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Abstract

We model inter-temporal ambiguity as the scenario in which a Bayesian learner

holds more than one prior distribution over a set of models and provide sufficient

conditions for ambiguity to fade away because of learning. Our conditions apply to most

learning environments: iid and non-iid model-classes, well-specified and misspecified

model-classes/prior support pairs. We show that ambiguity fades away if the empirical

evidence supports a set of models with identical predictions, a condition much weaker

than learning the truth.
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1 Introduction

Let M be a family of models and C a set of prior distributions on M . If C contains

more than one prior distribution, its multiplicity represents the a priori ambiguity

∗We thank Werner Ploberger for his comments. Massimo Marinacci acknowledges the financial support
of the European Research Council (advanced grant INDIMACRO).
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perceived by a Bayesian decision maker (DM). This setting has been used to highlight

the interaction between learning and ambiguity.1

Marinacci (2002) formalizes the intuition that if a DM observes repeated draws

(with replacement) from the same ambiguous urn, ambiguity fades away over time

because he eventually learns the true composition. If the learning problem is well-

specified — in the sense that the true probability belongs to the model-class/prior

support pair adopted by the DM — ambiguity fades away because all posterior distri-

butions converge to a Dirac distribution on the true model.

Here, we generalize the result in Marinacci (2002) to the case in which the DM

does not learn the true probability because his prior view of the world is incorrect

— that is, when the learning problem is misspecified in the sense that the model-

class/prior support pair does not contain the true model/parameter. We show that

ambiguity fades away if the data clearly designates a unique most accurate model (or

a set of models with equivalent predictions), a condition that is always satisfied in

well-specified learning problems. In a nutshell, ambiguity fades away in all cases in

which the empirical evidence eventually dominates the effect of heterogeneity in the

prior distributions. On the contrary, ambiguity persists in those sequences in which two

or more models with different predictions have comparable likelihood infinitely often.

When this happens, the posteriors are “split” between these models with weights that

depend on the priors, and the DM perceives ambiguity.

Our key contribution is to formalize sufficient conditions for the posteriors obtained

from all priors to concentrate on the same model. Our findings rely on and generalize

standard results in statistical learning theory. With a unique prior, a sufficient condi-

tion for the Bayesian posterior to concentrate on the true model (consistency) is that

the prior µ attaches a positive mass to the true parameter(s) (Doob, 1949; Freedman,

1963). In a multiple priors setting, this result continues to hold: if all priors give posi-

tive mass to the true model, then all posteriors concentrate on it and ambiguity fades

away (Marinacci, 2002). On the other hand, in an iid setting and if the true parameter

1It is a known fact that prior-by-prior updating can lead to dynamically inconsistent choices (Epstein and
Schneider, 2003; Siniscalchi, 2011). Concerns about dynamic-consistency have no bite in our setting because
we focus exclusively on one-step-ahead decisions.
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set does not belong to the prior support, the posterior concentrates on the model that

is the closest in terms of K-L divergence to the truth if it is unique (Berk, 1966; White,

1982). In a multiple priors setting, this result suggests that if the minimizer of the K-L

divergence, P ∗, is unique and all priors give it a positive weight, then ambiguity fades

away because all posteriors concentrate on P ∗.

Theorem 2 proves this conjecture and generalizes it to the non-iid setting. Theorem

1 provides an empirical condition for the posteriors derived from all priors to concen-

trate on a unique model which does not depend on a priori knowledge of the truth.

Theorem 3 shows that ambiguity fades away when all posteriors concentrate on models

with identical predictions and provides an empirically verifiable sufficient condition for

the above to occur.

Discussion We prove that a Bayesian agent with multiple priors does not suffer from

long-run ambiguity in all those cases in which the data support a unique model (or a

set of models with identical predictions). How common are these situations? A precise

answer to this question is hard to give because it depends on the true probability mea-

sure, which is typically unknown. If M counts finitely many iid probabilistic models,

then the set of parameters characterizing an iid data generating process such that at

least two models in M have identical average K-L divergence (a situation that violates

all our sufficient conditions and may generate long-run ambiguity) is nongeneric, thus

suggesting that ambiguity should be the exception, rather than the norm. However,

we are cautious about concluding that ambiguity typically fades away in real world

situations because models and parameters are hardly iid and chosen at random. For

example, consider the standard problem of predicting stock market returns. Several

models have been proposed and, to date, it is not clear which model is the closest to the

truth — there is no definite statistical test that favors one unique model over another.

Because the empirical evidence does not support a unique model, an investor with a

set of priors on available models of stock market returns suffers ambiguity despite the

large amount of available financial data.

