Cloning of the rice *Xo1* resistance gene and interaction of the *Xo1* protein with the defense-suppressing *Xanthomonas* effector Tal2h

Andrew C. Read,† Mathilde Hutin,† Matthew J. Moscou,‡ Fabio C. Rinaldi,§ and Adam J. Bogdanove*†

1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
2 IRD, CIRAD, Université Montpellier, IPME, 34000 Montpellier, France
3 The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, United Kingdom

† These authors contributed equally.

Current address for F. C. Rinaldi: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210

* Corresponding author: A. J. Bogdanove; ajb7@cornell.edu

Keywords: Resistance genes, effectors, defense suppression, nucleotide binding leucine-rich repeat (NLR), transcription activator-like effector (TALE), truncTALE, mass spectrometry, protein-protein interaction

Funding:
1. National Science Foundation (IOS-1444511 to AB)
Abstract

The Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pv. oryzicola and oryzae, respectively. Resistance is triggered by pathogen-delivered transcription activator-like effectors (TALEs) independent of their ability to activate transcription and is suppressed by variants called truncTALEs common among Asian strains. By transformation of the susceptible variety Nipponbare, we show that one of 14 nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zfBED domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-mediated response is more similar to those mediated by two other NLR resistance genes than it is to the response associated with TALE-specific transcriptional activation of the executor resistance gene Xa23, and that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. In Nicotiana benthamiana leaves, fluorescently-tagged Xo1 protein, like TALEs and truncTALEs, localized to the nucleus. And, endogenous Xo1 specifically co-immunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. These observations suggest that suppression of Xo1-function by truncTALEs occurs through direct or indirect physical
interaction. They further suggest that effector co-immunoprecipitation may be effective for identifying or characterizing other resistance genes.

Bacterial leaf streak of rice, caused by *Xanthomonas oryzae* pv. oryzicola (*Xoc*), is an increasing threat to production in many parts of the world, especially in Africa. Bacterial blight of rice, caused by *X. oryzae* pv. oryzae (*Xoo*) has long been a major constraint in Asia and is becoming prevalent in Africa. The purified American heirloom rice variety Carolina Gold Select (hereafter Carolina Gold; McClung and Fjellstrom, 2010) is resistant to all tested African strains of *Xoc* and some tested strains of *Xoo* (Read et al., 2016). Using an African strain of *Xoc*, the resistance was mapped to chromosome 4 and designated as *Xo1* (Triplett et al., 2016). Both *Xoc* and *Xoo* deploy multiple type III-secreted transcription activator-like effectors (TALEs) during infection. TALEs enter the plant nucleus and bind to promoters, each with different sequence specificity, to transcriptionally activate effector-specific target genes (Perez-Quintero and Szurek, 2019). Some of these genes, called susceptibility genes, contribute to disease development (Hutin et al., 2015). In some host genotypes, a TALE may activate a so-called executor resistance gene, leading to host cell death that stops the infection (Bogdanove et al., 2010). Most of the cloned resistance genes for bacterial blight are in fact executor genes (Zhang et al., 2015). *Xo1* is different. It mediates resistance in response to TALEs with distinct DNA-binding specificities independent of their ability to activate transcription (Triplett et al., 2016). Also, unlike executor genes, *Xo1* function is suppressed by a variant class of these effectors known as truncTALEs (also called...
iTALEs). Like TALEs, TruncTALEs nuclear localize (Ji et al., 2016), however due to large N and C terminal deletions they do not bind DNA (Read et al., 2016).

\[Xo1 \]

maps to a region that in the reference rice genome (cv. Nipponbare) contains seven nucleotide-binding, leucine-rich repeat protein genes (“NLR” genes) (Triplett et al., 2016). NLR genes are the largest class of plant disease resistance genes. NLR proteins recognize specific, corresponding pathogen effector proteins through direct interaction or by detecting effector-dependent changes of host target proteins, and mediate downstream defense signaling that leads to expression of defense genes and a programmed localized cell death, the hypersensitive reaction (HR) (Lolle et al., 2020). Recently, by whole genome sequencing, we determined that the \[Xo1 \]
locus in Carolina Gold comprises 14 NLR genes. We identified one of these, \[Xo1_{11} \], as a strong candidate based on its structural similarity to the previously cloned and only known NLR resistance gene for bacterial blight, \[Xa1 \] (Read et al., 2020). \[Xa1 \], originally identified in the rice variety Kogyoku, maps to the same location (Yoshimura et al., 1998) and behaves similarly to \[Xo1 \]: it mediates recognition of TALEs with distinct DNA-binding specificities (and thus confers resistance also to bacterial leaf streak), and its activity is suppressed by truncTALEs (Ji et al., 2016). \[Xo1_{11} \] and \[Xa1 \] are members of a small subfamily of NLR genes that encode an unusual N-terminal domain comprising a zinc finger BED (zfBED) motif (Read et al., 2020).

To ascertain whether \[Xo1_{11} \] is the gene responsible for \[Xo1 \] resistance, we generated transgenic Nipponbare plants expressing it. For transformation, we amplified the genomic \[Xo1_{11} \] coding sequence (5,882 bp) as well as the 993 bp region upstream of the start codon and cloned them together into a binary vector with a 35S terminator.
T0 Xo1,11 plants were inoculated by syringe infiltration with African Xoc strain CFBP7331, which has no truncTALE of its own, carrying either an empty vector (EV) or the plasmid-borne truncTALE gene tal2h (p2h) from the Asian Xoc strain BLS256 (Read et al., 2016). Phenotypes of CFBP7331(EV) and CFBP7331(p2h) were confirmed on untransformed Nipponbare and Carolina Gold plants (Fig. S1). Plants from two Xo1,11 transformation events displayed resistance to the strain with the EV, but not to the strain carrying Tal2h (Fig. 1), demonstrating that Xo1,11 is the Xo1 gene.

NLR protein activation is characteristically followed by a suite of responses that includes massive transcriptional reprogramming leading both to HR and to activation of a large number of defense-associated genes (Cui et al., 2015). To gain insight into the nature of Xo1-mediated resistance, we compared the global profile of differentially expressed genes during Xo1-mediated defense to those of two other NLR genes in rice and to the profile associated with an executor gene. We used our previously reported RNAseq data from Carolina Gold plants inoculated with CFBP7331(EV) or mock inoculum (Read et al., 2020), data for the NLR gene Pia for resistance to the rice blast pathogen Magnaporthe oryzae (Tanabe et al., 2014), data from rice resistant to bacterial leaf streak due to transgenic expression of the maize NLR gene Rxo1 (Xie et al., 2007; Zhou et al., 2010), and data for the transcriptomic response associated with induction of the executor resistance gene Xa23 by an Xoo strain with the corresponding TALE (Tariq et al., 2018). Though limited, these datasets include the only currently available expression data for NLR and executor gene-mediated resistance to Xanthomonas in rice. Differentially expressed genes (log2-fold change >1 or <-1; p-value >0.05) in the comparison between pathogen-inoculated and mock-inoculated
plants were compared across the four datasets. The total number of DEGs ranged from 10,050 for Xo1 to 628 for Xa23, and the overall profiles were largely distinct (Fig. 2A, Table S1). For each resistance gene, there were a number of DEGs found only in the pathogen to mock comparison for that dataset, and this was highest for Xo1 (7,121 genes) (Fig. 2A, Table S1). Differences among the overall DEG profiles may be influenced by the expression assay (RNAseq vs. microarray), pathogen, annotation, or timepoints used. To compare the responses further the expression of 340 rice genes associated with plant defense response (gene ontology group 0006952) was examined. The Xo1 profile comprised the largest number of plant defense DEGs (99) and had more DEGs in common with the other NLR-mediated responses (16 with Rxo1 and 26 with Pia) than with the executor gene response (8) (Fig. 2B). Additionally, each of the NLR-mediated responses resulted in a larger number of differentially expressed defense genes (26 for Rxo1, 41 for Pia) than the Xa23 response (14), and based on principle component analysis of the defense DEG profiles, were more similar to one another than to the executor gene response (Fig. 2B and C and Table S2).

