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Where did the time (series) go? Estimation of marginal emission 

factors with autoregressive components 

 

Abstract 

 

This paper offers a novel contribution to the literature on Marginal Emission Factors (MEF) 

by proposing a robust empirical methodology for their estimation across both time and 

space. Our Autoregressive Integrated Moving Average models with time-effects not only 

outperforms the established models in the economics literature but it also proves more 

reliable than variations adopted in the field of engineering. Utilising half-hourly data on 

carbon emissions and generation in Great Britain, the results allow us to identify a more 

stable path of MEFs than obtained with existing methodologies. We also estimate marginal 

emission effects over subsequent time periods (intra-day), rather than focussing only on 

individual settlement periods (inter-day). This allows us to evaluate the annual cycle of 

emissions as a result of changes in the economic and social activity which drives demand. 

Moreover, the reliability of our approach is further confirmed upon exploring the cross-

country context. Indeed, our methodology proves reliable when applied to the case of Italy, 

which is characterised by a different data generation process. Crucially, we provide a more 

robust basis for valuing actual carbon emission reductions, especially in electricity systems 

with high penetration of intermittent renewable technologies. 
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1 Introduction 

Greenhouse gas (GHG) emissions are the main target of energy policy aiming to reduce air 

pollution and to mitigate the damaging effects of climate change. A rich literature exists 

which covers the estimation of the intertemporal and spatial patterns of GHG emissions, 

primarily carbon dioxide (CO2), produced by electricity generators operating at the margin of 

the merit order stack, where plants are dispatched in ascending order of marginal costs. The 

value of these methodological contributions derives from the power of the proposed methods 

to rigorously assess the impact of energy policy interventions on the GHG emitted by the 

marginal, price-setting generators operating at a given point in time. There is growing 

determination, at the national and international level, to implement policies which encourage 

the displacement of carbon intensive generation by low-carbon technologies and demand-side 

management (CCC, 2018; EC, 2018). Policy efficacy, however, will fundamentally depend 

on the carbon intensity of the generators which are displaced, compared to that of the 

generators replacing them.  

Regressing daily carbon emissions on inter-day demand, i.e. within each settlement period, 

whilst controlling for spatial and/or temporal fixed effects, has formed the workhorse method 

adopted to estimate Marginal Emission Factors (MEFs) in the existing literature, as discussed 

in more detail in Section 2. The MEFs estimated herein follow the conventional 

interpretation, i.e. the carbon intensity of thermoelectric power units of generation (Li et al., 

2017). Precise MEF estimates are central to an evidence-based understanding of the efficacy 

of fossil fuel displacement and to the accurate remuneration of the marginal, rather than 

average, carbon emission abatement. This approach has enabled researchers to explore the 

impact of economic events, policy interventions and new technologies on MEFs. Key 

contributions to this literature have evaluated the environmental impact of the introduction of 

real-time pricing (Holland and Mansur, 2008), of increased penetration of wind generation 
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(Callaway et al., 2009), of electricity storage (Carson and Novan, 2013) and of the fracking 

revolution (Holladay and LaRiviere, 2017). All these contributions investigated the United 

States‟ (US) electricity sector. 

In this paper we suggest that the current practice could be complemented by exploiting the 

tools of econometric time series methods and for this reason, we propose the use of 

Autoregressive Integrated Moving Average (ARIMA) models to estimate MEFs. Our 

proposed approach involves modelling the time series data generating processes of CO2 

emissions and comparing and testing the outcome against estimates based on established 

methods in this field, in order to ascertain whether the prevailing empirical methodology is 

appropriate for modelling the data and to identify previously undetected biases, should they 

exist. 

We contribute to the existing literature on three fronts. First, we establish whether using a 

time series approach is advantageous compared to the prevailing empirical frameworks. This 

is achieved by testing for stationarity in the emissions and energy demand time series for 

each settlement period (i.e. inter-day). We then assess the extent to which our proposed 

approach improves (in terms of model fit) the estimated MEFs, compared to previous 

approaches. In a similar way to more established approaches, our method focuses on the 

marginal contribution to emissions by generators using different types of fuel during specific 

settlement periods. By concentrating on individual settlement periods one can control for 

time invariant, intraday fixed effects, such as consumers‟ demand profiles and general socio-

economic conditions.  

Second, we propose an alternative approach which requires the estimation of MEFs using 

half hourly time series (i.e. intra-day). This approach can be computationally demanding, 

especially if the time series are non-stationary and involve fractional integration parameters. 

However, the interpretation of the results of this approach is more intuitive, since we can 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



directly estimate the marginal change in emissions as a result of a change in generation from 

one settlement period to the next (i.e. by time period), as a result of variation in demand 

behaviour during the day, rather than the variation from one day to the next (i.e. by settlement 

period) as in the more established (inter-day) approach. For this reason, we defined the MEFs 

estimated with the former method as „intra-day MEFs‟ and those estimated with the latter as 

„inter-day MEFs‟. From a technical point of view the new approach allows us to consider a 

larger sample size compared to the „inter-day MEF‟ approach, where we rely only on a 

limited number of observations for each settlement period. The larger number of observations 

used in the „intra-day MEF‟ methods also allows us to generate more robust parameter 

estimates. Furthermore, this approach permits the evaluation of the impact of policy measures 

aimed at influencing consumers‟ behaviour regarding the timing of energy production, 

storage or consumption activities
1
, for instance through the introduction of time-of-use tariffs 

and real time pricing. 

Finally, we establish the extent to which our model performs best across the context of space 

(i.e. Great Britain and Italy). This allows us to assess whether the proposed methodology is 

robust when applied to regions which differ by generation mix. The Italian case provides an 

interesting robustness check in this regard, as the emissions data are processed using 

disaggregated plant-level hourly information and the electricity generation data represents 

day-ahead values rather than actual values. We find that our proposed time series models 

outperform the methods currently applied in the literature in terms of model fit across the 

context of time and space. Moreover, they generate a more stable path, which can be used 

more effectively to assess the impact of policy measures on environmental targets and tax 

revenues, as discussed in section 5. The remainder of the paper is structured as follows: 

section 2 presents the related literature; section 3 describes the data; section 4 presents our 

                                                 
1 This change in consumption patterns would be possible for consumers who acquire self-generation facilities, storage technology or electric 
vehicles. 
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empirical specification and results, before discussing policy implications and drawing 

conclusions in section 5.  
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2 Literature review 

We categorise the prevailing methods in the existing literature into two groups. We define the 

first group as the „US fixed-effects‟ approach, while the second is labelled as the „Hawkes‟ 

approach, which was first applied to Great Britain‟s (GB hereafter) energy system. 

The US fixed-effects (US-FE hereafter) approach, which has been utilised to estimate the 

impact of key policy interventions on marginal emissions, can be traced back to Holland and 

Mansur (2008) and to an early version of Callaway and Fowlie (2009).
2
 The former 

developed an econometric framework to estimate the impact of demand variance on marginal 

emissions, while the latter used a similar approach to estimate the change in marginal 

emissions following the deployment of large-scale renewable generation and energy 

efficiency projects.  

The key equation underpinning the generalised US-FE approach can be described as follows:  

                       (1) 

where, Ehrt represent emissions (e.g. CO2, Nitrous Oxide or Perfluorocarbons) and Ghrt 

electricity output (generation) at hour h=1,…,H, within region r=1,…,R of day t=1,…,T. The 

vector of time and regional fixed effects is represented by hr with values equal to 1 for each 

hour and for each region and 0 otherwise.
3
 The hour-region fixed effects hr measure the 

average levels of emissions. The idiosyncratic shock is represented by the error term hrt 

which is assumed to follow a Normal distribution.  

Crucially, hr denotes the marginal change in emissions following a marginal increase (or 

decrease) in electricity output, the so-called marginal emission factor (MEF). In a recent 

contribution adopting this approach, Callaway et al. (2018) calculate seasonally weighted 

average point estimates of the MEFs following a unit (MWh) change in renewable generation 

                                                 
2 Later published as Callaway et al. (2018). 
3 Seasonal indicator variables can also be included (see Callaway et al., 2018). 
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for six independent system operator regions. According to their results, 896 lbs/MWh (406 

kg/MWh) were estimated for California – a region characterised by lower average emissions 

intensity – and 1870 lbs/MWh (848 kg/MWh) for the Midcontinent Independent System 

Operator‟s area – which, in contrast, exhibits a relatively high average emission intensity. 

Their results indicate that the marginal generators in California and the Midcontinent are 

most likely combined cycle gas plants (CCGT) and coal plants, respectively, since the 

estimated MEFs are close to the Average Emission Factor (AEF) i.e. the average level of CO2 

emitted within an energy system or by fuel type (Hawkes, 2014; National Grid, 2017). 

