Spin Diffusion Transfer Difference (SDTD) NMR: An advanced method for the characterisation of water structuration within particle networks

Gabrielli, Valeria, Kuraite, Agne, da Silva, Marcelo Alves, Edler, Karen J., Angulo, Jesús ORCID: https://orcid.org/0000-0001-7250-5639, Nepravishta, Ridvan, Muñoz-García, Juan C. and Khimyak, Yaroslav Z. ORCID: https://orcid.org/0000-0003-0424-4128 (2021) Spin Diffusion Transfer Difference (SDTD) NMR: An advanced method for the characterisation of water structuration within particle networks. Journal of Colloid and Interface Science, 594. pp. 217-227. ISSN 0021-9797

[thumbnail of Accepted_Manuscript]
PDF (Accepted_Manuscript) - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview


Hypothesis: The classical STD NMR protocol to monitor solvent interactions in gels is strongly dependent on gelator and solvent concentrations and does not report on the degree of structuration of the solvent at the particle/solvent interface. We hypothesised that, for suspensions of large gelator particles, solvent structuration could be characterised by STD NMR when taking into account the particle-to-solvent 1H– 1H spin diffusion transfer using the 1D diffusion equation. Experiments: We have carried out a systematic study on effect of gelator and solvent concentrations, and gelator surface charge, affecting the behaviour of the classical STD NMR build-up curves. To do so, we have characterised solvent interactions in dispersions of starch and cellulose-like particles prepared in deuterated water and alcohol/D 2O mixtures. Findings: The Spin Diffusion Transfer Difference (SDTD) NMR protocol is independent of the gelator and solvent concentrations, hence allowing the estimation of the degree of solvent structuration within different particle networks. In addition, the simulation of SDTD build-up curves using the general one–dimensional diffusion equation allows the determination of minimum distances (r) and spin diffusion rates (D) at the particle/solvent interface. This novel NMR protocol can be readily extended to characterise the solvent(s) organisation in any type of colloidal systems constituted by large particles.

Item Type: Article
Uncontrolled Keywords: hydrogel,saturation transfer difference nmr,solvation properties,spin diffusion,electronic, optical and magnetic materials,biomaterials,surfaces, coatings and films,colloid and surface chemistry ,/dk/atira/pure/subjectarea/asjc/2500/2504
Faculty \ School: Faculty of Science > School of Pharmacy
Faculty of Science > School of Chemistry
UEA Research Groups: Faculty of Science > Research Groups > Pharmaceutical Materials and Soft Matter
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 17 Aug 2020 23:56
Last Modified: 20 Apr 2023 20:33
URI: https://ueaeprints.uea.ac.uk/id/eprint/76472
DOI: 10.26434/chemrxiv.12770813.v1


Downloads per month over past year

Actions (login required)

View Item View Item