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Abstract
Spatially dependent birth–death processes can be modelled by kinetic models
such as the BBGKY hierarchy. Diffusion in infinite dimensional systems can
be modelled with Brownian motion in Hilbert space. In this work Doi field
theoretic formalism is utilised to establish dualities between these classes of
processes. This enables path integral methods to calculate expectations of dual-
ity functions. These are exemplified with models ranging from stochastic cable
signalling to jump-diffusion processes.

Keywords: Doi–Peliti, field theory, birth–death processes, diffusion, Hilbert
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1. Introduction

Birth–death processes are concerned with fluctuations in the size of a population of interest,
such as growing populations of cells, chemical reactions between molecules, and connec-
tivity of networks, for example. Standard approaches either have no spatial component and
are just concerned with population size, or assume the spatially dependent population is fully
mixed, with position playing no crucial role. However, for many problems of interest, spatial
aspects are important. For example, chemical reaction fronts exhibit non-homogeneous spatial
behaviour, and incorporating spatial effects into the birth–death interactions is important.

The theory behind stochastic analysis of fluctuating populations can be traced back to the
master equation, originally developed by Kolmogorov [37]. Approaches to birth–death pro-
cesses underwent crucial development by Kendall [34] and Karlin and McGregor [32, 33].
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A fully stochastic description of systems of spatially interacting particles was collectively
first achieved with the BBGKY hierarchy of equations [6, 7, 35, 36, 57]. Further develop-
ment by Doi [17, 18] utilized machinery from quantum field theory to examine the dynamics,
with path integral approaches for birth–death processes developed by Peliti [47]. System size
approaches to mesoscopic analyses were developed by van Kampen [54]. Comprehensive
modern treatments detailing a fuller range of approaches can be found in [38, 53, 54].

Although the entities in a population of interest can be particulate in nature, such as
molecules in a chemical reaction for example, they can also be individuals, queue lengths,
cells, network configurations to name a few. However, they shall henceforth be referred to as
particles. The stochastic dynamics of these populations are characterized by having one or
more species of particle, which can increase or decrease in number, due to processes such as
birth, death, immigration and emigration, for example. Each particle is also often associated
with a set of features of interest, such as position, momentum, age, state, or combinations
thereof. These features can be intrinsically discrete, become discrete when lattice approxima-
tions to a continuum are considered, or can be continuous. We shall refer all such covariates
with a position, although this is just a placeholder label that can refer to any feature of interest.
The collective set of current positions constitute the state of the system, which are generally
Markovian in nature. Note that if the positions are ignored then the state of the system reduces
to a particle number count and has the appearance of a classical birth–death process, which
spatial processes such as chemical reactions generalize. The techniques to analyse these sys-
tems are numerous [55], but we draw particular attention to Doi–Peliti methods, which are
later utilized in this work.

Doi–Peliti methods allow (quantum) field theoretic approaches to analyse particle dynam-
ics, and were first introduced by Doi [17, 18] with applications to chemical reaction kinetics.
A lattice based path integral formulation was later developed for birth–death processes by
Peliti [47]. These papers have seen a plethora of applications; birth–death processes, age struc-
tured systems [25], neural networks [9], algebraic probability [43], knot theory [49], critical
dynamics [53], and phylogeny [31] is a non exhaustive list of examples. Although most path
integral approaches are based on the discretization process in [47], more recent work has seen
the development and application of continuous analytic rather than lattice based path integral
approaches [25, 56]. Systems with exclusion or partial exclusion properties have also seen the
development of fermionic [50, 53] and parafermionic [26, 51] approaches to analysis.

Diffusion processes, at face value, are seemingly unrelated, and originally arose as models
associated with thermodynamics of heat, and also of Brownian motion [8]. Models of diffu-
sion can be constructed in any dimension, for example, share prices (one), Brownian motion
(two), heat (three), and allelic frequencies of a range of genes (n ∈ N) in a large population are
described by Wright–Fisher diffusion. More recently, techniques have emerged that consider
diffusion acting on Hilbert and Banach spaces. The diffusions have corresponding stochastic
equations that involve two possible classes of generalised Brownian motion, known as cylindri-
cal and Q-Brownian motion [3–5, 13, 20, 23]. Some biological applications of these processes
can be found in [13], including the stochastic cable equation that can model neuronal activity
[21], and models of allelic frequencies in a position dependent population, modelled by the
infinite dimensional Wright–Fisher diffusions, otherwise known as Fleming–Viot processes,
which can also be analysed by Martingale methods [14, 15].

These seemingly distinct areas of stochastic particle interactions and diffusion processes
can be connected by notions of duality. Duality between stochastic processes provide a con-
nection whereby a certain mean of one process can be related to a mean of another process,
usually expressed via expectation of a common duality function. A classic example is the
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duality between Wright–Fisher diffusion and the Kingsman coalescent process (a death-
process related to ancestral convergenceunder time reversal) [30, 41]. The more recent general-
izations to Fleming–Viot processes [14, 15] involve spatially dependent birth–death processes
that incorporate mutation, selection, migration and geneological structure, which are shown to
be dual to diffusions on function valued spaces.

The notion of duality extends well beyond these classes of stochastic process and approaches
to finding dual processes is varied in both method of derivation and application. General back-
ground on duality and approaches for interacting particles can be found in [38]. A wide class of
dualities based on symmetry arguments can be found in [22, 24, 48]. A comprehensive review
of duality in Markov processes was recently provided by Jansen and Kurt [30]. A review of
duality in genetic processes can be found in [10, 41], along with the extensive range of appli-
cations in [14, 15]. The discrete Fock spaces of Peliti can be utilized to derive general dualities
between birth–death processes and (mostly) one dimensional diffusions [42, 44–47].

If (discrete) birth–death processes are generalised to spatially dependent systems, it is
natural to enquire, firstly, how (or if) the field theoretic approaches to deriving dualities in
[42, 44] can be adapted, and secondly, how do the results compare to those found via Martin-
gale techniques in [14, 15]. These are the questions considered in this work, where we develop
path integral approaches to analyse duality between spatial birth–death models and infinite
dimensional diffusion processes. These methods utilize a continuous Doi formalism [17, 18,
25, 56] rather than the discrete lattice approaches of Peliti [47]. We will show that the field
theoretic approach offers an alternative method of deriving some of the dualities seen in [14,
15]. Furthermore, the use of perturbation methods will allow the construction of combinatorial
expressions for some expectations of interest, and the use of fermionic approaches will also
result in some novel dualities not (currently) seen with martingale techniques in [14, 15].

The paper is arranged as follows. The next section introduces the Doi formalism of field
theory used to model both the spatial birth–death and infinite dimensional diffusion processes.
This extends the formalism used in [25] and will enable diffusion on infinite dimensional
Hilbert (function) spaces to be considered. This will also lead to the construction of associ-
ated path integrals. Section 3 introduces cylindrical and Q-Brownian motion, providing the
means to convert these stochastic processes into Doi–Peliti formalism. Section 4 then explains
and exemplifies how dualities between these different classes of processes can be constructed
with this formalism. Section 5 explores path integral forms for expectations of duality func-
tions using a stochastic cable process to exemplify the methods. This enables the development
of perturbation methods, which are used to produce novel combinatorial expressions for cor-
relation functions of interest. Section 6 explores techniques from fermionic field theory. This
approach can deal with technical difficulties presented by some models, which would seem
to preclude forming dualities using the methods of section 5. Section 7 considers forms of
self-duality between pairs of particle systems and between pairs of Hilbert space diffusions,
providing a path integral interpretations that generalize dualities seen elsewhere. Conclusions
complete the work.