We also compared DEGs relative to mock in Carolina Gold plants inoculated with CFBP7331(EV) and Carolina Gold plants inoculated with CFBP7331(p2h) (Read et al., 2020), to gain insight into how Xo1-mediated resistance is overcome by a pathogen delivering a truncTALE. In contrast to the 99 defense response genes differentially expressed in response to CFBP7331(EV), only 18 defense genes were differentially expressed in response to CFBP7331(p2h) (Fig. 2D). Of these 18 genes, 7 were differentially expressed only in the response to the strain with tal2h, 4 up and 3 down. Of the remaining 11, 4 were up and 2 were down in both responses, but each less so in
the response to the strain with *tal2h*. The other 5 moved in opposite directions entirely, up in the absence but repressed in the presence of *tal2h*, relative to mock. This expression profile during suppression of *Xo1*-mediated resistance is consistent with *Tal2h* functioning early in the defense cascade. The bacterial leaf streak susceptibility gene *OsSULTR3;6* (Cernadas et al., 2014), activated by *Tal8e* of *CFBP7331* (Wilkins et al., 2015), is strongly induced by both *CFBP7331(EV)* and *CFBP7331(p2h)* (*Table S3*), indicating that TALE function is not compromised by *Xo1* or by *Tal2h*.

The observation that *Xo1* reprograms transcription of canonical defense genes upon recognition of the cognate pathogen effector and that reprogramming by *Xo1* is essentially blocked by *Tal2h* led us to explore whether *Xo1* localizes to the same subcellular location as TALEs and truncTALEs. Some, but not all, NLR proteins nuclear localize (Shen et al., 2007; Wirthmueller et al., 2007; Caplan et al., 2008; Cheng et al., 2009), and we previously identified putative nuclear localization signals (NLSs) in *Xo1* (Read et al., 2020). We generated expression constructs for a green fluorescent protein (GFP) fusion to the N-terminus of *Xo1* as well as an N-terminal monomeric red fluorescent protein (mRFP) fusion both to a TALE (*Tal1c* of *Xoc BLS256*) and to *Tal2h*. These constructs were delivered into *Nicotiana benthamiana* leaves using *A. tumefaciens* strain GV3101, and the leaves imaged with a Zeiss 710 confocal microscope (*Fig. 3*). GFP-*Xo1* in the absence of either effector but with free mRFP localized to foci that appeared to be nuclei. Co-expression with mRFP-*Tal1c* or with mRFP-*Tal2h* confirmed that these foci were nuclei.

The localization of *Xo1*, the TALE, and the truncTALE to the nucleus when transiently expressed in *N. benthamiana* led us to pursue the hypothesis that *Xo1*...
physically interacts with one or both of these proteins in the native context. We generated plasmid constructs that add a 3x FLAG tag to the C-terminus of TALE Tal1c or the truncTALE Tal2h (Tal1c-FLAG and Tal2h-FLAG) and introduced them individually into the TALE-deficient *X. oryzae* strain X11-5A (Triplett et al., 2011) for co-immunoprecipitation from inoculated Carolina Gold leaves (Fig. 4). Abilities of the tagged TALE and truncTALE to respectively trigger and suppress *Xo1*-mediated resistance were confirmed (Fig. S2). We included also a plasmid for expression of a second, untagged TALE (Tal3c from BLS256) and a plasmid for untagged Tal2h. By pairing the X11-5A transformants with each other or with the untransformed control strain, we were able to probe for Carolina Gold proteins interacting with the tagged TALE or truncTALE, and for interactions of these proteins with each other or with the second TALE. Select combinations were inoculated to Nipponbare leaves for comparison. Inoculation was done by syringe infiltration, in 30-40 contiguous spots on each side of the leaf midrib. For each co-inoculation, tissue was harvested at 48 hours and ground in liquid N₂, then soluble extract was incubated with anti-FLAG agarose beads and washed to immunopurify the tagged and interacting proteins. Immunoprecipitates were eluted, and an aliquot of each was subjected to western blotting with anti-TALE antibody (Fig. S3). The remainders were then resolved on a 4-20% SDS-PAGE and eluates from gel slices containing proteins between approximately 60 and 300 kDa (Fig. S4) were digested and the peptides analyzed by mass spectrometry. Proteins were considered present in a sample if at least three peptides mapped uniquely to any of the pertinent annotated genomes searched: the *X. oryzae* strain X11-5A genome (Triplett et al., 2011) plus the TALE(s) or TruncTALE being
expressed, the Nipponbare genome (MSU 7; Kawahara et al., 2013), and the Carolina Gold genome (Read et al., 2020). For the Carolina Gold genome, we re-annotated using the RNAseq data from CFBP7331(EV), CFBP7331(p2h), and mock-inoculated plants cited earlier. We carried out the experiment twice.

In the western blot for each experiment (Fig. S3), we detected the tagged TALE or truncTALE in each corresponding sample, with the exception of a Tal1c-FLAG/Tal3c/Nipponbare sample in the first experiment. No Tal3c or untagged Tal2h was detected in any sample. The mass spectrometry confirmed these observations, suggesting that neither TALEs with truncTALEs nor TALEs with other TALEs interact appreciably (Fig. 4). Xo1 was consistently detected in the Carolina Gold/Tal2h-FLAG samples, irrespective of any co-delivered Tal1c or Tal3c, and not in the Tal1c-FLAG samples or any other sample (Fig. 4). No other protein consistently co-purified with Tal2h-FLAG or Tal1c-FLAG in either Carolina Gold or Nipponbare samples (Dataset S1).

In summary, we have shown that 1) an NLR protein gene at the Xo1 locus, harboring an integrated zfBED domain, is Xo1; 2) the Xo1-mediated response is more similar to those mediated by two other NLR resistance genes than it is to the response associated with TALE-specific transcriptional activation of an executor resistance gene; 3) a truncTALE abolishes or dampens activation of defense-associated genes by Xo1; 4) the Xo1 protein, like TALEs and truncTALEs, localizes to the nucleus, and 5) Xo1 specifically co-immunoprecipitates from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. Thus, Xo1 is an allele or paralog of Xa1, and suppression of Xo1 function by a truncTALE is likely the result of physical interaction between the
resistance protein and the effector. The latter prediction is consistent with the Xo1 DEG profile during suppression by Tal2h, which suggested that Tal2h functions early in the defense cascade, perhaps by blocking TALE recognition by Xo1.

Whether the interaction between Tal2h and Xo1 is direct or indirect is not certain, but the fact that no other protein was detected consistently that co-immunoprecipitated with Tal2h and Xo1 suggests the interaction is direct. It is tempting to speculate also that TALEs trigger Xo1-mediated resistance by direct interaction with the protein and that truncTALEs function by disrupting the association. Though Tal1c did not pull down Xo1, this might be explained by its lower apparent abundance, based on the western blots. Tal1c might interact weakly or transiently with Xo1, or any complex of the proteins in the plant cells may have begun to degrade with the developing HR at the 48 hour time point sampled. It is also possible that Tal2h interacts with TALEs and masks them from the resistance protein, but both our co-immunoprecipitation results and the fact that Tal2h does not impact TALE activation of the OsSULTR3;6 susceptibility suggest that this is not the case. An alternative hypothesis is that Xo1 recognition of TALEs is not mediated by a direct interaction between the two proteins.

The results presented constitute an important step toward understanding how Xo1 works, and how its function can be suppressed by the pathogen. Toward determining the relationship of the interaction to defense suppression, an immediate next step might be structure function analysis of the interaction to determine the portion(s) of Xo1 and Tal2h involved. For Xo1, the LRR may be the determinative interacting domain. Our previous comparison of the motifs present in Xo1, Xa1, and the closest Nipponbare homolog (Nb-xo1, which is expressed) revealed that the zfBED
and CC domains are identical and the NB-ARC domains nearly so (Read et al., 2020). In contrast, the leucine rich repeat domain of Nb-xo15 differs markedly from those of Xo1 and Xa1, which, with the exception of an additional repeat in Xa1, are very similar. Supporting this hypothesis, differences in the LRR determine the pathogen race specificities of some flax rust resistance genes (Ellis et al., 1999). More broadly, the ability of tagged Tal2h to pull down Xo1 suggests that effector co-immunoprecipitation may be an effective approach to characterizing pathogen recognition mechanisms of other resistance proteins, or for identifying a resistance gene de novo.

