chapter 3 cannot be either verified or 

disproved due to the current lack of data on this matter, thus further studies are needed in order to 

test this hypothesis. 

6.4.2.2 Simulated variation in the O2 concentration during production of 

PIA: responsive reactions, subnetworks and elementary modes 

Results derived from the O2 scan in the presence of NO3
- (Section 6.3.2.2) showed how reactions 

involved in aerobic and anaerobic respiration responded to the O2 variation, together with the Ala 

importer and the reactions leading to AcCoA synthesis from Pyr and Ac, respectively catabolised by 

the Pyr Form-lyase and the Ac-CoA ligase. Results derived from the O2 scan in the absence of NO3
- 

highlighted the importance of the metabolism of Glc, Ala, Glt, Ser and citrulline in the adaptation of 

RP62A to produce biofilm polymers upon changes in the O2 concentration, with Ala being 

increasingly utilised to obtain AcCoA and NADH for ATP synthesis the more O2 becomes available, 

utilisation of Glc increasing slightly towards Pyr production at low O2 levels, with its consumption 

otherwise being kept constant to fulfil the GlcN-1P demand, Ser and citrulline utilisation for the 

respective production of AcCoA and ATP decreasing almost linearly as the availability of O2 

increased and reactions involved in aerobic respiration augmenting their flux. Glt was utilised to 

obtain ATP for PIA synthesis in a minority of the responses in which O2 was available. 

 
PIA production was achieved at a lower enzymatic cost by utilising O2 as the final electron acceptor. 

When both O2 and NO3
-
 were available, the most efficient response was achieved by reactions 

involved in both aerobic and anaerobic respiration carrying flux simultaneously, although this last 

ones did so at a very low rate. In presence of electron acceptors, Ala was the optimal substrate for 

production of the AcCoA needed for PIA synthesis. In absence of O2 and NO3
-, AcCoA was 

synthesised via Ser degradation. GlcN-1P , also needed for PIA production, was obtained from Glc 

and NH4
+ in an ATP-consuming process. This ATP was generated via aerobic and/or anaerobic 

respiration, or, in absence of O2 and NO3
-, by substrate-level phosphorylation via citrulline 

degradation. Excretion of charged by-products contributed to generate the PMF which allowed 

functioning of the ATP synthase. Interestingly, in the absence of NO3
-, Glt degradation and the whole 

glycolysis pathway were active, and were respectively utilised to obtain ATP and Pyr at intermediate 

O2 levels, although this occurred in a very limited number of responses. These strategies allowed 

PIA production with the highest possible reduction in the total net flux through the system. 

 

In summary, this work indicates that reactions involved in Ala degradation, aerobic and anaerobic 

respiration, the ATP synthase, Ser and citrulline degradation, and, to a lesser extent, in glycolysis 

and Glt degradation are important for RP62A adaptation to PIA production under the range of 

conditions found across biofilms in joints. Despite synthesis of PIA being an ATP consuming 

process, the reactions identified during the study of ATP production in Section 6.3.1, such as the 
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import and degradation of Glt, carried no flux in most of these solutions. This seems to indicate that 

production of PIA could work as an anabolic process coupled with catabolic reactions that contribute 

to fulfil its associated energy demand, such as the degradation of amino acids (e.g. oxidation of Ala, 

which generates NADH to enter the ETC) or the deacetylation of PIA1 (generating Ac which 

excretion contributes to the PMF that pumps the ATP synthase), while the system optimally 

minimises the total net flux through the system. However, here we hypothesise that since 6% of the 

NAcGlc residues in PIA are O-succinated, Glt degradation to 2-KG and its metabolization to Suc, 

with the consequent production of ATP and NADH, are also likely to be involved in PIA synthesis, 

although the current mechanism of the PIA succination process remains unknown and thus has not 

been considered in the model. This would again suggest that Glt catabolism is important for biofilm 

formation, as shown by the in vitro results described in Chapter 4, Section 4.3.2. 

 

According to the results derived from these analyses, pathways traditionally described as central to 

the production of energy and biosynthetic precursors, such as glycolysis, the TCA cycle or the PPP 

are either absent or have very little involvement in PIA production. Interestingly, external factors 

leading to repression of the TCA cycle (e.g. high Glc level, nutrient and iron deprivation and 

decreased O2 concentrations) have been shown to dramatically increase PIA synthesis in vitro 

(Vuong et al. 2005; Sadykov et al. 2008; Sadykov et al. 2011; Somerville 2016). Therefore, these 

biological observations support the validity of our results. Again, the mathematical analysis of the 

metabolic network has been proven useful in anticipating regulatory patterns that allow the living 

organism to implement optimal strategies for achieving certain biological objectives: e.g. PIA 

synthesis would be optimally achieved with the lowest associated enzymatic cost via repression of 

the TCA cycle, utilising alternative routes for production of energy and metabolic precursors. Thus 

reducing protein investment is suggested here has a strong candidate to represent the real biological 

objective followed by cells living under these conditions. 

 

The large number of elementary modes present in the subnetworks derived from the reactions 

involved in PIA production again demonstrates the versatility of the network with regards to this 

biosynthetic process, and, therefore suggests it has a high potential to adapt to changing 

environmental conditions. While different mechanisms led to production of the ATP and AcCoA 

consumed in the process, all identified routes generating GlcN-1P involved metabolising Glc. Hence 

Glc was consumed in every single mode, while several substrates, such as Ala, Ser, citrulline or Glt 

could be combined in different ways in order to comply with the ATP and AcCoA demand. This 

behaviour matches findings by other authors who reported that an increase in the Glc concentration 

promoted biofilm formation (Vuong et al. 2005; Sadykov et al. 2008; Sadykov et al. 2011; 

Somerville 2016). Finally, the large number of routes leading to synthesis of either PIA1, PIA2 

(positively charged) or both, suggested that the system could easily control the ratio between the 

acetylated and deacetylated residues in PIA, thus rapidly modifying the charge of the biofilm matrix 
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in response to the environment and the stage of the biofilm formation process itself. This could either 

contribute to the adhesion of the biofilm to surfaces with different charges and to the accumulation, 

maturation or detachment phases of biofilm formation as per required (Chapter 0, Section 1.7.1). 

Interestingly, cells in biofilms have already been described to vary the relative proportion of teichoic 

acid and PIA with the very same purpose (Gross et al. 2001; Sadovskaya et al. 2004). 

 

Here we have identified a set of optimal solutions for PIA production and what could potentially be 

a proxy for enzyme salvage in joints. However, other optimal and suboptimal solutions could exist. 

Therefore, a more complete study of all possible routes leading to synthesis of PIA could define 

single reactions unconditionally essential for this process that could then be proposed as potential 

new therapeutic targets. Such a detailed investigation is out of the scope of this project but will be 

performed in the near future as a continuation of this work. 

6.4.3 Production of planktonic biomass in joints 

6.4.3.1 Metabolic responses for production of planktonic biomass in synovial 

fluid in the presence and absence of O2 and NO3- 

Planktonic biomass was produced at a lower enzymatic cost by utilising O2 as the final electron 

acceptor. When O2 or NO3
- were available, Ala and Gln were the main amino acids consumed, 

followed by others. In absence of both electron acceptors, citrulline and Ser took their place, leading 

to Pro being excreted from the system. Glc was highly consumed as a C source in all conditions. In 

summary, these results indicate that in the presence of electron acceptors, consumption of amino 

acids that could be converted to Ala and the reactions involved in Ala degradation were optimally 

utilised for the synthesis of ATP, Pyr and subsequently the AcCoA needed for biosynthetic processes. 

Glycolysis was also utilised in these solutions as a way to obtain more Pyr. In the absence of electron 

acceptors, degradation of citrulline and Ser became the major source of ATP and AcCoA while Glc 

was still utilised as the third most consumed C source. 

6.4.3.2 Simulated variation in the O2 concentration during production of 

planktonic biomass: responsive reactions, subnetworks and 

elementary modes 

The results derived from the O2 scan performed in the presence of NO3
-
 (Section 6.3.3.2), showed 

flux changes in reactions involved in aerobic and anaerobic respiration. Changes in the flux of the 

following reactions were detected during O2 scans both with and without NO3
-: reactions involved 

in metabolising Glt for production of Ala, NADH and 2-KG, the metabolism of 2-KG via reactions 

of the TCA cycle leading to synthesis of ATP, a transhydrogenase system exchanging NADPH for 

NADH, and reactions generating Pyr and subsequently AcCoA from Ala. 