2. Doi formalism

In this section the field theoretic machinery of Doi is introduced. We firstly utilize it to describe
stochastic, diffusive, interacting particle based models. This part shall be relatively brief as
more comprehensive introductions can be found in [17, 18, 25]. Secondly, we describe how the
formalism can be adapted to model diffusion in infinite dimensional Hilbert space, by deriving
the associated Fokker–Plank equation.
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2.1. Doi machinery and particle models

Next then, we introduce the basics of Doi machinery. Assume a single species population of
spatially dependent, stochastically interacting particles. The state of the system at any one point
in time is described by a vector of the form qn, where n is the current number of particles and
component qi is the position of the ith molecule. The term qi can refer to anything describing
the state, such as the age of the ith member of a population, or the positions and velocities of
a physical molecule. The term qi, being a component of (emboldened) vector qn, is thus an
abuse of notation, as qi can itself be vector valued. However, by defining it as the information
associated with one particle (the ith), the distinction should be clear. We let Υ denote the space
of interest, that is, qi ∈ Υ and qn ∈ Υn. We also suppose that d is the dimension of space Υ.

The population will be represented by a ket |qn〉. This can be defined with the aid of creation
and annihilation operators, where |qn〉 =

∏n
i=1 ψ†

qi
|Ø〉, where |Ø〉 denotes the empty state and

the operators obey the usual commutation relations

[ψqi ,ψ
†
q j

] =
∑
σ∈Sd

d∏
k=1

δ((qi)k − (q j)σ(i)), [ψqi ,ψq j] = [ψ†
qi

,ψ†
q j

] = 0, (1)

where (qi)k is the kth component of qi, σ is a permutation from the finite group Sd, meaning
((qi)σ(1), (qi)σ(2), . . . , (qi)σ(d)) is a reordering of the components of qi. Thus we have a sum over
all permutations between elements of qi and q j. The kets |qn〉 are ‘pure’ states, representing
a specific population state. However, the systems we wish to describe are random processes,
with a random vector q(t) that varies in component values (positions) and in length (population
size). To introduce stochastic properties associated with q(t) we have a general state of the
form

|χt〉 =
∞∑

n=0

∫
Υn

dqn

n!
f (qn, t)|qn〉, (2)

where f (qn,t)
n! is the probability density for state q(t) = qn = (q1, q2, . . . , qn), normalized in

the sense that
∑∞

n=0

∫
Υn

dqn
n! f (qn, t) = 1. Note that the integral is over all possible values of

qn ∈ Υn meaning we can assume f is symmetric in its arguments, as the anti-symmetric parts
will integrate to zero. That is, we can write f(qn) = f(π(qn)), where we define, with abuse
of notation, π(qn) to be a reordering (qπ(1), . . . , qπ(n)) of the elements of qn, with permutation

π ∈ Sn. Then we can interpret f (qn,t)
n! as the density associated with a random labelling of the

n (indistinguishable) particles. Then, summing over all possible labellings
∑

π∈Sn

f (π(qn),t)
n! =

f (qn, t) provides the probability density that the current state q(t) is composed of the set of
(unordered) particles {q1, q2, . . . , qn}. This density can be recovered from |χt〉 via

f (qm, t) = 〈qm|χt〉. (3)

We can then use the creation and annihilation operators to represent interactions of interest.
For example, consider the following jump-diffusion processes. If Ap represents a particle at
position p, we have

Ap
Rpq−→ Aq, Ap

Dp�, (4)

meaning particles jump from positions p to q at rate Rpq, and diffuse at position dependent
rate Dp. This is a somewhat trivial model, having fixed particle number and no inter-particle
interactions, but will set the scene for duality.
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Then, following [17], the Liouvillian operator describing this process will take the form

L =

∫
Υ

dpDpψ
†
p∇2

pψp +

∫∫
Υ2

dp dq Rpq(ψ†
qψp − ψ†

pψp), (5)

where the dynamics are described formally by the Heisenberg evolution equation,

|χt〉 = eLt|χ0〉, (6)

for some initial state |χ0〉.
The last technical requirement is the notion of a coherent state. These are needed to calculate

averages and construct path integrals, but are also needed to form processes dual to particle
systems. Specifically then, for a function x acting on Υ we have coherent state

|x〉 = exp

{∫
Υ

dp x(p)ψ†
p

}
|Ø〉. (7)

These act as eigenstates for annihilation and creation operators in the sense that

ψp|x〉 = x(p)|x〉, ψ†
p|x〉 =

δ

δx(p)
|x〉, (8)

which can be shown via the commutation relations in equation (1). The later equation contains
a functional derivative meant in the sense that 〈 f |ψ†

p|x〉 = δ
δxp

〈 f |x〉. Note, we shall frequently
make use of the adopted shorthand notation xp ≡ x(p). The commutation relations can also be
used to show that 〈x|y〉 = e

∫
Υdp xy.

This is all the machinery that is required for analysing models of interest. For example,
the master equation can be derived from the expression ∂ f (qm,t)

∂t = 〈qm|L|χt〉. The resulting
integral–differential equations often take the form of BBGKY like hierarchies [6, 7, 35, 36,
57]. These are generally difficult to solve, and we do not explore these further here (see [11,
25, 27] for examples).

A slightly simpler problem is to investigate correlation functions for the system. The
mth order correlation function X(qm) represents the probability density for finding m par-
ticles with positions given by the set {q1, q2, . . . , qm}, and satisfies the dynamic equation
∂X(qm)

∂t = 〈1|
∏m

i=1 ψqiL|χt〉. This also results in hierarchies of equations, although they tend
to be simpler [11, 25, 27]. Note here that the bra 〈1| is the coherent state with constant function
1 (rather than a single particle at position 1).

One alternative approach to calculate either function f or X is via path integrals. These
can be constructed either through spatial discretization techniques first exemplified with the
Fock space methods in [47], or more directly using the Doi framework through continuous
techniques [25]. This gives two approaches for both functions; solving PDEs or calculating
path integrals. Although we will not consider these choices to analyse f or X further here, we
will later consider both techniques to investigate expectations of duality functions of interest.

2.2. Doi machinery and diffusion processes

Next, the Doi machinery described above and found in [17, 18, 25, 42, 45] shall be extended
to deal with stochastic infinite dimensional processes. In particular, we wish to construct such
a process dual to the one given in equation (4). Duality will be established later.

First we introduce the time dependent state

|Ψt〉 =
∫

Dx P[x; t]|x〉, (9)

5
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where we have path integration over real valued functions x meant in the sense∫
Dx P[x; t]|x〉 =

∏
p

∫∞
−∞ d[x(p)] P[x; t]eε

∑
p x(p)ψ†

p |φ〉, with positions p taken on a lattice
spanning Υ with spacing size ε. Equation (9) is analogous to equation (2) and P[x; t] is inter-
preted as the (infinite dimensional) probability density functional associated with function x.
Analogously to equation (3), we can (formally at least) recover this functional via

P[x; t] =
∫

Dy e−i
∫
Υdp yx〈y|Ψt〉. (10)

Next, analogous to equation (6), we introduce dynamics with an evolution equation of the
form

|Ψt〉 = eL
†t|Ψ0〉. (11)

The choice of adjoint operator L† will become apparent when duality is later considered.
Then on the one hand, for general bra 〈g|, we find

〈g| ∂
∂t
|Ψt〉 =

∫
Dx

∂P[x; t]
∂t

〈g|x〉 = ∂

∂t

∫
Dx P[x; t]G[x], (12)

where we have introduced general functional 〈g|x〉 = G[x]. But we can also construct the fol-
lowing, using the specific adjointL† of the operator corresponding to the jump-diffusion model
above, to give

〈g| ∂
∂t
|Ψt〉 = 〈g| ∂

∂t
eL

†t|Ψ0〉 =
∫

Dx P(x, t)〈g|L†|x〉.

