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Abstract  
 

Today, one in five adults experience chronic pain and this figure increases for those over 65 years old. 

However, frustration is mounting over the inadequate treatment for chronic neuropathic pain since its 

symptoms are challenging to treat and often resistant to opioids. Processing of pain signals relies on the 

activities of ion channels with the microglial P2X4 receptor being an important player. Animal venoms 

play an essential role in drug discovery as they contain a rich source of bioactive molecules 

evolutionarily fine-tuned to target ion channels such as P2X receptors. First, we have established and 

validated several fluorescent-based high throughput screening assays for assessing the activity of venom 

toxins at P2X receptors. Second, a diverse selection of 180 crude venoms has been screened against 

human P2X4 in HEK293 and 1321N21 cells, resulting in several venoms containing inhibitors against 

hP2X4. Two of them, LK-601 and LK-729, were confirmed to be structurally uncharacterized 

acylpolyamines, which potently inhibited hP2X4 with the apparent IC50 values between 1.1 – 4.5 µM, 

however only LK-601 showed a relatively high level of selectivity over hP2X3, hP2X7 and NMDA 1a/2a. 

Species differences were evident with no effect at rat P2X4, however, blocking the mouse P2X4. Using 

LK-601 as a structural guide, the fragment-based screening was carried out and five smaller toxin 

analogues chemically synthesized. One of them, LA-3, was found to block the hP2X4 (IC50 of 9.7 – 18.6 

µM) and showed selectivity to hP2X4 over hP2X3, hP2X7 and rP2X4 with a modest inhibition at mP2X4. 

Due to the differential sensitivity of LA-3 to block P2X4 orthologues, the potential binding site were 

identified, and the validation showed that two crucial amino acid residues, D220 and N238, might be 

involved in LA-3 binding to hP2X4; however, more experiments are needed to confirm that effect fully. 

In summary, we discovered a novel toxin from a spider venom with inhibitory activity at human P2X4 ion 

channels that shows selectivity at hP2X4 over other P2X receptors. Further characterization and 

validation are required to understand whether these novel compounds could be useful as analgesics. 
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1. No Pain, All Gain: Tackling Chronic  

Pain Using Venom Toxins 
 

Pain represents a necessary physiological function yet remains a significant pathological process 

worldwide. While exciting progress is being made in deciphering the molecular and cellular mechanisms 

that underlie what we ultimately interpret as pain, chronic pain still continues to be an enduring health 

problem. Nociceptive pain is an evolutionary protective mechanism that guards us from potentially 

damaging or life-threatening events, whereas long-lasting chronic pain (pain lasting >3 months) 

transforms this into a debilitating disease. For many patients, pain continues to produce severe distress, 

limiting the quality of their lives. To put things into perspective, 1.4 billion of the world’s 7 billion people 

– 20% – currently suffer from chronic pain, a number that increases to 50% for individuals older than 

65.1-2 Given the impact of pain, the stakes are enormous. Just at the close of 2014, the annual economic 

burden of chronic pain in the USA was ~$600 billion (£10 billion in the UK),3 which exceeds the 

combined cost of cancer, diabetes and stroke.4 

As chronic pain is a common medical problem, the relief of pain is an important therapeutic goal. The 

generally accepted forms of chronic pain are chronic inflammatory pain and neuropathic pain, the latter 

being induced by explicit nerve damage. However, frustration is mounting over the inadequate 

treatment for neuropathic pain since its symptoms are difficult to treat and often resistant to the 

current available treatments, including the potent analgesic effects of the opioid drugs.5-6 This is in stark 

contrast to acute and chronic inflammatory pain for which there are many effective therapies.  

Current remedies for neuropathic pain have at best moderate efficacy, poor tolerability, unfavourable 

side-effects, and concerns over long-term safety and abuse potential as noted in a double-blind, 

randomised meta-analysis study by Finnerup and others.5, 7-9 For example, in the recent two decades, 

the United States has seen a dramatic increase in opioid prescriptions for chronic pain. This so called 

“opioid crisis”, a term coined by reporters, has been linked with the growing misuse of prescription 

opioids and has led to increases in deaths due to unintentional opioid overdose, as well as in the 

number of patients seeking treatment for opioid-misuse disorders.10-11  
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Clearly, new efficacious and safe analgesic agents are needed. The field has endured one very high 

profile efficacy-related failure in neurokinin 1 (substance P) receptor antagonists12 and others, such as 

glycine-site antagonists13 and Na+ channel blockers.14 By contrast, the synthetic conotoxin ziconotide 

(Prialt®) provides an example of a peptide toxin from cone snail, targeting calcium channels, which was 

approved in 2004 for treatment of neuropathic pain.15 

Despite these highs and lows, research efforts in drug discovery programs begin with target selection, 

often followed by high-throughput screening and generation of lead compounds. Critically, the 

transmission and processing of pain signals relies on the activities of ion channels – proteins located in 

the plasma membrane that mediate the transport of charged ions across hydrophobic lipid membranes. 

These can be either sodium, calcium, potassium and chloride channels in peripheral nerve endings, as 

comprehensively reviewed by Waxman and Zamponi.16 In response to nerve injury, dysregulated ion 

channels cause neural hyperexcitability that underlies neuropathic pain.  

 One such ion channel is purinergic P2X4 that has been implicated in the pain processing. Thus, this 

section would focus on bridging the gap between the exciting progress that has been made in dissecting 

out the pain mechanisms involving P2X4 and how a greater and more sophisticated effort is essential in 

the drug discovery for new analgesics.17-19 Furthermore, I will provide an update on current 

pharmacological tools targeting P2X4 and discuss strategies of exploiting these targets with the 

compounds from the spider’s venoms. 

 

1.1. Pain Mechanisms 
 

The recognition of pain as a disease and not a symptom, is not only an important part of patient 

understanding, but it also impacts the drug discovery field. Nowadays, pain is broadly classed as 

nociceptive, inflammatory and neuropathic pain. While nociceptive (acute) pain serves as a warning 

mechanism that is activated only by noxious stimuli, chronic pain occurs via inflammation and damage, 

or dysfunction of the nervous system, termed as inflammatory and neuropathic pain, respectively.2, 20 
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1.1.1. Nociceptive Pain 

Many define pain as an unpleasant sensation that takes place in a particular part of the body.2 This may 

happen due to initial insults within the body that are capable to compromise the tissue such as 

temperature change, mechanical danger (pressure, touch, stretch) or other danger.  

Once such damaging stimuli are detected by sensory nociceptors called C-fibers and Aδ-fibers within the 

injured tissue, the processing of pain signals is ultimately initiated.2, 21 Nociceptors can be imagined as 

free nerve endings that have branched from the dorsal root ganglia to the dorsal horn of the spinal cord. 

The way they communicate with each other is by relaying messages in form of neurotransmitters such 

as glutamate, substance P, somatostatin and calcitonin gene-related peptide. When these 

neurotransmitters act on their primary receptors, they activate so-called second-order neurons that 

travel from the spinal cord to the thalamus via a spinothalamic tract. In turn, the third-order neurons are 

then activated and they carry the neuronal message to the primary sensory cortex and other brain 

regions where the sensation of pain is experienced (Figure 1.1).21  

From the moment noxious signals are processed by nociceptors to when the pain is experienced, three 

steps are crucial: transduction, transmission and modulation.  

a) Nociceptive transduction usually begins when the human body transform external physical or 

chemical stimuli into the biochemical and/or electrical signals. This usually happens in the thinly 

myelinated (Aδ) and unmyelinated (C fibres) that are found between epidermal cells, 

somatosensory organs and include both the peripheral and central nervous system. For their vast 

amount of functions, nociceptors have four major functional components: the peripheral end that is 

capable of processing external events and generating the action potentials; the axon which then 

conducts the action potentials; the cell body and the central termini which keep the integrity of the 

neuron and form the synapse in the CNS, respectively.22 

There are different transduction pathways that are involved in transducing nociceptive    

stimuli. In response to physical stimuli, some of the key hallmarks include the activation of various 

ion channels, particularly voltage-gated sodium (Nav) channels, transient receptor potential (TRP) 

channels and acid sensing ion channels (ASIC). Here, the opening of ion channels leads to ion flux, 

changes in membrane potential which facilitates the opening of additional channels. Ultimately, this 

results in the depolarization of the afferent nerve, producing a nociceptive signal.22 
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Figure 1.1. Nociception. A: A schematic representation of the pathways mediating physiological pain. 
Nociceptors transmit a normal acute pain to the spinal cord dorsal horn, leading to the release of pain 
transmitters from primary afferent terminals to laminae I, IV and V in the spinal cord dorsal horns (DRG). 
Aβ, Aδ and C fibres also project to II-VI. However, in the case of tissue injury or inflammation, molecular 
signals (e.g., ATP, ADP, AMP, bradykinin, glutamate, substance P, serotonin, prostaglandin E2, 
interleukin 1 and 6, histamine, certain protons) are released from the peripheral nerve terminals. This 
leads to the sensitization of the nociceptors in DRG and transmitted to the dorsal spinal cord and brain, 
where the experience of pain occurs. B: Manifestation of chronic pain. Figure adapted from Rohini 
Kuner.23  
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b) Transmission is the next aspect in processing the damaging events. Here, the neuronal information 

from the periphery is transmitted via Aδ- and C-fibres to the thalamus via the spinal cord up to the 

cortex. While C-fibres tend to respond to mechanical, thermal and chemical stimuli, Aδ-fibres react 

to high-intensity mechanical stimulation and chemical inputs. Once these afferent fibres reach the 

second-order neurons, the message gets transmitted via spinothalamic tract to the thalamus where 

the synapses with the third-order neurons are formed and the message is conveyed to the sensory 

cortex. When the nociceptors terminate in the dorsal horn in the spinal cord, they transmit the 

signal from periphery by releasing neurotransmitters which, in turn, react with their primary 

receptors. For example, glutamate and substance P interact with ion channels such as N-methyl-D-

aspartate (NMDA)-type and non-NMDA excitatory amino acid receptors, and tachykinin receptor 

family (GPCRs), respectively.20, 23-24  

 

c) Modulation is the last and most critical step in the pain processing. Not only it explains why 

individual responses to the similar painful stimuli may differ, but also why the activation of pain 

neurons and sensory experience of pain sometimes do not coincide. Probably most importantly, 

pain modulation elucidates the clinical mechanisms that underlie analgesia. Here, the nervous 

system responds to the noxious stimuli which can result in either boost (excitatory) or reduction 

(inhibition) of the transmission of pain impulses.25 This processing of damaging events to higher 

centres is modified by descending modulatory pain pathways that allow the release of inhibitory 

neurotransmitters such as endogenous opioids, serotonin, noradrenaline, gamma-aminobutyric acid 

(GABA), neurotensin, acetylcholine and oxytocin. Although the term “pain modulation” is usually 

perceived to have an exclusively analgesic connotation, pain modulation can actually lead to both 

analgesia and hyperanalgesia. As an example – opiates are capable of both; decreasing and 

increasing the experience of nociception. This example may be further highlighted by a fact that 

when Watanabe et al.26 gave a small dose of morphine to rats, that relieved the symptoms of pain; 

however, high doses of the same drug led to painful responses in these animals.26 Thus, opioids can 

cause recipients to increase as well as decrease the experience of pain.   
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1.1.2. Inflammatory Pain 

This acute pain pathway is usually triggered to induce an adaptive and protective response that helps 

prevent further tissue damage. Here, we have two kinds of pain: first pain is usually sharp, precisely 

located, and produces a reflex phasic contraction, and then is second pain – intense, poorly located, 

prolonged, and creates a reflex tonic contraction. While a stimulus for the first pain may be heat or a pin 

prick, and is mediated by the fast-conducting Aδ-fibres, the second pain comes as a response to a tissue 

damage which is mediated by C-fibres. However, when injury or inflammation is prolonged, the same 

nociceptor function might be substantially modified, which sets up changes in the responsiveness in the 

CNS and sensitize the neurons in the spinal cord, leading to pain of a more chronic nature.21, 27 While a 

nociceptive (acute) pain is a part of the rapid body’s defence system, chronic pain serves no known 

biological function. Pain is classified as “chronic pain” when the symptoms last for longer than 3 months, 

or when it is associated with a pathological condition that does not heal.28  

There are two types of chronic pain: inflammatory and neuropathic pain. Whereas inflammatory pain 

arises from tissue injury and the subsequent inflammatory response, neuropathic pain is usually caused 

by spinal cord injury, stroke or multiple sclerosis.29 In both cases, there is change in the balancing 

excitatory and inhibitory influences within the spinal cord which results in the three fundamental 

characteristics of chronic pain: hyperalgesia, allodynia, and spontaneous pain. For instance, stimuli that 

were normally painless can produce pain (allodynia), and noxious stimuli become both exaggerated and 

prolonged (hyperalgesia).7 

At the peripheral level, inflammation leads to the release of inflammatory mediators from injured and 

inflammatory cells. These stimuli include but are not limited to kinins, amines, prostaglandins, growth 

factors, chemokines and cytokines, proteases, protons and ATP, which together make up an 

“inflammatory soup.” These ingredients first evoke and then sensitize the nociceptors, reducing the 

threshold for action potential generation and therefore increase responsiveness. As a consequence of 

the change in the chemical milieu, nociceptors change; they not only detect only the noxious stimuli but 

also innocuous inputs.  

These inflammatory components accomplish this by binding on their respective receptors and produce 

intracellular signalling that include various targets such as TRPV1 channels, voltage-gated sodium 

channels NaV1.7 – NaV1.9, ASICs, TrkA, P2Y, B1/B2, ILR1 and effector proteins as PKC, PKA, PI3K, and the 

MAP kinases ERK and p38. Targeting these receptors might be a useful approach for treatment of 

inflammatory pain.  
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However, more frequently prescribed drugs for inflammatory pain are non-steroidal anti-inflammatory 

drugs (NSAIDs) which act as the non-selective inhibitors of COX enzymes (aspirin, ibuprofen). While this 

inhibition reduces the formation of prostaglandins, and thus leads to an antihyperalgesic effect, the 

clinical use of such drugs is hampered by serious gastrointestinal side effects.30 To circumvent these 

issues, the COX-2 inhibitors as well as nitric oxide-releasing derivates of NSAIDSs31 potentially provide 

some means to reduce these damaging effects, however, long-term studies are still in process.32  

 

1.1.3. Neuropathic Pain 

Neuropathic pain is a more maladaptive pain that typically results from damage to the nervous system. 

Such symptoms are challenging to treat and often resistant to existing treatments, including opioid 

drugs.7 Due to their central activity, these agents are notorious for producing serious adverse effects, 

including respiratory depression, sedation, euphoria, dependence, and addiction. These effects are 

especially concerning as they may lead to opioid abuse and opioid—related deaths have risen to 

epidemic proportions in the United States. Importantly, neuropathic pain is mechanistically unrelated to 

inflammatory pain where the altered chemical events are in play. Thus, it has to be treated differently. 

Ultimately, the burden of neuropathic pain is associated with the imbalances between excitatory and 

inhibitory somatosensory signalling, altered functions of ion channels and the ways the pain 

sensitization is modulated in both, the central nervous system (CNS) and peripheral nervous system 

(PNS). Although there have been numerous definitions used, the most recent points out that 

neuropathic pain is caused by lesions or defects in either CNS or PNS. While central neuropathic pain is 

caused by spinal cord injuries and multiple sclerosis, peripheral injuries involve Aδ- and C-fibres. Altered 

sensory fibres impact the transmission of sensory signals that travel up to the cortex hence the pain can 

be a consequence of diabetes, HIV infection, leprosy, amputation, nerve compression, nerve trauma, 

“channelopathies” (ion channel dysfunctionalities), chemotherapy and stroke.  