Our, multiple-prior, learning model describes the attitude of a DM that holds more
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than one prior distribution over a set of parameters and incorporate new information

by independently updating each prior according to Bayes’ rule. On the other hand,

the multiple-likelihoods model (e.g., Epstein and Schneider, 2007; Epstein and Seo,

2015) describes a DM who believes that signals have multiple, hence uncertain, inter-

pretations. Such signals can generate ambiguity even where none is present a priori.

Learning models that accommodate such a possibility generate posterior sets different

from those defined in this paper, and they lead to different results regarding if/when

ambiguity fades away.

2 Probabilities

We consider a family of models M = {Pθ : θ ∈ Θ} with a finite parameter set

Θ ⊂ Rn, defined on a σ-algebra Σ∞ of subsets of X∞ with representative element

x∞ = x1, x2, ..., where X∞ := ×∞X is the infinite Cartesian product of a finite state

space X with representative element x and σ-algebra Σ. With a slight abuse of nota-

tion, we use Pθ(x
t) to denote the probability that model Pθ attaches to the cylinder

with base xt(i.e., Cyl(xt) := {x1, ..., xt, Xt+1, Xt+2, ...}), as well as the likelihood that

model Pθ attaches to the partial sequence (x1, ..., xt). The prior information about the

parameters is summarized by prior distributions µ ∈ ∆Θ. The set of prior distributions

is C. For any prior distribution µ ∈ C the joint distribution of the parameters and the

observations is Pµ ∈ ∆(Θ×X∞), defined by, for all sets A ⊆ Θ and all cylinders xt,

Pµ(A× xt) :=

∫
A
Pθ(x

t)dµ.

We denote by µ(.|xt) ∈ ∆Θ the usual posterior given the observations xt,2 while

Pµ(.|xt) ∈ ∆(Θ×X) is the one-step-ahead predictive distribution of xt+1, given obser-

vations xt. By definition, for all A ⊆ Θ we have

Pµ(A× xt+1|xt) :=

∫
A
Pθ(xt+1|xt)dµ(.|xt) :=

∫
A
Pθ(xt+1|xt)

Pθ(x
t)dµ∫

Θ Pθ(x
t)dµ

.

2We rule out the possibility of observing an event which is impossible according to all models in M .
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3 Decisions

Let C be the space of consequences on which the DM has a bounded utility function

u : C → R. We consider one-step-ahead acts, i.e., Σ−measurable maps f : X → C that

associates a consequence to each observation in X. The decision criterion adopted by

the DM depends on the quality of his prior information. For illustrative purposes, we

briefly provide examples of the DM’s decision criterion when facing risk, unambiguous

uncertainty, and ambiguity.

Suppose there is an urn with 3 balls, each of which is either white, xW , or red, xR.

Suppose the DM chooses a color and draws a ball from the urn. If this ball matches

the DM’s color, he wins $100. Otherwise, he gets nothing. The consequence space is

C = {$0, $100}, the observation space X = {xR, xW }, and the DM can choose between

two acts: fR, he bets on a red ball; and fW , he bets on a white ball. The following

table summarizes this decision problem:

xR xW

fR $100 0

fW 0 $100

(1)

Finally, θ is the fraction of white balls in the urn, so that Θ = {0, 1/3, 2/3, 1}. If draws

are made with replacement from the same urn, M is the iid Bernoulli distribution

family with parameter set Θ.

• Scenario 1: Risky Urns. The DM knows the true composition of the urn θ0

(e.g., he knows that it contains exactly two white balls). In this case, the DM’s

choice criterion is, for every act f , given by:

∫
X
u(f(x))dPθ0 .

• Scenario 2: Bayesian Urns. The DM does not know the composition of the

urn but has enough prior information to uniquely pin down a prior distribution µ

on the set of possible compositions Θ. That is, C is a singleton. For example, the

DM might believe that all the compositions of the urn are equally likely. Unlike
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the previous case, the DM’s choice criterion now changes over time because of

learning. In the first period, the DM’s choice criterion is, for every act f , given

by: ∫
Θ

[∫
X
u(f(x))dPθ

]
dµ =

∫
X
u(f(x))dPµ(x|∅).

Subsequently, as the DM incorporates past realization, xt, to his prior distribution

using Bayes’ rule, his choice criterion becomes:

∫
Θ

[∫
X
u(f(x))dPθ

]
dµ(.|xt) =

∫
X
u(f(x))dPµ(x|xt).