Holladay and LaRiviere (2017) employ hour, day, and year fixed effects in order “to account 

for within and across day variation in emission rates” (Holladay and LaRiviere, 2017, p. 206). 

Importantly, they rely on exogenous variation in the natural gas prices as a result of the 

introduction of shale gas from fracking to estimate the impact of wind generation on marginal 

emissions. Their results suggest that, on average, a significant reduction in emissions at the 

margin (6%) can be attributed to wind generation, while the impact of solar generation at the 

margin is negligible on average (although with significant regional heterogeneity). 

Building on the empirical framework of Holland and Mansour (2008) and Callaway and 

Fowlie (2009), Carson and Novan (2013) use the spatial and temporal variation in MEFs to 

simulate the environmental impact of price arbitrage (i.e. purchasing electricity off-peak to 

discharge during peak periods) using storage technology in the form of batteries. Perhaps 

counterintuitively, the authors‟ results reveal that charging batteries during the night in order 

to discharge at the peak the following day could actually increase carbon emissions due to 

the relatively high marginal emission factors associated with the periods of low demand 

during the night. Similar conclusions were drawn by Graff Zivin et al. (2014) using the case 

of plug-in electric vehicles as storage facilities. 
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Other researchers have applied a similar approach to the US-FE method when estimating the 

rate of pass-through of the costs attributed to carbon trading mechanisms in the power sector. 

For example, Fabra and Reguant (2014) estimate the impact of marginal emission costs 

(based on average emission rates) on market prices using linear regression with the inclusion 

of a suite of fixed effects.  

Hawkes (2010) developed a modelling framework for MEFs that is similar to that of 

Callaway and Fowlie‟s early work (2009):
4
 

                     (2) 

where ∆ represents the difference operator and ∆Ehrt measures the difference in emissions 

between current and the preceding day, taking the h settlement period as constant, i.e.  

∆Ehrt = Ehrt – Ehrt-1 for h = 1,…,H, region r = 1,…,R and t = 2,…,T, where T is the number of 

days in the sample period. The same structure applies to generation levels Ghrt. The effect of 

the marginal change in generation (or system load) on the change in system emissions gives 

rise to Hawkes‟ estimates of the MEF (hr). 

Hawkes therefore suggests differencing the series in order to estimate a change (difference) 

in emissions from one period to the next. However, in a time series setting differencing is 

typically applied to control for seasonal effects, trends or long-run dependence, i.e. if the time 

series of interest is non-stationary of order d, denoted [I(d)], it has to be differenced to make 

it stationary, denoted [I(0)]. We test the choice of taking differences over time and discuss it 

further in section 4. Using data for GB between 2002 and 2009, Hawkes arrived at a MEF 

point estimate of around 690 kgCO2/MWh. In a similar way to the US case, the estimated 

MEF exceeds the AEF of 510 kgCO2/MWh for GB over the same period. The MEF lies 

between the AEF for coal and gas, which implies that the marginal generator might be 

switching between coal and gas fired power plants, on average, in the short-run.  

                                                 
4 Note that in Hawkes‟ investigation, the subscript r denotes the whole of the GB energy system. 
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It is noteworthy that Hawkes (2010)‟ seminal paper considers short-run MEFs. Long-run 

MEFs, which encompass system-wide structural changes for the duration of a given 

intervention,
5
 were proposed later (Hawkes, 2014). Small, short-run structural changes are 

relevant here, not only because this conceptual framework provides a consistent basis for 

comparison across the economic and technoeconomic literature cited above and is 

appropriate for the timescale of the present analysis (up to a couple of years, rather than 

decades). 

Hawkes‟ short-run approach forms the basis for recent studies on emission displacement 

resulting from increased wind power (Thomson et al., 2017) and wind and solar power 

(Jansen et al., 2018; Li et al., 2017) in GB and the US. Jansen et al.‟s approach to estimating 

MEFs is closest to our intra-day approach as they aggregate half-hourly information to daily 

frequency to be used in their regression analysis. They argue in favour of such aggregation by 

stating that “half-hourly [MEFs] may not reflect start-up and shutdown behaviour of power 

plants correctly. Accumulating the data set to daily averages alleviates this problem” (Jansen 

et al., 2018: 4). Their estimated MEFs for 2017 are of similar magnitude to those obtained in 

this paper, however their reliance on Hawkes‟ approach, as we discuss later, could be 

reconsidered on the grounds of greater methodological accuracy of our proposed approach
6
. 

Furthermore, their work differs from ours as the focus of their analysis is the effect of partial 

load of fossil fuel plants on MEFs calculations rather than the methodological issue of 

seeking a correct dynamic specification for the chosen regression equation.  

                                                 
5 In a similar vein, whilst regression analysis is established as a precise yet flexible approach for short-run system-level phenomena, power 
plant dispatch simulation models may provide a credible alternative for long-run analyses, particularly when high frequency data is 

unavailable (Deetjen and Azevedo, 2019). Moreover, Deetjen and Azevedo (2019) recently identified that regression estimates of MEFs 

achieve lower error compared to dispatch modelling, hence lending further support to the approach proposed in the present paper. 
6
 It is important to point out that Jansen et al.‟s results should be considered as preliminary because their data do not allow them to correctly 

account for plants‟ start up and shutdown behaviour. 
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3 Data sources and description 

We obtained the carbon-based generation data from ELEXON‟s „instantaneous generation by 

fuel type‟ BMReports for all settlement periods between 01/01/2017 and 09/11/2018.
7
 

ELEXON is responsible for assessing and pricing the difference between proposed and actual 

electricity volumes in the UK. Our analysis relies on actual half hourly generation for 

combined cycle gas turbine (CCGT), open cycle gas turbine (OCGT), coal, oil, biomass and 

„other‟
8
. We follow this approach in order to avert biasing our marginal emission estimates, 

since non-fossil fuel generation (i.e. nuclear, hydro power, solar, wind) might be correlated 

with net load (as discussed by Callaway et al. (2018)). For this reason, it is noteworthy that 

we estimate marginal emissions for actual electricity generated, rather than electricity 

supplied to the grid plus imports via interconnectors (e.g. France, Netherlands), since 

ELEXON provides data on total actual generation imported which comprises fossil and non-

fossil generation (e.g. electricity from nuclear generation is likely to be imported from 

France, as nuclear represents a much greater share of France‟s electricity generation). 

Moreover, the utilisation of national generation data, rather than load, hones in on the carbon 

intensity of generation, instead of consumption-based carbon intensity which suffers 

relatively more from the complexities associated with carbon accounting, particularly in the 

presence of cross-border flows (Tranberg et al., 2019). 

We calculate total emissions Eth per settlement period h at day t as follows: 

    ∑        
 

   
 

(3) 

                                                 
7 Data publicly available via: https://www.bmreports.com. 
8 Other includes non-fuel oil (e.g. gas diesel oil), coke and non-natural gas (e.g. blast furnace gas, refinery gas, waste/recovered gas from 
chemical processes) (BEIS, 2017). 
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where, Gfth and cf denote generation of the fossil-fuel type f and the respective carbon 

intensity factor for fuel type f (see National Grid, 2017, Table 1).
9
 

Table 1 presents the summary statistics for CO2 emissions (tonnes) and fossil-fuel generation 

(MWh) between 2017-01-01 (00:00) and 2018-11-09 (23:30). Each observation represents a 

single half-hourly settlement period per day: for example, the first settlement window opens 

at 00:00 and closes at 00:30 each day. We have a complete set of observations for more than 

30,000 settlement periods
10

. During this period, on average, 4.75 kilotons (kt) of carbon were 

emitted per settlement period and fossil-fuel generation averaged at 16.5 GWh per settlement 

period.  

[INSERT TABLE 1 ABOUT HERE] 

 

The summary statistics for CO2 emissions and fossil-fuel generation in Table 1 are organised 

by season and show a pattern according to which CO2 emissions rise during the autumn, peak 

in the winter and fall throughout the spring and reach the trough in summer.
11

 

4 Model specification and results 

This section presents our model specification which relies on two different approaches. The 

first approach sets out to estimate MEFs by settlement period as standard in the existing 

literature (i.e. inter-day analysis). Second, we estimate MEFs over the complete time series 

by season and by month (i.e. intra-day analysis). As will become apparent, the unit-root and 

stationarity tests and the information criteria favour the ARIMA or Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) model over the US approach and in most 

instances over Hawkes‟ model with time effects. The same holds when moving from the time 

dimension to space, which we perform using Italian data in addition to GB data. 