While this paper was under review, Ji and colleagues (Ji et al., 2020) reported the cloning and functional characterization of several Xa1 homologs, which also demonstrated that Xo111 is Xo1.

Figure legends

Fig. 1. Transgenic Nipponbare plants expressing Xo111 are resistant to African Xoc strain CFBP7331 and the resistance suppressed by a truncTALE. Susceptible cultivar Nipponbare was transformed with pAR902, and leaves of T0 plants from two events were syringe-infiltrated with African Xoc strain CFBP7311 carrying either empty vector (EV) or tal2h (p2h) adjusted to OD₆₀₀ 0.4. Leaves were photographed on a light box at 4 days after inoculation. Resistance is apparent as HR (necrosis) at the site of inoculation and disease as expanded, translucent watersoaking.
Fig. 2. The Xo1-mediated transcriptomic response is similar to those of other NLR genes and is essentially eliminated by Tal2h. **A,** Expression heatmaps (columns) showing all differentially expressed genes (DEGs) in plants undergoing the resistant response compared to mock inoculated plants for Xo1, the NLR genes Pia and Rxo1, and the executor resistance gene Xa23. White numbers for each on the heatmap indicate the number of DEGs specific to each response (see Table S1). Total numbers of DEGs are indicated below. **B,** Heatmaps for the subset of DEGs from (A) that belong to gene ontology group 0006952, defense response, with totals displayed at bottom. **C,** Principal component analysis. The first two principal components (PC) explain 54.0% and 31.6% of the variation with a total of 85.6%. PC1 demarcated two major clusters: 1) Xo1, Pia, and Rxo1, and 2) Xa23. **D,** Heatmaps for the 18 defense response DEGs identified in the comparison of Carolina Gold plants inoculated with CFBP7331(p2h) to mock inoculated plants. The “EV” heatmap shows their expression relative to mock in Carolina Gold plants inoculated with CFBP7331(EV) (resistance), and the “p2h” column shows their expression relative to mock in the presence of Tal2h (disease). The DEGs have been divided into five categories: **I,** induced in both; **II,** down-regulated in both; **III,** induced in resistance and down-regulated in disease; **IV,** not differentially expressed in resistance and induced in disease; and **V,** not differentially expressed in resistance and down-regulated in disease.

Fig. 3. Xo1 localizes to the nucleus. Using *Agrobacterium* co-infiltrations, an expression construct for Xo1 with GFP at the N-terminus (GFP-Xo1) together with a p19 silencing suppressor construct were introduced into *Nicotiana benthamiana* leaves alone or with
a construct for mRFP, mRFP fused to TALE Tal1c (mRFP-Tal1c), or mRFP fused to the
trunctALE Tal2h (mRFP-Tal2h). Confocal image stacks were taken at 3 days after
inoculation and are presented as maximum intensity projections. Insets are
magnifications of individual nuclei. The scale bars represent 50 µm.

Fig. 4. Xo1 co-immunoprecipitates with Tal2h. Top, strategy used for co-
immunoprecipitation (Co-IP) of truncTALE Tal2h or TALE Tal1c and any interactors.
Plasmid borne expression constructs for Tal2h or Tal1c with a C-terminal 3x FLAG tag,
as well as untagged Tal2h and a second TALE,Tal3c were introduced into

Xanthomonas oryzae strain X11-5. Paired combinations of the transformants with each
other or with the untransformed control strain, or the control strain alone, were co-
infiltrated into leaves of rice varieties Carolina Gold and Nipponbare at a final OD$_{600}$ 0.5
for each transformant. Samples were collected 48 hours after inoculation, ground, and
sonicated before Co-IP using anti-FLAG agarose beads. After elution and SDS-PAGE
separation, proteins between approximately 60 and 300 kDa were eluted, digested and
analyzed by mass spectrometry. The experiment was conducted twice. Bottom, co-IP
results. For each immunoprecipitate, the numbers of unique peptides detected that
matched Tal2h, Tal3c, Tal1c, or Xo1 in each experiment are shown. “-” indicates that ≤
2 unique peptides were detected.

Acknowledgments
The authors thank M. Carter and B. Szurek for critical reading of the manuscript, Matthew Willmann and the Plant Transformation Facility of Cornell’s School of Integrative Plant Science for carrying out the rice transformation, Sandra Harrington and Susan McCouch for assistance growing the regenerants, and Ruchika Bhawal and Elizabeth Anderson at the Proteomics Facility of the Biotechnology Resource Center at the Cornell University’s Institute of Biotechnology (BRC) for conducting the mass spectrometry. Confocal microscopy was carried out at the BRC’s Imaging Facility. This work was supported by the Plant Genome Research Program of the National Science Foundation (IOS-1444511 to AB), the National Institute of Food and Agriculture of the U.S. Department of Agriculture (2018-67011-28025 to AR), and the Gatsby Charitable Foundation (to MM). We also acknowledge support from the National Institutes of Health to the Proteomics Facility for the Orbitrap Fusion mass spectrometer (shared instrumentation grant 1S10 OD017992-01) and to the Imaging Facility for the Zeiss LSM 710 confocal microscope (shared instrumentation grant S10RR025502).

Author contributions

AR, MH, FR, and AB conceived and designed the study; AR, MH, and FR carried out the experiments; AR, MH, FR, MM, and AB analyzed data; AR, MH, and AB wrote the manuscript.
Supplemental files

1. Supplemental text and figures

Materials and methods

Fig. S1. Confirmation of CFBP7331(EV) and CFBP(p2h) inoculum on Nipponbare and Carolina Gold plants.

Fig. S2. Symptoms on Carolina Gold and Nipponbare leaves caused by inoculum used for the co-IP experiments.

Fig. S3. Western blot of immunoprecipitates using anti-TALE antibody.

Fig. S4. SDS-PAGE of immunoprecipitates and size range excised for mass spectrometry.

Supplemental references

2. Supplemental tables

Table S1. DEGs in Fig. 2A (all DEGS)
Table S2. DEGs in Fig. 2B (GO:0006952 DEGs)

Table S3. DEGs in Fig. 2C (GO:0006952 in disease) and S gene OsSULTR3;6 (LOC_ Os01g52130) expression

3. Dataset S1. Mass spectrometry data

References

Comparative transcriptome profiling of rice near-isogenic line carrying Xa23 under infection of *Xanthomonas oryzae* pv. oryzae. Int. J. Mol. Sci. 19:717.