Chapter VI. Applying model response to variation analysis to the study of the metabolism of 

RP62A cells living in joints 

 

 167 

 

The fact that the metabolism of Glc and the amino acids Ala, Arg, Glt, Ser and Thr was identified as 

important for production of planktonic biomass in these analysis (Section 6.3.3.2, Table 6-12) is not 

surprising since Ala, Ser and Thr are glycogenic amino acids and staphylococci have been reported 

to utilise them in vitro for production of both AcCoA and ATP (via Pyr), leading to excretion of Ac, 

Form and Lac (Sivakanesan et al. 1980; Halsey et al. 2017) (Chapter 0, Section 1.6.2), while the 

degradation of Glt to 2-KG and its metabolism to Suc leading to production of ATP and NADH has 

also been documented in staphylococci (Tynecka et al. 1999; Halsey et al. 2017) as well as its role 

as main N donor in the biosynthesis of amino acids. Finally, Arg is known to be utilised as a source 

of Glt to keep fuelling these processes. 

 

Deamination reactions occurring during amino acid catabolism generate NH4
+, and have been 

proposed to potentially help counteract excessive acidification of the cell caused by production of 

by-products such as Ac, Form, Lac or Suc (Beenken et al. 2004; Resch et al. 2005; Resch et al. 

2006). Therefore, here we hypothesised that staphylococcal cells might modify the ratio between 

consumption of Glc and NH4
+

 and the uptake and catabolism of amino acids for anabolic purposes 

as a way to help regulating the cellular pH, which is important for adapting to the environment. 

 

Production of ATP, PIA or planktonic biomass is still possible even in the absence of electron 

acceptors and all amino acids, however, the substantial increase in the total net flux associate with 

these responses might result in growth being impaired or considerably reduced in vivo. 

6.5 Conclusion 

The results presented in this chapter demonstrate that the system is capable of accurately reproducing 

the mechanisms currently described for PIA synthesis in staphylococci. Application of the LP-based 

analysis technique has allowed identification of reactions that might be important for production of 

energy, PIA and planktonic biomass in joints. This work shows how the metabolic network re-

arranges itself, varying the preferential uptake and metabolism of amino acids and Glc in response 

to changes in the presence of O2 and NO3
- and in the availability of O2. The results obtained 

highlighted the importance of the degradation of citrulline as a way to obtain ATP in the absence of 

electron acceptors, a metabolic route that, to our knowledge, has not been described before in this 

context. 

 

Defining the elementary modes in the subsystems composed of reactions involved in the synthesis 

of ATP or PIA across an array of O2 levels identified minimal routes through these sets of reactions. 

These could potentially be combined in different ways, allowing the cell to prioritise production of 

energy and/or PIA1 and PIA2 as an adaptive response to changes in the environment. Moreover, 
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these data have expanded our understanding in the metabolic capabilities and the flexibility of the 

system’s network, suggesting that the redundancy of minimal routes leading to production of PIA1 

and PIA2, and hence the ability of the cell to modify the level of de-acetylated residues in the biofilm 

matrix, is an important feature in the production of biofilms of polysaccharidic nature. 

 

The mathematical analysis of the metabolic network has again been proven useful in anticipating 

regulatory patterns leading to the implementation of optimal strategies in the living organism, in this 

case, showing that PIA synthesis is optimally achieved (with the lowest associated total flux) via 

repression of the TCA cycle and utilisation of alternative routes for production of energy and 

metabolic precursors, as has been described in vitro (Vuong et al. 2005; Sadykov et al. 2008; 

Sadykov et al. 2011; Somerville 2016). This work has not only helped explain the metabolic 

significance of biological observations but has also provided a metabolic explanation for biological 

phenotypes, such as the dramatic reduction of biofilm formation in cultures grown upon depletion of 

Glt, which catabolism has been defined here as important for the synthesis of ATP and has been 

suggested as a feasible source of both ATP, and Suc for the succination of PIA residues. 
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7 General discussion 

7.1 Comparison of GSMs of staphylococci 

This is, to our knowledge, the first highly-curated GSM produced for S. epidermidis. The lack of 

previous models for this organism limited the amount of supporting data available for the model 

construction and curation steps. To date, there have been several GSMs published for staphylococci, 

most of them based on the S. aureus strain N315. From those, only one (Bosi et al. (2016)) was 

published in SBML format and could, therefore, be imported and analysed for its general properties 

with the software ScrumPy used for this project. This analysis identified 866 reactions (more than 

half of the reactions in the network) as dead, and stoichiometric inconsistencies for up to 789 

metabolites throughout the system. Therefore, further quality checks (e.g. mass or energy 

conservation) were beyond consideration. For the remaining models, data directly retrieved from the 

original publications were used for the purpose of model comparison (Table 7-1): 

 
Table 7-1 General properties of curated GSMs available for staphylococci 

Model and 
species 

modelled 
Reactions Transport 

reactions 

Reactions 
with gene-
association 

Metabolites Dead 
reactions 

Unbalanced 
reactions 

Energy/ 
redox 

consistency 

S. epidermidis 
(this project) 952 72 606 859 339 0 Yes 

S. aureus 
Bosi et al. (2016) 1475 NFND NFND 1232 866 NFND NFND 

S. aureus 
Lee et al. (2009) 1497 146 NFND 1431 NFND NFND NFND 

S. aureus 
iMH551 (2005) 774 92 726 712 225 NFND Yes 

S. aureus 
iSB619 (2005) 640 84 581 571 108 3 NFND 

 

NFND = data not found or not described in the corresponding publication 
 

The two latest models for N315 (Lee et al. (2009) and Bosi et al. (2016)) contain approximately 

double the number of reactions than the previous ones (iSB619 and iMH55) published in 2005. This 

exemplifies how models for the same organism have become larger in size with time, mainly due to 

a greater amount of genetic and metabolic data available for the organisms and the improvement of 

genome annotations. However, it is important to note that the accuracy and capability of a system’s 

network cannot be solely determined by the number of reactions or metabolites that it contains, since 

a large proportion of reactions included in a network could still be unable to carry flux at steady state 

and metabolites could still be ‘orphan’ (involved in just a single reaction or only produced or 

consumed). 
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Some discrepancies were observed between model predictions and reported experimental results for 

iSB619 and iMH551. These were partly attributed to the lack of integration of regulatory data in the 

models, and the fact that, by the time they were constructed, a completed genome annotation for S. 

aureus N315 was not yet available. We identified a lack of consensus in the quality checks applied 

to these models, as well as in the way some of their main properties are described; this was especially 

noticeable in the earlier models. This has led to inconsistencies between publications and even data 

presented in ambiguous manners: e.g. iSB619 was described as containing 640 metabolic reactions 

by Becker and Palsson (2005) and later described as consisting of 742 reactions by Bosi et al. (2016). 

These issues, together with the lack of standardised quality checks applied to the systems, are being 

tackled by current efforts in the field and are on their way to being resolved (Kumar et al. 2012; 

Ravikrishnan et al. 2015). The model constructed during this project was curated working in a best 

practice manner. This is reflected in the system’s general properties, identified and described in 

Chapter 2, Table 2-1. 

7.2 Results overview 

In this project, a genome-scale metabolic model for S. epidermidis RP62A has been built, subjected 

to extensive manual curation, experimentally validated in house and against published biochemical 

data and, finally, successfully utilised to explore the metabolic mechanisms that enable this strain to 

produce energy, planktonic biomass and PIA (the main biofilm exopolysaccharide) in human joints: 

 In Chapter 2 the process of model construction and curation was described in detail. 

Subjecting the GSM to extensive quality checks ensured it was conserved for mass, energy and redox, 

and free from stoichiometric inconsistencies.  