Now, chronic pain is being considered among the most devastating and difficult to treat conditions. Due 

to alterations in CNS and PNS, the patients display a distinct set of symptoms. This includes the pain 

resulting from non-painful stimuli (allodynia) and severe burning sensations (hyperalgesia), all of which 

respond poorly to current pharmacological treatment. However, just recently it was suggested that 

these symptoms not only come as a result of plastic alterations in neurons but also the cells that 

surround them, known as glial cells.33-34  
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Here the pioneering results from the Garrison’s team33 suggested that astrocytes and microglia, 

collectively referred to as glia, can participate in the pathogenesis of pain, and that, crucially, glial 

activation might be a cause for neuropathic pain.33   

  

1.1.4. Pathological Role of Non-Neuronal Cells in Chronic Pain 

Garrison’s results33-34 first came as a surprise, as so far the scientific community thought that chronic 

pain was only a matter of neurons. Now, we know that several non-neuronal cells such as immune, glial, 

epithelial, cancer and even bacterial cells influence the pain sensation. These cells achieve this by 

interacting with nociceptors in either CNS or PNS compartments. Similarly to neurons, the non-neuronal 

cells release chemical substances that modulate the pain sensation. Since that happens in the proximity 

of nociceptors, this might either promote or reduce pain depend on the mechanism involved. In the 

following paragraphs, pain modulation by monocytes, macrophages, T lymphocytes, keratinocytes, 

stem, cancer and glial cells will be described (Figure 1.2). 

 

Figure 1.2. Non-neuronal cells interact with the nociceptors. Here you can see how keratinocytes, 
macrophages, Schwann cells, cancer and bacteria cells at the periphery; macrophages, satellite glial 
cells, bone marrow stem cells and T cells at the dorsal root ganglion; and oligodendrocytes, T cells, 
microglia and astrocytes at the spinal cord produce both pro-nociceptive (red) and anti-nociceptive 
(green) modulators. These include ATP, IL-10, IL-4, IL-33, TNF, PGE2, VEGF, NGF, IFN-γ, TNF-α, BDNF, 
CCL2, CXCL1, MMP2, Glu and TSP4 which then bind to their respective targets on the nociceptors which 
in turn effect their sensitivity and excitability (Figure adapted from Ji and colleagues35). 
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1.1.4.1. Monocytes and Macrophages 

In the peripheral system, monocytes and macrophages usually initiate pain through the release of 

proinflammatory mediators such as tumour necrosis factor (TNF) and interleukin-1β (IL-1β). Although 

there is no evidence that these cytokines have a direct effect on nociceptors, their main contribution is 

the involvement in production of agents such as prostaglandins, bradykinin, and extracellular protons, 

also known as “inflammatory soup”. While some of these components can produce thermal 

hyperalgesia via activation of downstream intracellular signalling pathways through TRVP1 channel, 

others (extracellular protons and lipids) can function as direct positive modulators of these channels.36-37 

However, there are some cases that contradict this; while Old et al.38 demonstrated that in a 

chemotherapy-induced neuropathic pain model, monocytes elicit pain indirectly by acting on TRPA1, 

Peng and co-workers39 showed that in a mouse model of neuropathic pain, deletion of peripheral 

monocytes did not abolish pain.39 

 

1.1.4.2. T Lymphocytes, Keratinocytes and Bone Marrow Stem Cells  

After nerve injury, T cells are abundantly found in the DRG neurons where they release proalgesic 

mediators, resulting in mechanical allodynia.40-41 On the other hand, some others authors suggested this 

role of T cells is limited only to female mice while male mice seems to depend on microglial signalling.42 

Keratinocytes can be found in the epidermis where they reside nearby nociceptors and produce 

proalgesic mediators such as ATP, IL-1β, prostaglandin E2 (PGE2), endothelin, and nerve growth factor 

(NGF).43 One such example is sunburn. Before the sunburn settles, the experience of sun is pleasant 

since the keratinocytes keep releasing the β-endorphins (endogenous opioid peptides).44 However, with 

the sun overexposure, keratinocytes release endothelin that elicit pain via the activation of TRPV4.45  

Bone Marrow Stem Cells (BMSCs) elicit many beneficial effects that result in tissue regeneration. Usually 

they achieve that by secreting growth factors (transforming growth factor-β1) as a potent anti-

inflammatory mediator. Many researchers in the field have shown that either a systemic or local 

injection of BMSCs inhibits neuropathic pain caused by a peripheral nerve injury.46-47  
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1.1.4.3. Cancer Cells 

Since cancer cells secret many mediators, including protons, bradykinin, prostaglandins and endothelins, 

these chemicals activate nociceptors surrounding these abnormal cells. Subsequently, cancer cells 

release NGF and vascular endothelial growth factor (VEGF), promoting nociceptor excitability and pain 

hypersensitivity via activation of VEGGR1.48 Some other mediators such as TGF-β, secreted by rat 

mammary gland carcinoma also promote bone cancer pain.49 Furthermore, Yang50 has shown that, as a 

result of increased ATP release, P2X7 receptors in spinal microglia are upregulated in bone cancer 

environment. As a result, mediators such as IL-18 via p38 MAP kinase pathway are released. 

Interestingly, the same authors showed that by blocking P2X7/IL-18/p38 MAP pathway resulted in 

reduced bone cancer pain in female rats as a consequence of suppression of hyperactivity in the spinal 

neurons. However, further studies that would test sex-dependant modulation of microglial signalling in 

both males and female pain models as well as in the different phases of chronic pain, are necessary.50   

 

1.1.4.4. Glial Cells 

Since there are many different targets and cellular pathways contributing to the progression of the pain 

pathology at different times, such a concept required researchers to seek for a “missing link”.51 One of 

such was found almost 20 years ago. At that time, the main view was that neuropathic pain following a 

peripheral nerve injury was the direct result of alterations in neurons and neuronal function in the 

nervous system.2, 20, 52-53 Since then, although not disputed that neurons are essentially involved in 

neuropathic pain, it is clear that a neuron-centric view to understand pain is an oversimplification and 

does not justify the diverse network of cell types within the central nervous system.54 This came as a 

response to mounting evidence that glia-neuron interactions are critical in establishing and maintaining 

neuropathic pain states, and particularly, it is the influence of microglia (the nervous system’s resident 

immune cells) that is critical.55-56  

Although glia have a number of housekeeping functions that are essential for healthy neuronal 

communication, they also exert neuroprotective effect and serve as immunoresponsive cells.54 This 

realization came as a response to a rapidly growing body of evidence that the activation of microglia 

contributes to neuropathic pain after nerve injury by releasing the classic immune signals such as ATP, 

cytokines and chemokines.57-62 In parallel, overexpression of purinergic receptors, namely P2X4, P2X7 

and P2Y12, and CX3CL1 has been demonstrated in spinal microglia after nerve injury.58-59  



35 
 

Once these receptors are activated, that results in downstream signalling via p38 mitogen-activated 

protein (MAP) kinase triggering the release of TNF-α, IL-1β, IL-18, BDNF, COX and PGE2. These 

modulators ultimately fine-tune the pain transmission pathways to the cortex.63  

Apart from microglia, other glial cells – astrocytes – perform a vast array of functions from 

neurotransmitter recycling to modulation of synaptic transmission. Some examples include up-

regulating CXCL13 in spinal cord neurons and releasing CCR5 to potentiate neuropathic pain after nerve 

injury;64 up-regulation of CX43 leads to release of cytokines that enhance excitatory synaptic 

transmission in the spinal cord;65 and up-regulation of thrombospondin-4 (TSP-4) by astrocytes which 

promotes chronic pain after a nerve injury.66-67  

The last cells that are part of glial group are oligodendrocytes. In a model of nerve injury, 

oligodendrocytes release IL-33 that modulate the pain hypersensitivity via MAP kinases and nuclear 

factor κB (NF-κB).68 Another study confirmed similar results, and pointing out to another factor (platelet-

derived growth factor receptor α-PDGFRα) as an important oligodendrocytes-derived mediator in 

chronic pain.69    

A few years after those initial findings, Mogil’s group70 reported that testosterone might act as a control 

switch for pain pathways. Interestingly, only early in pregnancy, mice seemed to shift from a female-

associated, microglia-independent mechanism of pain sensitization, to a more typically male-related one 

that is linked to microglia. And when the scientists applied testosterone to castrated males, or to 

females, the pain routes diverted to a microglial-dependent pathway.70 

But immune cells and hormones don’t seem to fully explain pain differences. For instance, Domeier’s 

group71 has found that women might have a genetic predisposition to chronic pain. Specifically, they 

investigated a suite of RNA molecules in the vascular system that are elevated in females who 

experience chronic neck, shoulder or back pain. Interestingly, many of these RNA molecules are encoded 

by genes on the X chromosome.71 This may be critical information to have since it would help to develop 

useful medicines that can be used specifically in females. Since then, the researchers continued to find 

evidence consolidating the importance of microglia - and the cell’s receptors - in male mice experiencing 

pain. Alongside this phenomenon, some new players have now entered the game.    
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1.1.5. Expression of Neurotransmitter Receptors on Microglia  

After tissue damage, many cells, notably macrophages, neutrophils, and mast cells are recruited and 

release many inflammatory mediators, including; glutamate, TNFα, IL-1β, IL-6, NO, bradykinin, NGF, and 

protons. They can act directly on nociceptors or indirectly through the release of other mediators. 57, 72-74 

These endogenous signals activate a few receptors such as ionotropic (iGluRs) and metabotropic 

glutamate receptors (mGluRs), GABAB, purinergic, adenosine, cholinergic, adrenergic, dopaminergic, 

opioid and cannabinoid receptors.  

While iGluRs modulate TNFα release, mGluRs can alter between a neuroprotective and neurotoxic type 

of microglia phenotype. For example, stimulation of mGluR2 with amyloid β (Aβ) or chromogranin A 

peptides, all found in Alzheimer’s plaques, involve TNFα and glutamate release that trigger neuronal 

caspase-3-activation which, in turn, fuel microglial neurotoxicity.75-77 Interestingly, this neurotoxicity can 

be prevented by activation of mGluR3, suggesting that these type of receptors might act as potential 

neuroprotective targets.78   

In addition to iGluR3, another receptors that can reduce the neurotoxicity of activated microglia are 

agents acting on microglial GABAB receptors and on cannabinoid CB2 receptors which stimulation by Aβ1-

40 peptide results in neuroprotection.79-80 Other G-protein coupled receptors that exert anti-

inflammatory effects are microglial opioid receptors namely κ- opioid receptors (KORs) and µ-opioid 

receptors (MORs). While MOR3 activation inhibits microglial chemotaxis and migration, KORs agonists 

inhibit HIV-1 expression in microglial cell cultures suggesting these pathways to have therapeutic 

potential in HIV-1 encephalopathy.81-82  

Other targets within the GPCRs family of receptors include beta-adrenergic and dopaminergic receptors. 

While beta-adrenergic agonists suppress microglial proliferation,83 alpha-adrenergic ones such as 

noradrenaline, reduce microglial activation which in turn modulate microglial inflammatory responses 

via loss of noradrenergic neurons.84 This has implications in Alzheimer and Parkinson’s diseases where 

the loss of control of microglial reactivity is an important hallmark. Along the same lines, the stimulation 

of cholinergic receptors also seem to promote anti-inflammatory and neuroprotective responses. 

Independent research from Shytle,85 De Simone86 and Suzuki87 has shown that the microglial activation 

induced by LPS, IFN-γ or HIV-1 modulate microglial activation via COX-2 and PGE2, a pathway associated 

with HIV-associated dementia.  
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However, while all these targets might show a promising therapeutic potential among HIV-1, 

Alzheimer’s and Parkinson’s patients, microglial activation is also implied in chronic pain pathways with 

the purinergic receptor family as a critical component.18, 60, 63, 88-89 Here, we distinguish between P1 and 

P2 families of receptors.90-91 While the activation of P1 or adenosine receptors is more linked to 

neuroprotection,76, 92 the P2 family (P2Xs and P2Ys) has broader impact on microglia. For example, P2Y 

receptors control the movement of microglia, phagocytosis,93 fine-tunes the release of cytokines and are 

implicated in treatment for stroke.94 On the other hand, P2X superfamily comprises seven subunits 

(P2X1-P2X7) that share a common topology, but differ in their pharmacological and functional 

characteristics.19 Various subtypes are involved in particular functions depending on their distribution 

and biophysical features, extensively reviewed by North95 and Burnstock et al.96 These differences 

present an opportunity for tissue-specific inhibition of one receptor subtype with no functional 

alteration of others. 

Among purinergic P2X family of receptors, two of them – P2X4 and P2X7 are also expressed on 

microglia. They belong to the family of nonselective P2X cation channels with high Ca2+ permeability 

which, at its most fundamental level, opens in response to the binding of extracellular ATP and triggers 

transmembrane fluxes of selected ions.97 While activation of the P2X7 channel leads to TNFα release 

and superoxide production, both resulting in microglia activation, P2X4 receptors are upregulated on 

microglia only during nerve injury.98 By activating P2X4 receptors, a brain-derived neutrophilic factor 

(BDNF) is released, which produces a disinhibitory increase in pain-transmitting nociceptive neurons in 

the spinal dorsal horn.17 Strikingly, it was shown that removal of P2X4 receptors prevents the 

development of mechanical allodynia following the activation of spinal microglia.60, 99 This is, in turn, 

critical for the rewiring that underlies the perception of mild tactile stimuli as noxious. This suggests that 

P2X4 receptors on microglia might open exciting new avenues for either CNS-related diseases such as 

neuropathic pain, as well as for diseases such as diabetes and AIDS that affect more peripheral nerve 

functions.60, 100-101  

Yet, as much as it would be comfortable to think that one target might take the pain away, much of the 

variability in chronic pain and analgesic response is also heritable and sex-specific. After decades of 

assuming that pain processing is equivalent in both sexes, Sorge and colleagues42 showed that chronic 

pain seems to manifest differently in male and female mice. Their studies suggest that microglia 

signalling is sex-dependant with p38 inhibitors reducing neuropathic pain in males, but not in female 
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mice.42 No matter how these researchers blocked microglia, this eliminated the pain hypersensitivity in 

males alone.  

That doesn’t mean that females were immune to pain, but only that they don’t appear to use microglia 

to become hypersensitive to touch. This suggests that future pain medications should be tailored to 

individuals and identifies some key factors to consider. 

 

1.1.5.1. Activated Microglia Contributes to Pathological Pain 

Importance of pro-inflammatory molecules in the induction of neuropathic pain has led researchers to 

prevent the binding of these compounds to their receptors. For example, nerve-induced plasticity in the 

dorsal horn comes as a response of activated intracellular events such as protein kinases, responsible for 

transcriptional- and posttranscriptional modifications of proteins on the cell membrane.102 However, the 

molecular basis by which nerve injury develops tactile allodynia have remained largely unknown. It was 

thus essential to identify the molecular changes that lead to tactile allodynia in an effort to both 

understand its mechanisms and develop new therapies.56 

Soon, various research groups started reporting on mitogen-activated protein kinases (MAPKs), a family 

of intracellular molecules that are crucial players in chronic pain pathology and consist of extracellular-

signal-regulated kinase (ERK, p44/44 MAPK), p38 and JNK.103-105 At about the same time, Tsuda et al.105 

reported that development of allodynia following nerve injury involved activated p38 MAPK in microglia. 