Fig. 1. Transgenic Nipponbare plants expressing Xo111 are resistant to African Xoc strain CFBP7331 and the resistance suppressed by a truncTALE. Susceptible cultivar Nipponbare was transformed with pAR902, and leaves of T0 plants from two events were syringe-infiltrated with African Xoc strain CFBP7311 carrying either empty vector (EV) or tal2h (p2h) adjusted to OD600 0.4. Leaves were photographed on a light box at 4 days after inoculation. Resistance is apparent as HR (necrosis) at the site of inoculation and disease as expanded, translucent watersoaking.
Fig. 2. The Xo1-mediated transcriptomic response is similar to those of other NLR genes and is essentially
eliminated by Tal2h. A, Expression heatmaps (columns) showing all differentially expressed genes (DEGs) in
plants undergoing the resistant response compared to mock inoculated plants for Xo1, the NLR genes Pia
and Rxo1, and the executor resistance gene Xa23. White numbers for each on the heatmap indicate the
number of DEGs specific to each response (see Table S1). Total numbers of DEGs are indicated below. B,
Heatmaps for the subset of DEGs from (A) that belong to gene ontology group 0006952, defense response,
with totals displayed at bottom. C, Principal component analysis. The first two principal components (PC)
explain 54.0% and 31.6% of the variation with a total of 85.6%. PC1 demarcated two major clusters: 1)
Xo1, Pia, and Rxo1, and 2) Xa23 D, Heatmaps for the 18 defense response DEGs identified in the
comparison of Carolina Gold plants inoculated with CFBP7331(p2h) to mock inoculated plants. The "EV"
heatmap shows their expression relative to mock in Carolina Gold plants inoculated with CFBP7331(EV)
(resistance), and the "p2h" column shows their expression relative to mock in the presence of Tal2h
(disease). The DEGs have been divided into five categories: I, induced in both; II, down-regulated in both;
III, induced in resistance and down-regulated in disease; IV, not differentially expressed in resistance and
induced in disease; and V, not differentially expressed in resistance and down-regulated in disease.
Fig. 3. Xo1 localizes to the nucleus. Using *Agrobacterium* co-infiltrations, an expression construct for Xo1 with GFP at the N-terminus (GFP-Xo1) together with a p19 silencing suppressor construct were introduced into *Nicotiana benthamiana* leaves alone or with a construct for mRFP, mRFP fused to TALE Tal1c (mRFP-Tal1c), or mRFP fused to the truncTALE Tal2h (mRFP-Tal2h). Confocal image stacks were taken at 3 days after inoculation and are presented as maximum intensity projections. Insets are magnifications of individual nuclei. The scale bars represent 50 µm.
Fig. 4. Xo1 co-immunoprecipitates with Tal2h. Top, strategy used for co-immunoprecipitation (Co-IP) of truncTALE Tal2h or TALE Tal1c and any interactors. Plasmid borne expression constructs for Tal2h or Tal1c with a C-terminal 3x FLAG tag, as well as untagged Tal2h and a second TALE, Tal3c were introduced into Xanthomonas oryzae strain X11-5. Paired combinations of the transformants with each other or with the untransformed control strain, or the control strain alone, were co-infiltrated into leaves of rice varieties Carolina Gold and Nipponbare at a final OD600 0.5 for each transformant. Samples were collected 48 hours after inoculation, ground, and sonicated before Co-IP using anti-FLAG agarose beads. After elution and SDS-PAGE separation, proteins between approximately 60 and 300 kDa were eluted, digested and analyzed by mass spectrometry. The experiment was conducted twice. Bottom, co-IP results. For each immunoprecipitate, the numbers of unique peptides detected that matched Tal2h, Tal3c, Tal1c, or Xo1 in each experiment are shown. “-” indicates that ≤ 2 unique peptides were detected.
Cloning of the rice Xo1 resistance gene and interaction of the Xo1 protein with the defense-suppressing Xanthomonas effector Tal2h

Andrew C. Read,1† Mathilde Hutin,1,2† Matthew J. Moscou,3 Fabio C. Rinaldi,1 and Adam J. Bogdanove1*

1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
2 IRD, CIRAD, Université Montpellier, IPME, 34000 Montpellier, France
3 The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, United Kingdom
† These authors contributed equally.
* Current address for F. C. Rinaldi: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210

Corresponding author: A. J. Bogdanove; ajb7@cornell.edu

Supplemental Text and Figures

Materials and methods

Fig. S1. Confirmation of CFBP7331(EV) and CFBP(p2h) inoculum on Nipponbare and Carolina Gold plants.

Fig. S2. Symptoms on Carolina Gold and Nipponbare leaves caused by inoculum used for the co-IP experiments.

Fig. S3. Western blot of immunoprecipitates using anti-TALE antibody.

Fig. S4. SDS-PAGE of immunoprecipitates and size range excised for mass spectrometry.

Supplemental references
Supplemental Materials and methods

Generation and testing of Xo111 transgenic Nipponbare

The binary transformation plasmid pAR902, containing the Xo111 promoter sequence, a Kozak sequence, the genomic Xo111 gene body, and a 35S terminator, was generated through several steps. Genomic Xo111 was amplified in two parts using oligo pairs 2492/2420 and 2421/2489. Amplicons were ligated into backbone vector pDONR221 following digestion with NotI, SphI, and Ascl. This cloning strategy resulted in an undesired frameshift downstream of the coding sequence that made the clone incompatible with Gateway destination vectors. The frameshift was corrected by amplifying a small fragment with oligo pair 2644/2645 then ligating it into the Clal/Ascl digested parent plasmid. A Kozak consensus sequence was introduced by QuickChange (Agilent) using primer pair 3267/3268. The 993 bp region upstream of the Xo111 start codon was amplified with oligo pair 3080/3082 and BP Gateway cloned into pDONR P4rP1r (ThermoFisher). The plasmids containing the promoter sequence, the genomic Xo111 sequence, and a pDONR P2rP3 with a 35S terminator were LR Gateway cloned into the binary Gateway destination plasmid pKm43GW (Karimi et al., 2005).

Sequence confirmed pAR902 was electroporated into Agrobacterium tumefaciens strain EHA101 for transformation of japonica rice cultivar Nipponbare, which was performed by the Cornell University Plant Transformation Facility.

T0 regenerants were transferred to 4 inch pots containing LC-1 soil mixture (Sungro) and moved to a PGC15 (Percival Scientific) growth chamber ~60 cm below a combination of fluorescent and incandescent bulbs providing ~1000 μmoles/m2/s measured at 15 cm, under a cycle of 12 h light at 28°C and 12 h dark at 25°C. Wildtype Nipponbare and Carolina Gold Select seeds were sown to serve as bacterial inoculation controls.

Xanthomonas oryzae pv. oryzicola strain CFBP7331 transformed with empty vector (pAC99; Cernadas et al., 2014) or p2h (Read et al., 2016) were grown overnight in liquid GYE with appropriate antibiotics at 28°C with shaking. Overnight cultures were pelleted, washed once, and resuspended in 10 mM MgCl2 to an OD600 of 0.4 prior to infiltration using a needleless syringe (Reimers et al., 1992). Inoculated plants were maintained in the growth chamber under the above described conditions. Leaves were photographed on a light box.

Gene expression analysis

For Xo1, RNAseq data for mock-inoculated (SRR9320033, SRR9320038, SRR9320039), CFBP7331(EV)-inoculated (SRR9320035, SRR9320036, SRR9320037) and CFBP7331(p2h)-inoculated (SRR9320034, SRR9320040, SRR9320041) Carolina Gold Select plants (Read et al., 2020) were downloaded from the NCBI Sequence Read Archive. Reads were aligned to the MSU v7 Nipponbare reference genome annotation using the “—quantMode GeneCounts” option in STAR (Dobin et al., 2013). STAR output was used in DESEQ2 (Love et al., 2014) to determine differentially expressed genes (DEGs) in CFBP7331(EV) and CFBP7331(EV) compared to mock.

For Pia, NCBI GEO2R (Smyth, 2004; Davis and Meltzer, 2007) was used to identify DEGs from microarray data of rice line NP/Pia expressing the rice blast
resistance gene *Pia* (GEO GSE62893). Those data had been collected 24 hpi following mock-inoculation (GSM1535715, GSM1535731, GSM1535750) or inoculation with avirulent *Magnaporthe oryzae* strain P91-15B, race 001.0 (GSM1535711, GSM1535727, GSM1535743) (Tanabe et al., 2014).

For *Rxo1*, NCBI GEO2R (Smyth, 2004; Davis and Meltzer, 2007) was used to identify DEGs from microarray data of transgenic rice expressing the maize NLR gene *Rxo1* (GEO GSE19239) (Zhou et al., 2010). Data had been collected 48 hpi following mock-inoculation (GSM476772, GSM476773, GSM476774) or inoculation with avirulent Xoc strain FJR5 (GSM476769, GSM476770, GSM476771). For *Xa23*, DEGs were as reported in a previous RNAseq analysis of rice variety CBB23 inoculated with strain PXO99A compared with mock inoculated CBB23 at 24 hpi (Tariq et al., 2018).