 The focus of Chapter 3 was to perform further analysis of the system in order to define its 

ability to reproduce well-known physiological characteristics of the modelled-organism, such as its 

capacity to produce biomass, to utilise both O2 and NO3
- as electron acceptors, and to produce ATP 

upon different conditions in a reasonable manner. While in Chapter 2 the model was shown to 

account for production of single biomass components, in Chapter 3 it was proven to be capable of 

doing so in the experimentally described proportions for staphylococci. The characterisation of the 

ETC performed in Chapter 3 showed that both O2 and NO3
- could be utilised as electron acceptors in 

responses that presented reasonable ATP/NADH and P/O ratios. Analysis of the system for ATP 

production proved its ability to mimic well-known metabolic strategies for staphylococci, such as: i) 

production of energy by metabolising Glc to Ac while repressing flux through reactions of the TCA 

cycle in the presence of both Glc and O2 (Somerville et al. 2003; Sadykov et al. 2013; Somerville 

2016; Halsey et al. 2017); ii) utilisation of Ac via the TCA cycle (prior conversion to AcCoA) in 

Glc-depleted media (Somerville et al. 2003; Sadykov et al. 2013; Somerville 2016); iii) fermentation 

of Glc in the absence of electron acceptors (Sivakanesan et al. 1980; Resch et al. 2005; Fuchs et al. 

2007; Zhu et al. 2007) ; and iv) use of acetoin and butanediol for the synthesis of ATP (Yao et al. 

2005; Cassat et al. 2006; Xiao et al. 2007; Zhu et al. 2007). These responses not only reproduced the 
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organism’s behaviour observed in vitro but also provided a possible metabolic explanation for their 

implementation, since these pathways were chosen by the network when minimisation of total net 

flux through the system was selected as the objective function of the analyses. Having considered 

this parameter as a proxy for enzymatic investment, these results seemed to confirm protein economy 

as a plausible biological objective for cells living under these conditions. Therefore, using LP-based 

analysis results as a basis for defining regulatory patterns to be exerted by RP62A in vitro and in vivo 

appears plausible, as long as a realistic objective is considered during the analyses. It is, however, 

not yet possible to accurately define the biological objective/s followed by cells growing under 

different conditions, hence we can only hypothesise or speculate which these might be. This 

highlights the importance of validating the solutions obtained during model analysis by performing 

the necessary experiments to help us determine if the selected biological objectives represent a valid 

choice or not. Finally, analysing the model for production of planktonic biomass identified synthesis 

and excretion of autoinducer 2, a quorum sensing signalling molecule which causes cellular gene 

expression to respond to changes in cell-density (Miller et al. 2001; Zhu et al. 2003), as an inevitable 

consequence of synthesising menaquinones for cell growth (Chapter 3, Section 3.4.4). Perhaps, 

indicating that LP-based analysis could help establishing links between cellular metabolism and 

certain mechanisms for control of gene expression. 

 Once the quality of the model and its consistency with the physiological behaviour of the 

organism was established, further work was performed in order to ensure that the system accurately 

reflected the organism’s ability to synthesise amino acids. Since amino acid utilisation is an 

important feature of biofilm metabolism (Zhu et al. 2007), this seemed a necessary step before 

applying model analysis to the study of biofilm formation. Hence Chapter 4 focused on the 

acquisition and analysis of experimental data for minimal-growth requirements, which was used for 

curation of reactions leading to the production of amino acids included in cell biomass. Briefly, the 

organism was cultured in a chemically defined medium from which a single amino acid was removed 

at a time and the effect of this removal on cell growth was compared with LP-based analysis results 

reproducing these growth conditions in silico. Extensive curation was performed based on these 

experimental results, together with the analysis of the genetic content of the organism. Although the 

sole contradiction found between the in vitro and the in silico results laid in the absence of growth 

without Pro observed in vitro but not in silico, further experimental work described in Chapter 5 

demonstrated that RP62A is in fact non-auxotrophic for Pro, as the model analysis had accurately 

described. Some discrepancies observed between these experimental results and previously 

published experimental data for RP62A were explained as a consequence of changes in gene 

regulation during an adaptive response to a more nutrient-restricted environment, with similar effects 

previously reported in staphylococci (Gladstone 1937; Knight 1937; Emmett et al. 1975; Heinemann 

et al. 2005; Lee et al. 2009; Bosi et al. 2016).The effect of amino acid removal on biofilm formation 

was also measured experimentally and compared to results obtained by computing the total net flux 

through the system and Glc uptake associated to the corresponding in silico responses for growth 
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under these conditions. The changes observed in these parameters appeared to be insufficient to 

explain the in vitro effects observed on cell growth and the production of biofilm. There are several 

factors that are not taken into account in structural models (e.g. enzyme kinetics, expression of 

enzymatic genes and complex regulatory events such as those regulating biofilm formation), 

therefore, even though GSMs are useful tools to explore and predict flux patterns related to events 

or conditions of interest, the incorporation (in time) of kinetic parameters, transcriptomic and/or 

proteomic data together with improved genome annotations and better information on cellular 

transporters will increase the accuracy and the predictive power of the analyses of these models.  

 The main focus of Chapter 5 was to apply LP-based analysis to the study of N metabolism 

and amino acid utilisation for biomass production. The results obtained informed the experimental 

design used to produce further data for validation purposes. This work demonstrated how results 

derived from model analysis can lead to the formulation of hypotheses about the modelled-organism 

and help design the experiments necessary to test them. For example, in silico results obtained in 

Chapter 4 during the investigation of minimal requirements for growth suggested RP62A as being 

capable of biosynthesizing Pro, and in silico results from Chapter 5 identified which three amino 

acids contributed to the total N uptake for biomass production in the highest proportion (Ala, Arg 

and Glt). With this information, a new medium was designed, containing large amounts of these 

three amino acids as sole N sources. This finally allowed growth in the absence of Pro, which was 

also partly attributed to Arg and Glt, precursors for ornithine needed for the synthesis of Pro, being 

available at high concentrations in this new media formulation. Further hypotheses were also 

formulated and successfully tested, such as the lack of ability for this strain to grow in medium 

containing 7 amino acids defined by LP-based analysis as non-suitable N sources for growth. 

However, others were not reproducible in vitro, such as growth in the sole presence of either Ala, 

Arg, Glt or NH4
+ as  single N sources. This was partly explained by the increase in the total net flux 

through the system associated with these in silico responses in comparison to that obtained in 

standard MM medium. However, these values were not much higher than that obtained in medium 

with Ala, Arg and Glt combined. Therefore, this explanation was again complemented with a 

possible effect of regulatory events on amino acid metabolism during adaptation to nutrient-restricted 

media. Finally, results derived from the investigation of Glc and amino acid utilisation for in silico 

biomass production suggested that amino acid catabolism is tightly coupled with ATP production 

even in the presence of Glc, which is again reinforced by results described in Chapter 6. 

 Analyses described in Chapter 6 identified routes for production of ATP, PIA and planktonic 

biomass in synovial fluid under a range of conditions that could potentially be encountered by cells 

growing in joints. Single solutions were calculated in order to understand responses occurring under 

the most extreme conditions, such as total availability or absence of O2 and NO3
-. The model was 

scanned for responses to changes in O2 levels, allowing identification of reactions that are important 

for adaptation to the conditions found across the structure of biofilms growing on prosthetic joints  

(Wimpenny et al. 1983; Wimpenny et al. 2000). Finally, calculating the elementary modes through 
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these responsive reactions identified potential routes leading to production of energy, PIA1 and 

PIA2. In this way, the metabolic network was shown to re-arrange itself and modify the utilisation 

of Glc and amino acids in response to environmental changes, in order to fulfil these demands. This 

work identified reactions not only involved with the ETC but also with the metabolism of Glt, Ser 

and citrulline as important for adaptation to energy production in the array of conditions found in 

joints: while the utilisation of Glt for ATP synthesis had been described in Chapter 3 and Chapter 5, 

the use of citrulline seemed to be not only new in the context of this project but also not described 

before for ATP synthesis in staphylococci living in joints. Regarding PIA production, the set of 

reactions metabolising AcCoA and Glc all the way to PIA1 and PIA2 remained unaltered in all 

solutions and accurately reflected the mechanisms involved in PIA synthesis described in the 

literature (Heilmann et al. 1996; Gerke et al. 1998; Lee et al. 2016; Somerville 2016). However, 

reactions from the ETC, glycolysis and those involved in the utilisation of Ala, Ser, citrulline or Glt 

were shown to be combined in different ways in order to comply with the ATP and AcCoA demand 

of the process, depending on the changing environmental conditions. The constant demand of Glc 

identified across these solutions is in line with the work of several authors reporting high Glc 

concentrations to induce biofilm formation in vitro (Vuong et al. 2005; Sadykov et al. 2008; Sadykov 

et al. 2011; Somerville 2016). Identification of a wide range of elementary modes leading to synthesis 

of PIA1 and PIA2 suggested that the ability of cells to modify the rate of acetylated and deacetylated 

residues in PIA might be of importance in controlling the characteristics of the biofilm matrix, which 

could be advantageous in the colonisation of surfaces presenting different charges. A similar 

phenomenon has been described in vitro, with staphylococci modifying the relative proportion of 

teichoic acids and PIA in the matrix with the same purpose (Gross et al. 2001; Sadovskaya et al. 