• Scenario 3: Ambiguous Urns. The DM does not know the composition of the

urn and does not have enough prior information to uniquely pin down a distribu-

tion on the set of possible compositions of the urn. That is, C is not a singleton.

For example, the DM might only know that every composition has at least a

1/10 probability of being the correct one: C := {µ ∈ ∆ : ∀θ ∈ Θ, µ(θ) ≥ 1/10} .

In evaluating an act in this scenario, the DM has to consider, for each act f , the

set {∫
X
u(f(x))dPµ(x|∅) : µ ∈ C

}
.

Subsequently, as the DM incorporates past realizations using Bayes’ rule, the DM

has to consider, for each act f , the set:

{∫
X
u(f(x))dPµ(x|xt) : µ ∈ C

}
.

Possible summaries of this set are the infimum and supremum:

sup
µ∈C

∫
X
u(f(x))dPµ(x|xt) ; inf

µ∈C

∫
X
u(f(x))dPµ(x|xt).

4 Long-run ambiguity

As in Marinacci (2002), we consider the difference between the DM’s expected utility

under the most advantageous prior and under the least advantageous prior in C to be a
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measure of the ambiguity that a DM perceives in evaluating an act f . We are ultimately

interested in verifying whether this quantity converges to 0 as the number of past

observations goes to infinity and each prior gets independently updated using Bayes’

rule. A tight sufficient condition for the most conservative and the least conservative

expected utility to coincide is to require that the posteriors calculated from all priors

in C eventually coincide (see Lemma 2 in Appendix). We say that

Definition 1. Ambiguity fades away at path x∞ ∈ X∞ if,

lim
t→∞

[
sup

µ′,µ′′∈C

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣
]

= 0 (2)

where, for each t > 0, xt indicates the first t realizations of path x∞.

Definition 1 requires that all posteriors concentrate on the same model (or on a

set of models with identical predictions) on the realized path. Unlike the definition

proposed by Marinacci (2002) — which requires all the posteriors to converge to a

Dirac measure on the true model on a set of sequences of true measure 1 — ours does

not assume an iid structure, and it does not depend on the true model. Thus, it can

be used to discuss long-run ambiguity when the model class support contains models

with learning, a dependence-structure, or is misspecified. In those cases in which all

posteriors concentrate on the true model, our definition is equivalent to the notion of

weak merging (Lehrer and Smorodinsky, 1996).

5 Main result

In this section, we present three sufficient conditions for ambiguity to fade away. The

driving force of our results is the observation that the key component of Bayesian

learning is the existence of a unique most accurate model, rather than the true model

belonging to the prior support. For instance, Berk (1966) shows that if all models in the

support and the truth are iid, then the posterior obtained from a unique prior eventually

assigns probability 1 to the set of parameters that minimize the K-L divergence from

the truth, if unique. Here, we generalize Berk (1966)’s result to the case of multi-prior,
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non-iid setting. We provide two conditions (Theorems 1 and 2) that are sufficient for

all posteriors to concentrate on the same model and one condition (Theorem 3) that

is sufficient for all posteriors to concentrate on a set of models that deliver the same

predictions. Let us start by formalizing an appropriate generalization of the notion of

unique most accurate model.

Definition 2. Given a path x∞ ∈ X∞ and a family of models M = {Pθ : θ ∈ Θ}, we

say that θ̂ := θ̂(x∞,Θ) ∈ Θ is a strong maximum likelihood (SML) model if, for every

θ ∈ Θ, the limit limt→∞ Pθ(x
t)/Pθ̂(x

t) exists and is finite.

If θ̂ is unique, the SML model is the model whose likelihood converges to zero at the

slowest rate on path x∞ — i.e., ∀θ 6= θ̂, lim
t→∞

Pθ(x
t)/Pθ̂(x

t) = 0 at path x∞. If more than

one SML model exists, all SML models must eventually deliver the same conditional

one-step-ahead predictions on x∞ (Lemma 1), but not necessarily on hypothetical one-

step-ahead states that do not realize on x∞ (see Scenario 9).

Our first result shows that the existence of a unique SML is a sufficient condition

for ambiguity to fade away.

Theorem 1. Let M = {Pθ : θ ∈ Θ} be a family of models and C a compact set of

strictly positive prior distributions on Θ. Ambiguity fades away at path x∞ if a unique

θ̂(x∞,Θ) exists.

By definition, if the SML model is unique, its likelihood eventually dominates that

of all other models. Consequently, the posteriors calculated from all priors eventually

attach unitary weight to θ̂ and ambiguity fades away.