DEGs with log2-fold change between -1 and 1 or with *p*-value >0.05 were excluded from the analysis. Heatmaps were generated in R version 3.6.3 using the package Superheat (Barter and Yu, 2018).

Principal component analysis was performed in R using the log fold-change values of differentially expressed defense genes between inoculated and mock-inoculated samples in the four data sets. In total, 181 genes were used in the analysis.

Localization of Xo1

The expression construct for green fluorescent protein fused to the N-terminus of Xo1 was generated by LR Gateway recombination between the Xo11 entry vector and pGWB6 (Nakagawa et al., 2007). Monomeric red fluorescent protein fusions to the N-termini of Tal1c and Tal2h were generated by LR Gateway cloning of tal1c and tal2h entry plasmids with pGWB455 (Tanaka et al., 2011). Empty pGWB455 was used as the free mRFP control construct. Expression constructs were electroporated into A. *tumefaciens* strain GV3101. Overnight cultures grown at 28°C in LB broth with antibiotic were pelleted and washed in infiltration buffer (10 mM MES, pH 5.6, 10 mM MgCl2, and 150 µM acetosyringone). Washed pellets were resuspended in infiltration buffer, adjusted to OD_{600} 1.0, and mixed such that each strain was present at OD_{600} 0.4. Each mixture also contained GV3101 carrying an expression construct for the silencing suppressor p19 at OD_{600} 0.2. Mixtures were incubated for 4 hours at room temperature before blunt syringe infiltration of 4-week-old *Nicotiana benthamiana* leaves. Plants were left on the bench under fluorescent light for three days. Then, leaf discs were punched from the infiltrated area and observed with a Zeiss 710 confocal microscope at the Cornell Biotechnology Core Facility. GFP was imaged with excitation 488 nm and detection at 498-532 nm, while mRFP was imaged with excitation 561 nm and detection at 606 to 621 nm. Maximum intensity projections were generated in FIJI (Schindelin et al., 2012).

Co-immunoprecipitation, western blot analysis, and mass spectrometry

Plasmid pFR339 encoding Tal2h:3xFLAG was constructed by inserting a gBlock fragment at the restriction sites AatII and EcoRV in-frame with tal2h in the plasmid pAR009_2h (Read et al., 2016) The gBlock encodes a fragment of the C-terminal domain of Tal2h followed by three tandem FLAG epitope tags. Plasmid pFR340 encoding Tal1c:3xFLAG was constructed by inserting a gBlock fragment at the
restriction sites BbvCI and EcoRV in-frame with tal1c in the plasmid pAR009_1c (Read et al., 2016). The gBlock encodes a fragment of the C-terminal domain of Tal1C followed by three tandem FLAG epitope tags. gBlocks were synthesized by Integrated DNA Technologies. pFR339 and pFR340 were used as entry vectors to transfer the coding sequences into Xanthomonas expression vector pKEB31 (Cermak et al., 2011) by Gateway LR reaction (ThermoFisher Scientific). These constructs were transformed by electroporation into the TALE-deficient X. oryzae strain X11-5A (Triplett et al., 2011).

Nipponbare and Carolina Gold Select plants were grown in a growth chamber under cycles of 12 hours of light at 28°C and 75-80% relative humidity (RH), and 12 hours of dark at 25°C, and inoculated by syringe infiltration (Reimers et al., 1992) at 5 weeks old. For inoculation, individual bacterial suspensions containing each strain were made in 10 mM MgCl₂ at an OD₆₀₀ of 1, and mixed at equal volume to obtain the final suspensions for co-infiltration. A total of ten leaves with 60 to 80 tandem infiltration spots per leaf were inoculated for each co-inoculum. Leaves were collected 48 hpi and immediately frozen in liquid nitrogen.

Leaves frozen in liquid nitrogen were finely ground with a mortar and pestle. Three grams of leaf tissue were resuspended in 3 mL of GTEN extraction buffer (10% glycerol, 25 mM Tris pH 7.5, 1 mM EDTA, 150 mM NaCl) with 2% w/v polyvinylpolypyrrolidone, 1x protease inhibitor cocktail (Sigma Aldrich), and 0.1% Tween 20. Insoluble debris was pelleted by centrifugation at 3,000 x g for 20 min at 4°C. Samples were sonicated on ice and a second centrifugation at 20,000 x g for 20 min at 4°C was done before transferring the supernatant to a new tube and adjusting to 2 mL with immunoprecipitation buffer (GTEN, with 0.1% Tween 20). EZview Red ANTI-FLAG M2 Affinity gel (Sigma Aldrich) was washed 2 times with 5 volumes of IP buffer and resuspended in the original volume. 5 µl of the suspension was added to each sample and the samples incubated with mixing by turning end-over-end for 2 h at 4°C. Resin was washed seven times in IP buffer, then bound proteins were eluted with 40 µl of 1x SDS Laemmli sample buffer without reducing agent. 1x dithiothreitol (DTT) was then added to each eluate and the samples incubated for 10 min at 95°C.

For western blotting, a 5 µl aliquot of each sample was resolved by 7.5% Tris-Glycine SDS-PAGE (Bio-Rad). Proteins were transferred to a membrane using the Trans-Blot Turbo Transfer System (Bio-Rad). Immunoblotting was performed using standard procedures. TALEs were detected with a 1:5000 diluted primary anti-TALE rabbit polyclonal antibody and a 1:1000 diluted secondary HRP conjugated goat anti-rabbit IgG antibody (Thermo Fisher). TALEs were visualized by chemiluminescence using the Clarity ECL substrate (Bio-Rad). The anti-TALE antibody was raised by Pocono Rabbit Farm and Laboratory (Canadensis, PA) using a 3 mg/ml sample of a dTALE expressed in E. coli and affinity-purified as described previously (Rinaldi et al., 2017). The antiserum was tested for specificity, and a dilution of 1:5000 was determined to be optimal for western blot immunodetection of TALEs. Aliquots were preserved in -80°C in the presence of sodium azide.

Next, 30 µl of eluate from each immunoprecipitate were loaded in a 4-20% Tris Glycine SDS-PAGE stain free gel (Bio-Rad). The gel was stained using SYPRO Ruby protein gel stain (Invitrogen) following manufacturer instructions. The portion of each lane spanning molecular weight markers from 60 kDa to approximately 300 kDa was excised for mass spectrometry analysis. The excised gel fragments were subjected to
in-gel digestion followed by extraction of the tryptic peptide as reported previously (Yang et al., 2007). The gel pieces were washed consecutively with 600 μL distilled/deionized water followed by 50 mM ammonium bicarbonate, 50% acetonitrile (ACN), and finally 100% ACN. The dehydrated gel pieces were reduced with 250 μL of 10 mM DTT in 100 mM ammonium bicarbonate for 1 hour at 56 °C, then alkylated with 250 μL of 55 mM iodoacetamide in 100 mM ammonium bicarbonate at room temperature in the dark for 45 minutes. Wash steps were repeated as described above. The gel slices were then dried and rehydrated with trypsin (Promega) at an estimated 1:3 w/w ratio in 50 mM ammonium bicarbonate and 10% ACN and incubated at 37 °C for 18 h. The digested peptides were extracted twice with 200 μL of 50% ACN and 5% formic acid (FA) and once with 200 μL of 75% ACN and 5% FA. For each sample, extracts were combined and filtered with a Costar Spin-X 0.22 μm spin filter (Corning) and dried in a speed vacuum. Each sample was reconstituted in 2% ACN and 0.5% FA prior to LC MS/MS analysis.

