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The human proteome is a major source of therapeutic targets. Recent genetic association 39 
analyses of the plasma proteome enable systematic evaluation of the causal 40 
consequences of variation in plasma protein levels. Here we estimated the effects of 1,002 41 
proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and 42 
colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not 43 
supported by results of colocalization analyses, suggesting that genetic confounding due 44 
to linkage disequilibrium (LD) is widespread in naïve phenome-wide association studies of 45 
proteins. Combining MR and colocalization evidence in cis-only analyses, we identified 46 
111 putatively causal effects between 65 proteins and 52 disease-related phenotypes 47 
(www.epigraphdb.org/pqtl/). Evaluation of data from historic drug development 48 
programs showed that target-indication pairs with MR and colocalization support were 49 
more likely to be approved, evidencing the value of this approach in identifying and 50 
prioritizing potential therapeutic targets. 51 
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Despite increasing investment in research and development (R&D) in the pharmaceutical 52 
industry1, the rate of success for novel drugs continues to fall2. Lower success rates make 53 
new therapeutics more expensive, reducing availability of effective medicines and 54 
increasing healthcare costs. Indeed, only one in ten targets taken into clinical trials reaches 55 
approval2, with many showing lack of efficacy (~50%) or adverse safety profiles (~25%) in 56 
late stage clinical trials after many years of development3,4. For some diseases, such as 57 
Alzheimer’s disease, the failure rates are even higher5. 58 

Thus, early approaches to prioritize target-indication pairs that are more likely to be 59 
successful are much needed. It has previously been shown that target-indication pairs for 60 
which genetic associations link the target gene to related phenotypes are more likely to 61 
reach approval6. Consequently, systematically evaluating the genetic evidence in support of 62 
potential target-indication pairs is a potential strategy to prioritize development programs. 63 
While systematic genetic studies have evaluated the putative causal role of both methylome 64 
and transcriptome on diseases7,8, studies of the direct relevance of the proteome are in 65 
their infancy9,10. 66 

Plasma proteins play key roles in a range of biological processes and represent a 67 
major source of druggable targets11,12. Recently published genome-wide association studies 68 
(GWAS) of plasma proteins have identified 3,606 conditionally independent single 69 
nucleotide polymorphisms (SNPs) associated with 2,656 proteins (‘protein quantitative trait 70 
loci’, pQTL)9,13,14,15,16.  These genetic associations offer the opportunity to systematically test 71 
the causal effects of a large number of potential drug targets on the human disease 72 
phenome through Mendelian randomization (MR)17. In essence, MR exploits the random 73 
allocation of genetic variants at conception and their associations with disease risk factors 74 
to uncover causal relationships between human phenotypes, and has been described in 75 
detail previously18,19. 76 

For MR analyses of proteome, unlike more complex exposures, an intuitive way to 77 
categorize protein-associated variants is into cis-acting pQTLs located in the vicinity of the 78 
encoding gene (defined as ≤ 500 kb from the leading pQTL of the test protein in this study) 79 
and trans-acting pQTLs located outside this window. The cis-acting pQTLs are considered to 80 
have a higher biological prior and have been widely employed in relation to some phenome-81 
wide scans of drug targets such as CETP20 and IL6R21. Trans-acting pQTLs may operate via 82 
indirect mechanisms and are therefore more likely to be pleiotropic22, although they may 83 
support causal inference where they are likely to be non-pleiotropic. 84 

Here we pool and cross-validate pQTLs from five recently published GWAS and use 85 
them as instruments to systematically evaluate the causal role of 968 plasma proteins on 86 
the human phenome, including 153 diseases and 72 risk factors available in the MR-Base 87 
database23. Results of all analyses are available in an open online database 88 
(www.epigraphdb.org/pqtl/), with a graphical interface to enable rapid and systematic 89 
queries. 90 
 91 
 92 
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Results 93 
Characterizing genetic instruments for proteins 94 
Figure 1 summarizes the genetic instrument selection and validation process. Briefly, we 95 
curated 3,606 pQTLs associated with 2,656 proteins from five GWAS9,13,14,15,16. After 96 
removing proteins and SNPs using criteria such as LD-pruning listed in Online Methods 97 
(Instrument selection), we retained 2,113 pQTLs for 1,699 proteins as instruments for the 98 
MR analysis (Supplementary Table 1). Among these instruments, we conducted further 99 
validation by categorizing them into three tiers based on their likely utility for MR analysis 100 
(Online Methods, Instrument validation): 1,064 instruments of 955 proteins with the 101 
highest relative level of reliability (tier 1); 62 instruments that exhibited SNP effect 102 
heterogeneity across studies (Supplementary Figs. 1 and 2), indicating uncertainty in the 103 
reliability of one or all instruments for a given protein (tier 2; Supplementary Tables 2 and 104 
3); and 987 non-specific instruments that were associated with more than five proteins (tier 105 
3). For the 263 tier 1 instruments associated with between two and five proteins, 68 of 106 
them influenced multiple proteins in the sample biological pathway and thus are likely to 107 
reflect vertical pleiotropy and remain valid instruments (Supplementary Note, 108 
Distinguishing vertical and horizontal pleiotropic instruments using biological pathway 109 
data)22.  110 

Among the 1,126 tier 1 and 2 instruments, 783 (69.5%) were cis-acting (within 500 111 
kb of the leading pQTL) and 343 were trans-acting. Of 1,002 proteins with a valid instrument, 112 
765 had only a single cis or trans instrument, 66 were influenced by both cis and trans SNPs 113 
(Supplementary Table 4), and 153 had multiple conditionally distinct cis instruments (381 114 
cis instruments shown in Supplementary Table 5).  115 
 116 
Estimated effects of plasma proteins on human phenotypes  117 
We undertook two-sample MR to systematically evaluate evidence for the causal effects of 118 
1,002 plasma proteins (with tier 1 and tier 2 instruments) on 153 diseases and 72 disease-119 
related risk factors (Supplementary Table 6 and Online Methods, Phenotype selection). 120 
Overall, we observed 413 protein-trait associations with MR evidence (P < 3.5 x 10-7 at a 121 
Bonferroni-corrected threshold) using either cis or trans instruments (or both for proteins 122 
with multiple instruments). 123 