2004). LP-based analysis showed that PIA synthesis is optimally achieved with the lowest associated 

total net flux through the system by avoiding flux through reactions of the TCA cycle and utilising 

alternative routes for production of energy and AcCoA. This coincides with the fact that external 

factors such as high Glc concentrations, nutrient and iron deprivation and decreased O2 levels have 

been related to both repression of the TCA cycle and drastic in vitro increases in PIA production 

(Vuong et al. 2005; Sadykov et al. 2008; Sadykov et al. 2011; Somerville 2016), which supports the 

validity of these in silico results. This suggests that utilising minimisation of the total net flux through 

the system as a proxy for reduction of the protein investment is a plausible way to represent the real 

biological objective followed by cells living in biofilms. This work also provided an explanation for 

the marked reduction of biofilm formation observed in vitro in cultures grown without Glt (Chapter 

4), whose catabolism had been shown to be important for ATP synthesis and could be a suitable 

source of Suc for succination of PIA residues. Finally, the metabolism of Glc and several amino acids 

(Ala, Arg, Glt, Ser and Thr) was also identified as relevant to the production of planktonic biomass 

under these conditions, with their utilisation as ATP and AcCoA sources for anabolic processes 

already been described for staphylococci in vitro (Sivakanesan et al. 1980; Tynecka et al. 1999; 

Halsey et al. 2017). 
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Metabolic modelling provides the advantage of applying a systems biology approach to the study of 

the metabolism of an organism, breaking pre-imposed biochemical assumptions and the traditional 

division of metabolic pathways between anabolic or catabolic. Commonly, it has been assumed that 

catabolic reactions exist to produce energy for anabolic reactions. What this work has shown is that, 

if we do not build this assumption into our analyses, a different picture can emerge, where other 

alternative routes for the production of energy are prioritised. This was exemplified by the results 

obtained for ATP production when: i) the conditions encountered by cells during the exponential 

growth phase of staphylococci in the presence of Glc and O2 were reproduced, resulting in Glc 

metabolism being diverted to Ac production rather than to synthesis of AcCoA to be fuelled to the 

TCA cycle (Chapter 3, Section 3.3.2), and ii) the system was analysed for PIA production, where 

degradation of amino acids and the deacetylation of PIA contributed to fulfil the energy requirement 

of the process, rather than glycolysis, the TCA cycle or the PPP (Chapter 6, Section 6.3.2). It is 

becoming clearer and clearer that this approach is needed in order to understand the functioning of 

cells as a whole, and to obtain answers to questions such as why certain genes and not others are 

essential for particular processes, and why, for example, flux through certain reactions is prioritised 

above flux through others that would have eventually led to higher energy yields. 

7.3 Future work 

Since the LP-based analyses involving biomass production performed during this work relied on an 

averaged biomass composition for S. aureus with some minor modifications specific to S. 

epidermidis, obtaining a specific biomass composition for S. epidermidis RP62A would improve the 

accuracy of the results obtained. Some macromolecular components have already been measured for 

RP62A cells growing in MM minimal medium by other members of the team (Dr Noemi Tejera-

Hernandez) and this work will be finalised in the near future. For the same reason, obtaining an 

accurate biomass composition for biofilms grown in synovial fluid or even in MM minimal medium 

would also be very useful. In addition, defining the specific growth rate for this strain, and even its 

ATP demand for growth rather than using estimated parameters based on data derived from other 

organisms would improve the quality of the results derived from model analysis. A possible way to 

achieve this would be to grow RP62A in a minimal medium with Glc as sole C source and under a 

range of Glc concentrations, identifying the minimum Glc media concentration that supports growth. 

Measuring the amount of Glc present in the medium before and after growth and the amount of 

biomass produced in that time period would allow us to determine the amount of Glc consumed per 

gDW per time unit. Having calculated the ATP/Glc rate for the in silico response for growth under 

similar conditions (Chapter 3, Section 3.3.2.1), we could then calculate the minimal ATP demand 

for growth. However, this would only be possible providing that: i) the strain could be grown in 

minimum media containing NH4
+ as sole N source (which has not been achieved so far), and, ii) 

transcriptomic data could be obtained during these experiments in order to confirm that Glc is 
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metabolised following the same routes as described in the corresponding LP solution if the 

expression of genes encoding the enzymes involved in the in silico response is seen to be upregulated. 

 

Some alternative objective functions to minimisation of total net flux through the system applied 

during LP-based analysis of GSMs are maximisation of biomass production or minimisation of the 

number of reactions carrying flux, with this last one being considered as an alternative proxy for 

reduction of the enzymatic cost. These could possibly constitute an equally adequate or even a better 

match for the real biological objective followed by the biological organism, depending on the 

environmental conditions considered. The analyses performed in Chapter 4 and Chapter 5 with a 

focus on studying the effects of amino acid deprivation on growth and biofilm formation could be 

repeated using these alternative objective functions. This would allow us to, for example, investigate 

if the in silico effects detected on the objective values of these new solutions are in higher agreement 

with the effects observed in vitro, and therefore, a different objective function should be considered. 

 

Repeating the in vitro testing for growth on different N sources (Chapter 5) but excluding Glc in the 

media, could help reveal if C catabolite repression has a negative effect on the utilisation of amino 

acids for growth when single amino acids are provided as N sources, or if this prevents the synthesis 

of amino acids from NH4
+. If that is the case, the organism should be able to synthesise amino acids 

more effectively in the absence of Glc, allowing concordance between in silico and in vitro results. 

 

The importance of the metabolic routes defined in Chapter 6 for production of ATP, PIA and 

planktonic biomass under a range of environmental conditions could be confirmed experimentally 

by obtaining transcriptomic and proteomic data from cultures growing in MM medium (or even in 

artificial synovial fluid) under a range of O2 concentrations. Increasing the Glc concentration in the 

medium could be a plausible way to promote biofilm formation for the study of different growth 

phenotypes during these experiments (planktonic vs biofilm). In a similar fashion, obtaining 

transcriptomic and proteomic data on cells grown after several passages in MM minimal medium in 

anaerobiosis, with and without added citrulline, could show if genes/proteins involved in the uptake 

and catabolism of this compound are overexpressed, thus confirming or disproving the importance 

of citrulline utilisation in the absence of electron acceptors, as was suggested in this chapter.  

 

Since the in silico results suggest that RP62A cells could adapt to grow in joints (Chapter 6), it would 

be reasonable to hypothesise that this organism could produce the enzymes needed for digestion of 

hyaluronic acid into its monomeric components (glucuronic acid and NAcGlc) as well as for direct 

phosphorylation of NAcGlc into NAcGlc-1P, to be utilised for the synthesis of UDP-NAcGlc and 

subsequently PIA. It is possible that these enzymes are missing from the PGDB for RP62A due to 

an incorrect or incomplete genome annotation. These hypotheses could be verified experimentally 

by feeding a bacterial culture with hyaluronic acid and analysing the medium composition before 
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and after growth, measuring the levels of unmodified hyaluronic acid and of its digestion products. 

In the same manner, if NAcGlc was provided with the medium instead, the ability of the organism 

to metabolise this compound could also be determined.  

 

A next step in the study of the metabolism of cells living in biofilms would be to analyse the model 

for responses that satisfy both the energy demand for GAM and NGAM and the production of PIA 

combined. This would provide a more complete picture of the metabolic processes that could be 

taking places on these cells. Analysing the model for the identification of essential reactions for PIA 

production in synovial fluid would allow a selection of genes to be proposed as potential new drug 

targets, and could be achieved by identifying which reactions are part of the same reaction subset as 

the PIA1 and PIA2 exporter, and therefore, if blocked, would render the system unable to export 

these products. Another way to define essential reactions for PIA synthesis would be to perform 

single and double reaction knockout analysis, thus defining single reactions and reaction pairs which 

are essential for the process. Performing further model analysis simulating an increase in the PIA 

demand while maintaining constant the constraints for GAM and NGAM energy costs and planktonic 

biomass production could be another approach for determining reactions involved in the adaptation 

of cells to grow in biofilms. 