Then using the eigen-operator relations in equation (8) we find,

∂

∂t

∫
Dx P[x; t]G[x] =

∫
Dx P[x; t]

{∫
Υ

dpDp(∇2x)(p)
δ

δxp

+

∫∫
Υ2

dp dq Rpq(xq − xp)
δ

δxp

}
G[x]. (13)

Thus we have the structure of a Fokker–Planck equation (the form seen for Hilbert spaces
[3, 5, 13, 23]); ∂

∂t

∫
Hdμ(x, t)G[x] =

∫
Hdμ(x, t)(LG)[x], where

∫
dμ(x, t) ≡

∫
Dx P[x; t] is the

measure, G a general functional and we have Kolmogorov operator

L =

∫
Υ

dpDp(∇2x)(p)
δ

δxp
+

∫∫
Υ2

dp dq Rpq(xq − xp)
δ

δxp
. (14)

Note that the Kolmogorov operator is obtained in general via the correspondence

〈g|L†(ψ†
p,ψp)|x〉 = L

(
δ

δxp
, xp

)
G[x]. (15)

There are two key things to note with this expression. Firstly, it is assumes that Liouvillian oper-
ator L† is in normal form. That is, the creation operators are left of the annihilation operators.
Although all operators discussed will be written in normal form, this can readily be achieved for
general forms of operator with the aid of the commutation relations in equation (1). Secondly,
the order of operators (following the mapping ψ†

p −→ δ
δxp

and ψq −→ xq) is reversed in the

6
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Kolmogorov operator. For example 〈g|ψ†
pψq|x〉 = xq

δ
δxp

G[x]. We are then left with the ques-
tion of whether the Kolmogorov operator in equation (14) corresponds to a stochastic process
of interest.

For the jump-diffusion process, there exists the probability conservation condition 〈1|L =
0. This condition is necessary but not sufficient; it does not guarantee positive probabilities,
for example. We can apply a similar condition for the function process from equation (9),
where we see that 〈Ø|L† = 0 needs to be satisfied to guarantee ∂

∂t

∫
Dx P[x; t] = 0, which is

certainly true for the operator in question. However, this is also not a sufficient condition for
a probability process and we need better understand when operators L correspond to random
processes on function spaces. The main classes of process, which generalize Brownian motion,
are described in the next section.

3. Brownian motion in Hilbert space

Brownian motion in infinite dimensional Hilbert space is a well characterized phenomenon.
The two main classes of stochastic process are known as cylindrical and Q-Brownian motions.
These are briefly introduced below, only covering the salient points. More comprehensive
treatments and technical specifics can be found in [3, 5, 13, 23, 28].

Analogous to Brownian motion in finite dimensional space, a stochastic PDE for Brownian
motion in Hilbert space can be written, taking the form

dXt = A(Xt)dt + B(Xt)dWt, (16)

where Xt is a stochastic process with values in a Hilbert space H, and the operators A : H −→ H
and B : H × H −→ H are generally non-linear in nature. Here Wt is a Q-Brownian motion
taking values in H, with

Wt =

∞∑
i=0

λ
1
2
i W (i)

t ξi. (17)

This is a sum over independent standard one dimensional Brownian motions W (i)
t , where λi and

ξi are eigenvalues and (orthonormal) eigenfunctions of a trace class operator Q. The trace class
property means that λi � 0,

∑∞
i=0 λi < ∞, and furthermore Tr(Q) =

∑
k〈Qek, ek〉H is finite

for any orthonormal basis ek of H (such as ξk), with value Tr(Q) independent of the chosen
basis.

Although the operator Q = I is not trace class, it corresponds at the formal level to the
process where dWt(p)dWt(q) = dt δ(p− q) and is known as cylindrical Brownian motion [28].

Then the Kolmogorov operator corresponding to the process given in equation (16) is
commonly given by [3, 5, 13, 23]

(LG)[x] = 〈Gx(x), A(x)〉H +
1
2

Tr(Gxx(x)B(x)QB(x)∗). (18)

The terms Gx and Gxx are the functional forms of the grad and Hessian [12]. The grad is
simply the functional derivative Gx =

δG
δxp

, but given equation (18), is usefully expressed via
the differential of functional G[x], where

DG[x; y] = 〈Gx(x), y〉H =

∫
Υ

dp
δG
δxp

yp. (19)

7
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The Hessian is the differential of the grad, Gxx = DGx , which can be given in terms of second
differential, where,

D2G[x; y, z] = 〈Gxx(x)(y), z〉H =

∫∫
Υ2

dp dq
δ2G

δxpδxq
ypzq. (20)

Now if we take the functions A(x)(p) = Dp(∇2x)(p) +
∫
Υ dq Rpq(xq − xp), and B(x) = 0,

the trace term in equation (18) is zero and

〈A(x), Gx(x)〉H = DG(x)(A(x)) =
∫
Υ

dp
δG
δxp

(A(x)(p))

=

∫
Υ

dpDp∇2
p(xp)

δG
δxp

+

∫∫
Υ2

dp dq Rpq(xq − xp)
δG
δxp

. (21)

Thus we have recovered the terms from equation (14), and find that Xt is a (deterministic)
process of the form

dXt(p) =

(
Dp∇2

p Xt(p) +
∫
Υ

dq Rpq(Xt(q) − Xt(p))

)
dt + 0 dW. (22)

More generally, this method of conversion provides a means of testing whether a Liouvillian
operator of interest corresponds to cylindrical or Q-Brownian motion in Hilbert space.

4. Duality

So far we have introduced two processes, one is a random vector of positions q(t) with
(stochastic) dynamics described by Liouvillian L, the other is a function Xt with (determin-
istic) dynamics described by adjoint Liouvillian L†. We now connect these two processes via
duality.

Suppose then that the processes are initialized with (non-random) vector q(0) = pm and
function X0 = z. We now connect these two processes with the expression C(pm, z; t) =
〈pm|eL

†t|z〉. Although time dependence is present, we shall mostly use the expression C(pm, z)
unless time is explicitly analysed. On the one hand we find that

C(pm, z) = 〈pm|Ψ(t)〉 = 〈pm|
∫

Dx P[x; t]|x〉

=

∫
Dx P[x; t]

m∏
i=1

x(pi) = EX

(
m∏

i=1

Xt(pi)

)
. (23)

Alternatively, we find that

C(pm, z) = 〈χ(t)|z〉 =
∞∑

n=0

∫
dqn

f (qn, t)
n!

〈qn|z〉 = Eq (z (q(t))) , (24)

where we introduce the convention

z(q) =

⎛
⎝ |q|∏

i=1

z(qi)

⎞
⎠ , (25)

with |q| being defined as the length of vector q.

8
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In summary, we have established a duality between the particle process q(t) and the diffusion
process Xt. Note that the expectation EX is an mth order correlation function for a set of fixed
positions pm. Conversely, Eq is a nonlinear expectation, but does offer the freedom to choose
z.

To calculate C(pm, z), we can thus determine either expectation. We will see in subsequent
sections that path integrals are one way of doing this. For the example above, a more direct
approach is possible. From equation (22) we have a deterministic process and the expectation
EX is simply the product

∏m
i=1 Xt(qi), where Xt is the solution to the system⎧⎨

⎩
∂Xt(p)
∂t

= Dp∇2
p Xt(p) +

∫
Υ

dq Rpq(Xt(p) − Xt(q)),

X0(p) = z.
(26)

If we take the homogeneous model, where Dp = D is constant and Rpq = R(p− q) just
depends on separation, with the proviso that the total jump rate from any given position
Rtot =

∫
dr R(r) < ∞ is finite, this equation is straightforwardly solved via Fourier transform

techniques, where we find Xt(p) = F−1
p (e(Rtot−q2D−Fq(R(p)))tFq(z(p))), where Fq and F−1

p are
Fourier and the inverse transforms, respectively. Then the duality condition implies expecta-
tion Eq is just a product over these functions. This is to be expected; firstly, jump-diffusion is
non-interacting, so independent across the m particles involved in the process, and secondly,
the expected position will be dictated by the bias in the jumping function Rpq, and the diffusion
of weight function z.