Genetically filtering out predicted associations between proteins and phenotypes 124 
may indicate four explanations: causality, reverse causality, confounding by LD between the 125 
leading SNPs for proteins and phenotypes, or horizontal pleiotropy (Supplementary Fig. 3). 126 
Given these alternative explanations, we conducted a set of sensitivity analyses to establish 127 
whether the MR association reflects a causal effect of protein on phenotype: tests of 128 
reverse causality using bi-directional MR24 and MR Steiger filtering25,26; heterogeneity 129 
analyses for proteins with multiple instruments27, and colocalization analyses28 to 130 
investigate whether the genetic associations with both protein and phenotype shared the 131 
same causal variant (Fig. 1). To avoid unreliable inference from colocalization analysis due to 132 
the potential presence of multiple neighboring association signals, we also developed and 133 
performed pairwise conditional and colocalization analysis (PWCoCo) of all conditionally 134 
independent instruments against all conditionally independent association signals for the 135 
outcome phenotypes (Online Methods, Pairwise conditional and colocalization analysis; Fig. 136 
2). For this study, MR and colocalization were the two methods filtering reliable associations. 137 
After the colocalization analysis, 283 of the 413 protein-phenotype associations had profiles 138 
supportive of causality.  139 
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 140 
Estimating protein effects on human phenotypes using cis pQTLs 141 
In the MR analyses using cis-pQTLs, we identified 111 putatively causal effects of 65 proteins 142 
on 52 phenotypes, with strong evidence of MR (P < 3.5 x 10-7) and colocalization (posterior 143 
probability > 80%; after applying PWCoCo) between the protein- and phenotype-associated 144 
signals (Fig. 3 and Supplementary Table 7). A further 69 potential associations had evidence 145 
from MR but did not have strong evidence of colocalization (posterior probability < 80%; 146 
Supplementary Table 8), highlighting the potential for confounding by LD and the 147 
importance of colocalization analyses in MR of proteins. Evidence of potentially causal 148 
effects supported by colocalization was identified across a range of disease categories, 149 
including anthropometric phenotypes and cardiovascular and autoimmune diseases 150 
(Supplementary Note, Disease areas of protein-trait associations), and our findings 151 
replicated some previous reported associations (Supplementary Note, MR results replicated 152 
previous findings). 153 

Of 437 proteins with tier 1 or tier 2 cis instruments from Sun et al.9 and Folkersen et 154 
al.14, 153 (35%) had multiple conditionally independent SNPs in the cis region identified by 155 
GCTA-COJO29 (Supplementary Table 5). We applied an MR model that takes into account 156 
the LD structure between conditionally independent SNPs in these cis regions30. In this 157 
analysis, we identified 10 additional associations that had not reached our Bonferroni 158 
corrected P-value threshold in the single-variant cis analysis. Generally, the MR estimates 159 
from the multi-cis MR analyses were consistent with the single-cis instrumented analyses 160 
(Supplementary Table 9).  161 

In regions with multiple cis instruments, 16 of the 111 top cis MR associations only 162 
showed evidence of colocalization after conducting PWCoCo analysis for both the proteins 163 
and the human phenotypes, where none was observed between marginal results 164 
(Supplementary Table 7). For example, interleukin 23 receptor (IL23R) had two 165 
conditionally independent cis instruments: rs11581607 and rs37623189. Conventional MR 166 
analysis combining both instruments showed a strong association of IL23R with Crohn’s 167 
disease (OR = 3.22, 95% CI = 2.93 to 3.53, P = 6.93 x 10-131; Supplementary Table 9b). There 168 
were four conditionally independent signals (conditional P < 1 x 10-7) predicted for Crohn’s 169 
disease in the same region (data from de Lange et al.31). In the marginal colocalization 170 
analyses, we observed no evidence of colocalization (Fig. 4 and Supplementary Fig. 4, 171 
colocalization probability = 0). After performing PWCoCo with each distinct signal in an 172 
iterative fashion, we observed compelling evidence of colocalization between IL23R and one 173 
of the Crohn’s disease signals for the top IL23R signal (rs11581607) (colocalization 174 
probability = 99.3%), but limited evidence for the second conditionally independent IL23R 175 
hit (rs7528804) (colocalization probability = 62.9%). Additionally, for haptoglobin, which 176 
showed MR evidence for LDL-cholesterol (LDL-C), there were two independent cis 177 
instruments. There was little evidence of colocalization between the two using marginal 178 
associations (colocalization probability = 0.0%). However, upon performing PWCoCo, we 179 
observed strong evidence of colocalization for both instruments (colocalization probabilities 180 
= 99%; Supplementary Table 10 and Supplementary Fig. 5). Both examples demonstrate 181 
the complexity of the associations in regions with multiple independent signals and the 182 
importance of applying appropriate colocalization methods in these regions. Of the 413 183 
associations with MR evidence (using cis and trans instruments), 283 (68.5%) also showed 184 
strong evidence of colocalization using either a traditional colocalization approach (260 185 
associations) or after applying PWCoCo (23 associations), suggesting that one third of the 186 
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MR findings could be driven by genetic confounding by LD between pQTLs and other causal 187 
SNPs. 188 

Due to potential epitope-binding artefacts driven by protein-altering variants32, we 189 
also flag putatively causal links where the lead instrument is a protein-altering variant or is 190 
in high LD (r2 > 0.8) with one (Supplementary Tables 7 and 8 filtered by column 191 
“VEP_pQTL_Ldproxy” including missense, stop-lost/gained, start-lost/gained and splice-192 
altering variants).   193 
 194 
Using trans-pQTLs as additional instrument sources 195 
Trans pQTLs are more likely to influence targets though pleiotropic pathways. Among the 196 
1,316 trans instruments we identified from five studies, 73.5% were associated with more 197 
than five proteins, compared with 1.8 % of cis instruments (Supplementary Table 1). 198 
However, in the context of MR, including non-pleiotropic trans-pQTLs may increase the 199 
reliability of the protein-phenotype associations since (i) they will increase variance 200 
explained of the tested protein and increase power of the MR analysis; (ii) the causal 201 
estimate will not be reliant on a single locus, where multiple instruments exist; and (iii) 202 
further sensitivity analyses, such as heterogeneity test of MR estimates across multiple 203 
instruments, can be conducted. Therefore, we extended our MR analyses to include 343 204 
non-pleiotropic trans instruments (Supplementary Fig. 6). 205 

To utilize trans instruments, we first combined cis and trans instruments for 66 206 
proteins that had both cis and trans instruments (noted as cis + trans analysis). However, 207 
none reached our pre-defined Bonferroni-corrected threshold, and only two protein-208 
phenotype associations showed even suggestive evidence (P < 1 x 10-5) (Supplementary 209 
Table 11). Further, after including trans instruments, 17 of the cis-only signals were 210 
attenuated. Secondly, we performed trans-only MR analyses of 293 proteins and identified 211 
158 associations with 44 phenotypes that also had strong evidence (posterior probability > 212 
0.8) of colocalization (Supplementary Table 12). A further 54 trans-only MR associations did 213 
not have strong evidence of colocalization (Supplementary Table 13). 214 