 

Since it is known that cells encounter a gradient of nutrients and electron acceptors throughout the 

biofilm, it is highly likely that those growing or surviving on the lower layers of a biofilm do so by 

metabolising by-products excreted by cells on the upper layers (e.g. Ac, Form or Suc), rather than 

by catabolising compounds present in the synovial fluid. Hence it would be interesting to perform 

similar analyses to those described in Chapter 3, Section 3.4.3.2 for the study of the utilisation of 

metabolic by-products for ATP production, investigating synthesis of PIA from these by-products, 

as well as the potential cross-feeding between planktonic and biofilm cells. 

7.4 Conclusions 

Since mathematical modelling of metabolism lead to publishing the first genome-scale metabolic 

model of a living-organism in 2000 (Schilling et al. 2000), modelling of large-scale metabolic 

networks has advanced at a slow but steady pace. Current efforts in the field are focused on the 

development of new techniques for the analysis of metabolic models, automating and increasing the 

scalability of the construction and curation steps, the integration of large -omic data sets and the 

construction of genome-scale kinetic models. In reality, building a highly accurate GSM remains a 

fairly skilled, difficult and time-consuming task. However, these models are powerful tools with 

many possible applications, that once constructed and curated, can be used to identify and interpret 

metabolic processes, perform ‘what-if’ analyses where multiple scenarios can be quickly reproduced, 

and guide the experimental work needed to corroborate these findings, thus reducing substantially 

the time and resources invested at this end of the process. 
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Despite the increasing pathogenic importance of S. epidermidis (Becker et al. 2014; Uribe-Alvarez 

et al. 2016; Pedroza-Davila et al. 2020), little is still known about the metabolic pathways that allow 

it to survive and produce biofilms. This project has demonstrated that genome-scale metabolic 

modelling can be successfully applied to this aim: analysis of the GSM for RP62A built here has not 

only been able to reproduce well-known aspects of the organism’s physiology but has also 

highlighted important pathways for production of energy, planktonic biomass and biofilm 

components in joints. While the involvement of some reactions was expected, as those responsible 

for metabolising AcCoA and Glc-6P all the way down to PIA, the catabolism of citrulline in the 

absence of electron acceptors as a way to satisfy the ATP demand of the process is new in this 

context. The results derived from this work have substantially contributed to our overall 

understanding on how cells adapt to changing conditions across the biofilm structure, re-arranging 

their network and varying the utilisation of different substrates. There is, however, much else that 

could be done such as: i) analysing the model for PIA together with other biofilm components, which 

will complement the current results and could establish connections between areas of the network 

that might be impossible to define otherwise; ii) defining reactions essential for these processes, 

which could lead to the identification of novel antibiofilm drug targets or candidate genes to be 

knocked-out in order to obtain virulence-attenuated strains for the development of vaccines against 

NAS infections; iii) identifying gene-knockouts that could increase production of biofilm-matrix 

components in order to exploit this organism for the production of commercial products such as 

antibiofilm vaccines  (Gil et al. 2014; Somerville 2016); or even iv) constructing pangenome GSMs 

for NAS isolates included in the same RC group (Chapter 0, Section 1.3.2) and comparing them in 

order to study the metabolic diversity of NAS species and as a way to define if there are relevant 

metabolic features that differentiate these clusters, helping to improve or validate this typing scheme. 

 

This PhD project has not only successfully applied metabolic modelling to the study of the most 

important NAS species involved in PJI, but has also allowed the development of strong collaborative 

links with the Cell System Modelling Group at Oxford Brookes University while strongly 

contributing to bringing further expertise in the field to the Norwich Research Park, consequently 

expanding the application of these techniques to other research projects.  
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9 Appendices 

9.1 Appendix A: additional material 

Content of the additional directory Code_TDC_2020 

9.1.1 Python modules for model construction 

9.1.1.1 Model construction 

Model construction was done by calling the top level module BuildSepi.py. This module determines 

the PGDB database from which the organism specific reactions are to be imported and calls the 

modules UsrBuildOrg.py, BuildOrg.py and CompartmentDic.py. These contain the code needed to 

build the GSM (UsrBuildOrg.py), apply the changes specified in the  stoichiometry and directionality 

correction files, remove unwanted reactions and metabolites while renaming other metabolites to 

avoid name inconsistencies (BuildOrg.py) and assign specific reactions to their corresponding 

compartments (CompartmentDic.py). In this case, the model considers the cell cytosol to be the sole 

system compartment. Sepi.spy is the main module to be called when loading the model object. It 

imports other modules spread in multiple files as described in Chapter 2, Section 2.4.2. The 

subdirectory Tools contains a module to generate a general LP object (BuildLP.py) and to generate 

a dictionary of fluxes for biomass exporters corresponding to the proportions of biomass components 

experimentally determined in the biomass (Chapter 2, Section 2.4.3.4) to be used as constrains for 

biomass production (SepiBiomass.py). 

 

Modules to be called when loading the model object for the specific analysis described in each 

chapter: 

 - Sepi_MinMed.spy: Chapter 2 – model curation; Chapter 3 – model analysis for ATP 

 production from Glc; production of planktonic biomass under a range of environmental 

 conditions. 

 - Sepi_MinMedGLT.spy: Chapter 3 – model analysis for ATP production from Glt. 

 - Sepi_MM.spy:  Chapter 4 – model analysis for defining the effect of single amino acid  

 deprivation on biomass production. Chapter 5 – model analysis for the study of N and amino 

 acids utilisation for biomass production. 

 - Sepi_synovial.spy: Chapter 6 – model analysis for ATP or biomass production in 

 synovial fluid while responding to changes in the O2 concentration. 

 

9.1.1.2 Deleted reactions and metabolites 

List of deleted reactions and metabolites. Python file (Unwanted.py). 



Appendices 

 

 193 

9.1.1.3 Corrected reactions and metabolites 

List of  reactions stoichiometry and reversibility corrections applied and metabolites renamed. 

Python files (Corr_Stoich.spy, Corr_Revers.spy and Substitutes.py). 

9.1.2 Python modules for constructive analysis of the model 

9.1.2.1 General properties of the model 

Methods used in Chapters 2 and 3 to define general model properties such as number of reactions, 

metabolites, gene associations, reaction subsets, etc. Python file (ModelGeneralProperties.py). 

Functions: 

- ModelProperty: determines general properties of the model 

- ElementaryModesETC: identification of elementary modes through the ETC 

9.1.2.2 General validation of the model 

Methods used to perform general validation of the model such as testing the model for energy, redox 

and mass conservation, reactions atomic balance or stoichiometry consistency in Chapter 2. Python 

file (ModelGeneralValidation.py). 

Functions: 

- AtomiCheck: atomic balance of reactions 

- StoiCons: material consistency of the model 

- MassCons: model-wide mass conservation 

- ATPCons: model-wide energy conservation 

- NADHCons; NADPHCons: model-wide redox conservation 

9.1.2.3 ETC stand-alone module 

Module including the ETC.spy module (reactions involved in generation of the proton motive force) 

plus any other reactions involved in the electron transport chain so it can be analysed in isolation in 

Chapter 3. Python file (ETC_TopLevel.spy). 

9.1.2.4 Feasibility of production of single biomass components 

Methods used to check feasibility of production of individual biomass components in Chapters 2 and 

4. Python file (BiomassProd.py). 

Functions: 

- BiomassProd.py (fx CheckProds): feasibility of production of biomass components one by 

one. 

- Check: production of one unit of a compound of interest. 

- CheckProds: feasibility of production of each single biomass component independently. 
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- CheckCandReacsREV: identification of candidate reactions for thermodynamic re-

definition. 

9.1.2.5 Feasibility of biomass production 

Methods used to check feasibility of biomass production while meeting ATP cell maintenance 

requirements in Chapter 4. Python file (ProdUnitsBM.py). 

Functions: 

 - ProdUnitBM: feasibility of production of one unit of cell biomass while meeting the ATP 

 cell maintenance requirements. 

9.1.2.6 ATP production 

Methods used to check feasibility and efficiency of generation of energy as ATP from different C 

sources in Chapter 3. Python files (ATPprod.py and ATPprodFromBPs.py). 