                                                 
9 Both generation and carbon emission data have been adjusted for daylight saving time (i.e. from UTC to BST). 
10 More precisely: N = 32,544 = 678 (days) x 48 settlement periods. 
11 Summary statistics for each 48 half-hourly settlement period for carbon emissions and fossil-fuel generation can be found in Tables A1 
and A2 in the Reviewers‟ Appendix. 
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4.1 Across time: The inter- vs. intra-day context 

Figure 1 presents the time series (TS), autocorrelation functions (ACF) and partial 

autocorrelation functions (PACF) of the residuals estimated using the seasonally adjusted and 

detrended CO2 series for selected settlement periods taking place during the morning peak 

(08:00) and evening peak (19:00) and in two night-time periods (03:00 and 23:00). The plots 

have been produced using the residuals of a linear regression which removes seasonal effects 

by regressing CO2 emissions on time indicators (i.e. day, month and year), a linear time trend 

and two indicators controlling for two unusually cold weather events.
12

 In light of these 

events, we performed a unit root test that is robust to the presence of structural breaks. 

[INSERT FIGURE 1 ABOUT HERE] 

The time series and autocorrelation functions exhibit the properties of a stationary 

Autoregressive (AR) process of order 1 or at most an AR(2) series.
13

, as confirmed by the test 

statistics for the Augmented-Dickey-Fuller (ADF), Phillips-Perron (PP) and Clemente-

Montañés-Reyes (CMR) unit root tests and for the Kwaitkowski-Phillips-Schmidt-Shin 

(KPSS) and robust (RKPSS; see Pelagatti and Sen, 2013) stationarity tests listed in Table 2. 

The robust version is applied as the KPSS test can be biased in the presence of jumps in 

electricity generation (Grossi and Nan, 2019). The former three tests unanimously reject the 

null hypotheses of a unit root, while the latter two KPSS tests cannot reject the hypothesis of 

stationarity (i.e. short memory process) excluding one case at the 5% level. 

[INSERT TABLE 2 ABOUT HERE] 

An important consequence of these findings is that Hawkes‟ model does not represent, from a 

statistical perspective, the most parsimonious approach for estimating inter-day MEFs in the 

                                                 
12 The „Beast from the East‟ hit the UK between 24th February 2018 and 4th March 2018 and the „mini-Beast from the East‟ followed during 
17th March 2018 and 19th March 2018. All fixed time effects, excluding monthly seasonality, are not significant at conventional levels. 

Several series are detrended due to a generally weak but significant trend parameter (10% level). 
13 Similar results are observed when focusing specifically on average peaks (06:30-10:30 and 16:30-20:30) and average off-peaks (00:00-
06:00; 10:30-16:30; and 20:30-23:30). 
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time period we examine for GB. Neither the autocorrelation functions nor the unit root and 

stationarity tests point towards the need to use the first difference of the carbon emissions 

series. In light of this result, we present the Hawkes and Hawkes-FE estimates only in the 

Appendix
14

 and consider them as a robustness check. Going forward we focus on comparing 

our findings derived from the ARIMA model to the US-FE model, since both models are 

estimated in levels rather than differences. 

We depart from the preceding literature by explicitly modelling the time series data 

generating process. This is achieved by utilising an ARFIMA model, whilst controlling for 

the time-effects, as per the US-FE approach, thereby labelling our model as ARFIMA-FE. 

Identifying the autoregressive and moving average structure of the emissions time series is 

needed in order to account for the dependence pattern of the data generating process. Time 

series data are often characterised by autocorrelation between the current and past periods. 

The order of the autoregressive and moving average process will be selected by using the 

Akaike and Bayesian information criteria.  

However, a crucial assumption of ARMA models is the stationarity of the data generating 

process. Electricity prices and consumptions time series have been found to have long 

memory (see for instance Gianfreda and Grossi, 2012) which implies that the hypotheses of 

unit root and stationarity are both rejected. When a unit root hypothesis is rejected 

differentiating the original time series is not justified and for this reason MEFs estimated on 

the basis of the first difference of carbon emissions are questionable. On the other hand, when 

stationarity is rejected, it is necessary to introduce a possible order of fractional integration.
15

 

Indeed, some of the existing literature acknowledges time series elements contained within 

emissions data. For example, Carson and Novan (2013), Graff Zivin et al. (2014) and 

Holladay and LaRiviere (2017) control for serial correlation (and heteroskedasticity) using 

                                                 
14 Reviewer‟s appendix, Tables A4 and A7. 
15 Represented by the „FI‟ term in the ARFIMA abbreviation 
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Newey-West standard errors and clustering at either daily or hourly frequency. All key papers 

discuss issues surrounding seasonality.  

The current literature does not specify the benefits of the current fixed effects method over a 

time-series approach, which explicitly accounts for the time-dependency of the data. The 

final goal is to take into account the autocorrelation of the residuals whilst estimating the 

marginal effect of electricity generation on emissions. To explore this issue, we employ the 

following regression model with ARFIMA errors
16

: 

  ( )(   )
 (         )        ( )    (4) 

 

with      (   
 )  As it has been established that the daily series used to estimate inter-day 

MEFs are stationary (see Table 2), the specification in Equation (4) is simplified to a standard 

ARMA, since the order of integration (d) equals zero: 

  ( )(         )       ( )    (5) 

 

where L represents the lag operator, with   ( )    ∑    
  

    and   ( )    ∑    
  

    

denoting the autoregressive (AR) and moving average (MA) polynomials, respectively. In 

this framework, the estimated coefficient   ̂ has the same interpretation as in static regression 

shown in equation (1). Thus, in the case of estimating inter-day MEFs per settlement period 

neither integration, nor fractional integration, is required and our models have a simple 

ARIMA structure with zero order of integration.
17

  

We account for seasonality hr using hour, month and year indicators and follow the more 

established literature by estimating the MEFs per cross-section of time, in our case for each 

                                                 
16 The authors wish to thank an anonymous referee who has suggested the correct notation of the regression model with AR(F)IMA errors. 
17 The ARIMA order terms were selected on the basis of minimising the Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC), and generally specified as ARIMA(1,0,1), ARIMA(2,0,1) or ARIMA(1,0,2). 
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half hourly settlement period h = 1,…,48. It is important to note that the time indicators 

included are consistent across models in order to compare model fit – in other words we 

ensure that the US-FE model is nested within the ARIMA and that both models are nested 

within the ARFIMA. Moreover, we use robust standard errors to account for 

heteroskedasticity.
18

 As in the unit root and stationarity tests, we include indicator variables 

to control for unusually cold events. Although the KPSS tests have not rejected the 

hypothesis of stationarity, the ARFIMA model is implemented, together with the Hawkes 

models, as an additional robustness check, with order of integration d in Equation (4) 

required to fall between -0.5 and 0.5. 

In addition to the approaches discussed above, we also estimate MEFs using a more „natural‟ 

or intuitive approach, that is, over a complete time series by meteorological season and by 

month, rather than within cross-sections of settlement periods day-on-day. As stated in the 

introduction, the estimated MEFs are labelled “intra-day” MEFs because they measure the 

emission changes connected to changes in consumption driven by underlying patterns of 

weather, which can be captured only when contiguous settlement periods are considered and 

compared over time. The parameters of interest are estimated by splitting the original time 

series into sub-series related to different seasons and months.
19

  

Whilst all unit root tests presented in Table 3 suggest that the series by season are stationary, 

the RKPSS test consistently rejects the null of stationarity. Moreover, given the fact that the 

residuals‟ time series and (partial) autocorrelation plots are at odds with the unit roots tests 

(Figure 2), it is clear that the series are fractionally integrated.
20

 Therefore, in contrast with 

                                                 
18 The errors are robust and clustered by day for all other models (i.e. US-FE, Hawkes and Hawkes-FE) in order to capture serial correlation 

and heteroskedastic errors. The results are similar to those estimated using Newey-West standard errors. 
19 This approach has been applied in order to work with tractable sample sizes for the estimation of the computationally intensive fractional 

integrated ARIMA processes described in Equation (4) and Equation (5). 
20 A similar pattern emerges in tests on series split by month (See Table A5 in the Reviewers‟ Appendix). Taking this information together 
with Figures A.2 (A – F) we conclude that the monthly series are also likely to be fractionally integrated. 
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the inter-day approach which points towards ARIMA as the best fitting model, the intra-day 

approach appears to require ARFIMA. 

[INSERT TABLE 3 ABOUT HERE] 

[INSERT FIGURES 2 ABOUT HERE] 

Figure 3 presents the average inter-day MEFs per half hourly settlement period for the 

following models: 1) the „US-FE‟ (i.e. linear regression controlling for time-effects); 2) our 

ARIMA-FE and 3) the „ARFIMA-FE‟ models; 4) the „Hawkes‟ approach (i.e. linear 

regression in differences) and 5) the „Hawkes-FE‟ model with time-effects
21

. 