Some of the trans analyses with MR and colocalization evidence suggest causal 215 
pathways that are confirmed by evidence from rare pathogenic variants or existing 216 
therapies. For example, although we had no cis instrument for Protein C (Inactivator Of 217 
Coagulation Factors Va And VIIIa) (PROC) (Supplementary Fig. 7a), we found evidence for a 218 
causal association between PROC levels and deep venous thrombosis (P = 1.27 x 10-10; 219 
colocalization probability > 0.9) using a trans pQTL, rs867186 (Supplementary Fig. 7b), 220 
which is a missense variant in PROCR33, the gene encoding the endothelial protein C 221 
receptor (EPCR). Individuals with mutations in PROC have protein C deficiency, a condition 222 
characterized by recurrent venous thrombosis for which replacement protein C is an 223 
effective therapy. 224 

From 47 proteins with multiple trans instruments, we identified four additional MR 225 
associations, but none showed strong evidence of colocalization (Supplementary Table 13) 226 
and little evidence of heterogeneity (Supplementary Table 14).  227 
 228 
Estimating protein effects on human phenotypes using pQTLs with heterogeneous effects 229 
across studies 230 
Among the 2,113 selected instruments, we checked whether the 1,062 instruments with 231 
association information in at least two studies showed consistent effect size across studies 232 
(Supplementary Table 15). For these SNPs, we found that 62 showed evidence of difference 233 
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in effect size across studies (tier 2 instruments), for which we performed MR analyses using 234 
the most significant SNP across studies and report the findings with caution. Some proteins 235 
that are targets of approved drugs were found to have potential causal effects in this 236 
analysis, such as interleukin-6 receptor (IL6R) on rheumatoid arthritis (RA)34, and coronary 237 
heart disease (CHD)21 (Supplementary Table 16). Tocilizumab, a monoclonal antibody 238 
against IL6R, is used to treat RA, while canakinumab, a monoclonal antibody against 239 
interleukin-1 beta (an upstream inducer of interleukin-6), has been shown to reduce 240 
cardiovascular events specifically among patients who showed reductions in interleukin-635. 241 

As another test of heterogeneity across studies, where the same protein was 242 
measured in two or more studies, we performed colocalization analysis of each pQTL (in one 243 
study) against the same pQTL (in another study) for the two studies in which we had access 244 
to full summary results (Sun et al.9 and Folkersen et al.14). Of the 41 proteins measured in 245 
both studies, 76 pQTLs could be tested using conventional colocalization and PWCoCo 246 
(Supplementary Table 15). We found weak evidence of colocalization for 51 pQTLs 247 
(posterior probability < 0.8), which suggested either two different signals were present 248 
within the test region or the protein has a pQTL in one study but not in the other. In either 249 
case, as one of the two distinct signals may be genuine, we performed MR analysis of these 250 
25 pQTLs using instruments from each study separately. Eight associations had MR evidence, 251 
but only one showed colocalization evidence (IL27 levels on human height; Supplementary 252 
Table 17).  253 
 254 
Sensitivity analyses to evaluate reverse causality 255 
For potential associations between proteins and phenotypes identified in the previous 256 
analyses, we undertook two sensitivity analyses to highlight results due to reverse causation: 257 
bi-directional MR24 and Steiger filtering25 (Online Methods, Distinguishing causal effects 258 
from reverse causality). In general, we found little evidence of reverse causality for genetic 259 
predisposition to diseases on protein level changes (more details in Supplementary Note, 260 
Bi-directional MR and Steiger filtering results; Supplementary Data 1).  261 
 262 
Drug target prioritization and repositioning using phenome-wide MR 263 
Given that human proteins represent the major source of therapeutic targets, we sought to 264 
mine our results for targets of molecules already approved as treatments or in ongoing 265 
clinical development. We first compared MR findings for 1,002 proteins against 225 266 
phenotypes with historic data on progression of target-indication pairs in Citeline’s 267 
PharmaProjects (downloaded on 9th May 2018). Of 783 target-indication pairs with an 268 
instrument for the protein and association results for a phenotype similar to the indication 269 
for which the drug had been trialled, 9.2% (73 pairs) had successful (approved) drugs, 69.1% 270 
had failed drugs (including 195 failed drugs in the clinical stage and 354 drugs that failed in 271 
the preclinical stage) and 20.3% were for drugs still in development (161 pairs). The 268 272 
pairs for successful (73) or failed (195) drugs were included in further analyses 273 
(Supplementary Table 18). We observed eight target-indication pairs of successful drugs 274 
with MR and colocalization evidence of a potentially causal relationship between protein 275 
and disease (Supplementary Table 19). After removing duplicate genetic evidence for 276 
related indications for the same therapy (Online Methods, Drug target validation and 277 
repositioning), six successful drugs remained from 214 pairs (Supplementary Table 20). In 278 
addition to the PROC and IL6R examples discussed earlier, we found Proprotein convertase 279 
subtilisin/kexin type 9 (PCSK9) (target for evolocumab) for hypercholesterolemia and 280 
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hyperlipidaemia, Angiotensinogen (AGT) for hypertension, IL12B for psoriatic arthritis and 281 
psoriasis, and TNF Receptor Superfamily Member 11a (TNFRSF11A) for osteoporosis. For 282 
each of these examples, the direction of effect between circulating protein and disease risk 283 
was consistent with the therapeutic mechanism, except IL6R and PROC at first sight. 284 
However, for IL6R and PROC, the alleles associated with higher soluble protein levels have 285 
been shown to also lead to lower intracellular pathway activation36,37, indicating consistency 286 
of direction with the therapeutic approach. These examples highlight the importance of 287 
careful examination of the biological mechanisms underlying plasma pQTLs to enable 288 
translation. Further removing associations potentially driven by protein-altering variants, as 289 
well as drugs that were in large part motivated by genetic evidence (e.g. PCSK9 fits both 290 
exclusion criteria), comparisons of the remaining 191 pairs indicated that protein-phenotype 291 
associations with MR and colocalization evidence remained more likely to become 292 
successful target-indication pairs (Table 1). Although we acknowledge the limited sample 293 
size of the test set, this raises enthusiasm for the utility of pQTL MR analyses with 294 
colocalization as a method for target prioritization.  295 

Previous efforts have highlighted the opportunities and challenges of using genetics 296 
for drug repositioning38. We identified three approved drugs for which we found pQTL MR 297 
and colocalization evidence for five phenotypes other than the primary indication and 23 298 
drug targets under development for 33 alternative phenotypes (Supplementary Table 21). 299 
An example of urokinase-type plasminogen activator (PLAU) levels associated with lower 300 
inflammatory bowel disease (IBD) risk is presented in the Supplementary Note (Case study 301 
for drug repurposing) and Supplementary Figure 8. 302 