5. Stochastic cable equation and path integral methods

In some cases, Feynman–Kac terms are needed to establish duality. This has been seen for
discrete birth–death processes [44] via the Doi–Peliti formalism, and for spatially dependent
processes [14, 15] using martingale techniques. In this section we develop path integral tech-
niques to establish Feynman–Kac dualities for spatially dependent processes. This provides
parallel techniques to establish results found in [14, 15] and generalise those of [44]. Fur-
thermore, this machinery will enable perturbation analysis, meaning duality expectations can
be decomposed into novel combinatorial forms. To highlight these methods, we start with a
stochastic PDE in Hilbert space and search for a dual system of particle interactions.

5.1. Cable equation and dual process

Consider then the following cable equation, which is a stochastic Nagumo equation used to
model neuronal excitations [13, 40],

dXt(p) = (∇2
p Xt − Xt)dt + dWt, (27)

where dWt represents Q-Brownian motion. This has a Kolmogorov operator of the form
(compare with equation (18))

(LG)(x) = 〈∇2
px − x, Gx(x)〉H +

1
2

Tr(Gxx(x)Q)

= DG(x)(∇2
p(x)) − DG(x)(x) +

1
2

∑
k

λkD2G(x)(ξk)(ξk), (28)

where λk and ξk are eigenvalues and eigenfunctions of trace-class operator Q.

9
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Next consider the operator defined by

L† =

∫
Υ

dpψ†
p∇2

pψp −
∫
Υ

dpψ†
pψp +

∫∫
Υ2

dp dq Rpqψ
†
pψ

†
q. (29)

Then we find from equation (15) a Kolmogorov operator of the form

(LG)(x) =
∫
Υ

dp
δG
δxp

(∇2
p(x) − xp) +

∫∫
Υ2

dp dq
δ2G

δxpδxq
Rpq. (30)

Now, if we define the symmetric function Rpq = R(p, q) = 1
2

∑
k λkξk(p)ξk(q), we obtain

equation (28).
Conversely, we can write the Liouvillian operator as L = L′ + V , with operators

L′ =

∫
Υ

dpψ†
p∇2

pψp +

∫∫
Υ2

dp dq Rpq

(
ψpψq − ψ†

pψ
†
qψpψq

)
,

V = −
∫
Υ

dpψ†
pψp +

∫∫
Υ2

dp dq Rpqψ
†
pψ

†
qψpψq. (31)

Then L′ is the evolution operator of the diffusion–annihilation particle process

Ap + Aq
Rpq−→ φ, Ap

Dp�, (32)

which represent particles pairwise annihilating at rate Rpq, and diffusing at rate Dp, where p
and q represent the positions of the two annihilating particles. Note that the antisymmetric
part of Rpq integrates to zero in equation (31) and we can assume Rpq is symmetric in its two
arguments, which is also a natural assumption for the process.

Two processes have now been constructed; Xt is the cable process, which we initialize with
some function z, and q(t) is the diffusion–annihilation process, starting from some vector pm.
The two processes do not quite have adjoint evolution operators, so a little work is needed to
construct duality.

5.2. Duality and Feynman–Kac form

Duality is again constructed from C(pm, z) = 〈pm|eL
†t|z〉, where on the one hand we have,

C(pm, z) = EX

(
Xt(pm)

)
in exactly the same manner as equation (23).

To gain a dual expectation requires the derivation of a Feynman–Kac term. This is done
via path integration, which requires the following resolution of the identity I (verifiable by
showing I|qn〉 = |qn〉 via the commutation relations of equation (1)),

I =
∑

k

∫
Υk

drk

k!
|rk〉〈rk| =

∫
Υ̂

dr̂|r̂〉〈r̂|. (33)

The right-hand side is notation to represent integration of vectors r̂ over the space Υ̂ = ∪∞
k=0Υ

k,
so both coordinates and lengths of the vectors vary, introduced to simplify notation below. The
resolutions of identity can then be used to interlace N time slices of width ε, where we find

C(pm, z) = 〈z|e(L′+V)t|pm〉= 〈z|
N∏

k=1

e(L′+V)ε|pm〉=
N∏

k=0

∫
Υ̂

dr̂k〈z|r̂N〉
N∏

�=1

〈r̂�|eL
′ε+Vε|r̂�−1〉〈r̂0|pm〉

=

N∏
k=0

∫
Υ̂

dr̂keε
∑N

l=1 V (̂rl)〈z|r̂N〉
N∏

�=1

〈r̂�|eL
′ε|r̂�−1〉〈r̂0|pm〉. (34)

10
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Some observations help interpret this expression. Firstly, we have function V(r̂) = −|r̂|+∑
i �= j Rr̂ir̂ j , which is found from the action of operator V on pure state kets |r̂〉. The dis-

tinction between operator V and function V(r̂) will hopefully be clear from the context it is
found. Secondly, the term 〈r̂0|pm〉 reduces to delta functions via equation (1), so that integra-
tion over r̂0 forces the initial condition r̂0 = pm. Thirdly, also via equation (1), we get the term
〈z|r̂N〉 = z(r̂N). Fourthly, we note from equation (3) that 〈r̂�|eL

′ε|r̂�−1〉 is simply the probability
density for transition from state r̂�−1 to r̂� over a time-span of ε. Then

∏N
�=1 〈r̂�|eL

′ε|r̂�−1〉 is just
the joint probability density of the path r̂0 −→ r̂1 −→ · · · −→ r̂N conditional on start vector
r̂0 = pm. Finally, in the continuum limit we formally write P[r̂] for the density associated with
the path r̂(s), s ∈ [0, t] and obtain path integral

C(pm, z) =
∫

r̂(0)=pm

Dr̂ P[r̂]z(r̂(t)) exp

{∫ t

0
ds V(r̂(s))

}

= Eq

(
z(q(t)) exp

{∫ t

0
ds V(q(s))

})
. (35)

Note that this construction only works if pure states |r̂〉 are eigenstates of operator V . A suffi-
cient condition is to require that V can be written as a function (or functional) of ψ†

qψq, which
is true for this example.

Thus we have duality C(pm, z) = EX(Xt(pm)) = Eq
(
z(q(t)) exp

{∫ t
0 ds V(q(s))

})
, where

process Xt is initialized with X0 = z and process q(t) with q(t) = pm. The expectation is com-
plicated by the Feynman–Kac functional

∫ t
0 ds V(q(s)) [8, 44] and although we have a form of

duality, there is no duality function in the classical sense.

5.3. Coherent state path integration

Note that the path integral in the previous section is over paths taken by a vector r̂(s) which
varies in value and length. This is not the usual form of path integrals used for calculations
in the Doi framework, which tend to be based on coherent states (or equivalently through the
Bargmann–Fock space approach used by Peliti [29, 47]), which we now make use of. We next
show that C(pm, z) can be calculated exactly with the aid of a coherent state path integral [25].
This requires an alternative resolution of identity I =

∫∫
DuDv e−i∫Υdq uv|iv〉〈u| to demarcate

N time intervals of width ε. Note that this is a functional integral over real functions u and v
(see appendix in [25]). Then we construct the following:

C(pm, z) = 〈pm|eL
†t|z〉 = 〈pm|

N∏
k=1

eL
†ε|z〉

=

N∏
k=0

∫∫
Duk Dvk e−i

∑N
k=0 ∫Υdq ukvk〈pm|ivN〉

N∏
k=1

〈uk| eL
†ε|ivk−1〉〈u0|z〉

=

∫∫
DuDv

m∏
j=1

[iv(pj, t)] exp

{
i
∫ t

0
ds

∫
Υ

dq v

(
∇2

qu − u +
∂u
∂s

)

− i
∫
Υ

dq u(q, t)v(q, t) +
∫ t

0
ds

∫∫
Υ2

dq dq′ Rqq′u(q, s)u(q′, s)

}
.