 [INSERT FIGURE 3 ABOUT HERE] 

The similarity between the ARIMA-FE and ARFIMA-FE estimates of inter-day MEFs 

clearly shows that the latter does not add much in the way of explanatory power and confirms 

the outcome of the unit root and stationarity tests in the sense that differencing the series 

(even fractionally) is unjustified. The Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) support the more parsimonious approach since in the majority of 

cases the criteria values are minimised by the ARIMA-FE model (Table 4)
22

. In the large 

majority of cases the information criterion values for ARIMA-FE fall below those of the US-

FE model and of the ARFIMA-FE, hence, the ARIMA-FE outperforms all others in terms of 

model-fit.  

[INSERT TABLE 4 ABOUT HERE] 

In Figure 3 the ARIMA-FE results lie between the US-FE and Hawkes-FE and appear to 

generate an average path for marginal emissions between these models. This is, in our 

opinion, a key advantage of the general ARIMA approach because it generates the most 

stable trajectory over time, compared to the traditional models. The stable trajectory refers to 

                                                 
21 The point estimates for all GB models are provided in the Reviewers‟ Appendix (see Tables A3- A4) 
22 See Table A6 in the Reviewers‟ Appendix for the results covering the period 13:00-23:30 and Table A7 for information criteria values for 
Hawkes and Hawkes-FE models. 
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the most precise path of MEFs estimated across models. The increased stability of the 

parameters according to our proposed approach is most notable when observing: 1) the path 

of the ARIMA-FE and ARFIMA-FE results, in Figures 3 to 5
23

; and 2) the variation level and 

the coefficient of variation for the ARIMA-FE and ARFIMA-FE MEFs estimates which are 

at most equal to and in nearly all cases lower than for the established approaches (Table 5) 

thereby lending support to the claim that our approach improves the precision of MEF 

estimation
24

.  

[INSERT TABLE 5 ABOUT HERE] 

It is noticeable that the US-FE estimates (dashed line in Figure 3) paint a slightly different 

picture to all others. Whilst peaks and troughs for carbon emissions follow a similar path 

there is an almost fixed difference of around 50 kgCO2/MWh, on average. Given the fact that 

the choice of the ARIMA model is supported by the information criterion, it could be argued 

that the approach currently taken in the literature, which relies upon controlling for fixed 

effects, is biased upwards. A similar argument can be applied to the Hawkes approach, which 

appears biased towards zero in the range of 2 kgCO2/kWh, on average. 

 [INSERT FIGURE 4 HERE] 

The ARFIMA-FE model was also applied to a complete set of half-hourly time series of 

emissions on generation by season (Figure 4a – 4c). The AR and MA orders are selected by 

minimising the Bayesian Information Criterion (Table 6). As with the preceding analysis we 

present the estimated intra-day MEFs for all models for comparative purposes. 

[INSERT TABLE 6 ABOUT HERE] 

The estimated intra-day MEFs at seasonal frequency appear to be highest in winter both 

according to our method and to the more established ones, as would be expected (Figure 5). 

                                                 
23 See also low values of standard errors for the point estimates listed in Tables A3- A4 in the Reviewers‟ Appendix. 
24 It is worthwhile noting that when the inter-day MEFs are estimated using 47 half hourly indicators interacting with fossil-fuel generation, 

rather than breaking the sample down into 48 cross-sections, the ARIMA-FE model always provides a better model fit (Reviewers‟ 
Appendix, Table A8 and A9). 
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The seasonal oscillation between 400 kgCO2/MWh and 550 kgCO2/MWh across warmer and 

cooler periods becomes even clearer upon estimating the MEFs by season and by month. All 

the estimation methods identify a declining trend in MEFs from February to August driven by 

declining demand in warmer months.
25

  

In the case of intra-day MEFs, we find that our ARFIMA-FE approach generates a more 

stable path when adopting either the season or the month as the period of observation. This is 

particularly true when compared with the Hawkes approach which presents a rather „spiky‟ 

profile when using the seasonal disaggregation, while the „spiky‟ behaviour is observed when 

applying the US-FE approach at the monthly level of aggregation (Figures 5 and 6). 

[INSERT FIGURES 5 AND 6 ABOUT HERE] 

The comparison between inter-day MEFs and intra-day MEFs estimates leads us to the 

following considerations: 1) using the concept of intra-day MEFs it is possible to make an 

efficient analysis of the annual cycle of emissions which is not allowed by inter-day MEF 

approach because of small sample sizes; and 2) when we estimate intra-day MEFs with 

Hawkes‟ method the results are very similar to those of the ARIMA method
26

; when 

estimating inter-day MEFs, the ARIMA procedure produces more stable results than those 

obtained with the Hawkes method. 

4.2 Across space: The Italian context 

We now proceed to explore the validity of the ARIMA models across space by applying our 

suggested approach to Italian (IT) data. Moreover, to our knowledge, this is the first paper to 

provide an empirical cross-country comparison of MEFs.  

                                                 
25 The ARFIMA-FE model outperforms the ARIMA-FE in 64% (46%) of cases according to AIC (BIC) – this is not surprising considering 

the increased tendency to reject the null of stationarity under the KPSS tests (See Table A13 in the Reviewers‟ Appendix). Note also that the 

absolute value for the order of integration |d| lies between 0 and 0.5 for all seasonal and monthly estimates and significantly different from 0 

in all but 6 months between 2017 and 2018. 
26 However, it is important to note that the ARFIMA-FE fits the data best when estimating seasonal MEFs in all instances (Reviewer‟s 

Appendix, Table A11); when estimating MEFs by season and by month the ARIMA-FE and ARFIMA-FE fits the data best for 100% (20%) 

of the time compared to Hawkes-FE according to AIC (BIC). The BIC results indicate that when using monthly series the order of 
integration switches between 0<d<1 and [ I(1)], hence the similarity between Hawkes‟ model (once time effects are included). 
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The Italian case offers several interesting empirical opportunities. The first relates to deriving 

CO2 emissions using fossil-based plant level data – similar to the approach adopted in the US 

– an approach not feasible for GB at the time of the study due to the lack of access to reliable 

disaggregated data on emissions, as also discussed by Jansen et al. (2018)
27

. The second and 

third salient opportunity relates to the fact that only hourly and accepted generation on the 

day-ahead market data is available in IT rather than actual generation as in GB. Whilst it is 

reassuring that the Italian data represents nearly 80% of final actual ex-post generation 

(Terna, 2019), we believe our method should have the necessary cross-country flexibility to 

outperform competing models even when: 1) CO2 is derived from disaggregated data; 2) a 

proxy needs to be utilised when actual generation data is unavailable; and 3) the data is 

processed at a more aggregate (hourly) level. 

Our data on IT carbon-based generation – coal, natural gas, oil and oil/natural gas – covers 

hourly accepted settlement periods in 2018
28

. The Italian day-ahead market (Mercato del 

Giorno Prima, MGP) data is sourced from the supply and demand bids, reported for each unit 

of production, monitored by the Italian electricity market operator (Gestore dei Mercati 

Energetici, GME)
29

 Emissions are calculated at the plant level prior to aggregating to the 

national level per hour as follows: 

     
 
 ∑   

 
(     )      

 

   
 

(7) 

where i represents individual power plants, g(Q) is the plant-level generation model and λ the 

Gcal/h to TJ/h conversion factor (Beltrami et al., 2020). The data contains N=8760 complete 

observations. In 2018, generation and carbon emissions averaged at 15.2GWh and 8.36kt 

                                                 
27 Note also that, as pointed out by Jansen et al. (2018), efficiency data is unavailable for many individual plants in GB, as such the authors 

applied the same baseline carbon intensities as in our paper to 147/234 (62%) of generators units used in their analysis. 
28 As with GB, we approach the seasonal analysis meteorologically. However, with only one year of Italian data, we break the seasons into 

five periods: Winter 17/18 (January-February 2018), Spring 18 (March-May 2018), Summer 18 (June-August 2018), Autumn 18 

(September-November 2018) and Winter 18/19 (December 2018). 
29 Data publicly available via: https://www.mercatoelettrico.org/It/Download/. 
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respectively. Accordingly, the average emissions factor is 537 kgCO2/MWh. In comparison, 

the Climate Transparency (2017) reports that the average carbon emission intensity in Italy 

stands at around 331 kgCO2/MWh – including all fossil and renewable generation. 