We also evaluated drugs in current clinical trials and identified eight additional 303 
protein-phenotype associations with MR and colocalization evidence (Supplementary Table 304 
22), for which we observe MR evidence implicating an increased likelihood of success.  305 

Finally, we compared the 1,002 instrumentable proteins (i.e. those that passed our 306 
instrument selection procedure) against the druggable genome39, and found that 682 of the 307 
1,002 (68.1%) instrumentable proteins overlapped with the druggable genome 308 
(Supplementary Table 23 and Online Methods, Enrichment of proteome-wide MR with the 309 
druggable genome). We conducted a further enrichment analysis to assess the overlap 310 
between putative causal protein-phenotype associations and the druggable genome 311 
(Supplementary Table 24). Of the 295 top findings (120 proteins on 70 phenotypes) with 312 
both MR and colocalization evidence, 250 of them (87.7%) overlapped with the druggable 313 
genome (Fig. 5). This enrichment analysis will become more valuable with the continuous 314 
evolution of the druggable genome38. 315 
 316 



 
 

11 
 

Discussion  317 
MR analysis of molecular phenotypes against disease phenotypes provides a promising 318 
opportunity to validate and prioritize novel or existing drug targets through prediction of 319 
efficacy and potential on-target beneficial or adverse effects40. Our phenome-wide MR 320 
study of the plasma proteome employed five pQTL studies to robustly identify and validate 321 
genetic instruments for thousands of proteins. We used these instruments to evaluate the 322 
potential effects of modifying protein levels on hundreds of complex phenotypes available 323 
in MR-Base23 in a hypothesis-free approach17. We confirmed that protein-phenotype 324 
associations with both MR and colocalization evidence predicted a higher likelihood of a 325 
particular target-indication pair being successful and highlight 283 potentially causal 326 
associations. Collectively, we underline the important role of pQTL MR analyses as an 327 
evidence source to support drug discovery and development and highlight a number of key 328 
analytical approaches to support such inference.  329 

In particular, we note the distinct opportunities and methodological requirements 330 
for MR of molecular phenotypes, such as transcriptomics and proteomics, compared to 331 
other complex exposures. For example, the number of instruments is often limited for 332 
proteins, restricting the opportunity to apply recently developed pleiotropy robust 333 
approaches27,41. New methods such as MR-robust adjusted profile scoring (MR-RAPS)42 334 
allow inclusion of many weak instruments in the MR analysis and have been applied to a 335 
recent proteome-wide MR study10. However, we note some examples where inclusion of 336 
multiple weaker instruments can reduce power and yield different results to those based on 337 
cis instruments alone40,43, and we note very limited additional gain from inclusion of trans 338 
instruments. A major advantage of proximal molecular exposures is the ability to include cis 339 
instruments (or interpretable trans instruments) with high biological plausibility, limiting the 340 
likelihood of horizontal pleiotropy22,44. Further, we note the limited gain from inclusion of 341 
trans instruments in our analysis. However, undue focus on single SNP MR approaches 342 
brings susceptibility to other pitfalls, such as the inability to examine heterogeneity of effect 343 
and to evaluate and remove potential epitope artefacts.  344 

To provide robust MR estimates for proteins, we note the important role of a 345 
number of sensitivity analyses following the initial MR in order to distinguish causal effects 346 
of proteins from those driven by horizontal pleiotropy, genetic confounding through LD45 347 
and/or reverse causation25. Of note, only two-thirds of our putative causal associations had 348 
strong evidence of colocalization, suggesting that a substantial proportion of the initial 349 
findings were likely to be driven by genetic confounding through LD between pQTLs and 350 
other disease-causal SNPs. To avoid misleading results, we suggest that for regions with 351 
multiple molecular trait QTLs, it is important to consider methods such as PWCoCo, which 352 
can avoid the assumptions of traditional colocalization approaches of just a single 353 
association signal per region46. In the current study, application of PWCoCo identified 354 
evidence of colocalization for 23 additional protein-phenotype associations hidden to 355 
marginal colocalization46. We note that recent recommendations support the use of 356 
colocalization as a follow up analysis to reduce false positives47.  357 

An important limitation of this work is that protein levels are known to differ 358 
between cell types48. In this study, we have estimated the role of protein measured in 359 
plasma on a range of complex human phenotypes but are unable to assess the relevance of 360 
protein levels in other tissues. While eQTL studies highlight a large proportion of eQTLs 361 
being shared across tissues37, there are many which show cell type and state specificity49, 362 
highlighting the potential value of applying the current approach to data from proteomics 363 
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analyses in other cell types and tissues. We also hypothesize that, in instances with multiple 364 
conditionally distinct pQTLs but where we observe colocalization of only certain 365 
conditionally distinct pQTL-phenotype pairs, this may reflect underlying cell- and state-366 
specific heterogeneity in bulk plasma pQTLs, among which only certain cell-types or states 367 
are causal50. Although pQTL studies have not yet been performed as systematically across 368 
tissues or states as eQTL studies, it remains encouraging that our analyses using plasma 369 
proteins identify associations across a range of disease categories, including for psychiatric 370 
diseases for which we may expect key proteins to function primarily in the brain.  371 

Evaluating the potential of MR to inform drug target prioritization, we demonstrated 372 
that the presence of pQTL MR and colocalization evidence for a target-indication pair 373 
predicts a higher likelihood of approval. One of the limitations of our approach is the lack of 374 
comprehensive coverage of genetic data for all phenotypes for which drugs are in 375 
development, as well as our inability to instrument the entire proteome through pQTLs. As 376 
such, ongoing expansions in the scale, diversity and availability of GWAS will be important in 377 
providing more precise estimates of the value of MR and colocalization in drug target 378 
prioritization and in enabling its broader application.  379 

Another potential limitation of our work is the presence of epitope-binding artefacts 380 
driven by coding variants that may yield artefactual cis-pQTLs32. In particular, such instances 381 
may lead to false negative conclusions where, in the presence of a silent missense variant 382 
causing an artefactual pQTL but with no actual effect on protein function or levels, we do 383 
not correctly instrument the target protein. In instances where the missense variant appears 384 
to be driving the association with the phenotype, we suggest that causal inference may 385 
remain valid but inference on direction of association is challenged. Finally, the limited 386 
coverage of the proteome afforded by current technologies leaves the possibility of 387 
undetected pleiotropy of instruments. While cis-pQTLs are less likely to be prone to 388 
horizontal pleiotropy than trans-pQTLs, it is well known from studies of gene expression that 389 
cis variants can influence levels of multiple neighboring genes and hence the same is likely 390 
to be true for proteins. Future larger GWAS of the plasma proteome are likely to uncover 391 
many more variant-protein associations, increasing the apparent pleiotropy of many pQTLs.  392 