Functions: 

- ATPprodResponse: ATP production from various C sources. 

- ATPprodFromAc: ATP production from Ac. 

- PrintValsProdATP: ATP production minimising export of by-products leading to media 

acidification. 

- ATPprodFromBPs: ATP production when metabolic by-products are available as C 

sources. 

9.1.2.7 Essentiality of media components 

Methods used to check essentiality of media components for biomass production in in Chapter 2. 

Python file (Essential.py). 

Functions: 

- EssentialComps: essentiality of media components. 

9.1.3 Python modules for functional analysis of the model 

9.1.3.1 Essentiality of amino acids and effect of amino acid deprivation on 

biomass production. 

Methods used to check essentiality of amino acids for biomass production and the effect or single 

amino acid removal in the objective value (total net flux through the system) and the demand of Glc 

in Chapters 4 and 5. Python file (AAessential.py). 

Functions: 

 - PrintValsStdBMP: production of biomass in a specific medium (MM minimal medium 

 etc). 

 - PrintValsBMPinNH4
+: production of biomass with NH4

+ as sole N source. 
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 - EffectAArmBMP: effect of single amino acids removal on the objective value and Glc 

 demand of solutions for biomass production with respect to the solution obtained in the 

 unmodified media. 

 - PrintValsUponAArm: objective value and Glc demand of solutions for biomass 

 production upon single amino acid removal. 

9.1.3.2 Utilisation for biomass production and assimilation of inorganic N. 

Methods used to investigate differential utilisation of amino acids for biomass production and the 

assimilation of inorganic N in Chapters 4 and 5. Python files (AAutilN.py and AAutilC.py). 

Functions: 

 - UtilAA: overall uptake/excretion values for amino acids during synthesis of biomass. 

 - ContribNuptakeAAs: contribution of each amino acid to the total N uptake for biomass 

 production. 

 - ContribCuptakeAAs: contribution of each amino acid to the total C uptake for biomass 

 production. 

 - EffectBMPinSingleAA: effect of utilising single amino acids for biomass production was 

 calculated as the percentage of increase in the objective value with respect of the objective 

 value 

 - AAcheckProds: amino acids that can be produced when a single amino acid is utilised at 

 a time as N source. 

 - UtilSingleAA_C: potential of each single amino acid to be used as sole C sole. 

 - Nassimilation: synthesis of Glt from Glc and with NH4
+ as sole N source. 

9.1.3.3 Oxygen scan 

Methods used to perform O2 scan analysis for ATP production and for biomass production in Chapter 

6. Python files (O2ScanATPonly.py, O2Scan.py). 

Functions: 

 - O2ScanATPonly.py: responses to ATP production upon variation in the O2 concentration. 

 - O2Scan.py: responses to biomass production upon variation in the O2 concentration. 

9.2 Appendix B: biomass composition 

Biomass composition for S. epidermidis used to set up the constraints for LP-based analysis of the 

model involving biomass production in this project.
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Table 9-1 Biomass composition for S. epidermidis derived from data corresponding to S. aureus and 

modified on basis to biochemical data currently available for S. epidermidis. 

Component Percentage per unit of biomass 
Concentration 

(mmol/gDW/h) 

Protein 43 - 

Ala 4.40 0.212 

Arg 4.49 0.111 

Asn 5.31 0.173 

Asp 8.02 0.261 

Cys 0.54 0.0191 

Gln 6.80 0.200 

Glt 6.78 0.199 

Gly 3.31 0.190 

His 2.65 0.0734 

Ile 8.21 0.269 

Leu 8.60 0.282 

Lys 8.06 0.235 

Met 2.90 0.0837 

Phe 5.28 0.137 

Pro 3.11 0.116 

Ser 4.83 0.198 

Thr 4.95 0.179 

Tyr 5.01 0.119 

Val 5.65 0.207 

DNA 3 - 

DATP 32.9 0.0203 

DCTP 15.3 0.0990 

DGTP 16.6 0.0990 

DTTP 32.3 0.0203 

RNA 12 - 
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ATP 25.5 0.0607 

CTP 23.8 0.0595 

GTP 25.7 0.0595 

UTP 24.3 0.0607 

Cell membrane 7 - 

Diacylglycerol 16.0 0.0186 

1-phosphatidylglycerol 48.1 0.0446 

Cardiolipin 11.3 0.00559 

Lipoteichoic acid type I 6.83 0.00335 

Glc2-DAG (diglucosyl-
diacylglycerol) 

8.86 0.00669 

MGlcDG (3-D-glucosyl-1,2-
diacylglycerol) 

1.22 0.00112 

Menaquinone 7.63 0.00744 

Cell wall 24 - 

Peptidoglycan with D,D cross-
link (CPD-12230) 

23.4 0.0101 

Peptidoglycan-wall teichoic acid 
complex 

76.6 0.0623 

Pool of solutes 1.1 - 

Glycogen 86.5 0.0528 

AcCoA 0.267 3.65e-05 

SucCoA 0.0173 2.21e-06 

CoA 0.307 4.42e-05 

FAD 0.527 7.41e-05 

NAD 9.54 0.00158 

NADH 0.220 3.65e-05 

NADP 0.647 9.62e-05 

NADPH 1.99 2.95e-05 

 

This biomass composition was defined as described in Chapter 2, Section 2.4.3.4. A growth rate of 1g/h was 

assumed (Chapter 3, Section 3.3.4).



Appendices 

 

 198 

9.3 Appendix C: experimental data 

9.3.1 Minimal growth requirements 

 

 

Figure 9-1 Growth curves for S. epidermidis RP62A in all modified MM- medium samples presenting no 

apparent delay in growth in comparison to cultures in standard MM medium (purple) 

Note that the growth curve for cultures in BHI medium (red) was included for reference of growth in a rich 

medium. Legend: BHI = BHI medium; MM = standard MM medium; MM (–) ‘compound/s name’ = MM 

medium without ‘compound/s name’. Error bars = SEM
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Figure 9-2 Growth curves for S. epidermidis RP62A in modified MM- medium samples without single 

vitamins compared to cultures in standard MM medium (purple) 

Legend: purple dashed line (MM) = standard MM medium; light blue line (MM (-) niacin) = MM medium 

without niacin; dark blue line (MM (-) thiamine) = MM medium without thiamine; orange line (MM (-) biotin) 

= MM medium without biotin. Each data point corresponds to the mean A600 value of three independent 

biological replicates. Error bars = SEM.
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Table 9-2 Comparison between the biosynthetic potential for vitamins encoded in the genome of S. 

epidermidis RP62A, vitamin auxotrophies reported experimentally and their essentiality according to 

the GSM after curation 

 

RP62A seems to lack the genetic potential for de novo synthesis of the vitamins niacin and thiamine 

(Table 9-2), and, in consequence, the model identifies niacin as essential for growth, while thiamine 

is not directly involved in biomass production by the system. This dependency on niacin matches 

published data on the subject (Hussain et al. 1991; Heinemann et al. 2005; Lee et al. 2009; Bosi et 

al. 2016). However, although severely delayed and reduced, experimental results showed growth in 

niacin-deprived cultures (Figure 9-2). 

 The reason for this discrepancy is unclear: it is possible that, since cofactors are required in very 

small amounts, a potential residual carry over of these vitamins during inoculum preparation 

(Chapter 4, Section 4.2.1.2) could have been enough to allow some growth. Alternatively, they could 

potentially have been uptaken from the media after cell-lysis.

Vitamin 

Absence of 
biosynthetic 
genes in the 

RP62A 

Auxotrophy 
reported by 

Hussain et al. 
(1991)  

Auxotrophy 
experimentally 
determined in 

this study 

Essentiality 
according to 
model after 

curation 

Proposed explanation for 
discrepancies between 
experimental datasets 

Biotin No 
Included in 
medium by 
default. 

No NA (not included 
in biomass). 

Normal growth observed 
without biotin and the presence 
of a biosynthetic pathway 
indicates lack of essentiality. 

Niacin Yes 
Included in 
medium by 
default. 

No, but its 
absence delays 
growth. 

Yes 

Since no biosynthetic pathway 
is present, growth must be due 
to carry over of small amounts 
of niacin in the inoculum or to 
niacin uptake after cell-lysis. 

Thiamine Yes 
Included in 
medium by 
default. 

No NA (not included 
in biomass). 