Additionally, blocking p38 MAPK resulted in abolishment of allodynia in their animal models.105-106 

Following that paper, Zhuang and colleagues106 reported another pathway between MAPK and ERK. In 

the case of peripheral injury, MAPK-ERK activation in neurons, microglia and astrocytes contribute to 

allodynia and the inhibition of ERK activation reduced neuropathic pain-like behaviour.106 

All these studies provided clues on which intracellular signalling pathways in microglia might be crucial 

for allodynia to occur. However, there was still a gap in knowledge regarding how glial cells in the spinal 

cord are activated and which message is conveyed from neurons to glia after the occurrence of 

peripheral nerve injury. Until then it hadn’t been known that one of the most abundant 

neurotransmitters in our sensory nervous system – ATP – is released from damaged neurons, and 

directly acts as a source of stimuli for the astrocytes and glia.107-108  



39 
 

That gap was then addressed in the pioneering work of Coull et al.109 where they demonstrated that 

ATP-stimulated microglia disrupts the inhibitory control of lamina I neurons in the dorsal horn of the 

spinal cord, leading to a collapse of their transmembrane anion gradient.  

This altered gradient then stimulates an inversion of inhibitory GABA currents that are responsible for 

mechanical allodynia after peripheral nerve injury. Furthermore, the group identified a neuronal protein 

– called BDNF – as a critical microglial-neuron signalling molecule.63 By blocking BDNF release with 

interfering RNA before ATP-stimulation, they managed to reduce allodynia.   

At about the same time, findings about two ionotropic P2X receptors and metabotropic P2Y in glial cells 

have gained much interest. The deletion or antagonism of one of them, P2X7, reduced neuropathic pain 

behaviours in mice110-111 while P2Y12 was not only found to be upregulated in microglia, but this same 

increase contributed to the neuropathic pain through the p38 MAPK pathway. 112 Similarly, P2X4, was 

also found to be upregulated in spinal microglia and its blockage decreased neuropathic pain.60 

However, the molecular mechanism underlying neuropathic pain via P2X4 was tricky to crack.  

Soon, the researchers decided to embark on this challenge. They asked whether the activation of P2X4 

may also lead to release of BDNF from microglia. Just two years later, Trang et al.113 demonstrated that 

in the case of a nerve injury, the influx of Ca2+ via ATP-stimulated P2X4 activates p38-MAPK which is 

required for SNARE-dependant release of BDNF. Here, SNARE stands for Soluble Nsf (N-ethylmaleimide 

factor) Attachment REceptor. This leads to BDNF-activated TrkB receptors and modifies Eanion by 

downregulating the K+ Cl- cotransporter KKC2 (K-Cl as potassium Chloride Cotransporter 2), resulting in 

aberrant nociceptive output that is a hallmark of chronic pain.63 Normally, activation of GABAA receptors 

leads to an influx of chloride anions, Cl-, causing hyperpolarization (inhibition). In this case, the anion flux 

shifts from inward to outward (Eanion) and it becomes negative with regard to the resting membrane 

potential of the neuron (Vres). However, since Eanion is now positive with respect to Vrest, GABAA –

activation allows an efflux of anions depolarizing the lamina I neurons (Figure 1.3).63, 113 All these 

findings pointed to microglia being a powerful modulator of pain after nerve injury and offered a 

completely new treatment approach, one that is essential in this age of the “opioid crisis”.  
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Figure 1.3. P2X4 purinoreceptor signalling in chronic pain. Peripheral nerve injury (PNI) activates microglia in the dorsal horn of the spinal cord.  
This causes the upregulation of P2X4R expression which is modulated by fibronectin and chemokine ligand 21 (CCL21). CCL2 signalling supports 
P2X4R trafficking up to the microglial surface. Influx of Ca2+ through ATP-stimulated P2X4 activates p38-MAPK and drives the synthesis and 
SNARE-dependent release of brain-derived neurotrophic factor (BDNF). After BDNF is released, it acts on its cognate receptor, TrkB which 
consequently downregulates potassium-chloride cotransporter KCC2 expression in dorsal horn spinal lamina I neurons. In turn, intracellular [Cl-] 
in increased, which results in the collapse of transmembrane anion gradient in dorsal horn, inducing the depolarization of these neurons. The 
altered chloride gradient causes the key transmitter GABA to switch its effects from inhibition to excitation. The resultant hyperexcitability in the 
dorsal horn could underlie the increased sensitivity that is a feature of neuropathic pain.114 
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1.1.6. Purinergic Receptors  

The first suggestion that ATP could be a mediator of nociception came from the work of Pamela 

Holton115-117 in the 50’s and it took researchers 30 years to firmly establish extracellular ATP could evoke 

pain sensation in human and subsequently define the concept of purinergic transmission. Burnstock118 

was the first to distinguish purinergic P1 and P2 receptors based on their ligand preference. While the 

P1 group is activated by adenosine, P2 receptors prefer ATP.  Soon after that, the P1 classification was 

replaced by A, as the research community realized that the preferred agonist for P1 is adenosine (A) 

rather than ATP. For the P2 group, Burnstock proposed the terms P2X and P2Y, on account of agonist 

and antagonist selectivity in a variety of tissues.118-120  

At about the same time it was found out that direct application of ATP can cause depolarization of both 

sensory and spinal neurons via the opening of a ligand-gated ion channel and that ATP acts as a fast 

excitatory neurotransmitter in central and enteric nervous system.120 However, it was only with 

molecular identification of different purinergic receptors that it became more clear that P2X targets 

were ligand-gated ion channels and P2Y targets were G protein–coupled receptors.118 Since then, our 

understanding of P2X has reached a whole new level.    

Now we know that P2X channels are typically stimulated by ATP, much less stimulated by ADP, and not 

activated at all by other similar molecules such as AMP, adenosine, GTP or UTP (Figure 1.4). As ion 

channels, the permeation pathway selectively prefers cations over anions: after ATP application, the 

channel opens within a few milliseconds, and closes within tens of milliseconds once ATP application is 

stopped.121 Ionic currents through homomeric P2X1 and P2X3 channels drop during the application of 

ATP within tens or hundreds of milliseconds; for P2X4 and P2X2 channels, this drop is seen in seconds or 

tens of seconds; and for P2X7 channels, a little decline in the currents even over a few minutes could be 

observed. P2X receptors show complex gating behaviour in which the conduction pathway dilates during 

several seconds of ATP stimulation from a pore that typically allows only the permeation of small cations 

(Na+, K+, Ca2+) to one that lets the passage of larger cations (N-methyl-D-glucamine) and dyes such as 4-

((3-methyl-2(3H)-benzoxazolylidene)methyl)- 1-(3-(trimethylammonio) propyl) quinolinium (YO-PRO-1) 

and ethidium.122-123  
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Figure 1.4. Purinergic signalling pathways in chronic pain. Here you can see how nucleotides mediate 
signalling effect through a series of ionotropic P2X receptors and metabotropic P2Y receptors, which are 
classified by their affinities towards ATP, ADP and other putative nucleotide and nucleotide-sugar 
agonists (UTP, UDP).  

  

1.1.6.1. P2X1 

Not only are P2X1 receptors expressed in smooth muscles such as arteries, but also in neuronal and glial 

cells where their inhibition display neuroprotective effects after stroke, thrombosis, and ischemic injury 

and Parkinson’s disease, respectively.124-125 These antagonists include mostly suramin and its derivatives 

such as competitive antagonist NF449 which displays a nanomolar potency at P2X1 and high 

selectivity.126-127 Another modulator for P2X1 is RO-1 with low micromolar potency and relatively good 

selectivity profile when probed against hP2X2, hP2X3 and hP2X2/3.128-129 

1.1.6.2. P2X2 

P2X2 receptors are found across central and peripheral nervous system, including on many non-

neuronal cells where they can form homo- and heterotrimeric channels with P2X3 receptors.130 So far, 

antagonism of P2X2 channels include therapeutic interventions for pain with PPADS, Reactive Blue 2 

(RB-2), TNP-ATP and suramin being relatively potent, however, non-selective inhibitors.131  

Some of the suramin and RB2 derivates such as NF770 and PSB-10211, respectively, showed a potent 

and selective action towards P2X2, both with a competitive mode of action.132-133  
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1.1.6.3. P2X3 

P2X3 receptors forms both, homomeric and heterotrimeric channels usually dimerizing with P2X2, all of 

which are found on neurons in the central nervous system. Since P2X3 channels have been widely 

implicated in chronic pain, epilepsy and sleep disorders,134 a search for a potent and selective antagonist 

has been extensively pursued with more than 50 patents filed. Some examples include a competitive 

inhibitor A-317491 and others allosteric modulators discovered by Roche: RO-3, RO-4 and RO-51, all of 

which show low nanomolar potency and good selectivity profile versus other P2Xs.135 Notably, RO-4 

showed a good bioavailability and was thus modified, yielding RO-51, with superior pharmacokinetics 

properties.136 Apart from small molecules, the heptapeptide spinorphin was shown to act as potent (IC50 

value of 8.3 pM) allosteric antagonist at P2X3, however, its selectivity profile hasn’t been extensively 

studied.137 Recently, however, a potent and selective modulator of the P2X3, purotoxin 1 (PT1) was 

isolated from spider venom and reported as a promising lead peptide for the development of analgesics 

inhibiting P2X3 receptors.138 

1.1.6.4. P2X4 

P2X4 receptors are widely expressed in both, the central nervous system and the periphery such as 

microglia and on endothelial cells. Some potential therapeutic indications include spinal cord injury, 

epilepsy, stroke, multiple sclerosis, Parkinson’s and Alzheimer’s disease.17, 60, 139-140 A variety of 

modulators have been developed towards P2X4s - this will be discussed in the next subsection.    

1.1.6.5. P2X7 

P2X7 expression is upregulated on macrophages, mast cells, microglial cells and oligodendrocytes where 

P2X7R has been shown as a promising target for a vast number of pathologies. These range from chronic 

pain, neuroinflammatory diseases, multiple sclerosis, neurodegenerative disorders, cerebral ischemia, 

brain and spinal cord injury to cancer, depression, anxiety and bipolar disorders.124, 141-143 Thus, it comes 

to no surprise that much effort has been put in the development of selective P2X7 antagonists. Some of 

the examples include A438079, A740003, A804598, A839977, AZ1060612, AZ11645373, GW791343, 

GSK1482160, JNJ-47865567 and JNJ-42253432 as reviewed by Baudelet and others.144-148 All of them 

show potency in the low nanomolar concentration range and high selectivity among other P2X subtypes. 

Furthermore, a few clinical investigations have been carried out with P2X7 antagonists, namely AZD9056 

and CE-224,535, however, unsuccessfully.149-150   
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While it’s clear that many new pharmacological tools to study P2X receptors are available now, the 

quest for developing a potent, yet, selective ligand continues. Although X-ray structures for P2X4 exist 

(Figure 1.5), there is scarce structural information about ligand recognition in this class of purinergic 

receptors. Moreover, there are currently no ligands that would be species-selective for this class of 

receptors.151  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. P2X4 receptor structure based on PDB ID 4DW1. A: A two dolphin-shaped subunits are 
shown. B: The arrows direction show the ATP binding. This is related with the upward movement of 
dorsal fin (orange), head’s downward movement (purple) and a retraction of the left flipper (yellow). 
C,D: Stereoview of the homology model of the human P2X4 based on the homotrimeric zebrafish P2X4 
that is seen parallel to the cell membrane. Each subunit is represented in different colour. The green 
spots represent potential binding sites. E, F: Stereoview of the homology model of the human P2X4 
based on the homotrimeric zebrafish P2X4 that is viewed from the extracellular side of the membrane. 
Figures that are shown on A, B are taken from North et al.152 
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1.1.7. Pharmacology of P2X4  

In seeking to understand the gap between the current pain mechanisms and pharmacological tools 

targeting P2X4, we have to recognize that pinpointing native P2X4 channel responses within intact 

preparations, for example brain slices, has been recognized as difficult. First, no selective P2X4 agonists 

for use in rodents are reported, making it challenging to detect P2X4 receptor-expressing cells based on 

function.153 This is even more complicated by the fact that ivermectin, acting as a potent allosteric 

modulator at P2X4,154-156 has actions on other receptors as well and that pose limitations in its 

usefulness as a selective P2X4 probe in multicellular preparations.157 Second, the brain cells expressing 

P2X4 are sparse, making it trickier to achieve targeted electrophysiological recordings.158  

On the other hand, while the majority of the commercially available P2X4 antibodies target intracellular 

epitopes and may not be specific enough to be useful in live tissues, a recent study from Williams and 

colleagues159 found an anti-P2X4 mAb IgG#151-LO that has a high selectivity for human P2X4. 

Furthermore, that same mAb produces a complete and potent block of the ion channel current. 

Interestingly, site-directed mutagenesis revealed that inhibitory mAbs binds to the head domain of P2X4 

and that systematic delivery of an anti-P2X4 mAb showed analgesia in a mouse model of neuropathic 

pain.159  

A few serotonin reuptake inhibitors were studied against P2X4 such as paroxetine and amitriptyline. 

While paroxetine showed anti-allodynic effects with its potency in a low micromolar range at both, rat 

and human P2X4,160 amitriptyline (clinically used for treating neuropathic pain) inhibited P2X4 only 

weakly.161 Another drug, N,N-diisopropyl carbamazepine, also displayed a low micromolar potency at 

human P2X4, but was less potent at rat and mouse. Additionally, this same compound did not display 

any preferential selectivity towards P2X4 when assayed against P2X1 and P2X3.162  

Other P2X4 inhibitors include a large polysulfonated compound suramin and pyridoxalphosphate-6-

azophenyl-2’,4’-disulfonic acid (PPADS), however, acting as the broad P2X antagonists. Despite some 

promising attempts to decipher the structural hallmarks within P2X4 channel in order to yield the more 

selective PPADS analogues,163 their poor selectivity against other P2Xs still remains an ongoing issue and 

hampers their therapeutic potential.    

Other compounds that have made the list as P2X4 antagonists are 5-BDBD,164 BX430,153, 165 PSB12054, 

PSB12062166 and NP-1815-PX (Figure 1.6).167  
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Figure 1.6. P2X4 antagonists.  

 

However, the potency of 5-BDBD to inhibit P2X4 was similar to TNP-ATP, a nonselective P2X antagonist 

(IC50 ranges between 1 – 10 µM among different labs) and its selectivity against other P2X receptors is 

described in the patent which experimental details are not available.168 Although 5-BDBD showed a 

competitive mechanism, the very low water solubility has hindered any further clinical investigation.169 A 

similar water solubility problem was noted with PSB12054 which exhibited an IC50 of 0.189 µM at hP2X4 

with similar potency at rat and mouse P2X4. Despite being the most potent antagonist at hP2X4, 

showing between 30- and 50-fold selectivity for hP2X4 versus the hP2X1, hP2X2, hP2X3 and hP2X7, its 

high lipophilicity remains an on-going issue for the oral drug delivery chemists.  

A more water soluble analogue is PSB12062 which was developed as noncompetitive antagonist with 

submicromolar potency (IC50 1.38 µM and 0.54 µM, respectively) and show selective inhibition of P2X4 

when compared to other P2Xs. However, while PSB12062 exhibits effects at rat and mouse P2X4 (IC50 

0.928 µM and 1.76 µM, respectively), BX430 – another P2X4 antagonist – displayed no effect on rat and 

mouse P2X4. On top of that, its low water solubility hinders its use in many experimental conditions. 