An alternative condition for ambiguity to fade away can be obtained by noticing

that a sufficient condition for the existence of a unique SML model P -a.s. is the

presence of a unique model with the lowest average K-L divergence.

Definition 3. The average K-L divergence from Pθ to the true probability Pθ0 is

D̄(Pθ0 ||Pθ) := lim
t→∞

1

t
EPθ0

[
ln
Pθ0(xt)

Pθ(xt)

]
.

Next, we show that the existence of a unique model with minimal K-L divergence

is a sufficient condition for ambiguity to fade away.
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Theorem 2. Let M = {Pθ : θ ∈ Θ} be a family of models and C a compact set of

strictly positive priors on Θ. Ambiguity fades away Pθ0-a.s. if argmin
θ∈Θ

D̄(Pθ0 ||Pθ) exists

and is unique.

This delivers a sufficient condition for ambiguity to fade away Pθ0-a.s. which gen-

eralizes Berk (1966)’s results to the non-iid setting and includes Marinacci (2002)’s

condition as a special case. When C is a singleton, if all models in M and the true

measure are iid, Berk (1966)’s result follows from Theorem 2 because the average K-L

divergence coincides with the K-L divergence Pθ0-a.s. by the Strong Law of Large

Numbers. Whereas, if all models in M are iid and the truth belongs to M , Marinacci

(2002)’s condition follows because the true model is the unique maximizer of the K-L

divergence.

The condition of Theorem 1 depends only on the properties of the sequence of real-

izations, while Theorem 2’s condition requires a priori knowledge of the true probability

distribution —to calculate the K-L divergence. In a nutshell, the difference between

the two conditions is as follows: Theorem 1 tells us that ambiguity persists if the data

is inconclusive, while Theorem 2 tells us that ambiguity persists if the true probability

generates inconclusive data Pθ0-a.s.. These two conditions are not directly comparable,

but there is a sense in which the former is more informative than the latter. There

are cases in which two models have identical average K-L divergence but a diverging

likelihood ratio P -a.s.3

Last, we present a sufficient condition for ambiguity to fade away that relaxes the

uniqueness requirement for the SML model of Theorem 1 by asking for a (minimal)

assumption about the true model. If all states have a positive probability to be vis-

ited after every history, then all SML models must deliver identical one-step-ahead

predictions, and the existence of at least one SML model is a sufficient condition for

ambiguity to fade away. Theorem 3 condition allows discussing long-run ambiguity

when members of the prior support are learning models.

3For example, in a market selection framework Massari (2017) analyzes models with diverging log-
likelihood ratio and yet the same average K-L divergence because the divergence rate of the former O(t.5) is
dominated by the averaging factor O(t−1).
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Theorem 3. Let M = {Pθ : θ ∈ Θ} be a family of models and C a compact set of

strictly positive priors on Θ. Ambiguity fades away Pθ0-a.s. if at least one SML exists

Pθ0-a.s. and the true data generating process Pθ0 assigns strictly positive probability to

every state after every history.4

The additional assumption about the true model that we introduce in Theorem 3

is needed to guarantee that if there are multiples SML, all the SML deliver the same

prediction. Scenario 9 below illustrates the role played by our conditions on the truth.5

If some states have zero probability to be visited, then it is possible to have multiple

SML models and long-run ambiguity because these models make different predictions

about states that are never empirically tested.

We conclude by presenting scenarios illustrating our conditions. Scenarios 4-6 show

cases in which ambiguity fades away because the truth generates sequences that support

only one model among those believed possible by the DM. Conversely, scenarios 7-9

show cases in which ambiguity persists in the long run because the truth generates

sequences which equally endorse at least two models with different predictions in the

prior support infinitely often. While we were unable to prove a necessary counterpart

to our sufficient conditions, these scenarios suggest that our conditions are tight.

Suppose a DM confronted with decision problem 1 subjectively believes that he is

facing iid realizations from an ambiguous urn with three balls, two of which have the

same color. In our notation, he believes that M is the class of iid Bernoulli distributions

with possible parameters Θ = {1/3, 2/3}. His prior information is accurate enough to

reduce ambiguity to only two possible priors on the composition of the urn: C =

{µ′(θ), µ′′(θ)}. These are,

µ′(θ) = {µ′(1

3
) =

1

2
, µ′(

2

3
) =

1

2
} and µ′′(θ) = {µ′′(1

3
) =

1

4
, µ′′(

2

3
) =

3

4
}.

• Scenario 4: Ambiguity fades away in well-specified learning settings.