Since no biosynthetic pathway 
is present, growth must be due 
to carry over of small amounts 
of thiamine in the inoculum or 
to tits  uptake after cell-lysis. 
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9.3.2 Impact of amino acid deprivation on biofilm formation  

Table 9-3 Relative levels of biofilm formation detected for RP62A cultures growing in different media 

cultures growing in different media and variations observed with respect to cultures in the standard 

MM medium. 

Media 

Relative level of 

biofilm formation  

(%) 

Variation in biofilm formation 

with respect to the standard 

MM medium (%) 

Cell growth  

at time 48 hours 

(A600) 

Standard MM medium 92.5 ± 5.82 - 2.47 ± 0.28 

MM medium (--) Glt 4.93 ± 2.99 -94.7 ± 5.39 2.65 ± 0.37 

MM medium (–) Val 9.86 ± 2.08 -89.3 ± 1.92 1.17 ± 0.62 

MM medium (–)Pro 14.0 ± 0.74 -84.9 ± 0.68 0.11 ± 0.00 

MM medium (–) Leu 14.5 ± 8.61 -84.3 ± 7.96 2.91 ± 0.12 

MM medium (–) Arg 24.1 ± 9.04 -73.9 ± 8.36 1.97 ± 0.33 

MM medium (–) His 28.5 ± 25.2 -69.2 ± 23.3 2.64 ± 0.17 

MM medium (–) Phe 58.5 ± 10.6 -36.8 ± 9.81 2.56 ± 0.03 

MM medium (–) Gly 71.7 ± 11.0 -22.5 ± 10.2 2.10 ± 0.31 

MM medium (–) Trp 84.0 ± 2.77 -9.20 ± 2.56 2.79 ± 0.13 

MM medium (–) Cys 85.7 ± 5.41 -7.31 ± 5.00 2.28 ± 0.02 

MM medium (–) Lys 88.4 ± 11.5 -4.43 ± 10.64 2.20 ± 0.20 

MM medium (–) Tyr 89.8 ± 4.93 -2.92 ± 4.56 2.56 ± 0.23 

MM medium (–) Ser 90.3 ± 3.11 -2.43 ± 2.88 2.35 ± 0.39 

MM medium (–) Asn 94.4 ± 9.37 +2.06 ± 8.66 2.20 ± 0.13 

MM medium (–) Met 94.8 ± 4.00 +2.43 ± 3.70 2.61 ± 0.45 

MM medium (–) Asp 95.0 ± 14.0 +2.65 ± 13.0 2.43 ± 0.13 

MM medium (–) Ile 95.9 ± 10.9 +3.65 ± 10.0 1.86 ± 0.11 

MM medium (–) Ala 96.2 ± 3.00  +3.99 ± 2.78  1.60 ± 0.21 

MM medium (–) Thr 100 ± 3.75 +8.01 ± 3.47 2.58 ± 0.58 

 
Values of A600 obtained before staining of the biofilm biomass are included as a reference for cell growth in 

these samples. Error values = SD.
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9.4 Appendix D: model refinement 

9.4.1 Comparison between experimental data and in silico results 

on the essentiality of media components 

As a result of the work described in Chapter 4, Section 4.2.3, several reactions were introduced, 

modified or removed from the system: 

9.4.1.1 Biosynthesis of amino acids 

1. Biosynthesis of Arg:  

 Experimental data: current experimental results suggest that this amino acid is not essential 

although its absence delayed growth notably. Previous work considered RP62A to be auxotrophic 

for Arg (Hussain et al. 1991).  

 Biosynthetic potential and model behaviour: Arg de novo synthesis from glutamine and/or 

Glt is completed in the genome of RP62A. The model can synthesize Arg. These reactions lead to 

synthesis of Arg via ornithine (through the urea cycle). However, the urea cycle is broken. The 

enzyme arginase is missing, and so, the direct hydrolysis of Arg into urea and ornithine cannot occur. 

This could potentially affect regeneration of ornithine that is in turn used to obtain other compounds 

such as Pro. However, ornithine can still be obtained from Arg via citrulline (EC 3.5.3.6 and EC 

2.1.3.3), in a process that also produces Carbamoyl-P. 

 Model refinement: the reaction catalysed by the enzyme arginase (EC 3.5.3.1) had been 

originally included into the PGDBs for RP62A as a result of the automatic gap-filling process carried 

out by the Pathway Tools software (and therefore was present in the model). For accuracy, this 

reaction was removed, and the urea cycle broken in consequence. Even though this does not prevent 

Arg synthesis in-silico it might have unpredicted biological effects. 

2. Biosynthesis of Trp:  

 Experimental results: our experimental results suggest that this amino acid is not essential 

although its absence delayed growth severely. Previous work considered RP62A to be auxotrophic 

for Trp (Hussain et al. 1991). 

 Biosynthetic potential and model behaviour: a synthetic pathway for de novo synthesis of 

Trp from chorismate is present in RP62A. The model is in consequence able to synthesise this amino 

acid. 

 Model refinement: none. Since a biosynthetic path is present and no significant mutations 
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of the enzymes involved were found, lack of growth without Trp (Hussain et al. 1991) is assumed to 

be due to regulatory processes. 

3. Biosynthesis of Val: 

 Experimental results: our experimental results suggest that this amino acid is not essential 

although its absence delayed growth drastically. Previous work considered RP62A to be auxotrophic 

for Val (Hussain et al. 1991).  

 Biosynthetic potential and model behaviour: a synthetic pathway for de novo synthesis of 

Val from pyruvate is present in RP62A. The model can consequently synthesise Val. 

 Model refinement: none. Since a biosynthetic path is present and no significant mutations 

of the enzymes involved were found, lack of growth without Val (Hussain et al. 1991) is assumed to 

be due to regulatory processes. 

4. Biosynthesis of Pro:  

 Experimental results: our experimental results suggest that RP62A is auxotrophic for Pro. 

However, Husain et al. reported Pro deprivation to have no effect on growth (Hussain et al. 1991).  

 Biosynthetic potential and model behaviour: S. epidermidis RP62A is lacking two 

enzymes involved in the biosynthesis of Pro from Glt via glutamyl-P (EC 2.7.2.11 and EC 1.2.1.41). 

However, the presence of three other enzymes (EC 2.6.1.13, EC 1.5.1.2 and EC 4.3.1.12) shown by 

analysis of the genome enables a bypass that could be used to obtain Pro from ornithine (Lee et al. 

2009) which can be obtained from Arg via citrulline or even from Glt via a much longer process. As 

a result of this, the GSM theoretically predicts Pro production and biomass production without and 

external source of Pro. Similar observations for S. aureus have previously been described in the 

literature when analysing minimal media for staphylococci (Lee et al. 2009). However, in this case, 

the authors concluded that Pro should be added to the minimal medium in other to support growth.  

 Model refinement: none. The fact that previous experimental data did not show an 

auxotrophy for Pro together with the presence of a biosynthetic bypass through ornithine and the fact 

that no significant mutations were found on the laboratory strain suggest that lack of growth without 

Pro must be due to either cells not being able to obtain enough ornithine for its synthesis from the 

MM medium without Pro or to regulatory processes. 

5. Biosynthesis of Cys:  

 Experimental results: our experimental results suggest that the absence of this amino acid 

has no drastic effect on growth. Previous work considered RP62A to be auxotrophic for Cys (Hussain 

et al. 1991). 
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 Biosynthetic potential and model behaviour: Cys biosynthetic pathways from Ser and Met 

(via homoCys) are present in RP62A. However, the model initially predicted an auxotrophy for Cys.  

 Model refinement: after investigation, an exporter for the compound autoinducer 2 (UI 

CPD-10774) was included. This compound is involved in quorum sensing and produced in the S-

adenosyl-L-Met cycle (MetaCyc 22.6 (Caspi et al. 2014)), together with homoCys. This allowed Cys 

biosynthesis from Met but still did not allow biomass production without exogenous Cys. The model 

was not able to obtain Cys from Ser utilising EC 2.3.1.30 and EC 2.5.1.47: sulphide is needed in 

order to obtain Cys through this route, however, two reactions respectively catalysed by EC 1.8.4.8 

and EC 1.8.1.2 are involved in sulphide production from sulphate, and were dead, which prevented 

production of this compound. This was due to 3’-5’-ADP being produced during the assimilatory 

sulphate reduction pathway by EC 1.8.4.8 and accumulating in the system, thus breaking the steady 

state assumption. This was fixed by including a reaction that allowed hydrolysis of 3’-5’-ADP to 

AMP and phosphate (EC 3.1.3.7). The corresponding gene associated with EC 3.1.3.7 in RP62A 

(SerP1267) was found in BioCyc and KEGG. ACT was used to identify its presence in the genome 

of the lab strain. No obvious mutations were found on these sequences and a Pfam domain for the 

DHH phosphatase family (phosphoesterases) was identify, which justified inclusion of the reaction 

in the model. This allowed Cys biosynthesis from Ser, and finally, biomass production without 

external Cys. 