In conclusion, this study identified 283 putatively causal effects between the plasma 393 
proteome and the human phenome using the principles of MR and colocalization. These 394 
observations support, but do not prove, causality, as potential horizontal pleiotropy remains 395 
an alternative explanation. Our study provides both an analytical framework and an open 396 
resource to prioritize potential new targets and a valuable resource for evaluation of both 397 
efficacy and repurposing opportunities by phenome-wide evaluation of on-target 398 
associations.  399 
 400 
 401 
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Figure Legend 635 
 636 
Figure 1 | Study design of this phenome-wide MR study of the plasma proteome. The 637 
study included instrument selection and validation, outcome selection, four types of MR 638 
analyses, colocalization, sensitivity analyses, and drug target validation.   639 
 640 
Figure 2 | A demonstration of pairwise conditional and colocalization (PWCoCo) analysis. 641 
Assume there are two conditional independent association pQTL signals (SNP 1 and SNP 2) 642 
and two conditional independent outcome signals (SNP 1 and SNP 3) in the tested region. A 643 
naïve colocalization analysis using marginal association statistics will return weak evidence 644 
of colocalization (showed in regional plots A and D). By conducting the analyses conditioning 645 
on SNP 2 (plot B) and 1 (plot C) for the pQTLs and conditioning on SNP 1 (plot E) and 3 (plot 646 
F) for the outcome phenotype, each of the nine pairwise combinations of pQTL and 647 
outcome association statistics (represented as lines with different colors in the middle of 648 
this figure) will be tested using colocalization. In this case, the combination of plot B and 649 
plot E shows evidence of colocalization but the remaining eight do not.  650 
 651 
Figure 3 | Miami plot for the cis-only analysis, with circles representing the MR results for 652 
proteins on human phenotypes. The labels refer to top MR findings with colocalization 653 
evidence, with each protein represented by one label. The color refers to top MR findings 654 
with P < 3.09 x 10-7, where red refers to immune-mediated phenotypes, blue refers to 655 
cardiovascular phenotypes, green refers to lung-related phenotypes, purple refers to bone 656 
phenotypes, orange refers to cancers, yellow refers to glycemic phenotypes, brown refers to 657 
psychiatric phenotypes, pink refers to other phenotypes and grey refers to phenotypes that 658 
showed less evidence of colocalization. The x-axis is the chromosome and position of each 659 
MR finding in the cis region. The y-axis is the -log10 P value of the MR findings, MR findings 660 
with positive effects (increased level of proteins associated with increasing the phenotype 661 
level) are represented by filled circles on the top of the Miami plot, while MR findings with 662 
negative effects (decreased level of proteins associated with increasing the phenotype level) 663 
are on the bottom of the Miami plot.  664 
 665 
Figure 4 | Regional association plots of IL23R plasma protein level and Crohn’s disease in 666 
the IL23R region. a,b, Regional plots of IL23R protein level and Crohn’s disease without 667 
conditional analysis. Plot in b lists the sets of conditionally independent signals for Crohn’s 668 
disease in this region: rs7517847, rs7528924, rs183020189, rs7528804 (a proxy for the 669 
second IL23R hit rs3762318, r2 = 0.42 in the 1000 Genome Europeans) and rs11209026 (a 670 
proxy for the top IL23R hit rs11581607, r2 = 1 in the 1000 Genome Europeans), conditional P 671 
value < 1 x 10-7. c, Regional plot of IL23R with the joint SNP effects conditioned on the 672 
second hit (rs3762318) for IL23R. d, Regional plot of Crohn’s disease with the joint SNP 673 
effects adjusted for other independent signals except the top IL23R signal rs11581607. e, 674 
Regional plot of IL23R with the joint SNP effects conditioned on the top hit (rs11581607) for 675 
IL23R. f, Regional plot of Crohn’s disease with the joint SNP effects adjusted for other 676 
independent signals except the second IL23R signal rs3762318. The heatmap of the 677 
colocalization evidence for IL23R association on Crohn’s disease (CD) in the IL23R region is 678 
presented in Supplementary Figure 4. 679 
 680 



 

 

Figure 5 | Enrichment of phenome-wide MR of the plasma proteome with the druggable 681 
genome. In this figure, we only show proteins with convincing MR and colocalization 682 
evidence with at least one of the 70 phenotypes. The x-axis shows the categories of 70 683 
human phenotypes, where the phenotypes have been grouped into 8 categories: 8 684 
autoimmune diseases (red), 3 bone phenotypes (purple), 8 cancers (orange), 12 685 
cardiovascular phenotypes (blue), 4 glycemic phenotypes (yellow), 2 lung phenotypes 686 
(green), 4 psychiatric phenotypes (brown), and 29 other phenotypes (pink). The y-axis 687 
presents the tiers of the druggable genome (as defined by Finan et al.39) of 120 proteins 688 
under analysis, where the proteins have been classified into 4 groups based on their 689 
druggability: tier 1 contains 23 proteins that are efficacy targets of approved small 690 
molecules and biotherapeutic drugs, tier 2 contains 11 proteins closely related to approved 691 
drug targets or with associated drug-like compounds, tier 3 contains 58 secreted or 692 
extracellular proteins or proteins distantly related to approved drug targets, and 28 proteins 693 
have unknown druggable status (Unclassified). The cells with colors are protein-phenotype 694 
associations with strong MR and colocalization evidence. Cells in green are associations 695 
overlapping with the tier 1 druggable genome, while cells in yellow, red or purple were 696 
associations with tier 2, tier 3 or unclassified. More detailed information is shown in 697 
Supplementary Table 24. 698 
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Table 1 | Enrichment analysis comparing target-indication pairs with or without MR and colocalization evidence 699 
 700 

Mendelian randomization and colocalization evidence 

Target-indication pair approved  
after clinical trials 

YES NO 
YES 4 40 
NO 0 147 

 701 
The protein-phenotype association pairs were grouped into four categories: (i) pairs with both MR/colocalization indications of causality and 702 
drug trial success; (ii) pairs with MR and colocalization evidence but no drug trial evidence; (iii) pairs with no strong MR or colocalization 703 
evidence but with drug trial evidence; and (iv) pairs with no strong MR, colocalization or drug trial evidence. The cut-off for MR evidence was P 704 
< 3.5 x 10-7; the cut off for colocalization evidence was posterior probability > 80%. The drug trial evidence was obtained from PharmaProjects 705 
database. The MR and colocalization analysis results involved in this analysis including both tier 1 and tier 2 instruments in both cis and trans 706 
region. More results comparing MR and trial evidence for cis-only and tier 1 instruments can be found in Supplementary Table 20. 707 
 708 
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Methods 709 
Instrument selection  710 
pQTLs from five GWAS9,13-16  were used for the instrument selection (Fig. 1). We first 711 
mapped SNPs to genome build GRCh37.p13 coordinates and then used the following criteria 712 
to select instruments:  713 