Draws are indeed iid from an urn whose composition is θ0 = 2
3 . Because the

4In symbols, ∀xt−1,∀xt ∈ X,Pθ0(xt|xt−1) > 0.
5We thank an anonymous referee for providing us with this example.
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learning problem is well-specified (θ0 ∈ Θ), by the Strong Law of Large Numbers

θ0 is the SML model Pθ0-a.s.. Thus, Theorem 1 (and Marinacci, 2002) implies

that ambiguity fades away Pθ0-a.s..

• Scenario 5: Ambiguity fades away in a misspecified learning setting

with incorrect dependence-structure. Draws are not iid, as the DM incor-

rectly believes. Instead, the urn is secretly changed before every draw to deliver

the deterministic sequence x∞ := {W,W,R,W,W,R, ...}. Because the frequency

of W converges to 2
3 , then θ̂ = 2

3 is the SML parameter in Θ. By Theorem 1, all

posteriors concentrate on θ̂ and ambiguity fades away. Although the DM fails to

realize that draws are not iid, he successfully learns the best parameter in Θ and

ambiguity fades away.

• Scenario 6: Ambiguity fades away in a misspecified learning setting

with correct dependence-structure. Draws are iid from an urn whose com-

position is θ0 = 3
5 . In this case, the dependence-structure is correctly specified

because draws are indeed iid, but the learning problem is misspecified because Θ

does not contain the true parameter: θ0 /∈ Θ. It is easy to verify that θ̂ = 2
3 is the

strong maximum likelihood Pθ0-a.s..6 Thus, Theorem 1 implies that both poste-

riors concentrate on θ̂. Although the DM cannot learn the true model, ambiguity

fades away because the data clearly indicates which model is the most accurate.

• Scenario 7: Ambiguity persists in a misspecified learning setting with

incorrect dependence-structure. Draws are not iid, as the DM incorrectly

believes. Instead, he is facing the deterministic sequence x∞ := {W,R,W,R, ...}.

It is easy to verify that the conditions of Theorems 1-3 are not satisfied. The fol-

lowing argument shows that ambiguity does not fade away. In every even period

P 1
3

and P 2
3

have identical likelihood. Therefore, each odd period prediction ob-

tained from priors µ′ and µ′′ coincides with their first period prediction. Because

µ′’s and µ′′’s first period predictions differ, their predictions differ for every odd

6By the Strong Law of Large Numbers, lim
t→∞

P 1
3

(xt)

P 2
3

(xt) =P -a.s. lim
t→∞

(
( 1

3 )
3
5 ( 2

3 )
2
5

( 2
3 )

3
5 ( 1

3 )
2
5

)t
= 0.
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period, and ambiguity does not fade away.7

• Scenario 8: Ambiguity persists in a misspecified learning setting with

correct dependence-structure. Draws are iid from an urn whose composition

is θ0 = 1
2 . In this case, the dependence-structure is correctly specified because

draws are iid, but Θ is not, since θ0 /∈ Θ. A symmetry argument can be used to

show that the conditions of Theorems 1-3 are not satisfied.8 When this happens

the predictions of µ′ and µ′′ differ and the DM suffers ambiguity, by the same

argument used in Scenario 7.

• Scenario 9: Ambiguity persists in a misspecified learning setting with

multiple SML and degenerate truth. Consider a DM facing a series of draws

from three-color urns X := {a, b, c} which he believe to be iid from two possible

models Θ = {θ′, θ′′} with

Pθ′ =

[
1

2
,
3

8
,
1

8

]
and Pθ′′ =

[
1

2
,
1

8
,
3

8

]
.

The DM has two priors C = {µ, µ′} on these models: µ′(θ′) = .3 = 1 − µ”(θ′).

Draws are not iid, as the DM incorrectly believes. Instead, he is facing the

deterministic sequence x∞ := {a, a, a, ...}. The condition of Theorem 1 is not

satisfied because both models are SML — they attach an identical likelihood

to x∞. The condition of Theorem 2 is not satisfied because both models have

the same average K-L divergence.9 The condition of Theorem 3 is not satisfied

because only state a has positive probability of occurring. Ambiguity does not

fade away because the predictive probabilities for state b and c calculated from

7It is straightforward to verify that Pµ′(xW |xt) 6= Pµ′′(xW |xt) for every t even:

Pµ′(xW |xt) =
1

2

(
1
3

2
3

) t
2 1

3(
1
3

2
3

) t
2 1

2 +
(

1
2

2
3

) t
2 1

2

+
1

2

(
1
3

2
3

) t
2 2

3(
1
3

2
3

) t
2 1

2 +
(

1
3

2
3

) t
2 1

2

=
1

2

Pµ′′(xW |xt) =
1

4

(
1
3

2
3

) t
2 1

3(
1
3

2
3

) t
2 1

4 +
(

3
4

2
3

) t
2 3

4

+
3

4

(
1
3

2
3

) t
2 2

3(
1
3

2
3

) t
2 1

4 +
(

1
3

2
3

) t
2 3

4

=
7

12

8Massari (2013) provides a formal argument based on an application of the Law of Iterated Logarithms
showing that P 2

3
and P 1

3
have identical likelihood infinitely often.