For brevity, we present the key analytical insights together with the MEF plots (Figures 7 to 

9)
30

. In the first step, we remark on the behaviour of the ACF and PACF plots for both inter-

day and intra-day CO2 seasonally adjusted series. Whilst the ACF inter-day correlation dies 

out quicker in Italy (6 days) than GB (16 days), the PACF behaves almost identically to GB 

with the initial significant partial correlation φ11 ≈ 0.6.  Likewise, the IT and GB intra-day 

series show similar traits in the ACF plot (with correlations dying out after >100 hours) and 

the PACF displaying either AR(2) or AR(3) characteristics with φ11 close to but strictly less 

than 1.
31

 

In the second step, we can confirm that the unit root tests reject the presence of a unit root in 

the inter-day series.
32

 As in the GB case, the KPSS and RKPSS tests cannot reject the null of 

stationarity. Differencing will lead to misspecification, so that the Hawkes approach can be 

ruled out. The intra-day series by season behave like the GB series, that is the tests 

unanimously reject the presence of a unit root and concomitantly the null of stationarity 

((R)KPSS) is rejected. From this it is possible to infer that differencing would be 

unwarranted. As mentioned previously however, the seemingly contradictory outcomes 

between the unit root and stationarity tests is indicative of partial integration and the need for 

ARFIMA in the intra-day context. 

The (P)ACF plots and tests for a unit root and stationarity indicate that the analysis should 

rely on models in levels, such as the US-FE, ARIMA-FE and ARFIMA-FE. We note that the 

                                                 
30 All other tables and figures can be made available upon request 
31 See Reviewers‟ Appendix, Figure A.3. 
32 I.e. the generalised ADF and PP tests. Whilst the ADF test stands apart from all others in failing to reject a unit root, the generalised ADF 

rejects the null all but six times. Unit root tests allowing for unknown structural breaks to account for extreme weather events support these 
findings. 
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ARFIMA-FE „nests‟ ARIMA-FE which also nests the US-FE model, and this allows us to 

perform tests of model fit. The AIC and BIC support ARFIMA-FE over ARIMA-FE and US-

FE both for the inter-day and intra-day approaches. In support of ARFIMA, the estimate of 

the absolute value of the partial order of integration |d| lies between 0 and 0.5 for all but one 

season (Winter 2017) and one month (September 2018). 

Figure 7 presents the inter-day MEFs, whilst Figure 8 and Figure 9 display the seasonal and 

monthly intra-day MEF plots for Italy, respectively. Overall the MEFs centre around 600 

kgCO2/MWh to 607 kg/MWh, markedly higher than Italy‟s national AEF of 331 

kgCO2/MWh. On average, the marginal plants are likely to be Open Cycle Gas Turbine 

(OCGT) plants, which typically have a carbon intensity close to 600 kgCO2/MWh. The 

season-on-season changes (Figure 8) become more apparent month-by-month (Figure 9), 

where the winter months approach 550 kgCO2/MWh compared to the 650 kgCO2/MWh 

during the remaining months of the year. 

[INSERT FIGURES 7 TO 9 ABOUT HERE] 

Furthermore, according to Figure 7, the Hawkes model tends to underestimate the inter-day 

MEFs compared to ARIMA
33

, while the US approach tends to overestimate it. In contrast, the 

Hawkes model appears to overestimate the seasonal intra-day MEFs, while the opposite holds 

for the US model. Reassuringly, as established in GB, the ARIMA-FE and ARFIMA-FE 

inter-day and intra-day estimate MEFs present the most stable path. This finding further 

validates our approach as IT data provides important contextual differences, not only 

geographically, but also in terms of the data generation process (i.e. firm-level aggregation, 

hourly level frequency, accepted rather than actual generation). 

                                                 
33 The average inter-day MEF for US-FE is 617 kgCO2/MWh and 607 kgCO2/MWh for ARIMA-FE. In contrast, the US-FE average intra-
day is 594 kgCO2/MWh and 602 kgCO2/MWh for ARIMA-FE. 
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5 Policy implications and conclusions 

According to our results the MEFs estimated using ARIMA in the inter-day approach (within 

settlement period) and ARFIMA in the intra-day (across settlement periods) approach are 

consistent, but more stable than those which would be obtained using other established 

methods. The estimated values however are significantly different and higher than the 

average effects
34

 published for 2016 by the UK‟s Department for Business, Energy and 

Industrial Strategy (BEIS, 2018) which represent the official UK GHG measure used for 

policy purposes, including environmental policy. 

To illustrate the potential policy implications of our results, in environmental and financial 

terms, we calculate: 1) the average and median of the MEFs estimated by each model within 

the inter and intra-day classes. This allows us to gauge the impact of the displacement of 

fossil-based generators operating at the margin, compared to using AEFs which consider the 

whole generation fleet or a single fuel type
35

; and, 2) the revenue effect, that is, the total 

revenue collected or lost on average by UK‟s HMRC via the carbon price support
36

 (CPS) for 

plants operating at the margin. The latter is also important for understanding the implied rate 

of cost pass-through applied to consumers by electricity generators operating at the margin or 

the saving accruing to consumers as a result of generators displaced at the margin. 

Table 7 presents BEIS‟ most recent AEF (281 kgCO2/MWh) for electricity generated (i.e. 

supplied to the grid) in 2016 (BEIS, 2018: 26). Alongside this, we include the AEF for CCGT 

(394 kgCO2/MWh, according to National Grid, 2017). The AEFs are held constant (Columns 

1-2, Table 7) whilst comparing the average and median of the MEFs estimated by key models 

in the present paper, i.e. US-FE, HAWKES-FE, ARIMA-FE (inter-day) and ARFIMA-FE 

                                                 
34 A sizeable difference between estimated marginal and average effect factors is consistent with the results obtained by Hawkes (2010) for 

the UK and Callaway et al. (2018) for the US.  
35 Our analysis focuses on CCGT for comparative purposes given that our best estimates of the MEFs are closest to this fuel‟s average 

emission factor. 
36 The carbon price support is added on to the European Union‟s Emission Trading Scheme (EU ETS) price in order to meet the Carbon 
Price Floor (CPF) introduced by the British Government in 2013. 
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(intra-day) (Columns 3-8). It is important to note that the comparisons focus specifically on 

CCGT as this fuel type appears to operate most frequently at the margin in GB based on our 

estimated MEFs and the average/median of the inter-day and intra-day seasonal MEFs 

presented for the key models in Table 7. 

[INSERT TABLE 7 ABOUT HERE] 

Concentrating on the BEIS and CCGT AEF benchmarks, for every MWh increase in 

renewable generation or demand-side response, the AEFs appear to underestimate the amount 

of CO2 emissions displaced at the margin. For example, the AEFs are around 153.3 kgCO2 

and 42.3 kgCO2 lower, respectively, in comparison with the median MEFs estimate by the 

ARIMA-FE model.  

In contrast, the median of the inter-day MEFs estimated using US-FE and HAWKES-FE 

appear to overstate CO2 emissions displaced at the margin by 1.56 kgCO2 and 13.8 kgCO2, 

respectively, in comparison with the ARIMA-FE model. Similarly, the median of the intra-

day MEFs overestimate emissions by 6.53 kgCO2 and 7.38 kgCO2, respectively, compared 

with the ARFIMA-FE model.  

Table 7 presents several potential values of the carbon price to shine further light on the 

amount of revenue potentially collected or lost at the margin as a result of a 1MWh variation 

in fossil-based electricity generation. For example, the 2015/2016 HM Treasury‟s budget set 

the carbon price support to £18.08/tCO2 (Hirst, 2018; Staffell and Wilson, 2018). The amount 

paid by electricity generators is simply the difference between the UK‟s target carbon price 

and the EU ETS carbon price, accounting for variation in carbon intensity: 

CPS Rate (£/MWh)= (Target Price – EU-ETS Price) x (Average Emission 

Factorj) 

(7) 
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Based on this formulation, relying on AEFs, HMRC would expect to collect revenues 

equivalent to £7.12/MWh (£18.08/tCO2 x 0.394 tCO2/MWh) from CCGT installations 

operating at the margin. This is equivalent to £0.77/MWh less than if HMRC used the 

average of the ARIMA-FE (inter-day) MEF estimates and £0.80/MWh less than the average 

of the ARFIMA-FE (intra-day) MEF estimates. By contrast, using the average of the MEFs 

estimated by the US-FE and HAWKES-FE models would lead to implied revenues that are 

too large: between £0.03/MWh and £0.25/MWh for the inter-day MEFs, and around 

£0.18/MWh for the intra-day MEFs. It is important to note that these differences are 

conservative compared to rates closer to a realistic value of the social cost of carbon.
37

 

Let us further suppose, for example, that marginal displacement of generators represents 1% 

of total fossil-fuel generation. Under the inter-day MEF approach, the US-FE and HAWKES-

FE estimates would imply that the HMRC would have collected between £0.04m and £0.38m 

extra from fossil-based generators operating at the margin in 2017 relative to the ARIMA-FE 

estimates, whilst their intra-day MEF estimates imply additional revenues of £0.28m. 

Charging generators according to the MEFs could help to correct the cross-subsidisation 

effects that occur under the current CPS methodology which, at the margin, charges too much 

during periods of high emission intensity and too little during periods of low intensity
38

. Our 

results would also suggest that firms are currently paying less than would be required if the 

marginal plants were charged a rate which reflects marginal, rather than average, emissions.  