× exp

{∫
Υ

dq u(q, 0)z(q)

}
. (36)

11
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Figure 1. Feynman diagram information for duality function C(pm, z) of the cable
equation. A sample diagram, initiating and terminating node types, and associated
propagators are provided.

The last step makes use of eigenfunction properties of coherent states given in equation (8)
to form the final path integral. For example, if L† is in normal form, 〈uk|L†(ψ†

q,ψq)|ivk−1〉 =
〈uk|ivk−1〉L†(uk(q), ivk−1(q)) = ei

∫
Υdq ukvk−1L†(uk(q), ivk−1(q)). Note that variables u and v in

the final path integral are integrated over both time t and space q.
This can now be treated perturbatively. The terms

∏m
j=1 [iv(pj, t)] will correspond to m

termination nodes in a pertubative expansion Feynman diagram (see figure 1), and expanding
e
∫
Υdq u(q,0)z(q) will result in any number of initiating nodes with coefficient z(q). There will be no

internal nodes as the remaining part of the path integral can be calculated directly and absorbed
into propagators by using a generating functional of the form

Z(J, K) =
∫∫

DuDv exp

{
i
∫ t

0
ds

∫
Υ

dq v

(
∇2

qu − u +
∂u
∂s

)

− i
∫
Υ

dq u(q, t)v(q, t) +
∫ t

0
ds

∫∫
Υ2

dq dq′ Rqq′u(q, s)u(q′, s)

+

∫ t

0
ds

∫
Υ

dq (uJ + ivK)

}
. (37)

Now, integrating over the v variable gives delta functionals that restrict u to a form obeying⎧⎨
⎩−∂u(q, s))

∂s
= ∇2

qu − u + K,

u(q, t) = 0.

Thus we have a reverse time heat equation which can be solved with standard techniques. Note
that the space Υ has not yet been specified. Although this equation can be solved in R

n, results
in R are largely similar, where we find [19]

u(q, s) =
∫ t

s
dτ

∫
R

dr
1√

4π(τ − s)
exp

{
− (q − r)2

4(τ − s)

}
K(r, τ )e−(τ−s), (38)

and we find a generating functional of the form

Z(J, K) = exp

{∫ t

0
ds

∫∫
R2

dq dq′ Rqq′u(q, s)u(q′, s) +
∫ t

0
ds

∫
R

dq u(q, s)J(q, s)

}
. (39)

12
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Thus we find that there are two non-zero propagators that relate to initiating or terminating
nodes in the corresponding Feynman diagrams. Specifically,

GKK(pi, t; pj, t) =
∫∫

DuDv iv(pi, t) iv(pj, t)eS =
δ2Z(J, K)

δK(pi, t)δK(pj, t)

∣∣∣∣
J≡K≡0

= 2
∫ t

0
ds

∫∫
R2

dr dr′
Rrr′

4πs
exp

{
−(pi − r)2 − (pj − r′)2

4s

}
e−2s

GKJ(p, t; q, 0) =
∫∫

DuDv iv(p, t) u(q, 0)eS =
δ2Z(J, K)

δK(p, t)δJ(q, 0)

∣∣∣∣
J≡K≡0

=
1√
4πt

exp

{
−(p− q)2

4t

}
e−t, (40)

where S is the action, that is, the first exponent of the path integral in equation (36). Note that
the first propagator is just a time weighted diffusion of the function Rpi pj ≡ R(pi, pj) in both
coordinates, and corresponds to the arced edges in figure 1. An arc connecting pi to pj thus has

an associated factor 2
∫ t

0 ds e−2s(Φ1
sΦ

2
s R)(pi, pj), where Φk

sR represents the diffusion operator
acting on coordinate k of function R.

The second propagator is a time weighted heat kernel, and is associated with initiating nodes
which have a factor of the form z(q) where position q is integrated over. Thus a horizontal line
in figure 1 terminating in pi has a contribution of the form

∫
R

dq z(q)GKJ(pi, t; q, 0) =
∫
R

dq
z(q)√
4πt

exp

{
−(pi − q)2

4t

}
e−t = e−t(Φtz)(pi), (41)

where Φtz represents the diffusion operator acting on function z.
Finally, summing over all possible diagrams, we find

C(pm, z) =
∑

P⊂{1,2,...,m}

∏
{i, j}∈P

2
∫ t

0
ds e−2s(Φ1

sΦ
2
s R)(pi, pj)

∏
k∈Pc

e−t(Φtz)(pk), (42)

where the (evenly sized) subsets P are those containing non-intersecting pairs of distinct
elements from the set {1, 2, . . . , m}.

Note that the order one correlation function C(p, z) = e−t(Φtz)(p) is just a simple diffusion
of z, as can be seen by taking the expectation of equation (27).

5.4. Dynamic duality equations

The previous section saw a path integral approach to the calculation of C(pm, z; t) = 〈pm|eL
†t|z〉.

However, we can also derive two dynamic equations for C(pm, z; t). Differentiating, we find

∂C
∂t

= 〈pm|eL
†tL†|z〉 = 〈z|eLtL|pm〉. (43)

Now on the one hand we can let L act on pure state |pm〉 to give (via the commutation
relations in equation (1)),

∂C
∂t

= ∇2
pm

C − mC +
∑
i �= j

Rpi pjC(p−(i, j)
m , z; t), (44)

13
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where p−(i, j)
m is the vector pm with components i and j removed. Thus we have a BBGKY like

hierarchy of finite dimensional heat equations. Note that unlike many BBGKY hierarchies, the
equation for C(pm, z) implicates the function C(p−(i, j)

m , z) which depends upon a smaller vector
p−(i, j)

m , meaning these equations could be treated recursively.
Alternatively, we can let L† act on coherent state |z〉 to give (via the eigenstate relations in

equation (8)),

∂C
∂t

=

∫
Υ

dq
δC
δzq

(
∇2

q(z) − z
)
+

∫∫
Υ2

dq dq′ δ2C
δzqδzq′

Rqq′. (45)

Thus we have essentially recovered the Fokker–Plank equation corresponding to equation (30),
albeit with different initial conditions; equations (44) and (45) both have initial condition
C(pm, z; 0) = z(pm).

So to analyse the duality expectations such as C(pm, z; t), one can either treat them
dynamically to extract differential equations, or try a path integral approach.

6. Simple decay with fermionic duality mechanism

We next consider a situation where a Feynman–Kac correction is not sufficient to extract a
duality relationship, and fermionic approaches are needed to deal with unwanted negative signs
in evolution operators, producing novel dualities.

Consider the following stochastic PDE for Brownian motion in Hilbert space H

dXt(p) = −γpXt(p)2dt + B(Xt)dWt(p), (46)

where we have Q-Brownian motion dWt, a positive, position dependent decay function γ p, and
initial function X0 = z. For this example we have non-trivial noise, with linear operator B(Xt)
defined by its action on the Q eigenfunctions, where we have B(Xt)(ξk)(p) =

∑
m βkm(Xt)ξm(p),

where we will later specify functionals βkm(Xt).
This example has been chosen because firstly the negative term will be shown to preclude

any obvious duality with a particle process under the framework of previous sections, and sec-
ondly the noise term is not a relatively simple point-wise operator of the form (B(Xt)ξk)(p) =
b(Xt(p))ξk(p). That is, B(Xt)(ξk)(p) depends globally on the function Xt, not just on the value
Xt(p).