Until 2016 no P2X4-selective inhibitor that would display high potency, an acceptable water solubility, 

decent selectivity, and analgesic effect in rodent chronic pain models has been identified. Then, NP-

1815-PX was discovered.170 
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NP-1815-PX has a slightly improved solubility and can inhibit rodent and human P2X4 with high potency 

and selectivity. Moreover, that same compound was the first P2X4 that exhibited anti-allodynic effects 

in female mice chronic pain models, without any alterations in acute physiological pain responses. This 

not only supported the hypothesis that microglial P2X4 could be a potential target for treating chronic 

pain but also highlighted NP-1815-PX as a therapeutically beneficial antagonist.170 Despite all these 

highs, the authors note that NP-1815-PX is not suitable for oral delivery and that an intrathecal regime 

has to be employed for in vivo studies.   

Just recently, Beswick and colleagues171 undertook a fragment-base pharmacological screening of a few 

hundred compounds. After coupling their method with computational modelling, clustering and SAR 

selection, they identified 80 hits that showed an inhibition effect on P2X4. From that group, 20 

compounds were capable of inhibiting P2X4 with >50% inhibition in fluorescence-based assays, 

however, the team was unable to validate these results in electrophysiological assays. Their study 

highlight the challenge of identifying P2X4 ligands and suggest using a variety of complimentary 

approaches to confirm ligand activity at this receptor.171  

The same authors also note that - so far - only two molecular entities have entered the clinical 

development: NC600 and Bayer’s unnamed P2X4 antagonist.171 It would be interesting to see how these 

results could be translated to human patients.   
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1.2. Animal Venoms: a Rich Source of Novel 

Ion Channel-Targeted Compounds   
 

As discussed before, the receptors responsible for transmitting pain information include G-protein 

coupled receptors (GPCRs), ion channels (voltage or ligand gated) and tyrosine kinase receptors. In this 

section, I would focus on targeting ion channels with animal venoms in general and then draw your 

attention to the ligand-gated ion channels, with purinergic P2X4 in particular.  

 

1.2.1. Ion Channels as Drug Targets in Chronic Pain 

Ion channels are membrane proteins that allow the flow of ions across biological membranes. Since the 

membrane consists of phospholipids with its hydrophobic and low dielectric barrier, hydrophilic and 

charged molecules find it challenging to pass through this electrical insulator. Ion channels have been 

equipped with a pore structure that forms a high conducting, hydrophilic pathway across the 

membrane. This pore structure, or the channel, helps to catalyse the movement of charged molecules 

across a low dielectric medium and can be either open or closed. An external modulator can induce a 

conformational change between closed and open state, which is known as gating.172   

According to which chemicals or physical modulators control ion channel’s gating activity, we classify 

channels into different groups:   

 Voltage gated channels (NaV
 1.7, NaV 1.8, NaV 1.9, KV, TREK, TRAAK, ASIC, CaV, Ca-activated Cl- 

and TRP channels) 

 Ligand gated (nAChRs, GABA-A, glycine, serotonin, NMDA, AMPA, Kainate, P2X) 

 Others (second messenger gated channels nucleotides, G-proteins, mechanosensitive channels, 

membrane curvature, gap junctions, porins) 

The major difference between the two major groups – voltage and ligand gated channels is that the 

voltage gated channels open in response to voltage (when the cell gets depolarised or hyperpolarised), 

whereas ligand gated channels open in response to a ligand binding to them.172 In response to nerve 

injury, dysregulated voltage-gated ion channels cause enhanced neuronal excitability and alter pain 

signalling by primary afferent fibres.  
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By targeting the mechanisms that shape the firing properties of primary afferent fibres that play pivotal 

functional role in chronic pain pharmacology, poises voltage-gated ion channels as attractive targets.173-

174 

In the neuropathic pain field, the sodium-gated (NaV) ion channels are of particular interest. They are 

classified into nine different isoforms with NaV1.3, NaV1.7, NaV1.8 and NaV1.9 being considered as valid 

targets for pain pharmacotherapy, with an extreme focus on NaV1.7. This is mainly due to a dramatic 

discovery in 2006 where James Cox and Geoff Woods175 showed that loss-of-function recessive 

mutations in NaV1.7 resulted in inherited inability to experience pain.175 Since their genetic study has 

established a very strong validation for the efficacy to reduce both inflammatory and neuropathic pain, 

an intense interest in developing inhibitors for NaV1.7 followed. Soon, hundreds of patent applications 

were filed and clinical trials  attempted.176 Importantly, all these channels have been initially categorized 

using tetrotoxin (TTX). The TTX-sensitive channels are primarily found in mammalian brain and skeletal 

muscle (NaV1.1 – NaV1.3, NaV1.4, NaV1.6, NaV1.7) and the TTX-resistant receptors are either located in 

heart (NaV1.5) or sensory neurons in peripheral ganglia (NaV1.8 and NaV1.9).177-178 

Toxins from scorpions, sea anemone, cone snails and spiders have significantly contributed to the 

understanding of the pharmacology of sodium channels and their physiological role in the nervous 

system. So far, animal kingdom-derived toxins act as sodium channel prolongers, activators and 

blockers. These toxins might come from spiders (δ-atracotoxins, δ-palutoxins, μ-agatoxins, hainatoxin-I, 

protoxin-II), cone snails (δ-conotoxins, μ-conotoxins, κ-conotoxins), scorpions (α-toxins, β-toxins, Cn-11) 

and sea anemone’s short inhibitory toxins.179 For example, peptides from the spider venoms such as 

JZTX-I and –III, δ-atracotoxins Ar1 and Hv1, Magi4 and -5, hainantoxin-IV, ceratoxins (CcoTx1-2) and 

phrixotoxin 3 (PaulTx3)177, 180-181 are some of the peptide modulators of the sodium channels with 

PaulTx3 as the most potent one (IC50 of 0.6 nM against NaV1.2).  

While the toxins acting on NaV1.8 and NaV1.9 might reduce neuropathic pain, the bitter irony is that they 

only provide limited relief due to inhibiting multiple NaV channels isoforms. These toxins as well as other 

sodium channel blockers were proved to be effective analgesics, however, a critical problem is their lack 

of specificity.182 For example, ProTx-I and –II not only showed  NaV1.8 inhibition,183 they also 

demonstrated inhibition against potassium and calcium channels. This non-specificity not only results in 

reduced efficacy but also in dose-limiting side effects since these peptide toxins might induce an 

autoimmune response. Tailoring more specific inhibitors has been a holy grail of pain research and the 

hunt for a selective blocker of these specific sodium channels still continues.180 
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Another important voltage-gated regulators are potassium and calcium channels. Unlike other animal 

peptide toxins from the snakes, bees, scorpions or sea anemones blocking KV1 or KV3 channels, toxins 

from the spider venoms with the selective affinities towards KV2 and/or KV4 are very useful for the 

development of cardiac drugs. For instance, hanatoxins 1 and 2 (HaTx 1-2), heteropodatoxins (HpTx 1-3), 

phrixotoxins (PaTxs) and others (HmTx1-2, ScTx1, TLTx1) serve as interesting tools for characterization of 

potassium channels in cardiac physiology.184 Apart from potassium channels, spider peptide toxins such 

as ω-agatoxins (AgaIA-IVA), SNX-482 or -325, GSTxSIA, Huwentoxin-I and –X, DW13.3, ω-PTx-IIA, PTx3-6, 

and MYIIA demonstrated to be modulators of non L- and N- type of Ca2+ channels, respectively. The 

latest, MYIIA was found in the venom of the cone snails Conus magnus and later approved by FDA as a 

drug against chronic pain (ziconotide).181 

Another group of voltage-insensitive cation channels permeable to sodium that are involved in the pain 

pathway are acid-sensing ion channels (ASICs). While many small molecule ASIC modulators were 

discovered, their low potency and poor selectivity make them less ideal probes in studying these 

channels. On the other hand, extensive screening of venoms in search of new modulators that target 

ASICs yielded toxins from spiders, sea anemones and snakes. After the first ASIC-modulating toxin called 

Psalmotoxin1 (PcTx1) from Psalmopoeus camberidgei tarantula was described,185 others from spiders 

(Hm3a, Hi1a), sea anemones (APETx-2, PhcrTx1) and snakes (mambalgin-1, -2 and -3, MitTx, α-DTx) 

followed. Due to their effectiveness, lack of toxicity and fairly good selectivity profile, these toxins 

overcome the limitations of the small ASIC modulators, provide a better understanding of their 

pharmacological functions and might have valuable therapeutic value as well.    

Other peptides from the animal venoms demonstrated to act on either glutamate receptors (PhTx3-4), 

or purinergic P2X3 receptors (PT-1)138 all of which are associated with nociception. Although the 

transmembrane topologies of P2X receptors are similar to ASIC, the primary amino acid sequences, 

folding of ECT domains and quaternary architecture are entirely different. As there is little investigation 

whether spider venom contains peptide modulators of other P2X receptors, including P2X4, it would be 

interesting to probe these channels with different spider venoms.181, 186 

 

1.2.2. Spider Venom Toxins 

Natural products have a storied past as drug leads. For example, it was estimated that ~50% of all drugs 

in clinical use are of natural product origin.187  
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For example, natural products gave rise to drugs such as penicillin and morphine, and acknowledged 

with the 2015 Nobel Prize in Medicine for the discovery of two revolutionary therapies based on natural 

compounds, Avermectin and Artemisinin.188 While it is fair to assume that we have raided the traditional 

pharmacopoeias from cultures all around the world and screened huge collections of natural product 

libraries, the biological and chemical space still remain to be explored. This especially holds true for the 

animal venoms. For example, among countless venoms, spider venoms represent an almost infinitive 

pharmacological landscape with a conservative estimate of 200 peptides per venom, leading to a total of 

9 million spider venom peptides. So far there are >45 000 extant species of spiders, however, only 0.01% 

of this substantial resource has been explored. This provides a massive scope, yet to be tapped.189-191 

Several research groups consider animal venom toxins as a reliable natural source for discovering new 

medicines.192-193 A classic example of a venom-based drug is the success story of Bristol-Myers Squibb 

captopril. This angiotensin-converting enzyme (ACE) inhibitor originated from the poisonous Brazilian 

viper and has since transformed cardiovascular treatments.194 While the majority of currently approved 

treatments have been developed from snake venoms, the advances in high-throughput screening (HTS) 

provide efficient drug discovery mining of venom toxins from species, which unlike snakes,  yield venom 

in small quantities.195-197 For example, the venom repertoire of spiders are estimated to contain more 

than 10 million compounds available for screening.195  

These spider venoms comprise complex cocktails of bioactive molecules with a wide range of molecular 

weights (0.1 – 14 kDa) and contain a high diversity of inhibitors with high affinity and selectivity that 

modify the function of physiologically relevant targets such as ion channel and other cell receptors. Still, 

the majority of them – 88% – are ion channels modulators. For example, more than 268 modulators of 

ion channels are currently listed in the ArachnoServer, a database198 that shows the latest snapshot of 

toxins from spider venom, targeting ASICs, CaV channels, KV channels, NaV
 channels, and transient 

receptor potential (TRPV1, TRPA1). But only a limited amount of studies investigated whether spider-

venom peptides might target P2X channels. Recently, however, PT1 – a potent and selective antagonist 

of the P2X3 – was isolated from spider venom and reported to be a promising peptide for the 

development of antagonists towards P2X3 channels.138 It is this evolved biodiversity that makes venom 

peptides an invaluable research tool, unique source of leads, and structural templates from which a new 

generation of drugs might be developed.189, 199-200  
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Venoms usually comprise a mixture of protein and peptides, polyamines, acylpolyamines, salts and 

organic components (<1kDa), such as amino acids (GABA, glutamate, and taurine), biogenic amines 

(histamine), nucleosides (adenosine), nucleotides (ATP), neurotransmitters (acetylcholine)195, 201-202 and 

enzymes. Some of these enzymes include collagenase, hyaluronidase, phospholipase A2, SMase A and 

various proteases. Kuhn-Nentwig and colleagues203 proposed that their main role is to degrade either 

the extracellular matrix or the cell membrane. With the exception of enzymes, spider-venoms also 

contain proteins that are smaller than 12 kDa. One of them is α-Latrotoxin which binds to the 

nonspecific presynaptic nerve terminal, causing a massive exocytosis of synaptic vesicles which 

mechanism still needs to be fully elucidated.204 

From all of these compounds found in spider venoms, acylpolyamines and peptides represent two thirds 

of the dry weight of the spider venom. Furthermore, these two major classes of molecules have been 

previously found to target mammalian receptors and display a potential therapeutic use.  

 

1.2.3. Polyamines and Acylpolyamines  

Back in 1980 it was first reported that tarantula venoms contain four different polyamines – spermine, 

spermidine, putrescine, and cadaverine, with spermine as the major component (Figure 1.7).205 Now we 

know that several types of ion channels are influenced by these polyamines. These include: the 

inwardly-rectifying potassium (Kir) channels,206-207 glutamate receptors (NMDA, AMPA),208-210 and kainite 

and transient receptor potential cation (TRPCs) receptors.67, 209 While intracellular polyamines modify 

the intrinsic gating and rectification of Kir channels by directly occupying the ion channel pore, 206-207 

extracellular polyamines stimulate NMDA receptors increasing the size of the NMDA receptor 

currents.206 On the contrary, TRPC4 and TRPC5 are strongly inhibited by intracellular polyamines, 

particularly spermine.67 

 

Figure 1.7. Four different types of polyamines. 
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While polyamines are cationic compounds with two or more primary amino groups – NH2 -, the common 

structure of spider acylpolyamines contains an aromatic moiety at one end and either a primary 

hydrophilic amino group, or a guanidine group at the other. After acylpolyamines were first 

characterized from spider venom, they were found to block ligand-gated ion channels in mammalian 

nerve cells and found to block postsynaptic glutamate receptors in these cells (Figure 1.8).181, 211 

Furthermore, Sorkin et al.212 found that JSTX-3 can impair allodynia via Ca2+-permeable AMPA receptors 

in vivo.211-212 

 

 

 

 
Figure 1.8. The structure of Joro spider toxin (JSTX-3).  