Nano LC-ESI-MS/MS analysis was carried out using an Orbitrap Fusion Tribrid mass spectrometer (Thermo-Fisher Scientific) equipped with a nanospray Flex Ion Source and coupled with a Dionex UltiMate 3000 RSLCnano system (Thermo-Fisher Scientific) (Thomas et al., 2017; Yang et al., 2018). For each reconstituted sample, 8 μL were injected onto a PepMap C-18 RP nano trapping column (5 μm, 100 μm i.d x 20 mm) at 15 μL/min flow rate for rapid sample loading and then separated on a PepMap C-18 RP nano column (2 μm, 75 μm x 25 cm) at 35 °C. The tryptic peptides were eluted in a 60 min gradient of 5% to 38% ACN in 0.1% FA at 300 nL/min, followed by a 7 min ramping to 90% ACN-0.1% FA and an 8 min hold at 90% ACN-0.1% FA. The column was re-equilibrated with 0.1% FA for 25 min prior to the next run. The Orbitrap Fusion was operated in positive ion mode with spray voltage set at 1.6 kV and source temperature at 275°C. External calibration for FT, IT and quadrupole mass analyzers was performed. In data-dependent acquisition (DDA) analysis, the instrument was operated using FT mass analyzer in MS scan to select precursor ions followed by 3 sec “Top Speed” data-dependent CID ion trap MS/MS scans at 1.6 m/z quadrupole isolation for precursor peptides with multiple charged ions above a threshold ion count of 10,000 and normalized collision energy of 30%. MS survey scans at a resolving power of 120,000 (fwhm at m/z 200), for the mass range of m/z 375-1575. Dynamic exclusion parameters were set at 40 sec of exclusion duration with ±10 ppm exclusion mass width. All data were acquired under Xcalibur 3.0 operation software (Thermo-Fisher Scientific).

The raw DDA files for CID MS/MS were queried against peptide databases using Proteome Discoverer (PD) 2.2 software (Thermo Fisher Scientific) using the Sequest HT algorithm. The PD 2.2 processing workflow containing an additional node of Minora Feature Detector for precursor ion-based quantification was used for protein identification. The databases were generated from the X. oryzae strain X11-5A genome, encoding 3,546 proteins (Triplett et al., 2011), plus Tal1c, Tal2h, and Tal3c; the Nipponbare genome (MSU 7; Kawahara et al., 2013), containing 47,418 protein entries; and the Carolina Gold Select genome (Read et al., 2020). For the Carolina Gold Select genome, we reannotated by using hisat2 (Kim et al., 2019) to map to the genome the RNAseq reads we generated previously (Read et al., 2020), then cufflinks (Trapnell et al., 2012) to build gene models. This resulted in 33,956 protein entries. We added the
Xo1₁₁ gene model we predicted previously based on comparative structural analysis (Read et al., 2020). To generate the peptide database, two-missed trypsin cleavage sites were allowed. The peptide precursor tolerance was set to 10 ppm, and fragment ion tolerance was set to 0.6 Da. For the database search, variable modification of methionine oxidation, deamidation of asparagines/glutamine, and fixed modification of cysteine carbamidomethylation were set. Only high confidence peptides defined by Sequest HT with a 1% FDR by Percolator were considered for the peptide identification. The final protein IDs contained protein groups that were filtered with at least 2 peptides per protein. The precursor abundance intensity for each peptide identified by MS/MS in each sample was automatically determined and the unique peptides for each protein in each sample were summed and used for calculating the protein abundance by PD 2.2 software without normalization.

Plasmids used

Cloning Xo1

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pKM43GW</td>
<td>Binary Gateway destination vector, Km’</td>
<td>destination</td>
<td>(Karimi et al., 2005)</td>
</tr>
<tr>
<td>pAR902</td>
<td>Binary Gateway destination vector pKM43GW containing the Xo1₁₁ promoter, Xo1₁₁ sequence of pDONR221:KozXo1, and 35S terminator, Sp’</td>
<td>transformation</td>
<td>This study</td>
</tr>
<tr>
<td>pDONR221:KozXo1</td>
<td>pDONR221 entry vector containing a 'CACC' Kozak sequence immediately upstream of the genomic sequence of Xo1₁₁ with stop codon deleted, Km’</td>
<td>intermediate</td>
<td>This study</td>
</tr>
<tr>
<td>Intermediate:Xo1_1</td>
<td>Genomic clone of Xo1₁₁ with stop codon deleted. Note that cloning strategy resulted in frame-shift for any C-terminal fusions and construct does not include Kozak sequence, Km’</td>
<td>intermediate</td>
<td>This study</td>
</tr>
<tr>
<td>Intermediate:Xo1_2</td>
<td>Same as Intermediate:Xo1_1, but C-terminal frame-shift was corrected, Km’</td>
<td>intermediate</td>
<td>This study</td>
</tr>
<tr>
<td>pDONR41:Xo1Promoter</td>
<td>pDONR_P4-P1r containing the 1kb genomic sequence upstream of Xo1₁₁, Km’</td>
<td>intermediate</td>
<td>This study</td>
</tr>
<tr>
<td>pDONR_P4-P1r</td>
<td>donor vector with attP4 and attP1 (reversed) sites, Km’, Cm’</td>
<td>intermediate</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pDONR23:35St</td>
<td>pDONR_P2r-P3 containing an in-frame stop codon followed by a 35S terminator, Km’</td>
<td>intermediate</td>
<td>(Ivanov and Harrison, 2014)</td>
</tr>
<tr>
<td>pDONR_P2r-P3</td>
<td>donor vector with attP2 (reversed) and attP3 sites, Km’, Cm’</td>
<td>intermediate</td>
<td>Invitrogen</td>
</tr>
</tbody>
</table>
Inoculation assay

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pKEB31</td>
<td>pDD62 derivative containing Gateway destination vector cassette (Invitrogen) between XbaI and BamHI sites, Tc<sup>c</sup></td>
<td>expression</td>
<td>(Cermak et al., 2011)</td>
</tr>
<tr>
<td>pAC99</td>
<td>pKEB31 containing tal1c of BLS256 missing the Spfl repeat-encoding fragment, Tc<sup>c</sup></td>
<td>expression</td>
<td>(Cernadas et al., 2014)</td>
</tr>
<tr>
<td>pKEB31-8-2h</td>
<td>pKEB31 containing Gateway fragment of pAR008-2h, Tc<sup>c</sup></td>
<td>expression</td>
<td>(Read et al., 2016)</td>
</tr>
</tbody>
</table>

Localization

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGWB455</td>
<td>Binary Gateway destination vector for transformation or transient expression of mRFP-tagged proteins, Sp<sup>c</sup>, Cm<sup>c</sup></td>
<td>intermediate/</td>
<td>(Nakagawa et al., 2007; Tanaka et al., 2011)</td>
</tr>
<tr>
<td>pGWB6</td>
<td>Binary Gateway destination vector for transformation or transient expression of GFP-tagged proteins, Km<sup>c</sup>, Cm<sup>c</sup></td>
<td>intermediate/</td>
<td>(Nakagawa et al., 2007)</td>
</tr>
<tr>
<td>pGWB455:Tal1c</td>
<td>Binary vector pGWB455 containing mRFP fusion at N-terminus of Tal1c from pAR009-1c, Sp<sup>c</sup></td>
<td>expression</td>
<td>This study</td>
</tr>
<tr>
<td>pAR008-2h</td>
<td>pAR008 containing the AatII-Sphl CRR of tal2h, Ap<sup>c</sup></td>
<td>intermediate</td>
<td>(Read et al., 2016)</td>
</tr>
<tr>
<td>pAR009-1c</td>
<td>pAR009 containing the AatII-Sphl CRR of tal1c, Ap<sup>c</sup></td>
<td>intermediate</td>
<td>(Read et al., 2016)</td>
</tr>
<tr>
<td>pGWB455:Tal2h</td>
<td>Binary vector pGWB455 containing mRFP fusion at N-terminus of Tal2h from pAR008-2h, Sp<sup>c</sup></td>
<td>expression</td>
<td>This study</td>
</tr>
<tr>
<td>pGWB6:Xo1</td>
<td>Binary vector pGWB6 containing GFP fusion at N-terminus of genomic Xo1<sub>11</sub> sequence from Intermediate:Xo1_2, Kmr<sup>c</sup></td>
<td>expression</td>
<td>This study</td>
</tr>
</tbody>
</table>