Then this gives us a Kolmogorov operator of the form:

(LG)(x) = 〈−γpx2, Gx(x)〉+ 1
2

Tr(GxxB(x)QB(x)∗)

= −
∫
Υ

dp
δG
δxp

γpx2
p +

1
2

∫∫
Υ2

dp dq
δ2G

δxpδxq

∑
k,m,n

λkβkm(x)βkn(x)ξm(p)ξn(q). (47)

To connect this operator via equation (15) to an adjoint Liouvillian operator L†, we introduce

L† = −
∫
Υ

dpγpψ
†
pψ

2
p +

∫∫∫
Υ3

dp dq dr Rpqrψ
†
pψ

†
qψr. (48)

Now, much like the previous section, we can compensate the second term to get a dual
particle process with Liouvillian L′ = L − V for a suitable term V . However, the neg-
ative sign of the first term in equation (48) means a compensating term of the form∫

dpγpψ
†
pψp has a positive sign. This means that although the requisite equation 〈1|L′ =

14
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〈1|
(
−
∫
Υdpγp((ψ†

p)
2ψp − ψ†

pψp) + . . .
)
= 0 is satisfied, and ensures total probability conser-

vation for the dual particle process, the corresponding master equation has the wrong sign and
the associated ‘probabilities’ are not necessarily positive.

Instead, following [44], we introduce an operator to flip the sign. This stems from alge-
braic probability arguments in [44], however, we will see this can also be framed in terms of a
fermionic Doi algebra [26].

Specifically, we introduce the self-adjoint operator b = a + a† where a and its adjoint a†

are standard Pauli operators acting on the two dimensional space {|0〉, |1〉}, satisfying stan-
dard anticommutativity relations {a, a†} = 1 and {a, a} = {a†, a†} = 0. We also introduce
orthonormal states |±〉 = 1

2 (|0〉 ± |1〉), where we note that b|±〉 = ±|±〉.
Next we replace the Liouvillian in equation (48) with

L† =

∫
Υ

dpγp bψ†
pψ

2
p +

∫∫∫
Υ3

dp dq dr Rpqrψ
†
pψ

†
qψr, (49)

and introduce dynamics |Ψt〉 = eL
†t|Ψ0〉 for some initial state |Ψ0〉, where, analogous to

equation (9), the states have a representation of the form

|Ψt〉 =
∫

DxP[x; t]|x,−〉. (50)

Note that strictly speaking the state |x,−〉 is shorthand for the tensor product |x〉 ⊗ |−〉 ∈
H ⊗ {±}, and the operators ψp and b commute because they act independently on H and {±}.
Shorthand rather than formal notation is used throughout.

Now, direct calculation shows us that for generic bra 〈g| and functional G(x) = 〈g|x,−〉,

〈g| ∂
∂t

∫
Dx P[x; t]|x,−〉 = ∂

∂t

∫
Dx P[x; t]G(x) =

∫
Dx P[x; t]〈g|L†|x,−〉 =

=

∫
Dx P[x; t]

{
−
∫
Υ

dp
δG
δxp

γpx2
p +

∫∫
Υ2

dp dq
δ2G

δxpδxq

∫
Υ

dr Rpqrxr

}
. (51)

Thus we obtain the Fokker–Planck equation corresponding to the Kolmogorov operator
given in equation (47), provided we have the match∫

Υ

dr Rpqrxr =
1
2

∑
k

λk(B(x)ξk)(p)(B(x)ξk)(q). (52)

This offers a wide choice for Rpqr. Note that the right-hand side dictates that Rpqr needs to
be symmetric in p and q (which will be seen below to also be a natural assumption for
a dual particle interaction). To specify Rpqr in terms of operator B the orthonormal basis
ξk can be used. Firstly, write

∫
Υ dr Rpqrxr =

∑
m,n αmn(x)ξm(p)ξn(q) for coefficients αmn(x),

which are also functionals in x. Secondly, we have the earlier assumption that (B(x)ξk)(p) =∑
m βkm(x)ξm(p) for functional coefficients βkm(x). Then using orthonormality, equation (52)

reduces to equivalent condition

αmn(x) =
1
2

∑
k

λkβkm(x)βkn(x), (53)

and the action of Rpqr on xr can be specified in terms of the action of B(x) on the eigenfunctions.
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Next for a dual process, we consider the following particle model. We again have particles
Ap at position p, but now also an overall system-wide state sign κ ∈ {±}. Then we have process

Ap −→ Ap + Ap, κ −→ −κ, (rate γp)

Ap + Aq −→ Ar, κ −→ κ. (rate Rpqr) (54)

Thus we have localised particle fission with sign flip, and a non-local pairwise amalgamation
process that preserves the system sign. The state of the system (q,κ) is next represented by a
ket |q,κ〉. This has a corresponding Liouvillian L′ = L− V of the form

L′ =

∫
Υ

dpγp(b(ψ†
p)

2ψp − ψ†
pψp) +

∫∫∫
Υ3

dp dq dr Rpqr(ψ†
rψpψq − ψ†

pψ
†
qψpψq), (55)

where V =
∫
Υdpγpψ

†
pψp +

∫∫∫
Υ3dp dq dr Rpqrψ

†
pψ

†
qψpψq. This results in an evolution

equation |χt〉 = eL
′t|χ0〉 for a designated initial state |χ0〉 = |pm,−〉.

Then analogous to [44], we obtain the duality

C(pm, z) = 〈pm,−|eL†t|z,−〉 = EX

(
Xt(pm)

)
= E(q,κ)

(
z(q(t))I{κ(t)≡−}e

∫ t
0 ds V(q(s))

)
. (56)

The last term in this expression is derived in much the same way as equation (34), except that
the resolution of identity in this case is I =

∑
κ∈{±}

∫
Υ̂dr̂|r̂,κ〉〈r̂,κ|. The main difference in

the subsequent derivation is that the term 〈x|r̂N〉 in equation (34) becomes 〈z,−|r̂N ,κN〉 =
〈z|r̂N〉I{κN≡−} resulting in the form above.

To calculate the expectations one can again use path integrals. We can firstly calculate the
expectationEX

(
Xt(pm)

)
= 〈pm,−|eL†t|z,−〉 in equation (56), which uses the Liouvillian oper-

ator given in equation (49). This involves the operator b = a + a†, which would implicate a
hybrid path integral containing grassmannians [26] and bosonic integrals [25]. Alternatively,
we can use the original operator in equation (48) to construct a path integral for expecta-
tion EX

(
Xt(pm)

)
= 〈pm|eL

†t|z〉, which will not involve grassmanians. Because both diffusion
processes labelled Xt(pm) have the same Fokker–Planck equation and so distribution, the
expectation EX

(
Xt(pm)

)
will be the same in both cases, so using the path integral without

grassmannians will be simpler.

7. Particle–particle and diffusion–diffusion dualities

Thus far, we have focussed on cases where a particle model is dual to a diffusion model. Next,
self-dualities are considered, that is, duality between two stochastic processes of a single type.
Such duality has been studied extensively; details covering a range of stochastic process types
can be found in [10, 22, 24]. We consider two cases; particle models dual with particle models
and Hilbert space diffusions dual with Hilbert space diffusions.

7.1. Particle–particle models

Consider then, dualities between pairs of particle models. Such duality has been reported pre-
viously. The classic example of Karlin and McGregor is duality between a reflecting and an
absorbing birth–death process [32]. Here absorbing can, for example, be interpreted as an
empty population remaining empty, and reflecting taken to mean births arising from an empty
population. The duality consists of a simple exchange of the role of birth and death in the asso-
ciated parameters, and can be interpreted with a Siegmund duality function [2, 52]. Dualities
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of this nature have seen a range of generalisations (such as [2, 16], for example), although
not explicitly for pairs of spatially dependent birth–death processes, or using Doi–Peliti path
integral formalism, which we next consider.