At the European level, the differences in the estimated GB and IT MEFs can provide useful 

guidance to national policy makers in their process of implementation of the Clean Energy 

for all Europeans package (European Commission, 2019). Our results suggest that European 

regulators should consider cross-country differences – apparent in GB and IT MEFs – and 

identify the most robust methodologies to evaluate the replacement of emissions attributed to 

                                                 
37 We considered the following values: £19 (Stern, 2007); £20 (EU-ETS: Sandbag, 2019); and £31 and £64 (World Bank, 2017). 
38 See Figures A.4 and A.5 in the Reviewers Appendix. 
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the deployment of plants operating at the margin when devising incentive schemes for the 

reduction of fossil fuel generation in the national energy systems . 

To conclude, this paper has proposed a robust methodology to estimate MEFs and applied the 

proposed approach to the analysis of CO2 emissions data for GB between January 2017 and 

November 2018. The proposed inter-day ARIMA and intra-day ARFIMA models with fixed 

time-effects not only outperforms all the existing methods, but also provides a more stable 

trajectory of results, making it a more predictable and reliable source of information for 

emissions-related policy interventions. Our results indicate that CCGT plants are 

predominantly operating at the margin in the GB system. This pattern is most salient during 

the morning (00:00-07:00) and the evening (18:00-23:30) as the estimated MEFs in those 

periods approach the average emission factors of CCGT plants, i.e. 394 kgCO2/MWh 

(National Grid, 2017). We are also able to identify, relying on a relatively large number of 

observations, a significant difference in MEFs across seasons and months of the year. 

Moreover, the ARIMA and ARFIMA models are found to be consistent across space. Whilst 

the IT context created some empirical challenges, we found that also in this context our time-

series-based approach consistently outperforms all other models, and provides an even more 

stable path of MEFs with OCGT plants generally being displaced at the margin (at 

approximate values of 600 kg/MWh). Finally, our proposed approach provides a more robust 

basis for the valuation of actual, as opposed to average, carbon emission reductions which 

can be effectively used in the future to assess the impact of environmental policies across 

different countries. Indeed, our approach not only has implications for establishing the 

revenue effects at the margin, but also provides a more rigorous basis for the compensation of 

storage, demand response and other flexible technologies which displace fossil-fuel 

generation at the margin. These developments are crucial for future research attempting to 

include renewable generation within regression-based models of MEFs. This is an issue of 
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increasing importance across energy systems characterised by high penetration of intermittent 

renewable energy, given the challenging conditions for the commercial viability of untested 

technologies and business models.   

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



References 

Beltrami, F., Fontini, F. and Grossi, L. (2020) The value of carbon emission reduction 

induced by renewable energy sources in the Italian power market. University of Padua 

mimeo. 

Callaway, D.S. and Fowlie, M. (2009) Greenhouse gas emissions reductions from wind: 

Location, location, location. Working Paper, AERE Workshop, Washington DC. 

Callaway, D.S., Fowlie, M. and McCormick, G. (2018) Location, location, location: the 

variable value of renewable energy and demand-side efficiency resources. Journal of the 

Association of Environmental and Resource Economists, 5(1): 39-75. 

Carson, R. T. and Novan K. (2013) The private and social economics of bulk electricity 

storage. Journal of Environmental Economics and Management, 66: 404-423. 

Climate Transparency (2017) Brown to green: The G20 transition to a low carbon economy. 

[online] http://www.climate-transparency.org/g20-climate-performance/g20report2017 

(Accessed 9
th

 December 2019). 

Committee on Climate Change (2018) Reducing UK emissions: 2018 progress report to 

Parliament. London, United Kingdom: CCC. 

Deetjen, T.A. and Azevedo, I.L. (2019) Reduced-order dispatch model for simulating 

marginal emissions factors for the United States power sectors. Environmental Science and 

Technology, 53: 10506-10513.  

Department for Business, Energy and Industrial Strategy (2017) Electricity statistics – data 

sources and methodologies. London, United Kingdom: HM Government. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Department for Business, Energy and Industrial Strategy (2018) Government GHG 

conversion factors company reporting. Methodology paper for emission factors: final report, 

July. London, United Kingdom: HM Government. 

European Commission (2018) A clean planet for all: A European strategic long-term vision 

for a prosperous, modern, competitive and climate neutral economy. COM(2018) 773 Final. 

Brussels, Belgium: EC. 

European Commission (2019) Clean Energy for all Europeans. [online] 

https://op.europa.eu/en/publication-detail/-/publication/b4e46873-7528-11e9-9f05-

01aa75ed71a1/language-

en?WT.mc_id=Searchresult&WT.ria_c=null&WT.ria_f=3608&WT.ria_ev=search (Accessed 

2
nd

 January 2020). 

Fabra, N. and Reguant, M. (2014) Pass-through of emissions costs in electricity markets. 

American Economic Review, 104(9): 2872-2899. 

Financial Times (2017) Europe has a problem with its SUV habit. [online] 

https://www.ft.com/content/2967c9e2-ffc3-11e9-b7bc-f3fa4e77dd47 (Accessed 31 December 

2019). 

Gianfreda, A. and Grossi, L. (2012) Forecasting Italian electricity zonal prices with 

exogenous variables. Energy Economics, 34 (6): 2228-2239. 

Graff Zivin, J. S., Kotchen, M.J. and Mansur, E. T. (2014) Spatial and temporal heterogeneity 

of marginal emissions: Implications for electric cars and other electricity-shifting policies. 

Journal of Economic Behaviour and Organization, 107: 248-268. 

Grossi, L. and Nan, F. (2019) Robust forecasting of electricity prices: Simulations, models 

and the impact of renewable sources. Technological Forecasting and Social Change, 141: 

305-318. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Hawkes, A.D. (2010) Estimating marginal CO2 emissions rate for national electricity 

systems, Energy Policy, 38:5977-5987. 

Hawkes, A.D. (2014) Long-run marginal CO2 emissions factors in national electricity 

systems. Applied Energy, 125: 197-205. 

Hirst, D. (2018) Carbon Price Floor and the price support mechanism. House of Commons, 

Briefing Paper No. 05927. 

Holladay, S. and LaRiviere, J. (2017) The impact of cheap natural gas on marginal emissions 

from electricity generation and implications for energy policy. Journal of Environmental 

Economics and Management, 85: 205-227. 

Holland, S. P. and Mansur, E.T. (2008) Is real-time pricing green? The environmental 

impacts of electricity demand variance. The Review of Economics and Statistics, MIT Press, 

90(3): 550-561. 

Jansen, M., Staffell, I. and Green, R. (2018) Daily marginal CO2 emissions reductions from 

wind and solar generation. International Conference on the European Energy Market, EEM. 

Li, M., Smith, T.M., Yang, Y. and Wilson, E.J. (2017) Marginal emission factors considering 

renewables: A case study of the U.S. midcontinent independent system operator (MISO) 

system. Environmental Science and Technology, 51: 11215-11223. 

National Grid (2017) Carbon intensity forecast methodology. Issue No. December 2017. 

[online] https://github.com/carbon-intensity/methodology/ (Accessed 9
th

 October 2018). 

Pelagatti, M. and Sen, P.K. (2013) Rank tests for short memory stationarity. Journal of. 

Econometrics, 172(1): 90–105. 

Sandbag (2019) Carbon price viewer. [online] https://sandbag.org.uk/carbon-price-viewer/ 

(Accessed 10
th

 February 2019). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Staffell, I. and Wilson, I.A.G. (2018) Rapid fuel switching from coal to natural gas through 

effective carbon pricing. Nature Energy, 3(5): 365-372. 

Stern, N. (2007) Stern Review: The economics of climate change. London, United Kingdom:  

HM Treasury.  

Terna (2019) Transparency report: Actual generation. [online] 

https://www.terna.it/en/electric-system/transparency-report/actual-generation (Accessed 9
th

 

December 2019). 

Tranberg, B., Corradi, O., Lajoie, B., Gibon, T., Staffell, I., and Andresen, G. B. (2019) Real- 

time carbon accounting method for the European electricity markets. Energy Strategy 

Reviews, 26(100367): 1-4. 

Thomson, R.C., Harrison, G.P. and Chick, J.P. (2017) Marginal greenhouse gas emissions 

displacement of wind power in Great Britain. Energy Policy, 101: 201-210. 

World Bank (2017) Report of the high-level commission on carbon prices. International Bank 

for Reconstruction and Development and International Development Association / The World 

Bank. 

  Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Table 1. Summary statistics for Great Britain  

Variable T Mean Standard Deviation (SD) Min Max 

All settlement periods      

CO2 (t) 32544 3690.00 1874.65 551.21 10181.63 

Fossil-Fuel Generation (MWh) 32544 8568.02 3395.71 1657.50 19448.00 

Spring 2017      

CO2 (t) 4416 3297.70 1118.27 1050.31 7240.93 

Fossil-Fuel Generation (MWh) 4416 8274.25 2454.25 2907.00 15947.00 

Summer 2017      

CO2 (t) 4416 2621.78 894.38 900.69 4847.10 

Fossil-Fuel Generation (MWh) 4416 6781.27 2134.51 2065.50 11485.00 

Autumn 2017      

CO2 (t) 4368 3900.74 1939.75 551.21 9752.79 

Fossil-Fuel Generation (MWh) 4368 8713.93 3709.97 1657.50 18324.00 

Winter 2017      

CO2 (t) 4320 5793.24 2221.30 732.30 10181.63 

Fossil-Fuel Generation (MWh) 4320 11540.64 4040.99 2063.50 19448.00 

Spring 2018      

CO2 (t) 4416 3728.01 1750.13 790.10 9307.57 

Fossil-Fuel Generation (MWh) 4416 8661.80 2923.07 2395.50 17277.50 

Summer 2018      

CO2 (t) 4416 2691.26 909.77 592.92 5075.49 

Fossil-Fuel Generation (MWh) 4416 7258.81 2277.48 1888.50 11752.50 
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Table 2. GB Augmented-Dickey-Fuller (ADF), Phillips-Perron (PP) and Clemente-Montañés-Reyes 

(CMR) unit root tests and Kwaitkowski-Phillips-Schmidt-Shin (KPSS) and robust (RKPSS) 

stationarity tests per half hourly settlement period. 

Period ADF PP  CMR  KPSS RKPSS Period ADF PP CMR KPSS RKPSS 

00:00 -4.83 -13.08 -7.04 0.15 0.15 12:00 -5.31 -13.37 -12.94 0.09 0.11 

00:30 -4.76 -12.82 -6.90 0.15 0.14 12:30 -5.32 -13.45 -13.01 0.09 0.11 

01:00 -4.71 -12.74 -6.76 0.15 0.13 13:00 -5.33 -13.54 -13.11 0.09 0.11 

01:30 -4.76 -12.72 -6.81 0.14 0.13 13:30 -5.36 -13.71 -8.18 0.10 0.11 

02:00 -4.81 -12.94 -6.84 0.14 0.12 14:00 -5.34 -13.68 -8.07 0.10 0.11 

02:30 -4.83 -13.01 -6.87 0.14 0.12 14:30 -5.35 -13.56 -8.04 0.10 0.11 

03:00 -4.80 -13.13 -6.87 0.14 0.12 15:00 -5.32 -13.30 -7.98 0.09 0.11 

03:30 -4.85 -13.36 -4.36 0.14 0.11 15:30 -5.40 -12.95 -7.76 0.09 0.11 

04:00 -4.80 -13.80 -4.32 0.14 0.12 16:00 -5.58 -12.73 -5.09 0.09 0.11 

04:30 -4.78 -14.00 -4.35 0.14 0.12 16:30 -5.68 -12.40 -5.14 0.08 0.11 

05:00 -4.83 -13.89 -4.50 0.14 0.12 17:00 -5.63 -12.37 -7.83 0.08 0.11 

05:30 -4.88 -13.77 -4.56 0.14 0.12 17:30 -5.66 -12.16 -10.32 0.08 0.11 

06:00 -5.10 -13.30 -10.54 0.12 0.11 18:00 -5.73 -11.90 -10.27 0.08 0.10 

06:30 -5.34 -13.56 -6.05 0.11 0.10 18:30 -5.78 -11.92 -10.27 0.08 0.10 

07:00 -5.37 -13.70 -6.01 0.11 0.10 19:00 -5.80 -12.04 -10.36 0.08 0.11 

07:30 -5.43 -13.66 -5.99 0.10 0.10 19:30 -5.69 -12.04 -5.96 0.09 0.11 

08:00 -5.43 -13.44 -6.40 0.09 0.10 20:00 -5.47 -12.17 -5.73 0.10 0.11 

08:30 -5.38 -13.56 -4.93 0.09 0.11 20:30 -5.41 -12.40 -5.66 0.10 0.12 

09:00 -5.32 -13.48 -5.19 0.09 0.11 21:00 -5.39 -12.73 -5.68 0.11 0.12 

09:30 -5.27 -13.40 -10.55 0.09 0.11 21:30 -5.32 -13.19 -5.49 0.11 0.13 

10:00 -5.18 -13.32 -10.66 0.09 0.11 22:00 -5.21 -13.25 -5.30 0.13 0.14 

10:30 -5.17 -13.28 -12.87 0.09 0.11 22:30 -5.12 -12.98 -5.11 0.15 0.16 

11:00 -5.22 -13.33 -12.90 0.09 0.11 23:00 -5.06 -13.09 -5.25 0.15 0.15 

11:30 -5.25 -13.37 -12.93 0.09 0.11 23:30 -5.04 -12.98 -12.69 0.15 0.15 

Notes. ADF (H0: Unit Root) critical values -3.470 (1% level) and -2.862 (5% level). PP (H0: level 

stationary) critical values -3.468 (1% level) and -2.862 (5% level). CMR (H0: Unit Root) 5% critical 

value -3.560. KPSS (H0: level stationary) critical values 0.739 (1% level) and 0.463 (5% level). 

RKPSS (H0: level stationary) critical values 0.216 (1% level) and 0.146 (5% level). 
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Table 3. GB seasonal MEF estimates. Augmented-Dickey-Fuller (ADF), Phillips-Perron (PP) 

and Clemente-Montañés-Reyes (CMR) unit root tests and and Kwaitkowski-Phillips-

Schmidt-Shin (KPSS) and robust (RKPSS) stationarity tests. 
Period ADF  PP CMR KPSS RKPSS 

Spring 2017 -9.32 -9.58 -11.34 0.39 0.281 

Summer 2017 -7.34 -7.89 -8.66 1.20 1.16 

Autumn 2017 -10.07 -9.56 -10.64 0.097 40.2 

Winter 2017 -5.60 -5.50 -6.70 1.38 40.2 

Spring 2018 -8.44 -8.49 -10.14 0.43 0.47 

Summer 2018 -7.38 -7.87 -8.93 0.39 0.40 

Notes. ADF (H0: Unit Root) critical values -3.470 (1% level) and -2.862 (5% level). PP (H0: level 

stationary) critical values -3.468 (1% level) and -2.862 (5% level). CMR (H0: Unit Root) 5% critical 

value -3.560. KPSS (H0: level stationary) critical values 0.739 (1% level) and 0.463 (5% level). 

RKPSS (H0: level stationary) critical values 0.216 (1% level) and 0.146 (5% level). 
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Table 4. GB AIC and BIC per half hourly settlement period (00:00 – 13:00). 

 1. US-FE 2. ARIMA-FE 3. ARFIMA-FE 

Period AIC BIC AIC BIC AIC BIC 

00:00 318.70 345.82 -271.88 -231.21 -249.16 -203.97 

00:30 343.83 370.94 -273.05 -232.38 -272.45 -227.26 

01:00 340.37 367.48 -301.56 -260.88 -289.80 -249.13 

01:30 324.18 351.30 -300.92 -260.24 -304.47 -254.76 

02:00 302.00 329.11 -300.03 -254.84 -292.56 -251.89 

02:30 284.12 311.23 -299.84 -259.17 -296.30 -255.63 

03:00 264.98 292.10 -301.14 -260.47 -301.38 -251.67 

03:30 243.11 270.22 -285.60 -244.93 -291.29 -237.06 

04:00 229.97 257.08 -277.48 -236.81 -276.53 -231.34 

04:30 227.93 255.04 -269.49 -233.34 -271.53 -230.85 

05:00 246.34 273.46 -272.34 -231.67 -271.25 -226.06 

05:30 290.52 317.64 -266.17 -225.50 -265.34 -220.15 

06:00 343.02 370.14 -223.96 -183.29 -221.75 -172.04 

06:30 347.20 374.31 -193.21 -152.54 -192.77 -147.58 

07:00 390.51 417.63 -100.47 -59.80 -98.54 -53.34 

07:30 432.93 460.05 -18.59 22.08 -13.82 31.37 

08:00 462.15 489.26 15.79 56.46 20.30 65.49 

08:30 480.59 507.71 14.04 54.71 16.00 61.19 

09:00 478.24 505.35 2.23 42.90 5.84 51.03 

09:30 475.87 502.98 -19.64 21.03 -17.26 27.93 

10:00 483.79 510.90 -40.50 0.18 -37.96 7.24 

10:30 487.09 514.21 -56.40 -15.72 -54.43 -9.24 

11:00 480.66 507.77 -66.08 -25.41 -64.20 -19.01 

11:30 474.11 501.22 -74.71 -34.04 -73.25 -28.06 

12:00 481.73 508.84 -63.20 -22.53 -61.20 -16.01 

12:30 476.16 503.28 -71.02 -30.35 -69.03 -23.84 

13:00 471.22 498.33 -80.31 -39.63 -65.78 -25.11 
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Table 4 (continued). GB AIC and BIC per half hourly settlement period (13:00 – 23:30). 