 

1.2.4. Spider-Venom Peptides as Pharmacological Tools and Potential 
Therapeutic Leads 

The journey from natural product discovery to therapy is, initially, largely focused on natural peptides. In 

particular, peptides found in venomous organisms are a very attractive source for drug discovery 

research.187 That is mainly due to their nanomolar affinities which makes them not only good 

pharmacological tools for understanding the physiological role of the ion channels but also promising 

leads for the development of novel therapeutic agents.196 Furthermore, their high potency in the insect 

nervous system renders them as probes for novel insecticide targets or genetically engineered microbial 

pesticides.192 Successful examples of drugs developed from venom peptides include the anti-

hypertensive Captopril®, based on a venom peptide from the Brazilian viper; anti-diabetic agent 

exenatide (Byetta®) from Gila monster venom; and the painkiller ziconotide (Prialt®), found in the cone 

snail.192 Many other spider venom-derived peptides are in various stages of preclinical or clinical 

development.213  

Venomics has therefore emerged as an attractive approach to modern drug discovery. Particularly, the 

high potency and specificity of many venom-derived peptides, their possibility of chemical synthesis and 

recombinant production, and the proteolytic stability of many disulphide-rich peptides makes them an 

increasingly valuable source of lead molecules.193, 195  
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However, some spider venoms also contain small cytolytic peptides without any disulphide bridges and 

with high degree of cationic charge. It’s been suggested that they potentiate the action of disulphide-

rich neurotoxins by breaking down anatomical barriers, dissipating transmembrane ion gradient and 

perturbing the membrane potential across excitable cells.203, 214 

While a lot has been known about their mechanism of action on these channels, very little is known 

about the structure of spider venom peptides. Most spider venom peptides have a mass of 3.0 to 4.5 

kDa (Figure 1.9). However, according to the Arachnoserver,198 there is also a significant fraction with a 

mass of 6.5 to 8.5 kDa (composed of 58 to 76 amino acid residues). Nearly 90% of them conform to the 

single structure class, known as the inhibitor cysteine knot (ICK) motif. Here, the ICK motif is defined as 

an antiparallel β sheet stabilized by a cysteine knot, containing a ring formed by two disulphide bridges 

and the intervening sections of peptide backbone with third disulphide bond piercing the ring to create 

a pseudoknot. The ICK motif is what provides these peptides with exceptional chemical, thermal and 

biological stability; they are resistant to extremes of pH, organic solvents, high temperatures and, most 

importantly, proteases. For example, their half-life has been several days in human serum (which is in 

stark contrast with marine cone snails and scorpion demonstrated to be longer than 12 h in gastric 

fluids.215 Whereas post-translational modifications-venom peptides are rare in spider-venom peptides, 

disulphide bonds and C-terminal amidation are frequent.203 

 

 

 

 

 

 

 

 

 

Figure 1.9. Mass distribution of spider venom peptides. All data was taken from ArachnoServer 
(http://www.arachnoserver.org). Databases were accessed on May 2019 and sorted into 500-Da bins.  

http://www.arachnoserver.org/
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1.2.5. Isolation, Characterization, Production and Structure Determination of the 

Toxins 

Despite all the exciting progress in the field, the systematic isolation and characterization of bioactive 

fractions is still not straightforward. However, major advances in high-throughput screening (HTS) and 

structural characterizations of the venom peptides now facilitate venom-based drug discovery. Some of 

the HTS repertoire include more traditional assays such as electrophysiology, absorbance/fluorescence 

based assays, radioligand binding and ELISAs, as well as more recent developments, such as AlphaScreen 

and label-free, fluorescent-resonance energy transfer (FRET), fluorescent polarization and 

bioluminescent resonance energy transfer (BRET).196 

Whereas patch-clamp or voltage-clamp electrophysiology is regarded as the gold-standard assay for 

assessing the functional activity of ion channels, they often require a high level of expertise and are used 

in low-throughput format. On the other hand, fluorescent-based assays are robust and easily set up. In 

recent years, a fair portion of fluorescent dyes has become available for measurement of intracellular 

calcium, sodium, potassium and chloride ions. The fluorescent properties of these dyes can be altered 

by the binding of their cognate ions. For example, calcium-sensitive (Fura-2 QBT™, FLIPR® Calcium 6) dye 

generally give the most robust performance due to the large Ca2+ gradient across cells. For that same 

reason, Fura-2 AM can be utilized for many targets, including voltage-gated and ligand-gated ion 

channels as well as GPCRs.196   

Once an active fraction of the venom has been identified via bioassay, the isolation and characterization 

of the compounds is carried out. These initial steps combine RP-HPLC to separate molecules by 

hydrophobicity followed by ion exchange HPLC to separate by charge. Usually, these two separation are 

sufficient for obtaining pure peptides for amino acid sequence analysis by Edman degradation.183, 191, 196, 

216 The molecular weight of the fractions is then analysed directly by MALDI-TOF, LC-MS or MS-MS, 

however, mass counts provides only limited information in regards to biological activity. Indeed, they 

can provide hints as to which toxin class a peptide might belong, but in order to fully exploit this, we 

need to know the structure of the peptide. Determination of the amino acid sequence thus enables us 

to produce the peptide via chemical synthesis or recombinant production. Moreover, this also provides 

the material for further characterization. According to Vetter et al.196 venom peptides can be best 

expressed in E.coli (periplasmic expression) or yeast (Pichia pastoris) with chemical synthesis (solid- 

phase peptide synthesis, SPPS) coupled with native chemical ligation, serving as a backup.  
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Recombinant protein production is generally more time- and cost-effective than SPPS and it enables 

isotopic 13C labelling for multidimensional NMR structural analysis.196 

As the direct interactions between a toxin and a channel are challenging to probe in experimental 

settings, the complex can be examined in atomic detail using computation methods. Rosetta is one of 

the most widely used and successful algorithms for in silico molecular modelling that was used on 

various peptides spider toxins. Additionally, Rosetta has recently been upgraded to model and design 

post-translational modifications, such as hydroxylation, sulfation, and others commonly found in venom 

peptides.217 

 

1.3. Motivation and Objectives of the Thesis 
 

It is clear that spider venoms toxins might be used as a platform of novel compounds to probe hP2X4 

function in chronic pain. With one fifth of human population suffering from chronic pain and without 

any suitable treatment for chronic neuropathic pain, exploring ion channels such as P2X4 with spider 

venom toxins might be a way to go. Since P2X4 has one of the poorest pharmacological profiles in the 

purinergic receptor family with only a few small molecules (5-BDBD, PSB-12062, BX-430, NP-1815-PX) 

targeting it, investigating new leads from spider venoms might offer the potential of mining this gap. 

This project will examine whether spider venoms contain small molecule and/or peptide modulators of 

P2X4 as well as other P2X receptors.   

Research aim 1: Develop high-throughput fluorescent-based screens to accelerate discovery of P2X 

inhibitors from animal venoms 

As part of this aim, I would attempt to design and develop three fluorescent-based high-throughput 

screening (HTS) cell assays that can be used to screen animal venoms against human P2X3, P2X4 and 

P2X7 when applied to a collections of 180 crude venoms. These HTS assays would be validated, both 

analytically and pharmacologically. Ideally, these in vitro platforms would be capable of screening 

multiple venoms against multiple targets, improving testing characteristics, all while minimizing the 

costs, specimen material, and testing time. Some of the methods that would be used here are: RP-HPLC, 

MALDI-TOF, fluorescent-based assays and HTS platforms.  
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Research aim 2: Identify the small molecules from the spider venoms that inhibit hP2X4 responses 

and probe their specificity towards hP2X4  

Here I will try to isolate, purify and pharmacologically evaluate the toxins that may show a potential to 

inhibit hP2X4. Furthermore, a structural elucidation of the toxins alongside pharmacological evaluations 

would be carried out. To explore the specificity of the toxins, a variety of channels such hP2X3, hP2X7, 

NMDA 1A/2A, rP2X4, mP2X4 in different cell lines, including a mouse microglial model, would be 

employed.  Some of the methods that would be used here are: RP-HPLC (analytical and preparative), 

MALDI-TOF, MS-MS, LC-MS, NMR, ChemSpider, MS-FINDER, fluorescent-based assays and HTS 

platforms. 

Research aim 3: Chemical synthesis of the toxin’s analogues, preliminary structure-activity 

relationship studies and evaluation of the potential binding sites on hP2X4 

This aim would explore the structure-activity relationship (SAR) of the toxin that acts on the hP2X4, and 

the chemical synthesis of the toxin analogues would be attempted.  The potential binding site of the 

toxins would be evaluated by the in silico docking and validated by mutagenesis experiments. Some of 

the methods that would be used here are: NMR, IR, organic synthesis, fragment-based screening, 

Chimera, AutoDock, PCR, site-directed mutagenesis, fluorescent-based assays and HTS platforms.  

Research aim 4: Translate my research into an educational virtual reality game   

I believe that science communication is essential for scientists. To develop engaging communication 

tools for my topic of research, I chose virtual reality (VR) as the educational tool to present, 

communicate, increase awareness, and educate the public, as well as the high school students, on the 

application of the spider venom toxins in the chronic pain illnesses. Moreover, this topic has not been 

pedagogically utilized in VR yet. Thus, I aimed to create Bug Off Pain© – an immersive, interactive and 

educational VR game as an innovative and fun approach to learning and public engagement in 

biochemistry. Bug Off Pain© would attempt to take the pain out of public engagement, as well as to 

bridge the gap between scientific and non-scientific community (general public). The design, 

development, and implementation of the Bug Off Pain© for both Oculus Rift (computer) and Android 

(mobile) platforms, and research to evaluate the game’s educational benefits would be carried out. 

Some of the methods that would be used here are: AdobeAudition, iMovie, Unity3D, Blender, Autodesk 

Maya, iTween, UCSF Chimera/Pymol, Likert-type scale, pre- and post-tests.   
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2. Materials and Methods 

 

This part outlines the procedures used for developing the high-throughput fluorescent-based screens, 

and goes on describing the variety of assays and analytical evaluations used in toxin purification and 

identification. Apart from these pharmacological investigations, the methods below involve multistep 

organic syntheses for the generation of five small molecules and their respective identification 

techniques such as NMR and mass analyses. Moreover, using in silico docking and mutagenesis studies 

called for methods such as virtual screening and genetic engineering. In order to identify venom 

peptides, we used a variety of methods including RP-HPLC, MALDI-TOF, LC-MS, MS-MS and amino acid 

sequencing. On the other hand, creating a virtual reality game required the use of different techniques 

such as Unity3D, video productions, Likert-type based surveys and pre- and post-tests.  

 

2.1. Materials 

Lyophilized hymenopteran venoms (species reported in Table 2.1) were purchased from either 

Alphabiotoxine (Belgium) or Venomtech (UK). Cone snails venoms were supplied by BioConus (Brisbane, 

Australia). Some arachnid venoms were provided by Dr Volker Herzig and Professor Glenn King 

(Brisbane, Australia). The hP2X3 plasmid was a kind gift from Dr Lin-Hua Jiang (University of Leeds). 

Standard reagents for buffers and solutions were purchased from Sigma-Aldrich or Fisher Scientific 

unless otherwise stated. All the buffers and the solutions were made in-house, using de-ionised water 

filtered through a PURELAB Ultra filtration system. Any sterilisation for bacterial or mammalian cell 

culture was performed by autoclaving at 121°C for at least 20 min, or, where applicable, through 

filtration using Sterile Millex syringe filters from EMD Millipore. Media for cell culture, including DMEM 

1x (Gibco, 2026849), DMEM/F12 (Gibco, 2062239), serum (FBS, Gibco, 08F5874K), 10x Trypsin-EDTA 

0.5% solution (Trypsin-EDTA, Gibco, 15400-054), 0.25% Trypsin-EDTA 1x (Gibco, 2063675), DPBS 

(HyClone, AZF190845), Lipofectamine™ (Invitrogen, 2032921), Geneticin 50 mg/ml solution (Gibco, 

202702TA), Spermine (Sigma, BCBS3256), Spermidine (Sigma, BCBS6090V), Putrescine (Sigma, 

BCBT6921), Cadaverine (Sigma, BCBL6699V), ATP (Sigma, SLBx3677), YO-PRO-1 Iodide (Sigma, 

Y3603),Staurosporine (HelloBio, HB0590), Pen Strep (Gibco, 2068817), 5-BDBD (Tocris, 3579), BX430 

(Tocris, 5545), PSB12062 (Sigma, SML075), Ivermectin (Tocris, 274-536-0), 3-Indolacetic acid (Sigma, 

BCBX0861), AZ10606120 (Tocris, 2B/228755),  Tryptan Blue (Nalgene, 648920), Hanks balanced salt 



60 
 

solution (HBSS, Gibco, 2003877) and Opti-MEM 1x (Gibco, 31985-062), were obtained from various 

suppliers. Fura-2 AM was purchased from HelloBio (HB0780), Ca-6 FLIPR Assay from Molecular Devices, 

and Pierce LDH Cytotoxicity Assay kit from Thermo Scientific (TK272276).  

Aβ peptides corresponding to human Aβ amino acids Aβ25-35, Aβ35-25 and Aβ1-42 were purchased from 

GenScript (PE6871710) and prepared as 10 mM stock solutions in either water or DMSO.  Goat anti-

mouse Alexa IgG 488 antibody was purchased from Sigma Aldrich (Life Technologies, 1664729) and 

Alexa Fluoro647 Donkey anti-rabbit IgG from BioLegend (406414). The buffers were prepared with D-(+)-

Glucose (BCBS1753V), HEPES (SLBW8459), Potassium Chloride (SLBH5524V), and Sodium Chloride 

(SZBF0350V) from Sigma.  

Table 2.1. List of species of animal venoms used and tested in our assays. 

ORGANISM GENUS SPECIES SEX FAMILY 

centipede Ethmostigmus rubripes n.d. Scolopendridae 

centipede Scolopendra dehaani n.d. Scolopendridae 

centipede Scolopendra hardwickei n.d. Scolopendridae 

centipede Scolopendra morsitans n.d. Scolopendridae 

centipede Scolopendra subspinipes n.d. Scolopendridae 

centipede Thereuopoda longicornis n.d. Scutigeridae 

scorpion Androctonus bicolor m Buthidae 

scorpion Hottentotta jayakari f Buthidae 

scorpion Parabuthus villosus n.d. Buthidae 

scorpion Nebo yemenensis n.d. Scorpionidae 

spider Hadronyche infensa n.d. Atracidae 

spider Hickmania troglodytes f Austrochilidae 

spider Ancylometes rufus f Ctenidae 

spider Ancylometes spec.("Oyapok") f Ctenidae 

spider Ancylometes spec.(Guatemala) f Ctenidae 

spider Phoneutria fera f Ctenidae 

spider Phoneutria nigriventer f Ctenidae 

spider Allocosa obscuroides f Lycosidae 
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ORGANISM GENUS SPECIES SEX FAMILY 

spider Lycosidae spec.(Australia) f Lycosidae 

spider Lycosidae spec.(Papua New Guinea) f Lycosidae 

spider Macrothele gigas f Macrothelidae 

spider Megadolomedes australianus f Pisauridae 

spider Heteropoda jugulans f Sparassidae 

spider Sparassidae spec.(Indonesia) f Sparassidae 

spider Avicularia juruensis f Theraphosidae 

spider Avicularia purpurea f Theraphosidae 

spider Avicularia spec.("amazonica") f Theraphosidae 

spider Avicularia spec.("huriana") f Theraphosidae 

spider Avicularia spec.("metallica") f Theraphosidae 

spider Avicularia spec.("purple") f Theraphosidae 

spider Avicularia variegata f Theraphosidae 

spider Iridopelma hirsutum f Theraphosidae 

spider Ybyrapora diversipes f Theraphosidae 

spider Hysterocrates cf gigas f Theraphosidae 

spider Hysterocrates ederi f Theraphosidae 

spider Hysterocrates hercules f Theraphosidae 

spider Hysterocrates spec.(Cameroon) f Theraphosidae 

spider Hysterocrates spec.(Nigeria) f Theraphosidae 

spider Monocentropus lambertoni f Theraphosidae 

spider Augacephalus ezendami f Theraphosidae 

spider Ceratogyrus darlingi f Theraphosidae 

spider Ceratogyrus marshalli f Theraphosidae 

spider Ceratogyrus sanderi f Theraphosidae 

spider Harpactira cf gigas m Theraphosidae 

spider Harpactira guttata f Theraphosidae 

spider Pterinochilus chordatus f Theraphosidae 

spider Pterinochilus lugardi f Theraphosidae 

spider Pterinochilus murinus f Theraphosidae 
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ORGANISM GENUS SPECIES SEX FAMILY 