For the first of two dual processes, consider a simple particle model for budding-birth–death,
where the parent particle survives (non-local) birth of a daughter particle,

Ap
μp−→ Ø, Ap

βpq−→ Ap + Aq. (57)

Note that this system is absorbing in the sense that if a population is empty it remains so. This
system has an evolution operator of the form

L′ =

∫
Υ

dpμp(ψp − ψ†
pψp) +

∫∫
Υ2

dp dqβpq(ψ†
pψ

†
qψp − ψ†

pψp), (58)

resulting in state evolution equation |χt〉 = eL
′t|χ0〉, where we assume initial

(pure) state |χ0〉 = |pm〉. The current state also has probabilistic interpretation
|χt〉 =

∑
k

∫
Υk

drk
k! fBBD(rk)|rk〉 =

∫
Υ̂dr̂ fBBD(r̂)|r̂〉. Here, fBBD is the probability density

for the budding-birth–death process.
For the second process, take the natural dual to equation (57), the spontaneous-birth-

assassination process

Ø μp−→ Ap, Ap + Aq
βpq−→ Ap. (59)

Note that this is reflecting, in the sense that if the system arives at the empty state, rebirth into
a positive population will occur. The model can be described by evolution operator

L† =

∫
Υ

dpμp(ψ†
p − 1) +

∫∫
Υ2

dp dqβpq(ψ†
pψpψq − ψ†

pψ
†
qψpψq). (60)

This similarly results in a state evolution equation, |Ψt〉 = eL
†t|Ψ0〉, where we have initial state

|Ψ0〉 = |qn〉 and current state |Ψt〉 =
∫
Υ̂dr̂ fSBA(r̂)|r̂〉. Here, fSBA is the probability density for

the spontaneous-birth-assassination process.
Now these operators are connected by L = L′ + V where we have self-adjoint operator

V =

∫
Υ

dpμp(ψ†
pψp − 1) +

∫∫
Υ2

dp dqβpq(ψ†
pψp − ψ†

pψ
†
qψpψq). (61)

Note that we have the implicit assumption that
∫
Υ dp μp < ∞. This will ensure the total

spontaneous birth rate is finite and no population explosion occurs.
Then to construct a duality we use the function C(pm, qn) = 〈pm|eL

†t|qn〉. On the one hand,
using equation (3), we have

C(pm, qn) = 〈pm|Ψt〉 = 〈pm|
∫
Υ̂

dr̂ fSBA(r̂)|r̂〉 = fSBA(pm), (62)

which is just the density at pm for the spontaneous-birth-assassination particle process starting
at qn. More explicitly we write fSBA(pm) = fSBA

(
r̂(t) = pm|r̂(0) = qn

)
.

Conversely, following the approach to derive equation (35), a Feynman–Kac expectation of
the following form is obtained, where

C(pm, qn) = 〈qn|eL
′t+Vt|pm〉 =

∫ r̂(t)=qn

r̂(0)=pm

Dr̂ P[r̂]e
∫ t

0 ds V (̂r(s)), (63)
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and

V(r̂) =

⎛
⎝ |̂r|∑

i=1

μr̂i −
∫
Υ

dpμp

⎞
⎠−

⎛
⎜⎜⎝

|̂r|∑
i, j=1
i �= j

βr̂ir̂i −
|̂r|∑

i=1

∫
Υ

dpβr̂i p

⎞
⎟⎟⎠ . (64)

Note that the first term is the variation in death rate, the second term is the covariation in birth
rate, with V representing variation of population decline for the budding-birth–death process.

Now, the path integral in equation (63) is a sum of paths for vectors r̂(s), s ∈ [0, t] (arising
from the budding-birth–death process) with a specified start and end vector. The main differ-
ence from the derivation of equation (35) is that the ket |z〉 is replaced with |qn〉 resulting in the
extra boundary condition r̂(t) = qn. A similar construction gives 〈qn|eL

′t|pm〉 = fBBD(qn) =∫ r̂(t)=qn
r̂(0)=pm

Dr̂ P[r̂], where we write fBBD(qn) for the probability density at qn of the budding-
birth–death process starting at pm. Note in particular that the sum of the probability density
functional P[r̂] over all paths r̂ is restricted by the paths endpoints, and does not sum to unity in
this case. Then normalising correctly, we obtain an expectation over paths with fixed termini,

EBBD

(
exp

{∫ t

0
ds V(r̂(s))

} ∣∣∣r̂(t)=qn,
r̂(0)=pm

)
=

∫ r̂(t)=qn
r̂(0)=pm

Dr̂ P[r̂]e
∫ t

0 ds V (̂r(s))∫ r̂(t)=qn
r̂(0)=pm

Dr̂ P[r̂]
, (65)

resulting in the following duality, with a Feynman–Kac term written as the ratio of reciprocal
densities,

EBBD

(
exp

{∫ t

0
ds V(r̂(s))

} ∣∣∣r̂(t)=qn,
r̂(0)=pm

)
=

fSBA(r̂(t) = pm|r̂(0) = qn)
fBBD(r̂(t) = qn|r̂(0) = pm)

. (66)

In general for particle models, although the condition 〈1|L = 0 is satisfied, the dual con-
dition 〈1|L† = 0 is not and a Feynman–Kac correction will be needed to establish duality.
However, dualities between pairs of particle models can be constructed in the manner above.

7.2. Diffusion–diffusion models

Next we consider dualities between pairs of diffusion models. This kind of duality has been
considered previously [10, 22, 24], although seemingly not for diffusion in function space,
or with Doi–Peliti formalism, which we now discuss. We consider two cases, depending on
whether the noise is cylindrical or Q-Brownian motion.

Firstly, consider the diffusion given by the following stochastic PDE, where dWt is
cylindrical Brownian motion in H, and the process Xt is initialized with function X0 = x,

dXt(p) =
(
∇2

p Xt(p) − Xt(p) + RpXt(p)2
)

dt + ωpXt(p)dWt(p). (67)

Thus we have two terms from the cable equation, a geometric noise term and a quadratic drift
term. Then this process has a corresponding Liouvillian operator of the form

L† =

∫
Υ

dpψ†
p(∇2

p − 1)ψp +

∫
Υ

dpRpψ
†
pψ

2
p +

∫
Υ

dp
ω2

p

2
(ψ†

p)2ψ2
p. (68)

That is, we have evolution |Ψt〉 =
∫
Dz PX(z, t)|z〉 = eL

†t|Ψ0〉 = eL
†t|x〉 of initial state |x〉.

Next the operator L will be used to generate a dual process. The first term in L† is self-
adjoint so results in identical drift terms in the corresponding stochastic PDE for L. For the
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middle term of L, we get
∫
ΥdpR(p)(ψ†

p)
2ψp which contributes cylindrical Brownian motion

rather than a drift term. Combining with the third (self-adjoint) term results in the following
process Yt, initiated with some function Y0 = y,

dYt(p) =
(
∇2

pYt(p) − Yt(p)
)

dt +
√

Yt(p)(2Rp + ω2
pYt(p))dWt(p). (69)

Thus we have evolution |χt〉 =
∫
Dz PY(z, t)|z〉 = eLt|χ0〉 = eLt|y〉 of initial state |y〉.