9Under the standard convention 0 ln 0 = 0
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the two time zero priors differ, and the two priors remain constant over time since

Pθ′(a) = Pθ′′(a) and only state a occurs.

6 Appendix

In this appendix,

• Given two functions on the real line, f and g, f = o(g), abbreviates lim
x→∞

f(x)
g(x) = 0;

• θ̂t := θ̂(xt) is the maximum likelihood model on the partial history xt;

• D
(
Pθ̂t ||Pθ

)
:=EPθ̂t

ln
Pθ̂t

(x)

Pθ(x) is the K-L divergence from Pθ to Pθ̂t .

Lemma 1. Given a path x∞ ∈ X∞ and a family of models M = {Pθ : θ ∈ Θ}, if θ̂, θ̄
are SML, then |Pθ̂(xt|x

t−1)− Pθ̄(xt|xt−1)| → 0 on x∞.

Proof. By contradiction, suppose θ̂, θ̄ are SML and |Pθ̂(xt|x
t−1)−Pθ̄(xt|xt−1)| 6→ 0 on

x∞, so that ∃ε :
Pθ̄(xt|xt−1)
Pθ̂(xt|t−1)

/∈ (1± ε) infinitely often on x∞. It follows that

lim
t→∞

Pθ̄(x
t)

Pθ̂(x
t)

= lim
t→∞

∏t
τ=1 Pθ̄(xτ |xτ−1)∏t
τ=1 Pθ̂(xτ |τ−1)

=


∞
0
6 ∃

on x∞ ⇒ θ̂ is not SML or θ̄ is not SML.

Proof of Theorems 1 and 3

Proof. Because C is compact, then argmax
µ′,µ′′∈C

lim
t→∞

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣ is non

empty. Thus, it suffices to prove that

∃SML⇔ ∀µ′, µ′′ ∈ C, lim
t→∞

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣ = 0.

13



• Theorem 1: by assumption, there is a unique SML, θ̂. Therefore,

lim
t→∞

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣
:= lim

t→∞

∫
X

∣∣∣∣∣∣
∑
θ

Pθ(x)
Pθ(x

t))µ′′(θ)∑
θ

Pθ(xt))µ′′(θ)
−
∑
θ

Pθ(x)
Pθ(x

t))µ′(θ)∑
θ

Pθ(xt))µ′(θ)

∣∣∣∣∣∣ dx

=a

∫
X

lim
t→∞

∣∣∣∣∣∣∣∣
Pθ̂(x)

1 +
∑
θ 6=θ̂

Pθ(xt))µ′′(θ)

Pθ̂(xt)µ′′(θ̂)

+

∑
θ 6=θ̂

Pθ(x)Pθ(xt))µ′′(θ)

Pθ̂(xt)µ′′(θ̂)

1 +
∑
θ 6=θ̂

Pθ(xt))µ′′(θ)

Pθ̂(xt)µ′′(θ̂)

−
Pθ̂(x)

1 +
∑
θ 6=θ̂

Pθ(xt))µ′(θ)

Pθ̂(xt)µ′(θ̂)

−

∑
θ 6=θ̂

Pθ(x)Pθ(xt))µ′(θ)

Pθ̂(xt)µ′(θ̂)

1 +
∑
θ 6=θ̂

Pθ(xt))µ′(θ)

Pθ̂(xt)µ′(θ̂)

∣∣∣∣∣∣∣∣ dx
=

∫
X

∣∣∣∣ Pθ̂(x)

1 + o(1)
+ o(1)−

Pθ̂(x)

1 + o(1)
− o(1)

∣∣∣∣ dx , by definition of SML;

= 0

Step a: The Lebesgue’s Dominated Convergence Theorem allows exchanging integral
and limit signs (Williams, 1991).10

• Theorem 3: If the SML is unique Pθ0-a.s., the proof above holds. Otherwise, for a given
Pθ0-typical path x∞, let Θ̂ ⊆ Θ be the subset of models which satisfy the SML condition:

∀θ̂, θ̄ ∈ Θ̂, lim
t→∞

Pθ̄(xt)
Pθ̂(xt) = k > 0, where k can vary depending on θ̂, θ̄. By Lemma 3, all

models in Θ̂ eventually deliver the same predictions on all states. Call this prediction P̄ ,
then the result follows substituting P̄ and µ̄ =

∑
µ(θ̄) µ(θ) for Pθ̂ and µ̂ in Equation a

above, respectively.