Co-IP

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTal1c-3xFLAG</td>
<td>Tal1c sequence from pAR009-1c with C-terminal 3xFLAG tag in pKEB31 expression backbone, Tc<sup>c</sup></td>
<td>expression</td>
<td>This study</td>
</tr>
<tr>
<td>pTal2h-3xFLAG</td>
<td>Tal2h sequence from pAR008-2h with C-terminal 3xFLAG tag in pKEB31 expression backbone, Tc<sup>c</sup></td>
<td>expression</td>
<td>This study</td>
</tr>
</tbody>
</table>

Oligonucleotides used

Read - Supplemental text and figures 7 of 17 MPMI
<table>
<thead>
<tr>
<th>Oligo</th>
<th>Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2492</td>
<td>CAAAAAAGCAGGCTCCGGCGCCGCCACCAA AATGGAGGATGTGGAAGCCTGGTTTGC</td>
<td>Forward primer for amplifying Xo111 genomic sequence - contains NotI site</td>
</tr>
<tr>
<td>b2420</td>
<td>TCATTACCAAAAGCATGCACTTTAATAGTGA</td>
<td>Reverse primer for amplifying Xo111 genomic sequence - contains SpI site</td>
</tr>
<tr>
<td>b2421</td>
<td>TGGTCACTATTTAAAGTGCATGCTTTTGTTAA</td>
<td>Forward primer for amplifying Xo111 genomic sequence - contains SpI site</td>
</tr>
<tr>
<td>b2489</td>
<td>AGAAAGCTGGGTCGGCGCGCCGACAATGCA TTGGAGCGGATT</td>
<td>Reverse primer for amplifying Xo111 genomic sequence - contains Ascl site</td>
</tr>
<tr>
<td>b2644</td>
<td>CGACATCGATGACCCCTCTATCC</td>
<td>Forward primer to fix Xo111 C-terminus frame-shift - contains Clal site</td>
</tr>
<tr>
<td>b2645</td>
<td>GTCGGCGCGGCCCCATCATATCCCCCATT AATTTTG</td>
<td>Reverse primer to fix Xo111 C-terminus frame-shift - contains Ascl site</td>
</tr>
<tr>
<td>b3267</td>
<td>CACCATGGAGGAGTTGGAAGCC</td>
<td>Forward primer to add 'CACC' Kozak sequence</td>
</tr>
<tr>
<td>b3268</td>
<td>GAAGCCTGCTTTTTTGTAACAAAG</td>
<td>Reverse primer to add 'CACC' Kozak sequence</td>
</tr>
<tr>
<td>b3080</td>
<td>GGGGACAACCTTTGTATAGAAAAAGTTGCCTCG AGGGTATAGACCATATTTCCCCTTG</td>
<td>Forward primer to amplify and clone Xo111 promoter sequence</td>
</tr>
<tr>
<td>b3082</td>
<td>GGGGACTGCTTTTTTGTAACAACTTGCGGAAG CAGGAGCAGTCCTTGGAAGCT</td>
<td>Reverse primer to amplify and clone Xo111 promoter sequence</td>
</tr>
<tr>
<td>gBlock 2h</td>
<td>CTGCTTTCGCGCGAGTCCTTGCGCCCGATTTCAAGGAGGGAATCGCATGATGGATCCGG AGACTACAAAGACCCATGCAGGTCATATAAA GATCATGACATCGATTAACAGGATGACGATG ACAAATCGGATGCAAAGGGCAATTCGACC CAGCTTTTCTTGACCAAGTTGCATATAGAA GAAAGCATTCTTATCTACCTTGGTGAAGCAGA CAGGTCATATGCAAAAATGATTACATTTAT TTGCCATCCAGCTGATATCCCCCTATAGGAGT</td>
<td>gBlock to insert FLAG tag at C-terminus of pAR008_2h</td>
</tr>
</tbody>
</table>
gBlock to insert FLAG tag at C-terminus of pAR009_1c

| gBlock 1c | CTGCATTTGCCCCTCAGCTGGAGGGTAAAA CGCCCGCGTACCCAGGTATCTGGGGCGGCCT CCGGATCTCTGGTACGCCCATGGCTGCAG CTGGCAGCGTCCAGCACCGTGATGTGGGA ACAAGATGGCCAGCCTTCTCGAGGGCCGACG GGATGATTTTCCCAGATTCACGAAGAGGA ACTCGCATGGTTGATGGAGCTATTGCCCTAG GGATCCGGAGACTACAAGGACCATGACGTT GATTATAAGATCATGACATCGATTACAAGG ATGACGATGACAAGTCCGGATGAAAGGGCG AATTCGACCCAGCTTTCTTGTACAAAGTGG CATTATAGAAGACATTGGTTCATCAATGGT GCAACGAACAGTGACTATCATCAGTCAAAATAG AATCATTATGGCCATCCAGCTATCCCCT ATAGTGGT |

Xo1 RNAseq analysis

```bash
#SRR files downloaded from ENA -- repeated for all SRR files
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR932/004/SRR9320034/SRR9320034_1.fastq.gz

#Renaming files
mv SRR9320033.fastq.gz Mock3.fastq.gz
mv SRR9320034.fastq.gz 2h1.fastq.gz
mv SRR9320035.fastq.gz EV3.fastq.gz
mv SRR9320036.fastq.gz EV2.fastq.gz
mv SRR9320037.fastq.gz EV1.fastq.gz
mv SRR9320038.fastq.gz Mock2.fastq.gz
mv SRR9320039.fastq.gz Mock1.fastq.gz
mv SRR9320040.fastq.gz 2h3.fastq.gz
mv SRR9320041.fastq.gz 2h2.fastq.gz

#Nipponbare reference genome and annotation downloaded from MSU version 7.0
#genome = all.chrs.fasta
#annotation = all.gff3

gffread all.gff3 -T -o Nippo.gtf

#The genome was indexed for STAR
STAR --runMode genomeGenerate --runThreadN 7 --genomeDir Nippo_Index --genomeFastaFiles allchrs.fasta --sjdbGTFfile Nippo.gtf --sjdbOverhang 100

#Each pair of reads was aligned to the Nipponbare reference -- repeated for all STAR
--runThreadN 8 --runMode alignReads --genomeDir Nippo_Index/ --readFilesIn EV3_1.fastq.gz EV3_2.fastq.gz --outSAMtype BAM SortedByCoordinate --outFileNamePrefix EV3 --readFilesCommand zcat

#Concatenate the count columns from all STAR output to get ready for DESEQ2
paste 2h1ReadsPerGene.out.tab 2h2ReadsPerGene.out.tab 2h3ReadsPerGene.out.tab EV1ReadsPerGene.out.tab EV2ReadsPerGene.out.tab EV3ReadsPerGene.out.tab
```
Mock1ReadsPerGene.out.tab Mock2ReadsPerGene.out.tab Mock3ReadsPerGene.out.tab | cut -f1,2,6,10,14,18,22,26,30,34 | tail -n +5 > gene_count.txt

#Create a sample file to link treatment to count - it should look like this:
#Sample Trtmnt
#2h1 2h
#2h2 2h
#2h3 2h
#EV1 EV
#EV2 EV
#EV3 EV
(Mock1 mock
(Mock2 mock
#Mock3 mock