Then, to construct duality, we consider the function C(y, x) = 〈y|eL†t|x〉 formed from the
braket of two coherent states formed from the functions x and y. Then recalling the product of
two coherent states takes the form 〈x|y〉 = e

∫
Υdp xy we find, in much the same way as previous

sections, that

C(y, x) = EX

(
e
∫
Υdp Xt(p)y(p)

)
= EY

(
e
∫
Υdp x(p)Yt (p)

)
. (70)

If one attempts similar things with a Q-Brownian process, things become a little more
awkward. Take for example,

dXt(p) =

(
∇2

p Xt(p) − Xt(p) + Xt(p)
∫
Υ

dq RpqXt(q)

)
dt + Xt(p)dWt(p). (71)

This process generalizes the process above, with the choice Rpq = Rpδ(p− q) recovering
the drift term in equation (67). The process has a Liouvillian of the form,

L† =

∫
Υ

dpψ†
p(∇2

p − 1)ψp +

∫∫
Υ2

dp dq Rpqψ
†
pψpψq +

∫∫
Υ2

dp dq
Ωpq

2
ψ†

pψ
†
qψpψq, (72)

where Ωpq =
∑

k λkξk(p)ξ(q).
Now the first and third terms are self-adjoint. Thus for Rpq = 0 we can use the construction

above to get a self-dual process with duality function e
∫
Υdp xy. However, the lack of symmetry

between p and q in the second term
∫∫

Υ2dp dq Rpqψ
†
pψpψq means that the adjoint does not cor-

respond to a Q-Brownian motion term, and duality with another diffusion is not forthcoming.
Note that if we subtract

∫∫
Υ2dp dq Rpqψ

†
pψ

†
qψpψq from the second term and add it to the third

we can construct a dual particle process with a Feynman–Kac term, much in the same way as
equation (31), so some form of duality is still possible.

8. Conclusions

The construction of dualities between stochastic processes is achievable for a range of pro-
cesses utilizing many techniques. In particular, it is possible to construct dualities between
spatially dependent birth–death processes and diffusion on function spaces [14, 15]. These
birth–death processes can incorporate mutation, selection, spatial diffusion and other geneo-
logical structures. The methods involved are martingale techniques and have been applied to
analyse asymptotic behaviours and ergodicity. Doi–Peliti field theoretic methods have been
used to construct dualities between (non-spatial) birth–death processes and one dimensional
diffusions [44]. In this work we have accomplished three things. Firstly, we have shown that
Doi–Peliti methods can be extended to infinite dimensions, establishing path integral methods
to construct some dualities seen in [14, 15]. The method adopts a continuous path integral for-
mulation (similar to Doi’s original work [17, 18]) rather than a lattice based approach (such as
that of Peliti [47]). This formalism enables interpretation of stochastic differential equations
involving cylindrical or Q-Brownian motion, a subject not covered in [14, 15]. These methods
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also yield some self-dualities for these processes. Secondly, path integral perturbation meth-
ods reveal novel combinatorial forms for duality functions, which arise naturally as correlation
functions. Thirdly, the inclusion of fermionic techniques results in dualities not currently found
by other means. The Doi–Peliti path integral formalism is thus shown to be a useful tool in
the pursuit of dualities, and finding extensions of these methods and subsequent applications
warrants further study.

In terms of models, we find that a particle process of the form Ap −→ . . . will give rise
to a drift term in the dual diffusion process, and a process of the form Ap + Aq −→ . . . will
give rise to a Brownian motion term. Furthermore a local process such as Ap + Ap −→ . . . will
correspond to cylindrical Brownian motion, whereas a non-local process such as Ap + Aq −→
. . . will correspond to Q-Brownian motion. This naturally raises the question of whether there
are dualities of interest for more complex particle processes such as Ap + Aq + Ar −→ . . .. The
corresponding Fokker–Planck equation will have third order differentials, suggesting if a dual
stochastic process exists, it is not Brownian motion. Indeed any such dual ‘process’ may not
be stochastic. We have seen in some cases that duality is with a deterministic process. It would
seem feasible that if the requirement is loosened so that the target is just a signed measure
(rather than a positive probability measure), for example, more ‘dualities’ may be possible.

The applications explored here have been restricted to populations of particles from a single
species. However, the use of additional operators for multi-species models is certainly possible
[25], and would be a natural way to approach some of the more complex birth–death processes
found in [14, 15], where mutation, selection and geneologies are additional features of interest.
Investigating the extent to which Doi–Peliti techniques can produce the dualities found there
would certainly be of interest.

The Doi methods described are applicable when the drift and noise terms are polynomial
in nature. For example, the stochastic cable equation that was analysed contained a linear drift
term. More detailed models [40] suggest a cubic model may be more precise. This will be
amenable to the kind of analyses we have employed, although this will entail a perturbative
path integral expansion that will contain internal nodes corresponding to the cubic terms, which
will paint a more complicated picture than that seen in figure 1. Whether these methods can
be adapted to more general non-polynomial forms is an open problem, the solution of which
would certainly increase its utility. In some cases non-polynomial systems can be analysed,
but this currently relies on transforming the system to a polynomial form (see conclusions in
[44], for example).

For most processes discussed, the operator B(x) has taken constant, or local, somewhat unin-
teresting forms B(x)(p) = b(x(p)), where the function B(x) at p only depends on the function
x at p. The jump-diffusion process had a ‘jump’ operator L =

∫∫
dp dq Rpq(ψ†

qψp − ψ†
pψp),

where Rpq represented the rate a particle at position p hops to q. Under duality, this trans-
lated to the drift term B(x)(p) =

∫
dqRpq(x(q) − x(p)) in the corresponding stochastic PDE,

resulting in a function B(x)(p) that depends upon the entire function x. A fuller exploration
of the range of possible operators B(x) that arise from Liouvillian particle operator counter-
parts would certainly be of interest. These questions also apply to possibilities that will arise
by considering more than one species of particle, and spatial processes other than diffusion;
the convection terms in age structured systems, for example, may offer alternative features
of interest [11, 27]. In some cases (e.g equation (61)) we have seen restriction on coefficients
to ensure the number of particles in the systems is finite. However, there are well characterized
techniques for countably infinite systems of particles [1, 39], and extending these methods for
these cases would be useful.

The Doi functionality has enabled duality to be established on quite a wide scale. However,
there are a host of other classes of duality functions. For example, the duality function Ix�y

20



J. Phys. A: Math. Theor. 53 (2020) 445002 C D Greenman

exists for a wide class of Feller processes, which is provable by other means [38]. Whether
other field theoretic approaches can connect these is an open problem.

Dealing with infinite dimensional diffusion is fraught with technical difficulties, and con-
versely, path integrals are notorious for their need of greater rigour. However, the latter methods
have been shown above to offer a useful tool to explore dualities between stochastic processes,
which can always be investigated in parallel with more rigorous methods.

ORCID iDs

Chris D Greenman https://orcid.org/0000-0002-4338-8012

References

[1] Albeverio S, Kondratiev Y G and Röckner M 1998 Analysis and geometry on configuration spaces
J. Funct. Anal. 154 444–500

[2] Assiotis T et al 2018 Random surface growth and Karlin–Mcgregor polynomials Electron. J.
Probab. 23 1–81

[3] Bogachev V, Prato G D and Röckner M 2011 Uniqueness for solutions of Fokker–Planck equations
on infinite dimensional spaces Commun. PDE 36 925–39

[4] Bogachev V and Röckner M 1995 Mehler formula and capacities for infinite-dimensional Orn-
stein–Uhlenbeck processes with general linear drift Osaka J. Math. 32 237–74

[5] Bogachev V I, Da Prato G and Röckner M 2009 Fokker–Planck equations and maximal dissipativity
for Kolmogorov operators with time dependent singular drifts in Hilbert spaces J. Funct. Anal.
256 1269–98

[6] Bogoliubov N 1946 Kinetic equations J. Phys.-USSR 10 265–74
[7] Born M and Green H S 1949 A General Kinetic Theory of Liquids (Cambridge: Cambridge

University Press)
[8] Borodin A N and Salminen P 2012 Handbook of Brownian Motion-Facts and Formulae (Boston,

MA: Birkhäuser)
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