Proof of Theorem 2

10Let {rt(x)}∞t=1 := {|Pµ′′(x|xt)− Pµ′(x|xt)|}
∞
t=1 and note that |r1|, |r2|... are bounded above.
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Proof. Let θ̂ be the unique element of argmin
θ∈Θ

D̄(Pθ0 ||Pθ). Thus ∃ε > 0:

∀θ 6= θ̂, D̄(Pθ0 ||Pθ̂) < D̄(Pθ0 ||Pθ)− ε

⇒ ∀θ 6= θ̂, lim
t→∞

1

t
EPθ0

[
ln
Pθ0(xt)

Pθ̂(x
t)

]
− lim
t→∞

1

t
EPθ0

[
ln
Pθ0(xt)

Pθ(xt)

]
< −ε

⇒a ∀θ 6= θ̂, lim
t→∞

EPθ0

[
1

t

t∑
τ=1

EPθ0

[
ln
Pθ0(x|xτ−1)

Pθ̂(x|xτ−1)

∣∣∣∣xτ−1

]
− 1

t

t∑
τ=1

EPθ0

[
ln
Pθ0(x|xτ−1)

Pθ(x|xτ−1)

∣∣∣∣xτ−1

]]
< −ε

⇒b ∀θ 6= θ̂, lim
t→∞

1

t

t∑
τ=1

ln
Pθ0(xτ |xτ−1)

Pθ̂(xτ |xτ−1)
− lim
t→∞

1

t

t∑
τ=1

ln
Pθ0(xτ |xτ−1)

Pθ(xτ |xτ−1)
< −ε Pθ0-a.s.

⇒ ∀θ 6= θ̂, lim
t→∞

t∑
τ=1

ln
Pθ(xτ |xτ−1)

Pθ̂(xτ |xτ−1)
= −∞ Pθ0 -a.s.

⇒ ∀θ 6= θ̂, lim
t→∞

ln
Pθ(x

t)

Pθ̂(x
t)

= −∞ Pθ0 -a.s.

⇒ ∀θ 6= θ̂, lim
t→∞

Pθ(x
t)

Pθ̂(x
t)

= 0 Pθ0-a.s.

⇒ θ̂ is SML Pθ0 -a.s.

a) Telescoping the log and using the tower property of expectation.
b) The Strong Law of Large Numbers for Martingale Differences (Williams, 1991) allows sub-
stituting the limit average sum of conditional expected values with the limit average sum of
realized values P -a.s.:

∀θ ∈ Θ lim
t→∞

1

t

t∑
τ=1

(
EPθ0 (x|xτ−1)

[
ln
Pθ0(x|xτ−1)

Pθ(x|xτ−1)

]
− ln

Pθ0(xτ |xτ−1)

Pθ(xτ |xτ−1)

)
= 0 Pθ0-a.s.

Lemma 2. Let µ′ and µ′′ be two prior on Θ, if u is bounded, then

lim
t→∞

∫
X

|dPµ′′(x|xt)−dPµ′(x|xt)| = 0⇒ lim
t→∞

[∫
X

u(f(x))dPµ′′(x|xt)−
∫
X

u(f(x))dPµ′(x|xt)
]

= 0

Proof.

lim
t→∞

∫
X

|dPµ′′(x|xt)− dPµ′(x|xt)| = 0

⇒ lim
t→∞

A1
t = lim

t→∞
max
x∈X
|u(f(x))|

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣ = 0 because u is bounded;

⇒ lim
t→∞

A2
t = lim

t→∞

∫
X

|u(f(x))|
∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣ = 0 because, ∀t, A1

t ≥ A2
t ≥ 0;

⇒ lim
t→∞

A3
t = lim

t→∞

∣∣∣∣∫
X

u(f(x))dPµ′′(x|xt)−
∫
X

u(f(x))dPµ′(x|xt)
∣∣∣∣ = 0 because ∀t, A2

t ≥ A3
t ≥ 0;

⇒ lim
t→∞

[∫
X

u(f(x))dPµ′′(x|xt)−
∫
X

u(f(x))dPµ′(x|xt)
]

= 0.
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Lemma 3. If the true data generating process Pθ0 assigns strictly positive probability
to every state after every history, then all SML eventually attach identical probability
to all states, i.e., if ∀xt−1,∀xt, Pθ0(xt|xt−1) > 0,

lim
t→∞

Pθ̄(x
t)

Pθ̂(x
t)

= k ∈ (0,∞)⇒ lim
t→∞

‖Pθ̄(x|xt−1)− Pθ̂(x|x
t−1)‖ = 0 Pθ0-a.s.