• We selected SNPs that were associated with any protein (using a P-value threshold ≤ 714 
5 x 10-8) in at least one of the five studies, including both cis and trans pQTLs.  715 

• Due to the complex LD structure of SNPs within the human Major Histocompatibility 716 
Complex (MHC) region, we removed SNPs and proteins coded for by genes within 717 
the MHC region (chr6: from 26 Mb to 34 Mb).  718 

• We then conducted linkage disequilibrium (LD) clumping for the instruments with 719 
the TwoSampleMR R package23 to identify independent pQTLs for each protein. We 720 
used r2 < 0.001 as the threshold to exclude dependent pQTLs in the cis (or trans) 721 
gene region. 722 

After instrument selection, 2,113 instruments were kept for further instrument validation 723 
(Supplementary Table 1). The instrument selection process, and the number of instruments 724 
for proteins at each step in the process, is illustrated in Figure 1. 725 

We incorporated conditionally distinct signals from protein association data through 726 
systematic conditional analysis. Of the five studies, Sun et al.9 reported conditionally distinct 727 
results for both cis and trans pQTLs, which have been used in our study. Folkersen et al.14 728 
have shared summary statistics, with which we performed approximate conditional analyses 729 
ourselves using GCTA-COJO29, with genotype data from mothers in the Avon Longitudinal 730 
Study of Parents and Children (ALSPAC) as the LD reference panel51,52 (a description of the 731 
ALSPAC cohort can be found in Supplementary Note, Description of ALSPAC study). 732 
Conditionally independent signals in the cis region for Sun et al. and Folkersen et al. are 733 
reported in Supplementary Table 5. 734 
 735 
Instrument validation 736 
For the 2,113 instruments, we further classified them into three groups (noted as tier 1, tier 737 
2 and tier 3 instruments) using two major instrument-filtering steps: a specificity test and a 738 
consistency test. More details of instrument validation, including harmonization of proteins 739 
and instruments and statistical tests for consistency can be found in the Supplementary 740 
Note (The protocol of the instrument validation). 741 
 742 
Test estimating instrument specificity 743 
Absence of horizontal pleiotropy is one of the core assumptions for MR. This assumes that 744 
the genetic variant should only be related to the outcome of interest through the 745 
instrumented exposure. We noted that some SNPs were associated with more than one 746 
protein. For example, APOE SNP rs7412 is associated with a set of proteins such as ADAM11, 747 
APBB2, and APOB. We plotted a histogram of the number of proteins each instrument was 748 
associated with (Supplementary Fig. 6) and considered instruments associated with more 749 
than 5 proteins as highly pleiotropic and assigned them as tier 3 instruments (which were 750 
excluded from all analyses). For instruments associated with fewer than (or equal to) five 751 
proteins, we reported the number of proteins each of them (and their proxies with LD r2 > 752 
0.5) was associated with to indicate the level of potential pleiotropy.  753 
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To further distinguish vertical and horizontal pleiotropy for these instruments, we 754 
used biological pathway information from Reactome (https://reactome.org/) and protein-755 
protein interaction information from STRING DB (https://string-db.org/) implemented in 756 
EpiGraphDB (www.epigraphdb.org; Supplementary Note, Distinguishing vertical and 757 
horizontal pleiotropic instruments using biological pathway data). After this analysis, 68 758 
instruments associated with multiple proteins were mapped to the same pathway (or same 759 
PPI) and were considered as valid instruments. Given there are other pathways and PPIs 760 
that may be not included in Reactome and STRING, we kept tier 1 and 2 instruments 761 
associated with 1 to 5 proteins for the main MR analysis, but we recorded the number of 762 
proteins and number of pathways these instruments are associated with as an indication of 763 
potential pleiotropy. 764 
 765 
Consistency test estimating instrument heterogeneity across studies 766 
Among the 2,113 pQTLs selected as instruments, we looked up available protein GWAS 767 
results (Sun et al.9, Suhre et al.13 and Folkersen et al.14 with full GWAS summary statistics; 768 
Yao et al.15 and Emilsson et al.16 with pQTLs only) and found 1,062 pQTLs (or proxies with r2 > 769 
0.8) with association information in at least two studies (Supplementary Table 15). We then 770 
tested the beta-beta correlation using the Pearson correlation function in R. The results of 771 
the beta-beta correlations of SNP effects for each pair of studies and the number of SNPs 772 
included in each correlation analysis can be found in Supplementary Table 2.  773 

We further performed two consistency tests on the instruments that were present 774 
across studies: (i) pairwise Z test; (ii) colocalization analysis of proteins across studies 775 
(details of the analyses in Supplementary Note, The protocol of the instrument validation). 776 
Instruments showing evidence of high heterogeneity across studies using either the pair-777 
wise Z test (pairwise Z > 5) or colocalization analysis (PP < 80%), were flagged as tier 2 778 
instruments. Recognizing that lack of replication and effect heterogeneity does not preclude 779 
at least one of these effects being genuine, we used these instruments separately for the 780 
follow-up genetic analyses (Supplementary Table 3) and reported the findings with caution.  781 

We designated instruments passing both pleiotropy and consistency tests as tier 1 782 
instruments and used them as primary instruments for the MR analysis.  783 
 784 
Identifying cis and trans instruments    785 
We further split tier 1 instruments into two groups: (i) cis-acting pQTLs within a 500-kb 786 
window from each side of the leading pQTL of the protein were used for the initial MR 787 
analysis (defined as the cis-only analysis)45; (ii) trans-acting pQTLs outside the 500-kb 788 
window of the leading pQTL were designated as trans instruments. While trans instruments 789 
may be more prone to pleiotropy, their inclusion could increase statistical power as well as 790 
the scope of downstream sensitivity analyses (e.g. tests for heterogeneity between 791 
instruments). Therefore, for the proteins with cis instruments, we also looked for additional 792 
trans instruments, and if these were available, we conducted further MR analyses using 793 
both sets of instruments (defined as the "cis + trans" analysis).  794 