With these files I was able to run DESEQ2 in Rstudio V1.2.5033
#note that this includes analysis such as the PCA that are not displayed in the manuscript

matrixFile <- "gene_count.txt"
sampleFile <- "samples.txt"
cnt <- as.matrix(read.csv(matrixFile, sep="\t", row.names=1, header=FALSE))
coldata <- read.csv(sampleFile, sep="\t", row.names=1, header=TRUE)
#head(coldata)
#head(cnt)
colnames(cnt) <- rownames(coldata)

if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
if (!requireNamespace("DESeq2", quietly = TRUE)) BiocManager::install("DESeq2")
if (!requireNamespace("dplyr", quietly = TRUE)) install.packages("dplyr")
if (!requireNamespace("pheatmap", quietly = TRUE)) install.packages("pheatmap")
if (!requireNamespace("tidyverse", quietly = TRUE)) install.packages("tidyverse")

library(DSEq2)
library(dplyr)
library(pheatmap)
library(tidyverse)

dds <- DESeqDataSetFromMatrix(countData=cnt, colData=coldata, design =~ Trtmnt)
dds.data <- DESeq(dds)
head(dds.data)

vsd <- vst(dds, blind=FALSE)
pca = plotPCA(vsd, intgroup = "Trtmnt")
pca
pcadata

#Mock_vs_2h - this is Mock vs Disease
Mock.2h <- results(dds.data, contrast=c("Trtmnt", "Mock", "2h"), alpha = 0.05)
Mock.2h %>% head()
write.csv(Mock.2h, file = paste0("Mockvs2h_results.csv"))
#Mock_vs_EV - this is Mock vs HR
Mock.EV <- results(dds.data, contrast=c("Trtmnt", "Mock", "EV"), alpha = 0.05)
Mock.EV %>% head()
write.csv(Mock.EV, file = paste0("MockvsEV_results.csv"))

#EV_vs_2h - This is HR vs Disease
EV.2h <- results(dds.data, contrast=c("Trtmnt", "EV", "2h"), alpha = 0.05)
EV.2h %>% head()
write.csv(EV.2h, file = paste0("EVvs2h_results.csv"))

comp = as.data.frame(Mock.2h)
hmap.query = comp %>%
 rownames_to_column("genes") %>%
 filter(., padj < 0.05 & baseMean > 1000)

vsd.table = as.data.frame(assay(vsd))
hisat2-build reconciled_assembly_v4.fa reconciled_assembly_v4

Carolina Gold genome annotation

hisat2-build reconciled_assembly_v4.fa reconciled_assembly_v4
hisat2 --max-intronlen 20000 -k 1 -p 8 --no-softclip --dta-cufflinks -x reconciled_assembly_v4 -1
Mock_1_RNAseq_forward_paired.fq.gz -2 Mock_1_RNAseq_reverse_paired.fq.gz -S
Mock_1_RNAseq.cufflinks.sam > hisat2.Mock_1.cufflinks.log 2>&1 &
hisat2 --max-intronlen 20000 -k 1 -p 8 --no-softclip --dta-cufflinks -x reconciled_assembly_v4 -1
Mock_2_RNAseq_forward_paired.fq.gz -2 Mock_2_RNAseq_reverse_paired.fq.gz -S
Mock_2_RNAseq.cufflinks.sam > hisat2.Mock_2.cufflinks.log 2>&1 &
hisat2 --max-intronlen 20000 -k 1 -p 8 --no-softclip --dta-cufflinks -x reconciled_assembly_v4 -1
Mock_3_RNAseq_forward_paired.fq.gz -2 Mock_3_RNAseq_reverse_paired.fq.gz -S
Mock_3_RNAseq.cufflinks.sam > hisat2.Mock_3.cufflinks.log 2>&1 &
samtools view -F 4 -Shub Mock_1_RNAseq.cufflinks.sam > Mock_1_RNAseq.cufflinks.bam
samtools sort -o Mock_1_RNAseq.cufflinks.sorted.bam Mock_1_RNAseq.cufflinks.bam
samtools view -F 4 -Shub Mock_2_RNAseq.cufflinks.sam > Mock_2_RNAseq.cufflinks.bam
samtools sort -o Mock_2_RNAseq.cufflinks.sorted.bam Mock_2_RNAseq.cufflinks.bam
samtools view -F 4 -Shub Mock_3_RNAseq.cufflinks.sam > Mock_3_RNAseq.cufflinks.bam
samtools sort -o Mock_3_RNAseq.cufflinks.sorted.bam Mock_3_RNAseq.cufflinks.bam

samtools merge Mock_RNAseq.cufflinks.sorted.bam Mock_1_RNAseq.cufflinks.sorted.bam
Mock_2_RNAseq.cufflinks.sorted.bam Mock_3_RNAseq.cufflinks.sorted.bam
cufflinks -p 8 Mock_RNAseq.cufflinks.sorted.bam > cufflinks.log 2>&1 &
gffread transcripts_Mock.gtf -g reconciled_assembly_v4.fa -w transcripts_Mock.fa
TransDecoder.LongOrfs -t transcripts_Mock.fa
./interproscan.sh --output-dir . --input longest_orfs.pep --iprlookup --seqtype p --appl Coils,Gene3D,ProSitePatterns,Pfam, Panther,SUPERFAMILY > longest_orfs_interproscan.log 2>&1 &

#this was repeated for the 2h and EV datasets
Heatmap and PCA generation in R

```r
#Heatmap All HR DEGs
HR_NA=read.table("Table_S1_All_HR_DEGs.txt", sep="\t", header=TRUE, row.names=1)
HR_NA_matrix=data.matrix(HR_NA)
superheat(HR_NA_matrix, heat.na.col = "black", title="All HR DEGs",
        title.size = 8, grid.vline.col = "white")

#Heatmap Only GO:0006952
Def_DEGs=read.table("Table_S2_Defense_HR_DEGs.txt", sep="\t", header=TRUE, row.names=1)
Def_DEGs_matrix=data.matrix(Def_DEGs)
superheat(Def_DEGs_matrix, heat.na.col = "black", title="Defense DEGs",
        title.size = 8, grid.vline.col = "white")

#Heatmap to compare overlapping Defense GO HR and Disease
Overlap_GODEGs=read.table("Table_S3_CGS_Disease_and_HR_DEGOverlap.txt", sep="\t",
                          header=TRUE, row.names=1)
Overlap_GODEGs_matrix=data.matrix(Overlap_GODEGs)
superheat(Overlap_GODEGs_matrix, heat.na.col = "black", title="Disease DEGs CGS Overlap",
        title.size = 8, grid.vline.col = "white")

#Principal Component Analysis
data = read.table(file="rice_pathogen_RNAseq.txt", sep="\t", header=T)
pcs=prcomp(t(x),center=T, scale.=T, retx=T)

postscript(file="rice_pathogen_RNAseq_v2.ps", width=4, height=6)
plot(pcs$x[,2],pcs$x[,1], xlab="", ylab="", main="")
dev.off()
```
Supplemental Figures

![Xoc CFBP7331](image)

Fig. S1. Confirmation of CFBP7331(EV) and CFBP7331(p2h) inoculum on Nipponbare and Carolina Gold plants. Leaves were syringe-infiltrated with African Xoc strain CFBP7331 carrying either empty vector (EV) or tal2h (p2h) adjusted to OD₆₀₀ 0.4, and incubated for 10 days to allow lesion expansion. Leaves were photographed on a light box. Resistance is apparent as HR (necrosis) at the site of inoculation and disease as expanded, translucent watersoaking.

![Symptoms on Carolina Gold Select and Nipponbare leaves](image)

Fig. S2. Symptoms on Carolina Gold Select and Nipponbare leaves caused by inoculum used for the co-IP experiments. Photos were taken with overhead lighting 4 days after syringe infiltration. Resistance is apparent as HR (brown) and disease as watersoaking (dark green).
Fig. S3. Western blot of immunoprecipitates using anti-TALE antibody. Aliquots of the eluted immunoprecipitates from co-immunoprecipitation experiments 1 (A) and 2 (B) were resolved by 7.5% Tris-Glycine SDS-PAGE and probed with anti-TALE antibody. An asterisk indicates a 3x FLAG fusion.
Fig. S4. SDS-PAGE of immunoprecipitates and size range excised for mass spectrometry.
A 4-20% polyacrylamide gel was used and proteins were stained using SYPRO Ruby. Samples were placed a lane apart to avoid cross-contamination. Red lines represent the region of the gel that were excised, containing proteins between approximately 60 and 300 kDa, and digested before mass spectrometry analysis. This gel is from the second co-immunoprecipitation experiment.

Supplemental References

Ivanov, S., and Harrison, M.J. 2014. A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to...