Proof. We prove the contrapositive statement. If ∀xt−1,∀xt, Pθ0(xt|xt−1) > 0,

∃ε > 0 : ‖Pθ̄(x|xt−1)−Pθ̂(x|x
t−1)‖ > ε infinitely often⇒ ¬ lim

t→∞

Pθ̄(x
t)

Pθ̂(x
t)

= k ∈ (0,∞) Pθ0-a.s.

Our proof is an application of the Levy’s extension of the Borel-Cantelli Lemma from
which we borrow most notation (see, Williams, 1991, pg. 124.)
Consider two models θ̂ and θ̄ that deliver different predictions in at least a state in-
finitely often. Call the subsequence of such periods (tτ )∞τ=1, so that

∀xt, Pθ0(xt) > 0⇒ ∃ε1 > 0 : ∀tτ , ξtτ := Pθ0

(
Pθ̄(xtτ |xtτ−1)
Pθ̂(xtτ |tτ−1)

/∈ (1± ε1)
)
> 0.

Let Zn := 1
n

∑n
τ=1 I

{
Pθ̄(xtτ |x

tτ−1)

P
θ̂

(xtτ |
tτ−1)

/∈(1±ε1)

}, and Y n :=
∑n

τ=1 ξtτ .

Note that lim
n→∞

Y n =∞.

The Levy extension of the Borel-Cantelli Lemma guarantees that Pθ0-a.s.,

lim
n→∞

Y n =∞⇒ lim
n→∞

Zn
Y n

= 1.

The result follows because

lim
n→∞

Zn
Y n

= 1⇒ ∃ε0 : Pθ0

({
Pθ̄(xtτ |xtτ−1)

Pθ̂(xtτ |tτ−1)
/∈ (1± ε1) infinitely often

})
= 1

⇒ Pθ0

({
lim
t→∞

Pθ̄(x
t)

Pθ̂(x
t)

= {0,∞} or lim
t→∞

Pθ̄(x
t)

Pθ̂(x
t)

does not exist

})
= 1

⇔ Pθ0

(
¬
{

lim
t→∞

Pθ̄(x
t)

Pθ̂(x
t)

= k ∈ (0,∞)

})
= 1.

References

Berk, R. H. (1966). Limiting behavior of posterior distributions when the model is
incorrect. The Annals of Mathematical Statistics, 37(1):51–58.

Doob, J. L. (1949). Application of the theory of martingales. Colloques Internationaux
du Centre National de la Recherche Scientifique Paris.

16



Epstein, L. G. and Schneider, M. (2003). Recursive multiple-priors. Journal of Eco-
nomic Theory, 113(1):1–31.

Epstein, L. G. and Schneider, M. (2007). Learning under ambiguity. The Review of
Economic Studies, 74(4):1275–1303.

Epstein, L. G. and Seo, K. (2015). Exchangeable capacities, parameters and incomplete
theories. Journal of Economic Theory, 157:879–917.

Freedman, D. A. (1963). On the asymptotic behavior of bayes’ estimates in the discrete
case. The Annals of Mathematical Statistics, pages 1386–1403.

Lehrer, E. and Smorodinsky, R. (1996). Compatible measures and merging. Mathe-
matics of Operations Research, 21(3):697–706.

Marinacci, M. (2002). Learning from ambiguous urns. Statistical Papers, 43(1):143–
151.

Massari, F. (2013). Comment on ‘if you’re so smart, why aren’t you rich? belief
selection in complete and incomplete markets’. Econometrica, 81(2):849–851.

Massari, F. (2017). Markets with heterogeneous beliefs: A necessary and sufficient
condition for a trader to vanish. Journal of Economic Dynamics and Control, 78:190–
205.

Siniscalchi, M. (2011). Dynamic choice under ambiguity. Theoretical Economics,
6(3):379–421.

White, H. (1982). Maximum likelihood estimation of misspecified models. Economet-
rica: Journal of the Econometric Society, pages 1–25.

Williams, D. (1991). Probability with martingales. Cambridge University Press.

17