For cis instruments, we looked up their predicted consequence via Variant Effect 795 
Predictor53 hosted by Ensembl. We identified coding variants (including missense, stop-796 
lost/gained, start-lost/gained and splice-altering variants) since epitope-binding artefacts 797 
driven by coding variants may yield artefactual cis pQTLs32. We then conducted a sensitivity 798 
MR analysis that excluded cis instruments that are in the coding region to further avoid the 799 
potential issue of epitope-binding artefacts driven by coding variants. 800 
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 801 
Phenotype selection 802 
We obtained effect estimates for the association of the pQTLs with complex human 803 
phenotypes using GWAS summary statistics that were included in the MR-Base database 804 
(http://www.mrbase.org). We selected GWAS with the greatest excepted statistical power 805 
when multiple GWAS records for the same phenotype were available in MR-Base. Diseases 806 
were defined as primary outcomes. Risk factors were defined as secondary outcomes. After 807 
selection, 153 diseases and 72 risk factors (such as lipids and glucose phenotypes) were 808 
included as outcomes for the MR analyses (Supplementary Table 6).  809 
 810 
Causal inference and sensitivity analyses  811 
The following sections describe the two-sample MR analyses using single or small numbers 812 
of instruments on 153 diseases and 72 risk factors. To identify possible violations of 813 
assumptions of MR and to distinguish between the aforementioned scenarios in 814 
Supplementary Figure 3, we therefore conducted the following sensitivity analyses: 815 
colocalization analysis28, tests for heterogeneity between instrumental SNPs27, bi-directional 816 
MR24, and Steiger filtering25,26 (Fig. 1).  817 
 818 
Estimating the causal effects of proteins on human phenotypes using MR 819 
In the initial MR analysis, proteins were treated as the exposures and 225 complex human 820 
phenotypes as the outcomes (Fig. 1, Estimate putative causal relationship). Due to high 821 
correlation among some of the tested phenotypes (e.g. coronary heart disease (CHD) and 822 
myocardial infarction), we used the PhenoSpD method54,55 to provide a more appropriate 823 
estimate of the number of independent tests. We selected a P-value threshold of 0.05, 824 
corrected for the number of independent tests, as our threshold for prioritizing MR results 825 
for follow up analyses (number of tests = 142,857; P < 3.5 x 10-7). 826 
 827 
MR analysis using single locus instruments 828 
First, the strongest cis pQTL variants for each protein were used as the instrumental variable 829 
(described as ‘single cis’ analysis). The Wald ratio56 method was used to obtain MR effect 830 
estimates. In this analysis, the MR effect estimates were sensitive to the particular choice of 831 
pQTLs, since only the most strongly associated SNPs within each genomic region were used 832 
as instruments. Burgess et al. recently suggested that more precise causal estimates can be 833 
obtained using multiple genetic variants from a single gene region, even if the variants are 834 
correlated30,57. We used multiple conditional independent cis SNPs (Supplementary Table 5) 835 
against all 225 phenotypes to further evaluate the MR findings from our initial MR analysis 836 
(described as ‘multiple cis’ analysis). A generalized inverse variance weighted (IVW) model 837 
considering the LD pattern between the multiple cis SNPs was used to estimate the MR 838 
effects, where the pairwise LD (r2) were obtained from the 1000 Genomes European 839 
ancestry reference samples.  840 
 841 
MR analysis using multi-locus instruments 842 
Among the measured proteins reported in Sun et al.9, 34% had both cis and trans pQTLs and 843 
30% had only trans pQTLs. We also conducted MR on proteins with both cis and trans pQTLs 844 
(noted as the cis + trans MR analysis) and proteins with only trans pQTLs (noted as trans-845 
only analysis). In the cis + trans MR analysis, we tested the protein-phenotype associations 846 
of 66 proteins with both cis and trans instruments. The IVW method was used to obtain MR 847 
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effect estimates. In the trans-only MR analysis, we used 351 trans instruments for 298 848 
proteins. The IVW method was used when two or more trans instruments were included in 849 
the analysis, whereas the Wald ratio method was used when only one trans instrument was 850 
included in the analysis.  851 
 852 
MR analysis software 853 
The majority of MR analyses (including Wald ratio, IVW, bi-directional MR, MR Steiger 854 
filtering and heterogeneity test across multiple instruments) were conducted using the MR-855 
Base TwoSampleMR R package (github.com/MRCIEU/TwoSampleMR)23. The IVW analysis 856 
considering LD pattern was conducted using the MendelianRandomization R package58. The 857 
MR results were plotted as forest plots and Miami plots using code derived from the ggplot2 858 
package in R. 859 
 860 
Distinguishing causal effects from genomic confounding due to linkage disequilibrium 861 
Results that survived the multiple testing threshold in the MR analysis were evaluated using 862 
a stringent Bayesian model (colocalization analysis) to estimate the posterior probability (PP) 863 
of each genomic locus containing a single variant affecting both the protein and the 864 
phenotype28. For protein and phenotype GWAS lacking sufficient SNP coverage or missing 865 
key information (e.g. allele frequency or effect size), we conducted the “LD check” analysis 866 
(more details of the two methods in Supplementary Note, Linkage disequilibrium check).  867 
 868 
Pairwise conditional and colocalization analysis  869 
The presence of multiple conditionally distinct association signals within the same genomic 870 
region will influence the performance of colocalization analysis. We therefore developed an 871 
analysis pipeline to integrate conditional and colocalization approaches for regions with 872 
multiple conditionally independent pQTLs. Where there was convincing MR evidence below 873 
the P-value threshold of 3.5 x 10-7, but no good evidence of colocalization using the marginal 874 
SNP effects of the exposures and outcomes (in total 148 MR associations in both cis and 875 
trans regions), we performed pairwise colocalization analyses of all conditionally distinct 876 
pQTLs against all identified conditionally distinct association signals in the outcome data 877 
(noted as pair-wise conditional and colocalization analysis: PWCoCo). The conditional 878 
analysis for proteins and human phenotypes was conducted using the GCTA-COJO package29, 879 
with genotype data from mothers in the Avon Longitudinal Study of Parents and Children 880 
(ALSPAC) as the LD reference panel51,52 (a description of the ALSPAC cohort can be found in 881 
Supplementary Note, Description of ALSPAC study). Figure 2 demonstrates the nine possible 882 
pair-wise combinations of various conditional signals for proteins and phenotypes at which 883 
there are two independent signals in the region (Supplementary Table 27).  884 

For protein-phenotype associations that only showed colocalization evidence after 885 
we applied PWCoCo, we recorded the PWCoCo model that showed colocalization evidence 886 
in a new column “PWCoCo_model”, in Supplementary Tables 7, 8, 11, 12, 13, 16 and 17. 887 
 888 
Heterogeneity test and directionality test of MR findings 889 
For MR analyses using two or more instruments, we conducted heterogeneity tests to 890 
estimate the variability in the causal estimates obtained for each SNP (i.e. how consistent is 891 
the causal estimate across all SNPs used as separate instruments) (Fig. 1, Consistency of the 892 
causal estimate across all SNPs). Cochran’s Q test statistic was calculated for the IVW 893 
analyses, which is expected to be chi-squared distributed with number of SNPs minus one 894 
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degrees of freedom27. Lower heterogeneity suggests a lower chance of violations of 895 
assumptions in MR estimates, such as the presence of confounding through horizontal 896 
pleiotropy59. 897 