spider Chaetopelma spec.(Libanon) f Theraphosidae 

spider Euthycaelus spec.(Colombia) f Theraphosidae 

spider Holothele spec.(Colombia) f Theraphosidae 

spider Cyriopagopus albostriatus f Theraphosidae 

spider Cyriopagopus cf longipes f Theraphosidae 

spider Cyriopagopus doriae m Theraphosidae 

spider Cyriopagopus hainanus f Theraphosidae 

spider Cyriopagopus lividus f Theraphosidae 

spider Cyriopagopus minax f Theraphosidae 

spider Cyriopagopus schmidti f Theraphosidae 

spider Cyriopagopus spec.("hati-hati") f Theraphosidae 

spider Cyriopagopus spec.("Sumatra tiger") f Theraphosidae 

spider Cyriopagopus spec.(Borneo) f Theraphosidae 

spider Cyriopagopus spec.(Thailand) f Theraphosidae 

spider Cyriopagopus spec.(Vietnam) f Theraphosidae 

spider Cyriopagopus vonwirthi f Theraphosidae 

spider Lampropelma nigerrimum f Theraphosidae 

spider Lampropelma violaceopes f Theraphosidae 

spider Omothymus schioedtei f Theraphosidae 

spider Ornithoctonus aureotibialis f Theraphosidae 

spider Phormingochilus carpenteri f Theraphosidae 

spider Ephebopus cyanognathus f Theraphosidae 

spider Ephebopus murinus f Theraphosidae 

spider Ephebopus rufescens f Theraphosidae 

spider Psalmopoeus cambridgei f Theraphosidae 

spider Psalmopoeus langenbucheri f Theraphosidae 

spider Psalmopoeus reduncus f Theraphosidae 

spider Psalmopoues pulcher f Theraphosidae 

spider Pseudoclamoris elenae f Theraphosidae 

spider Tapinauchenius cupreus f Theraphosidae 
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ORGANISM GENUS SPECIES SEX FAMILY 

spider Tapinauchenius latipes f Theraphosidae 

spider Tapinauchenius plumipes f Theraphosidae 

spider Tapinauchenius sanctivincenti f Theraphosidae 

spider Neoholothele fasciaaurinigra f Theraphosidae 

spider Schismatothele spec.(Colombia) f Theraphosidae 

spider Chilobrachys huahini f Theraphosidae 

spider Orphnaecus philippinus f Theraphosidae 

spider Orphnaecus spec.("treedweller") f Theraphosidae 

spider Phlogiellus cf obscurus f Theraphosidae 

spider Poecilotheria fasciata f Theraphosidae 

spider Poecilotheria formosa f Theraphosidae 

spider Poecilotheria hanumavilasumica f Theraphosidae 

spider Poecilotheria metallica f Theraphosidae 

spider Poecilotheria miranda f Theraphosidae 

spider Poecilotheria ornata f Theraphosidae 

spider Poecilotheria regalis f Theraphosidae 

spider Poecilotheria rufilata f Theraphosidae 

spider Poecilotheria smithi f Theraphosidae 

spider Poecilotheria striata n.d. Theraphosidae 

spider Poecilotheria subfusca  ('lowland') f Theraphosidae 

spider Poecilotheria subfusca ("highland") f Theraphosidae 

spider Poecilotheria tigrinawesseli f Theraphosidae 

spider Poecilotheria vittata f Theraphosidae 

spider Selenocosmia arndsti f Theraphosidae 

spider Selenocosmia aruana f Theraphosidae 

spider Selenocosmia javanensis sumatrana f Theraphosidae 

spider Selenocosmia spec.(Borneo) f Theraphosidae 

spider Selenocosmiinae spec.(Papua New Guinea) f Theraphosidae 

spider Selenocosmiinae spec.1 (Borneo, Indonesia) f Theraphosidae 

spider Selenocosmiinae spec.2 (Borneo, Indonesia) f Theraphosidae 
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ORGANISM GENUS SPECIES SEX FAMILY 

spider Selenotholus cf foelschei m Theraphosidae 

spider Heteroscodra maculata f Theraphosidae 

spider Stromatopelma calceatum f Theraphosidae 

spider Acanthoscurria cf insubtilis f Theraphosidae 

spider Acanthoscurria chacoana f Theraphosidae 

spider Acanthoscurria geniculata f Theraphosidae 

spider Acanthoscurria musculosa f Theraphosidae 

spider Acanthoscurria spec.(Venezuela) f Theraphosidae 

spider Acanthoscurria theraphosoides f Theraphosidae 

spider Aphonopelma spec.(Panama) f Theraphosidae 

spider Brachypelma albopilosum f Theraphosidae 

spider Brachypelma boehmei f Theraphosidae 

spider Brachypelma emilia f Theraphosidae 

spider Brachypelma epicureanum f Theraphosidae 

spider Brachypelma harmorii f Theraphosidae 

spider Brachypelma kahlenbergi f Theraphosidae 

spider Brachypelma sabulosum f Theraphosidae 

spider Brachypelma verdezi f Theraphosidae 

spider Bumba pulcherrimaklaasi f Theraphosidae 

spider Chromatopelma cyaneopubescens f Theraphosidae 

spider Davus pentaloris f Theraphosidae 

spider Euathlus spec.("fire") f Theraphosidae 

spider Eupalaestrus campestratus f Theraphosidae 

spider Grammostola actaeon f Theraphosidae 

spider Grammostola grossa f Theraphosidae 

spider Grammostola iheringi m Theraphosidae 

spider Grammostola porteri f Theraphosidae 

spider Grammostola pulchripes f Theraphosidae 

spider Grammostola rosea f Theraphosidae 

spider Grammostola spec.("Chilean North") f Theraphosidae 
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ORGANISM GENUS SPECIES SEX FAMILY 

spider Homoeomma spec.("blue") f Theraphosidae 

spider Lasiodora difficilis f Theraphosidae 

spider Lasiodora klugi f Theraphosidae 

spider Lasiodora parahybana f Theraphosidae 

spider Lasiodora striatipes f Theraphosidae 

spider Lasiodorides striatus f Theraphosidae 

spider Nhandu chromatus f Theraphosidae 

spider Nhandu coloratovillosus f Theraphosidae 

spider Nhandu tripepii f Theraphosidae 

spider Pamphobeteus antinous f Theraphosidae 

spider Pamphobeteus fortis f Theraphosidae 

spider Pamphobeteus nigricolor m Theraphosidae 

spider Pamphobeteus spec.("platyomma") f Theraphosidae 

spider Pamphobeteus spec.("wuschi") f Theraphosidae 

spider Pamphobeteus spec.(Icononzo, Colombia) f Theraphosidae 

spider Pamphobeteus 
spec.(V. Restrepo, 

Colombia) 
f Theraphosidae 

spider Phormictopus atrichomatus f Theraphosidae 

spider Phormictopus auratus f Theraphosidae 

spider Phormictopus cancerides f Theraphosidae 

spider Phormictopus cautus f Theraphosidae 

spider Plesiopelma spec.(Bolivia) f Theraphosidae 

spider Sericopelma rubronitens f Theraphosidae 

spider Sericopelma silvicola f Theraphosidae 

spider Sericopelma spec.(Azuero, Panama) f Theraphosidae 

spider Sericopelma spec.(Chiriqui, Panama) f Theraphosidae 

spider Sericopelma spec.(Veraguas, Panama) f Theraphosidae 

spider Stichoplastoris spec.(Costa Rica) f Theraphosidae 

spider Theraphosa apophysis f Theraphosidae 

spider Thrixopelma spec.("lagunas") f Theraphosidae 
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ORGANISM GENUS SPECIES SEX FAMILY 

spider Xenesthis immanis f Theraphosidae 

spider Xenesthis spec.("blue") f Theraphosidae 

spider Xenesthis spec.("white") f Theraphosidae 

spider Haploclastus nilgirinus f Theraphosidae 

spider Thrigmopoeus truculentus f Theraphosidae 

spider Viridasius spec.("sylvestriformis") f Viridasiidae 

wasp Vespula germanica NA Vespidae 

wasp Vespa velutina NA Vespidae 

bee Apis mellifera NA Apidae 

cone snail Conus geographus NA Conidae 

cone snail Conus textile NA Conidae 

cone snail Conus striatus NA Conidae 

cone snail Conus magus NA Conidae 

 

2.2. Cell Cultures 

Human astrocytoma 1321N1 cells stably expressing hP2X4, generated by L. Stokes, were maintained in 

high glucose Dulbecco’s Minimal Eagle’s Medium, DMEM (Bio-Whittaker) containing 10% (v/v) fetal 

bovine serum (FBS Gibco 16000044), 100 U/mL penicillin, 100 µg/mL streptomycin (Fisher), and 400 

µg/mL G418 (Sigma). HEK293 cells stably expressing either hP2X3, hP2X4 or hP2X7, were maintained 

under the same condition in DMEM/F12 media (Gibco 11320033). The cells were grown for 4-5 days 

until 70-90% of confluency was achieved.  

Once the desired confluency was reached, the cells were trypsinized with either 0.05% Trypsin-EDTA 

(Gibco 25300054) or 0.25% Trypsin (Gibco 25200056), centrifuged at 300 xg for 5 minutes and the 

supernatant was discarded.  

The cells were then re-suspended in fresh media and counted with a hemacytometer using tryptan blue 

(Sigma). Mouse microglial BV2 cell lines were maintained in similar conditions as HEK293 cells, however, 

without the G418 addition. These cells had to be split every 3 days since they usually reached 90-95% 

confluency sooner than 1321N1 or HEK293 cells. All cells were maintained at 37°C with 5% CO2 in a 

humidified incubator; P2X expression remained stable for at least 25–30 passages.  
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2.3. Establishment of Stable Cell Lines 

For generating stable 1321N1-hP2X4, 1321N1-rP2X4, 1321N1-mP2X4 and HEK293-hP2X3 stable cell 

lines, chemical transfection with Lipofectamine™ 2000 was used. First, the native cells (either 1321N1 or 

HEK293) were counted and seeded at the density of 2 x 104 in 6-well plates 24h prior to transfection.  

The number of cells seeded was different among the cell lines and was calculated in respect to the 80% 

confluency on the day of the transfection. Since we were using Lipofectamine™ 2000, the transfection 

mix was prepared according to the manufacturer’s protocol using a ratio of 3 µL of Lipofectamine™ for 

every 1 µg of total DNA transfected. Then, astrocytoma 1321N1 or HEK293 cells were transiently 

transfected with either cDNA plasmids encoding for hP2X3 or hP2X4/rP2X4/mP2X4 in 6-well plate. One 

day after the transfection, the cells medium was changed to either DMEM (1321N1) or DMEM/F12 

(HEK293) with their positive selection geneticin (G418, 400 µg/mL). With adding geneticin, the selection 

of stably transfected cells started. The neoR gene (neomycin resistance) was expressed in cells that had 

incorporated the desired plasmid in their genome which confer the resistance for geneticin. To remove 

the dead cells, the cell medium was changed every 3-4 days and, in some instances, the cells were 

incubated in trypsin for the duration of 5 min, combined and re-seeded. Approximately two weeks later, 

the non-transfected control cells (native 1321N1 or HEK293) were killed by geneticin. That ensured that 

only the colonies of the transfected and/or geneticin-resistant cells remained in the plate. This way, the 

polyclonal stable cell lines were generated. However, in order to create a monoclonal cell population, 

we had to utilize a standard protocol suggested by Johnston218 and Wurm.219 This method describes the 

generation of the monoclonal cell populations using limiting dilution.  Following this protocol, 100 µL 

medium was pre-plated in each well of the plate and 100 µL of 4 x 105 cells/mL solution was transferred 

into a first well. Then a serial 1:2 dilution down the first column and a serial 1:2 dilution across the plate 

was performed. The same amount (100 µL) was then carried over to the next column.  

This was then repeated for each consecutive column. The cells were then incubated and the single cell 

wells confirmed by microscope.  To ensure the desired P2X expression, G418-resistant clones were 

further selected according to the strength of their ATP-induced increase in intracellular calcium ([Ca2+]I).  

Clones successfully expressing the receptor of interest were then expanded in 6-well plates and 

transferred to T25 tissue culture flasks. An additional experiment was conducted using flow cytometry 

to quantify expression of the receptor.  
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2.4. Transient Transfection  

For NMDA 1A/2A experiments, HEK293 cells were seeded at the density of 6 x 104 per well in 2 ml of 

glutamine-free growth medium (Neurobasal, Gibco) in the 6-well plates 24h prior to transfection. When 

platting HEK293 cells, NMDA antagonists D-AP5 (100 µM) and MK-801 (10 µM) were used.  

On the day of transfection the cells were washed with PBS and then 0.9 mL of fresh media was added. 

Transfection were performed using Lipofectamine™ 2000 reagent, following the manufacturer’s 

protocol. The plasmids, whose cDNA encoded for NMDA 1A and NMDA 2A subunits, were a kind gift 

from Professor David Wyllie (University of Edinburgh). Eight hours after the transfection, 1.1 mL of 

glutamine-free growth media, supplemented with NMDA antagonists was added and the cells were 

maintained at 37°C with 5% CO2 in a humidified incubator for another 16 hours. Then, the cells were 

incubated in trypsin (5 min), platted in the poly-D-lysine coated 96-well plates, and the Ca2+ 

measurements carried out. 

 

2.5. Flow Cytometry  

To quantify the P2X expression, cell medium was aspirated; cells were washed with PBS, trypsinized for 

1 min and resuspended in PBS. Cells were then counted and diluted to 0.5 – 1 × 106 cells/ml and primary 

antibody of anti-human P2X4 (a kind gift from Professor F Koch-Nolte) was added (1:100 dilution). After 

60 min incubation on ice in the dark room, the cells were washed with cold PBS, centrifuged and washed 

again prior to the addition of the secondary antibody (1:200 dilution). After the incubation on ice for 30 

min, cells were washed with cold PBS and centrifuged down twice before resuspended in PBS (200 µL). 

Anti-rabbit IgG-Alexa 488 was used as a secondary antibody. Instrument settings were calibrated using 

mock (unstained) and non-transfected cells in order to determine cellular auto-fluorescence.  

All measurements were performed in 5 ml non-sterile non-pyrogenic FACS tubes using FACSCalibur with 

CellQuest software. Viable cells were then gated on forward and side scatter profiles. Fluorescence 

properties of the gated population were analysed using the FL-1 channel (FITC). Histograms were 

plotted and mean fluorescence intensity calculated using in-built statistics function of CellQuest.  
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2.6. Ca2+ Measurements (Fura-2 AM) 

One day prior to measurements, 1321N1-hP2X4 cells were plated onto poly-D-lysine coated 96-well 

plates (Nunc, Fisher Scientific) at 2 x104 cells/well. After 24 h, the cells were then loaded for 1 h at 37°C 

with 2 μM Fura-2 AM (HelloBio) in Hank’s Balanced Salt Solution (HBSS, Gibco). Here, Fura-2 AM is a 

fluorescent indicator dye for Ca2+ concentration and its excitation at both, 340 nm and 380 nm results in 

a signal intensity for the molecule both bound to Ca2+ and unbound.  

An original stock of Fura-2 AM was first dissolved in DMSO to produce a 1 mM stock and added to the 

cells in its membrane permeant acetoxymethyl (AM) ester form to give a final concentration of 2 µM. 