6. Biosynthesis of Met: 

 Experimental results: our experimental results are in agreement with previous findings and 

suggest that this is not an essential amino acid for growth (Hussain et al. 1991).  

 Biosynthetic potential and model behaviour: biosynthetic pathways for Met from Ser and 

Cys (via homoCys) are present in RP62A. However, the model initially predicted an auxotrophy for 

Met. 

 Model refinement: the absence of two reactions catalysed by cystathione gamma-synthase 

(EC 2.5.1.48) was breaking the Met biosynthetic pathway from homoCys. After investigation, 

identification of genes associated with this enzyme on the strain’s genome (SerP0037) justified the 

inclusion of both reactions in the model. This allowed synthesis of Met. A set of three extra reactions 

catalysed by EC 2.5.1.48 and EC 4.4.1.8 (SerP0036) was included for accuracy. These reactions 

were present in the KEGG pathway database for RP62A but missing on BioCyc. 

7. Biosynthesis of Asp:  

 Experimental results: our experimental results are in agreement with previous findings and 

suggest that this is not an essential amino acid for growth (Hussain et al. 1991). No effect on cell 

growth was observed when Asp and Asn were removed simultaneously. 
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 Biosynthetic potential and model behaviour: according to BioCyc and KEGG, de novo 

synthesis of Asp from Glt and oxaloacetate is broken in RP62A due to the absence of the enzyme 

Asp aminotransferase (EC 2.6.1.1). However, conversion of Asn into Asp is possible thanks to the 

enzyme asparaginase (EC 3.5.1.1), with the corresponding reaction being present in the model. 

Initially, the model could produce Asp as long as exogenous Asn was provided. Since experimental 

results suggested that Asp biosynthesis without Asn must also be possible, further investigation was 

performed: the BioCyc database for RP62A showed the presence of a gene (SerP2159) which had 

been automatically assigned through protein homology to EC 2.6.1.1. However, this reaction was 

missing in the model. Study of the amino acid sequence of SerP2159 in the lab strain predicted its 

association with a Pfam domain: aminotransferase class-III. This, together with the experimental 

evidence justified inclusion of the corresponding reaction catalysed by Asp aminotransferase, 

ultimately allowing de novo synthesis of Asp. 

8. Biosynthesis of Asn:  

 Experimental results: our experimental results are in agreement with previous findings and 

suggest that this is not an essential amino acid for growth (Hussain et al. 1991). 

 Biosynthetic potential and model behaviour: the model initially predicted an auxotrophy 

for this amino acid. This is due to RP62A lacking the genes encoding common Asn synthases: EC 

6.3.1.1 (in E. coli and S. aureus) or EC 6.3.5.4 (in E. coli). An alternative route for Asn synthesis is 

the conversion of Asp to Asn via a tRNA-dependent transamidation mechanism (Curnow et al. 

1998), for which the corresponding hypothetical enzymes have been identified in RP62A (EC 

6.1.1.22, 6.3.5.6 and 3.1.1.29). Their associated reactions were included in BioCyc but had been 

initially removed from the model in order to reduce the number of compounds with undefined 

empirical formulae and therefore simplify detection of possible stoichiometric inconsistencies in the 

system.  

Model refinement: experimental data proved that this strain can obtain Asn from Asp. The reactions 

catalysed by EC 6.1.1.22, 6.3.5.6 and 3.1.1.29 were included in the model. The model can now 

perform tRNA-dependent synthesis of Asn from Asp. 

9. Biosynthesis of Phe: 

Note that the biosynthetic pathway for Phe had previously been curated and completed prior to the 

beginning of these experiments. 

 Experimental results: our experimental results are in agreement with previous findings and 

suggest that this is not an essential amino acid for growth (Hussain et al. 1991).  

 Biosynthetic potential and model behaviour: the biosynthetic pathway for Phe and Tyr 
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production from chorismate is completed in RP62A. The enzymes EC 2.6.1.9 and EC 2.6.1.57, both 

present in the model and encoded by SerP0387 (hisC), catalise the main transamination reactions 

involved in the synthesis of Tyr and Phe from phenylpyruvate. 

 Model refinement: with the corresponding reactions already present in the model and 

involving Tyr and histinidol phosphate as substrates/products (the reactions are reversible), another 

reversible reaction was included utilizing Phe, which had been previously reported as another valid 

substrate of these transaminases by Weigen and Nester in 1976 (Weigent et al. 1976). This allowed 

in-silico biosynthesis of Phe from phenylpyruvate. 

9.4.1.2 Biosynthesis of vitamins 

1. Biosynthesis of niacin:  

 Experimental results: previous work included niacin in all media tested by default (Hussain 

et al. 1991). Our experimental results suggest that this is not an essential vitamin for growth although 

its absence causes a severe delay. 

 Biosynthetic potential and model behaviour: de novo synthesis of niacin (nicotinate) from 

Asp is not possible in RP62A. However, NAD and nicotinic acid salvage reactions are completed in 

this strain. Initially, analysis of the model predicted that NAD could be synthesised in the absence of 

external niacin under aerobic conditions through the O2-consuming Asp oxidase reaction (EC 

1.4.3.16) in the first step of niacin de novo synthesis from Asp. Under anaerobic conditions, 

exogenous niacin was needed in order to allow NAD production.  

 Model refinement: three reactions catalysed by enzymes involved in de novo synthesis of 

niacin (EC 2.5.1.72, EC 2.4.2.19 and EC 3.5.1.42) had no associated genes present in RP62A, and 

therefore had been included as a result of automatic gap-filling. For accuracy, these reactions were 

removed from the model, thus, the inclusion of niacin in the media became unconditionally essential 

for NAD production. 

2. Biosynthesis of thiamine:  

 Experimental results: previous work included thiamine in all media tested by default 

(Hussain et al. 1991). Our experimental results suggest that this vitamin is not essential for growth 

and its absence has no notable effect. 

 Biosynthetic potential and model behaviour: a set of five enzymes (EC 3.5.99.2, EC 

2.7.1.49, EC 2.7.4.7, EC 2.5.1.3 and EC 3.1.3.1) ensure that salvage of thiamine is possible in 

RP62A. However, de novo synthesis from pyridoxal phosphate or 5-aminoimidazole nucleotide 

(derived from the purine metabolism) is absent in this strain according to BioCyc. 
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This prosthetic group is not directly involved with the biosynthesis of any other biomass 

component in the model, therefore, it could be safely omitted in the in-silico medium and the cell 

biomass composition without affecting the results of further analysis of the model. 

 Since RP62A lacks the ability to perform de novo synthesis of niacin and thiamine, the 

occurrence of delayed growth in their absence could be explained as a consequence of either carry 

over of small amounts of these vitamins in the inoculum or their uptake from the media after cell-

lysis occurring at later time points.  

3. Biosynthesis of biotin:  

 Experimental results: previous work included biotin in all media tested by default (Hussain 

et al. 1991). Our experimental results suggest that this vitamin is not essential for growth and its 

absence has no severe effect. 

 Biosynthetic potential and model behaviour: the full pathway for biosynthesis of biotin 

from pimelate is present in RP62A. The synthesis of pimelate, a seven-carbon dicarboxylic acid, is 

achieved through the fatty acid synthetic metabolism but the exact reactions that take place and the 

enzymes involved are yet to be defined (Lin et al. 2010), and are not described in the KEGG or 

MetaCyc databases. Once it is produced, biotin is transformed into biotinyl-5’-AMP and fed back 

into fatty acid biosynthesis through reactions which again, have not been described.  

Since this prosthetic group is not directly involved with the biosynthesis of any other biomass 

component in the model, it could be safely omitted in the in-silico media and the cell biomass 

composition without affecting the results of further analysis of the model. 