 1. US-FE 2. ARIMA-FE 3. ARFIMA-FE 

Period AIC BIC AIC BIC AIC BIC 

13:30 467.47 494.59 -77.35 -36.68 -75.39 -30.20 

14:00 464.22 491.33 -81.04 -40.37 -79.02 -33.83 

14:30 461.32 488.43 -83.46 -42.79 -82.04 -36.85 

15:00 450.97 478.08 -87.08 -46.40 -85.71 -40.52 

15:30 456.28 483.40 -88.74 -48.07 -73.79 -33.12 

16:00 472.89 500.00 -96.37 -55.70 -95.05 -49.86 

16:30 499.57 526.69 -83.58 -42.91 -82.27 -37.08 

17:00 506.10 533.21 -59.33 -18.66 -58.18 -12.98 

17:30 501.09 528.21 -75.60 -34.93 -74.53 -29.34 

18:00 500.05 527.17 -84.23 -43.56 -83.04 -37.85 

18:30 492.80 519.92 -96.74 -56.07 -96.64 -46.93 

19:00 486.44 513.56 -111.19 -70.52 -91.51 -50.84 

19:30 492.73 519.84 -121.13 -80.46 -122.03 -72.32 

20:00 505.59 532.70 -121.37 -80.70 -119.78 -74.59 

20:30 477.99 505.11 -158.82 -122.66 -161.79 -116.60 

21:00 442.03 469.14 -225.37 -184.70 -228.27 -178.56 

21:30 368.77 395.88 -309.25 -268.57 -309.28 -259.57 

22:00 296.91 324.02 -380.83 -340.15 -381.13 -331.42 

22:30 253.24 280.35 -418.19 -377.52 -416.76 -367.05 

23:00 252.79 279.91 -362.18 -321.50 -360.93 -315.74 

23:30 262.16 289.27 -302.29 -261.62 -301.33 -256.14 
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Table 5. GB variance and coefficient of variation for MEFs across all models 

Variance 

 US-FE HAWKES HAWKES-FE ARFIMA-FE ARIMA-FE 

Figure 3 0.001 0.001 0.001 0.001 0.001 

Figure 4      

A 0.00130 0.00081 0.00083 0.00029 0.00025 

B 0.00045 0.00035 0.00034 0.00026 0.00025 

C 0.00296 0.00147 0.00159 0.00117 0.00114 

D 0.00054 0.00109 0.00109 0.00041 0.00040 

E 0.00388 0.00204 0.00214 0.00064 0.00061 

F 0.00024 0.00032 0.00033 0.00005 0.00005 

Figure 5 0.00300 0.00214 0.00201 0.00161 0.00164 

Figure 6 0.00410 0.00263 0.00265 0.00179 0.00179 

Coefficient of variation 

Figure 3 0.058 0.053 0.056 0.055 0.055 

Figure 4      

A 0.088 0.065 0.066 0.037 0.040 

B 0.050 0.045 0.044 0.039 0.039 

C 0.117 0.079 0.082 0.071 0.072 

D 0.042 0.065 0.065 0.040 0.040 

E 0.143 0.093 0.095 0.053 0.054 

F 0.038 0.044 0.045 0.018 0.018 

Figure 5 0.119 0.103 0.097 0.090 0.089 

Figure 6 0.143 0.112 0.113 0.094 0.094 
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Table 6. GB seasonal MEF estimates - AIC and BIC  

 
 1. HAWKES-FE 2. ARIMA-FE 3. ARFIMA-FE 

Period AIC BIC AIC BIC AIC BIC 

Spring 2017 -19253.55 -19215.2 -20149.86 -19785.46 -20171.95 -19807.55 

Summer 2017 -20917.33 -20878.97 -21524.63 -21179.41 -21551.63 -21206.41 

Autumn 2017 -14662.44 -14624.15 -15697.66 -15346.65 -15729.58 -15378.57 

Winter 2017 -13199.2 -13160.98 -14175.74 -13831.70 -14206.08 -13868.42 

Spring 2018 -14019.32 -13980.97 -15597.62 -15233.22 -15654.23 -15315.4 

Summer 2018 -21844.63 -21806.27 -22900.84 -22562.01 -22948.44 -22603.22 
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Table 7. GB comparison of BEIS‟ system average emission factor (AEF) and CCGT average 

emission factors (AEF) and the average and median of the Marginal Emission Factors (MEF) 

estimated by (1) US-FE, (2) HAWKES-FE, (3) inter-day ARIMA-FE and (4) intra-day 

ARFIMA-FE. 

 Benchmark AEFs 

(tCO2/MWh) 

Inter-day Seasonal MEFs 

(tCO2/MWh) 

Intra-day Seasonal MEFs 

(tCO2/MWh) 

 BEIS CCGT  US-FE HAWKES-FE ARIMA-FE US-FE HAWKES-FE ARFIMA-FE 

Mean 0.281 0.394 0.448 0.457 0.448 0.456 0.457 0.450 

Median 0.281 0.394 0.438 0.450 0.436 0.448 0.448 0.438 

Carbon 

Price 

Revenue (£/MWh) 

£18.08 £5.08 £7.12 £7.92 £8.14 £7.89 £8.10 £8.10 £7.92 

£19 £5.34 £7.49 £8.32 £8.55 £8.29 £8.52 £8.51 £8.32 

£20 £5.62 £7.88 £8.76 £9.00 £8.73 £8.96 £8.96 £8.76 

£31 £8.71 £12.21 £13.58 £13.95 £13.53 £13.89 £13.89 £13.58 

£64 £17.98 £25.22 £28.03 £28.81 £27.92 £28.68 £28.68 £28.03 

Revenue at margin (£M)     Using Median EF/MEF and £18.08/MWh (CPS Rate) 

1% ND 

(2017) £7.82 £10.97 £12.19 £12.53 £12.15 £12.48 £12.48 £12.19 

1% ND 

(2018) £6.30 £8.83 £9.82 £10.09 £9.78 £10.05 £10.05 £9.82 

Notes: £18.08 (CPS Rate), £19 (Stern (2007) Rate), £20 (EU-ETS, 04/02/2019, Sandbag (2019)), £31-64 (World 

Bank (2017) Rate). Marginal revenue calculated as 1% of total fossil fuel generation in 2017 (Jan-Dec) and 

2018 (Jan-Oct). 
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Figure 1. GB time series (TS), autocorrelation functions (ACF) and partial ACFs of residuals 

estimated using seasonally adjusted and detrended carbon dioxide (CO2) series for settlement 

periods (A) 03:00, (B) 08:00, (C) 19:00 and (D) 23:00 and (E) average peak hours and (F) 

average off-peak hours. 
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Figure 2. GB time series (TS), autocorrelation functions (ACF) and partial ACFs of 

residuals estimated using seasonally adjusted and detrended carbon dioxide (CO2) series 

for seasons (A) Spring 2017, (B) Summer 2017, (C) Autumn 2017, (D) Winter 2017/18, 

(E) Spring 2018 and (F) Summer 2018. 
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Figure 3. GB marginal emission factors per half hourly settlement period.  
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Figure 4a and 4b. GB spring and summer 2017. Marginal emission factors per half hourly 

settlement period.  
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Figure 4c and 4d. GB autumn and winter 2017. Marginal emission factors per half hourly 

settlement period.  
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Figure 4e and 4f. GB spring and summer 2018. Marginal emission factors per half hourly 

settlement period.  
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Figure 5. GB seasonal MEFs by different estimators (intra-day). 

 

 
 

 

Figure 6 GB monthly MEFs (intra-day) 
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Figure 7. IT marginal emission factors per hourly settlement period (inter-day). 

 
 

 
 

 

Figure 8. IT seasonal MEFs by different estimators (intra-day).  
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Figure 9. IT monthly MEFs by different estimators (intra-day). 
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Where did the time (series) go? Estimation of marginal emission 

factors with autoregressive components 
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Where did the time (series) go? Estimation of marginal emission 

factors with autoregressive components 

Highlights 

 

 A robust method is proposed to estimate marginal emission factors  

 Our ARIMA outperforms established models for MEFs estimation  

 Consistent results are obtained when using both UK and Italian data 

 We provide a robust basis for valuing actual carbon emission reductions 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Figure 1A



Figure 1B



Figure 2A



Figure 2B



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8



Figure 9