After the dye incubation, the Fura-2 AM was then removed, and the cells were incubated in 80 µL Etotal 

buffer, containing (in mM): 145 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 13 D-glucose, 10 HEPES; pH 7.33. Once the 

dye crosses the cell membrane, the ester groups undergo hydrolysis and the dye becomes trapped 

within the cell. Following loading the cells were pre-incubated with the antagonists such as BX430 or 

potentiators as ivermectin for 10 min or drugs were injected using the injector function. The [Ca2+]I 

measurements took place on a Flexstation 3 (Molecular Devices) at 37°C. For the Fura-2 AM assay 

development, the injection volume was 10 µL with 150 µL pipette height and injection rate of 4 (~62 

µL/sec). DMSO concentration for all experiments was <0.1%. The run time was 300 sec with 3.5 sec 

interval and three readings per well. For microglial BV2 and BV2 P2X7-deficient cell lines, the same assay 

(Fura-2 AM) was used.  

 

2.7. FLIPR Ca-6 Assay 

To monitor the intracellular Ca2+ in either stable HEK-P2X3 or transient HEK-NMDA 1a/2a cells, the FLIPR 

Calcium 6 Assay Kit (Molecular Devices) was used. One day prior to measurements, the cells were plated 

on poly-D-lysine coated 96-well plates (Nunc, Fisher Scientific) at a concentration of 2 x104 cells/well. 

After 24 h, the cells were loaded with the no-wash calcium sensitive dye Calcium 6 and incubated for 2 h 

prior to measurements on a Flexstation 3 (Molecular Devices) at 37°C.  

For this the prepared dye was thawed and diluted 1:3 in buffer containing (in mM): 145 NaCl, 5 KCl, 0.1 

CaCl2, 13 D-glucose and 10 HEPES; pH 7.35). Intracellular calcium levels were measured at the excitation 

wavelength of 488 nm and emission at 520 nm, expressed as Relative Fluorescent Units (RFU). This value 

was baseline corrected using the fluorescence in the absence of agonist.  
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For the measurement of intracellular calcium release induced by agonist (α,β-methylene ATP or 

glutamate/glycine), a range of concentrations of antagonists (either purotoxin-1 or MK-801/D-APS) were 

added to the cells 10 min before the measurements. DMSO concentration for all experiments was 

<0.1%. 

 

2.8. YO-PRO-1 Assay 

YO-PRO-1 uptake was carried out to estimate the time course of a so-called nonselective P2X7 pore 

formation, a process in which P2X7 forms a receptor-activated permeability pathway.   

Once YO-PRO-1 enters cells through this pore, it binds with nucleic acids, and becomes fluorescent and 

thus enables an indirect measurement of P2X7 activity. This method was adapted and further optimized 

from Patrice et al.220 One day prior to measurements, HEK293-hP2X4 and HEK293-hP2X7 cells were 

plated on poly-D-lysine coated 96-well plates at 2 x104 cells/well. After 24 h, the culture media was 

aspirated, and 80 µL of YO-PRO-1 assay buffer (145 mM NaCl, 5 mM KCl, 0.1 mM CaCl2, 13 mM D-

glucose, 10 mM HEPES; pH 7.35) containing 2 μM YO-PRO-1 was applied. P2X7 antagonists such as 

AZ10606120 and JNJ47965567 were pre-incubated for 10 min before the measurements took place at 

37°C using a Flexstation 3 (Molecular Devices). The run time was 300 sec with a 3.9 sec interval, 6 

reads/well and medium PMT setting. Measurement parameters were as following: bottom reading, 

excitation wavelength (490 nm), emission wavelength (520 nm), and cut-off wavelength (515 nm). 

 

2.9. Isolation and Purification of Venom Fractions Using RP-HPLC 

Venom (1 mg) was diluted with H2O, sterile filtered (0.22 μm; Merck Millipore), then loaded onto an 

analytical C18 RP-HPLC column (Jupiter 4.6 x 250 mm, 5 μm, 300 Å; Phenomenex, California, USA) 

attached to an Agilent HPLC system. Components were eluted at 1 mL/min using isocratic elution at 5% 

solvent B (90% ACN, 0.05% TFA in H2O) for 5 min followed by a gradient of solvent B in solvent A (0.05% 

TFA in H2O): 5–20% solvent B over 5 min; 20–40% solvent B over 40 min; 40–80% solvent B over 5 min; 

80–100% over 5 min. Absorbance was measured at 214, 254 nm and 280 nm using a UV detector 

(Shimadzu). Individual fractions were pooled, the solvent removed, re-suspended in 200 – 500 µL of 

water and lyophilized using liquid nitrogen and vacuum-induced freezing. 
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Once the fractions were dry, they were stored at –20°C until further studies. The fractions were checked 

for purity and when the purity was not sufficient (<80%), they were re-suspended in 100 µL of water, 

and further purified using the same RP-HPLC system before lyophilisation and storage. All solvents used 

were HPLC-grade.  

 

2.10. Mass Analysis of Venom Fractions and Pure Toxins (MALDI-TOF, ESI-

MS/MS, LC-MS) and Software Aids 

Toxin masses were obtained using electrospray ionization mass spectrometry (ESI-MS/MS; LCMS-2020 

Shimadzu, Japan) or matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy 

(MALDI-TOF MS) using an Applied Biosystems 4700 MALDI TOF/TOF Proteomics Analyzer. The toxin 

fractions eluted from RP-HPLC were dissolved in 100 – 150 µL water and 2 µL was then mixed with 2 µL 

of 10 mg/mL α-cyano-4-hydroxycinnamic acid (CHCA) matrix (dissolved in 50% acetonitrile, 50% water, 

0.1% TFA) to verify toxin masses. Observed masses are reported as monoisotopic m/z or average mass. 

When the toxins were subjected to LC-MS for a high resolution ESI-MS/MS, all the measurements were 

performed on an LTQ Orbitrap XL instrument (ThermoFisher Scientific) equipped with the heated ESI 

Probe operated in positive ion mode. The ESI (positive ion) parameters for all compounds studied were; 

source voltage 5 kV, entrance capillary voltage 35 V, entrance capillary temperature 275°C, Nitrogen 

sheath gas flow rate 7 a.u. All the solutions were prepared in either acetonitrile or methanol and 

introduced into the ESI source by loop injection using 0.05% formic acid in water as the mobile phase. 

Then, a full MS scan was performed between m/z 50-5000 at 60,000 resolution. MS/MS of the 

predefined molecular ion was then preformed in the linear ion trap by Collision Induced Dissociation 

(CID). In order to interpret the spectra, various commercially available software packages were used. 

These software tools tend to be fragment databases although the exact nature of the algorithms 

underlying these programmes has not been disclosed for intellectual property reasons. In my hands, 

mostly Mass Frontier, MS Fragmenter and MassBank were helpful.  
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2.11. Molecular Formulae Determination by MS-FINDER 

For determination of molecular formulas, we used software called MS-FINDER with the text formats for 

both MS and MS/MS spectra. These text files include information such as precursor m/z, ion mode, mass 

accuracy of instrument, and precursor type.  

The default parameters include the selected elements C, N, H, O; the maximum reported number was 

set to 50; tree depth set to 2; relative abundance cut off set to 1; the isotopic ratio tolerance together 

with the mass tolerance was adjusted to a combination of 1% and 1ppm; and all 14 databases were 

selected. Candidate hits were ranked from highest to lowest.    

 

2.12. Validation Methods for the hP2X4-specific Assay Development (Z factor 

calculation) 

Since we were limited to 96-well format with four controls per plate, and eight replicates each, that left 

the space for only eight fractions with eight replicates each. These fractions were chosen randomly, 

however, due to the material shortage, each fraction could only be injected eight times per plate thus 

different fractions had to be selected for each plate. Fractions were stored at 4°C for the duration of the 

study. Each prepared fraction was tested on three different days with eight replicates per plate. Eight 

replicates of positive control (either 10 µM for hP2X4 or 300 µM ATP for hP2X7) and negative controls 

(buffer, antagonist) were included on each plate. To normalize results for each fraction, we averaged 

signal AUC values for positive control on each plate and exposed AUC signal values as a % of a positive 

control signal. Normalised mean was calculated by normalising data to the control, expressed as 1.0.  

First, to assess assay specificity, we examined the response evoked by commercially available hP2X4 

modulators (BX430, PSB12062, IVM), together with three fractions (F8, F28, F47) from N. chromatus 

venom that were not identified as hits in our initial assay. The positive control was a hit fraction (F5) 

from the same venom. 

Second, inter-plate and intra-plate variability were evaluated using eight venom fractions in three 

different experiments. Venom fractions were prepared as described above and stored at 4°C for the 

duration of the study.  Each prepared fraction was tested on three different days, with eight replicates 

per plate.  
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Eight replicates of positive controls (ATP), eight replicates of negative controls (buffer, antagonist), and 

eight replicates of a positive allosteric modulator (IVM) were included on each plate. Coefficients of 

variation were calculated using normalized results for each fraction by expressing the venom-fraction 

signal as a fraction of the averaged positive control signal from the same plate. For intra-plate variability, 

unadjusted signal values were used to calculate variability between replicates for each fraction on a 

plate.   

Third, the assay reproducibility was assessed using the Z’ factor statistical method, which is commonly 

used to estimate the reproducibility and robustness of screening assays. This parameter assesses, in 

part, assay quality by calculating separation between positive and negative signals. Z’ values of 0.5 –1.0 

indicate a high level of reproducibility, whereas Z’ values of 0 – 0.5 indicate a less robust assay.221 The Z’-

factor was calculated using the following formula:  

           
                                  

                                
 

The Z’ experiment was performed twice with positive and negative controls (ATP and buffer, 

respectively) that were used throughout the assay development. In the first experiment, 60 positive 

controls (ATP) and 36 negative controls (hP2X4/hP2X7 antagonist) were tested. In the second 

experiment, 48 positive controls (ATP) and 48 negative controls (hP2X4/hP2X7 antagonist) were tested.  

 

2.13. Cell Viability Alamar Blue Assay 

The collection of compounds were screened to assess effects on cell viability with the in-house alamar 

blue assay to measure cell viability. The active ingredient is resazurin, an oxidized form of redox 

indicator that is blue in colour and non-fluorescent.222 When incubated with viable cells, resazurin 

changes colour from blue to red and becomes fluorescent.222 By detecting either absorbance or 

fluorescence, we can monitor viability in real time in a reducing environment of viable cells. For the 

assay,  the cells were plated at 2 x105/well and plated on poly-D-lysine coated 96-well plates (Nunc, 

Fisher Scientific) in a culture medium supplemented with 1% FBS. Following incubation, resazurin (0.1 

mg/mL in PBS, Sigma Aldrich) was added to cells for 2h at 37°C, and the fluorescent signal was read on a 

Flexstation 3 plate reader (λexc = 535 nm, λem = 600 nm). Analyses were performed in triplicates.  
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2.14. LDH Release Assay 

If cells get damaged, they lose their membrane integrity, releasing, among others, cytoplasmic proteins 

such as the lactate dehydrogenase (LDH) into the medium. Here, LDH catalyzes the conversion of lactate 

to pyruvate and NADH. LDH release into cell culture supernatant was quantified using a Pierce assay kit 

(Fisher Scientific 13454269), following the manufacturer’s instructions and using cell culture medium 

with 1% of serum. Control cells were lysed with the lysing solution provided in the kit to harvest the 

total intracellular LDH. For this, cells were cultured in 96-well plates (Nunc, Fisher Scientific) and, after 

applying a stimulus and incubating for 24h, a 50 µL aliquot of supernatants were determined by 

measuring the change in absorbance on a Flexstation 3 plate reader at 490 nm. For the data analysis, the 

medium average control (background) was subtracted from the average values of experimental 

measurements. 

 

2.15. Amino Acid Sequencing  

In order to determine the amino acid composition of the peptide within L. klugi F25, we sequenced this 

peptide using two approaches. First approach comprised the mass spectroscopy methods whereas the 

second approach utilized a commercial N-terminal sequencing method (Cambridge Peptides). Before 

sequencing, the peptide was reduced and alkylated. The disulphide bonds were reduced by incubating 

peptides for 15 min at 65°C in 150 mM Tris (pH 8), 1 mM EDTA and 5 mM DTT. Thiol groups were 

pyridylethylated using 2 µL OF 95% 4-vinylpyridine and 10 µL of CH3CN; the reaction proceeded under 

nitrogen for 2 h in darkness at the room temperature. Samples were desalted using LC-MS, eluted as 

described above (Methods 2.10) and fragmentations monitored using ESI-MS/MS. To confirm these 

results, the N-terminal sequencing was performed by the Cambridge Peptides (commercial source). 

 

2.16. Structural Elucidation of the Toxins by Nuclear Magnetic Resonance (NMR) 

All experiments were performed at 20°C on a Bruker Avance III 800 MHz spectrometer equipped with a 

5-mm TXI 800 MHz H-C/N-D-05 Z BTO probe. Small toxins (LK-729 and LK-601) were collected from RP-

HPLC, freeze-dried, and prepared the next day for the NMR analysis. The toxins were dissolved in 260 µL 

of D2O and transferred in a Shigemi advanced NMR microtube assembly, matched with D2O.  
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The samples were analysed by 1H 1D excitation sculpting with water suppression, recorded with 512 

scans, and by standard COSY 64 scans. However, the concentration was not sufficient to acquire 1H-13C 

HSQC or 1D 13C experiments. 

 

2.17. Chemical Synthesis of Small Molecules and NMR 

All chemical reagents and starting materials were of highest grade available and were used without 

further purification. Thin-layer chromatography analysis of crude reaction products and column 

chromatography were performed using Merck F254 silica gel plates and 4G/SF10 flash chromatography 

packing, respectively. TLC analysis used ethyl acetate:hexane (30:70) as a solvent system. The Rf values 

were between 0.3-0.4 for nitro-substituted products.  

After all small molecules were synthesized, purification was followed either by flash column 

chromatography or reverse-phase chromatography (RP-HPLC) and mass spectrometry and NMR to verify 

the identity of all analogues. 1H and 13C NMR spectra were recorded at 400 MHz on a Bruker Avance III 

spectrometer. ESI+ and ESI- were run at the University of East Anglia using Bruker micrOTOF-Q ESI-

MS/MS instrument with methanol as the solvent. Melting points were determined in open glass 

capillaries on the melting point apparatus and were uncorrected. The reaction scheme can be found in 

Chapter 5 (Figure 5.22). 

 

2.16.1. Synthesis of 1H-Indole-3-carboxamide, N-[3-[[4-[(3 aminopropyl) amino]  

butyl]amino]propyl] also known as Lucas analogue 1 (LA-1) and its dimer Lucas 

analogue 2 (LA-2) 

Step 1: Synthesis of 1H-Indole-3-carboxylic acid, 4-nitrophenyl ester  

To the solution of 0.463 g 1H-Indole-3- carboxylic acid (2.64 mmol) in DMF (20 mL), 0.330 g (2.38 mmol) 

of 4-nitrophenol and 1.004 g (2.64 mmol) HATU was added. After a minute, 0.919 mL (5.28 mmol) DIPEA 

was added and the reaction changed colour from transparent to lightly yellow. The reaction was stirred 

for 24 h under nitrogen and continuously checked with above TLC method which showed the expected 

mixture of reagents and a product. After completion, the reaction was diluted with water, extracted 3x 

with DCM, washed with saturated NaCl and dried with anhydrous Na2SO4. The resulting crude mixture 

was evaporated and purified using flash chromatography and a gradient of 30% EtOAc in hexane.  
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The product’s fractions were collected and left for a day in a freezer to yield a white, crystalized product 

(0.72 g; 97 %). ESI: m/z calcd for C15H10N2O4 [M + H] 283.25, found 283.0535 (Figure S5). 1H NMR (400 

MHz, CDCl3) δ 9.03 (s, 1H), 8.39 – 8.23 (m, 2H), 7.78 – 7.70 (m, 1H), 7.49 – 7.41 (m, 4H), 7.38 (ddd, J=8.2, 

6.9, 1.1 Hz, 1H), 7.23 – 7.16 (m, 1H). 13C NMR (100 MHz, DMSO) δ: 158.82, 155.03, 144.97, 137.98, 

126.55, 125.46, 125.36, 123.13, 122.31, 120.48, 112.61, 110.17, 79.11, 78.78, 78.46 (Figure S1).  