In order to mitigate the potential impact of reverse causality (i.e. the hypothesised 898 
outcome actually has a causal effect on the hypothesised exposure and not vice versa), we 899 
used two approaches to identify directions of causality: bi-directional MR and Steiger 900 
filtering (more details in Supplementary Note, Directionality test). 901 
 902 
Drug target validation and repositioning  903 
Approved drug targets have previously been shown to be enriched for gene-phenotype 904 
associations6. We therefore wished to assess whether approved drug targets were enriched 905 
for protein-phenotype associations, as obtained in the present study using MR. We assessed 906 
the support for approved drug targets among our MR findings using Fisher’s exact test. 907 
Target-indication pairs for successful and failed drugs were identified using a manually 908 
annotated version of PharmaProjects database from Citeline 909 
(https://pharmaintelligence.informa.com/). The phenotypes used in the MR analyses and 910 
the indications listed in Citeline’s PharmaProjects (downloaded on 9th May 2018) were then 911 
manually mapped to MeSH headings as a common ontology. This allowed us to match the 912 
protein-phenotype associations with corresponding target-indication pairs. To improve this 913 
matching, we implemented a similarity matrix, derived from all MeSH headings in the 914 
manual mapping, and retained matches with a relative similarity greater than 0.7 for our 915 
analyses (the similarity matrix has been previously described in Nelson et al.6). We then 916 
compared whether the target-indication pair represented a successful or failed drug against 917 
whether there was a signal or not for the corresponding protein-phenotype pair among our 918 
MR findings. For the purposes of this test, a signal was defined as an MR result with P < 3.5 x 919 
10-7 (which is the Bonferroni P-value threshold of the MR analysis) with supporting evidence 920 
from colocalization analysis. We further conducted a set of sensitivity analyses based on the 921 
following criteria to increase the reliability of the enrichment analysis:  922 

1. We checked the direction of effect of MR findings and drug trial results for the eight 923 
approved drugs using therapeutic direction information from PharmaProjects. 924 

2. For target-indication pairs linked to similar phenotypes (for example, the same 925 
target associated with angina and myocardial infarction), we removed one of them 926 
to avoid double counting the same association.  927 

3. To avoid the influence of epitope-binding artefacts, we removed MR results 928 
estimated using missense variants as an instrument.   929 

4. We checked whether approved drugs had been motivated by genetics from Drug 930 
Bank (https://www.drugbank.ca/), which may have inflated the OR estimate.  931 

In total, we removed 75 target-indication pairs based on criteria 2 (45 pairs), 3 (23 pairs) and 932 
4 (2 pairs; some pairs appeared in multiple situations) and conducted the comparison 933 
between protein-phenotype associations using MR and target-indication pairs from 934 
PharmaProjects, both on each criterion separately and on all criteria together 935 
(Supplementary Table 20). 936 

Phenome-wide MR has demonstrated the potential to validate, repurpose and 937 
predict on-target side effects of drug targets. Of the protein-phenotype associations that 938 
showed evidence of colocalization identified in the cis-only, cis+trans, trans-only or MR 939 
analyses using pQTLs with heterogeneous effects across studies (noted as tier 2 940 
instruments), we first looked up how many proteins with MR evidence were established 941 
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drug targets in the Informa PharmaProjects database. We then looked up how many of the 942 
associations were established target-indication pairs in the PharmaProjects database. More 943 
importantly, we predicted the potential adverse effects and repositioning opportunities of 944 
all marketed drugs and drugs under development using phenome-wide MR.  945 
 946 
Enrichment of proteome-wide MR with the druggable genome  947 
Previously, Finan et al.39 systematically identified 4479 genes as the newest druggable 948 
genome compendium. This study stratified the druggable genome set into three tiers. Tier 1 949 
(1,427 genes) included efficacy targets of approved small molecules and biotherapeutic 950 
drugs, as well as targets modulated by clinical-phase drug candidates; tier 2 was composed 951 
of 682 genes encoding proteins closely related to drug targets, or with associated drug-like 952 
compounds; and tier 3 contained 2,370 genes encoding secreted or extracellular proteins, 953 
distantly related proteins to approved drug targets, and members of key druggable gene 954 
families not already included in tier 1 or tier 2. We assessed whether the 1,002 proteins we 955 
selected for the MR analyses overlapped with the 4,479 genes from the druggable genome 956 
(Supplementary Table 23). The proteins were mapped based on the HGNC name of the 957 
encoding genes. We further assessed the overlap based on whether the protein had cis or 958 
trans instruments and based on the druggable genome tiers.  959 

In addition to the above comparison between instrumentable and druggable 960 
genome, we also assessed the enrichment of top pQTL MR findings with the druggable 961 
genome. 295 protein-phenotype associations (120 proteins on 70 phenotypes) with both 962 
MR and colocalization evidence were selected for this analysis. We stratified the 120 963 
proteins into 4 groups based on their druggability: tier 1 contained 23 proteins, tier 2 964 
contained 11 proteins, tier 3 contained 58 proteins, and 28 proteins remained unclassified. 965 
The 70 phenotypes were stratified into 8 groups: 8 autoimmune diseases, 3 bone 966 
phenotypes, 8 cancer phenotypes, 12 cardiovascular phenotypes, 4 glycemic phenotypes, 2 967 
lung phenotypes, 4 psychiatric phenotypes and 29 other phenotypes. The protein-968 
phenotype associations with MR and colocalization evidence were colored separately based 969 
on their druggability tiers. More details of this enrichment analysis are shown in Figure 5 970 
and Supplementary Table 24. 971 
 972 
Data availability 973 
The data (GWAS summary statistics) used in the analyses described here are freely 974 
accessible in the MR-Base platform (www.mrbase.org). All our analysis results for 989 975 
proteins against 225 human phenotypes are freely available to browse, query and download 976 
in EpiGraphDB (http://www.epigraphdb.org/pqtl/). An application programming interface 977 
(API) and R package documented on the website enable users to programmatically access 978 
data from the database. 979 
 980 
Code availability 981 
The code used in the Mendelian randomization and colocalization analyses described here 982 
are freely accessible via our GitHub repo (https://github.com/MRCIEU/epigraphdb-pqtl). 983 
The MR analysis was conducted using TwoSampleMR R package 984 
(https://github.com/MRCIEU/TwoSampleMR). We implemented the colocalization analysis 985 
using the coloc R package (created by Chris Wallace et al.), which can be downloaded here 986 
(https://cran.r-project.org/web/packages/coloc/index.html).  987 
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