Step 2: Synthesis of 1H-Indole-3-carboxamide, N-[3-[[4-[(3-aminopropyl)amino]butyl]amino]propyl]- 

To the clear, homogenous solution of 25 mg 1H-Indole-3-carboxylic acid, 4-nitrophenyl ester in 15 mL 

methanol, 35.85 mg spermine was added dropwise at ambient temperature. After 24 h, the resulting 

yellow-green solution was evaporated and the crude product was suspended in 2 mL of water. Upon 

adjusting the pH to 4-5 by the addition of 1N HCl, a homogenous, clear solution was produced. 

This was loaded onto RP-HPLC column (Jupiter 4.6 x 250 mm, 5 μm, 300 Å; Phenomenex, California, 

USA) and components eluted at 1 mL/min using isocratic elution at 5% solvent B (90% ACN, 0.05% TFA in 

H2O) for 5 min followed by a gradient of solvent B in solvent A (0.05% TFA in H2O): 5–75% solvent B over 

15 min; 75% solvent B over 5 min; and back to 5% solvent B for the last 5 min. Absorbance was 

measured at 214, 254 nm and 280 nm using a UV detector (Shimadzu).Three major peaks (mono, di-

substituted products and 1H-Indole-3-acetic acid) were analysed by NMR and ESI and their structured 

and masses were verified. Mono and di-substituted products gave 22 mg (72 %) and 10 mg (23 %), 

respectively, of a brown powder. ESI: m/z calcd for C19H31N5O [M + H] 346.49, found 346.2355 (Figure 

S6A). mp for C19H31N5O: 155 – 158°C. 1H NMR (400 MHz, MeOD) δ 7.92 – 7.83 (m, 1H), 7.68 (s, 1H), 7.25 

– 7.17 (m, 1H), 7.00 – 6.89 (m, 2H), 3.30 (t, J=6.3 Hz, 2H), 2.84 (tt, J=18.9, 7.8 Hz, 10H), 1.92 – 1.70 (m, 

4H), 1.64 – 1.49 (m, 4H). 13C NMR (100 MHz, MeOD) δ: 169.79, 138.27, 129.49, 127.31, 123.78, 122.29, 

121.79, 113.10, 111.18, 48.39, 48.19, 46.42, 45.97, 37.97, 36.74, 28.21, 25.47, 24.48, 24.39 (Figure S1). 

ESI: m/z calcd for C28H36N6O2 [M + H] 489.63, found 489.2634 (Figure S6B). mp for C28H36N6O2: >300°C. 

1H NMR (400 MHz, MeOD) δ 8.07 – 7.99 (m, 2H), 7.83 (s, 2H), 7.39 – 7.31 (m, 2H), 7.16 – 7.02 (m, 4H), 

3.51 – 3.39 (m, 4H), 3.23 (dt, J=3.3, 1.6 Hz, 9H), 3.16 (dd, J=15.5, 7.5 Hz, 1H), 3.07 – 2.91 (m, 6H), 2.81 (d, 

J=16.1 Hz, 3H), 1.97 – 1.87 (m, 2H), 1.21 (s, 1H). 13C NMR (100 MHz, MeOD) δ: 175.15, 136.79, 127.01, 

123.81, 121.33, 118.69, 117.94, 111.20, 108.00, 46.46, 44.54, 35.24, 32.53, 32.53, 26.24, 22.57 (Figure 

S1). IR (KBr): 722, 798, 835, 1135, 1165, 1198, 1670, 2875, 3075 cm-1.  
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2.16.2. Synthesis of 1H-Indole-3-acetamide, N-[3-[[4-[(3-aminopropyl)amino]   

butyl]amino]propyl]- also known as Lucas analogue 3 (LA-3) and its dimer Lucas 

analogue 4 (LA-4) 

Step 1: Synthesis of 1H-Indole-3-acetic acid, 4-nitrophenyl ester 

To the solution of 0.7 g 1H-Indole-3-acetic acid (4 mmol) in DMF (20 mL), 0.5 g (3.6 equiv) of 4-

nitrophenol and 1.365 g (4 mmol) HATU was added. After a minute, 1.25 mL (8 mmol) DIPEA was added 

and the reaction changed colour from transparent to lightly yellow. The reaction was stirred for 24 h 

under nitrogen and continuously checked with above TLC method which showed the expected mixture 

of reagents and a product. After completion, the reaction was diluted with water, extracted 3x with 

DCM, washed with Brine and dried with anhydrous Na2SO4. The resulting crude mixture was evaporated 

and purified using flash chromatography and a gradient of 30 % EtOAc in hexane. The product’s fractions 

were collected and evaporated.  

The final product yielded 0.72 g (66 %) as a white solid. ESI: m/z calcd for C16H12N2O4 [M - H] 295.28, 

found 295.0985 (Figure S7). 13C NMR (100 MHz, DMSO) δ: 162.12, 156.34, 145.10, 137.06, 135.12, 

126.21, 125.69, 123.79, 123.49, 122.40, 113.19, 105.04, 79.83, 79.35, 79.10 (Figure S1). mp: 133 – 

138°C.   

Step 2: Synthesis of 1H-Indole-3-acetamide, N-[3-[[4-[(3-aminopropyl)amino]butyl]amino]propyl]- 

To the clear, homogenous solution of 100 mg 1H-Indole-3-carboxylic acid, 4-nitrophenyl ester in 15 mL 

methanol, 146.4 mg spermine was added dropwise at ambient temperature. After 24 h, the resulting 

yellow-green solution was evaporated and the crude product was suspended in 2 mL of water. Upon 

adjusting the pH to 4-5 by the addition of 1N HCl, a homogenous, clear solution was produced. This was 

loaded onto RP-HPLC column (Jupiter 4.6 x 250 mm, 5 μm, 300 Å; Phenomenex, California, USA) and 

components eluted at 1 mL/min using isocratic elution at 5% solvent B (90% ACN, 0.05% TFA in H2O) for 

5 min followed by a gradient of solvent B in solvent A (0.05% TFA in H2O): 5–75% solvent B over 15 min; 

75% solvent B over 5 min; and back to 5% solvent B for the last 5 min. Three major peaks (mono, di-

substituted products and 1H-Indole-3-acetic acid) were analysed by NMR and ESI and their structured 

and masses were verified. Mono and di-substituted products gave 81 mg (67 %) and 34 mg (19 %), 

respectively, as a brown solid. ESI: m/z calcd for C20H33N5O [M + H] 360.52, found 360.2506 (Figure S8A). 

mp for C20H33N5O: 161 – 165°C.  
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1H NMR for C20H33N5O (400 MHz, MeOD) δ 7.24 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 6.89 (s, 1H), 

6.84 – 6.77 (m, 1H), 6.76 – 6.68 (m, 1H), 3.37 (s, 2H), 3.01 – 2.94 (m, 2H), 2.77 – 2.68 (m, 4H), 2.67 – 2.59 

(m, 2H), 2.46 (dt, J= 10.9, 7.4 Hz, 4H), 1.75 (dq, J= 15.4, 7.7 Hz, 2H), 1.55 – 1.44 (m, 2H), 1.43 – 1.23 (m, 

4H). 13C NMR (100 MHz, MeOD) δ: 176.47, 138.28, 128.55, 125.36, 122.89, 122.77, 120.26, 119.51, 

112.76, 109.56, 48.25, 48.07, 46.17, 45.92, 37.91, 36.91, 33.93, 27.61, 25.44, 24.19. ESI: m/z calcd for 

C30H40N6O2 [M + H] 517.69, found 517.2922 (Figure S8B). mp for C30H40N6O2: >300°C. 1H NMR for 

C30H40N6O2 (400 MHz, MeOD) δ 7.62 – 7.56 (M, 2H), 7.39 (dt, J=8.2, 0.9 Hz, 2H), 7.23 (d, J=5.0 Hz, 2H), 

7.18 – 7.10 (m, 2H), 7.09 – 7.01 (m, 2H), 3.72 (d, J=0.5 Hz, 4H), 3.59 – 3.42 (M, 2H), 3.39 – 3.27 (m, 8H), 

2.81 (dd, J=14.4, 7.3 Hz, 4H), 2.69 (d, J=14.8 Hz, 4H), 1.89 – 1.74 (m, 4H), 1.54 (dd, J=9.0, 5.3 Hz, 4H). 13C 

NMR (100 MHz, MeOD) δ: 176.71, 138.35, 128.57, 125.38, 122.88, 120.24, 119.50, 112.75, 109.55, 

48.02, 46.09, 36.79, 34.08, 27.79, 24.12. (Figure S1). IR (KBr): 718, 802, 844, 1196, 1189, 1206, 1698, 

2895, 3099 cm-1.  

 

2.16.3. 1H-Indole-2-carboxamide, N-[3-[[4-[(3-aminopropyl)amino] butyl] amino]propyl]- 

also known as Lucas analogue 5 (LA-5)  

Step 1: Synthesis of 1H-Indole-2-carboxylic acid, 4-nitrophenyl ester 

To the solution of 0.7 g 1H-Indole-2-acetic acid (4.34 mmol) in DMF (20 mL), 0.544 g (3.9 equiv) of 4-

nitrophenol and 1.65 g (4.34 mmol) HATU was added. After a minute, 1.51 mL (8.68 mmol) DIPEA was 

added and the reaction changed colour from transparent to lightly yellow. The reaction was stirred for 

24 h under nitrogen and continuously checked with above TLC method which showed the expected 

mixture of reagents and a product. After completion, the reaction was diluted with water, extracted 3x 

with DCM, washed with saturated NaCl and dried with anhydrous Na2SO4. The resulting crude mixture 

was evaporated and purified using flash chromatography and a gradient of 30 % EtOAc in hexane. The 

product’s fractions were collected and the solvent evaporated. The product gave 0.68 g (91 %) as a 

yellow solid. ESI: m/z calcd for C15H10N2O4 [M - H] 281.26, found 281.0846 (Figure S9). 1H NMR (400 

MHz, CDCl3) δ 8.27 – 8.19 (m, 2H), 8.13 (dd, J=7.0, 2.2 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.42 – 7.36 (m, 1H), 

7.25 (dd, J=3.5, 2.3 Hz, 1H), 7.22 (dd, J=3.5, 1.8 Hz, 1H), 7.20 – 7.12 (m, 1H). 4.05 (d, J=0.8 Hz, 2H). 13C 

NMR (100 MHz, CDCl3) δ: 169.55, 168.79, 155.59, 145.31, 136.22, 127.11, 126.88, 125.24, 122.58, 

120.10, 118.72, 115.62, 111.48, 107.28, 31.80 (Figure S1). 
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Step 2: Synthesis 1H-Indole-2-carboxamide, N-[3-[[4-[(3-aminopropyl)amino]butyl]amino]propyl]- 

To the clear, homogenous solution of 100 mg 1H-Indole-3-acetic acid, 4-nitrophenyl ester in 15 mL 

methanol, 153.6 mg spermine was added dropwise at ambient temperature. After 24 h, the resulting 

yellow-green solution was evaporated and the crude product was suspended in 2 mL of water. Upon 

adjusting the pH to 4-5 by the addition of 1N HCl, a homogenous, clear solution was produced. This was 

loaded onto RP-HPLC column (Jupiter 4.6 x 250 mm, 5 μm, 300 Å; Phenomenex, California, USA) and 

components eluted at 1 mL/min using isocratic elution at 5% solvent B (90% ACN, 0.05% TFA in H2O) for 

5 min followed by a gradient of solvent B in solvent A (0.05% TFA in H2O): 5–75% solvent B over 15 min; 

75% solvent B over 5 min; and back to 5% solvent B for the last 5 min. Two major peaks 

(monosubstituted product and 1H-Indole-2-carboxylic acid) were analysed by NMR and ESI and their 

structured and masses were verified. Only mono substituted product was obtained as a brown solid and 

its yield was 26 mg (85 %). ESI: m/z calcd for C19H31N5O [M + H] 344.49, found 344.2810 (Figure S10). 

mp: 146 – 151°C. 1H NMR (400 MHz, MeOD) δ 7.28 (dd, J= 7.2, 0.8 Hz, 1H), 7.13 (dd, J= 8.3, 0.9 Hz, 1H), 

6.90 (ddd, J= 8.3, 7.0, 1.1 Hz, 1H), 6.78 (d, J= 0.8 Hz, 1H), 6.74 (ddd, J= 8.0, 7.0, 0.9 Hz, 1H), 3.20 (t, J= 6.4 

Hz, 2H), 2.82 – 2.68 (m, 10H), 1.83 – 1.62 (m, 4H), 1.49 (dt, J= 7.1, 3.4 Hz, 4H). 13C NMR (100 MHz, 

MeOD) δ: 165.38, 138.53, 131.72, 129.08, 125.41, 122.95, 121.43, 113.23, 104.97, 48.37, 48.25, 46.55, 

45.96, 37.93, 37.14, 27.99, 25.48, 24.41, 24.35 (Figure S1). 

 

2.18. Docking Studies 

The human, rat and mouse models of P2X4 in its closed state were prepared by homology modelling 

with MODELLER 9.18. Zebrafish P2X4 (PDB: 4DW0) was used as template and the best models obtained 

were further refined with Schrodinger Maestro 11, scwrl4 and GROMACS 5.1.4 and assessed for quality 

with propKa 3.0 and PROCHECK 3.3. The receptors were then prepared for docking with the Protein 

preparation Wizard of Maestro. This included assigning and adjusting bond orders and charges, adding 

hydrogen atoms, enhancing hydrogen bonds, deleting crystallographic waters and eliminating atomic 

clashes via protein minimisation. The ligands were prepared with the LigPrep module of Mestro using 

default parameters. The ligands LA-1, LA-2, LA-3, LA-4 and LA-5 were converted from 2D in 3D and 

hydrogens were added using LigPrep program to ensure the desired ligands were in a low-energy state 

with correct stereochemistry for its structure.  
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These steps included ensuring the ligands existed in appropriate ionisation states, tautomers, ring 

conformations, molecular weights and also the number and types of functional groups. Ligand docking 

required Glide to carry out the docking process using both, rigid and induced-fit docking with the default 

settings. 

To identify ligand binding sites on the receptor models we looked at the differences in amino acid 

sequences between human, rat and mouse P2X4, and the binding site centre was defined based on the 

position of the mutated residues in the different binding hotspots we have previously identified. The 

ligands were docked with GLIDE and the Induced Fit procedure in Maestro. The results were rationally 

assessed based on the data from biological assays. The key residues of the proposed binding mode were 

then selected for mutagenesis studies. For graphical visualization, UCSF Chimera 1.11.2 was used.223 

 

2.19. Mutagenesis 

Point mutations were introduced into the wild type (WT) human P2X4 and rat P2X4 plasmid using the 

Stratagene Quikchange II XL site-directed mutagenesis kit (Agilent Technologies, 200521). Primers were 

designed and their sequence is reported in Table 2.2.   

Table 2.2. List of primers for their respective mutation as purchased from Sigma Aldrich.  

Receptor Mutations Forward primer Reverse primer 

hP2X4 D220A CCTCAAGTCGTGCATTTATGCTGCTAAAACAGA
TCCCC 

GGGGATCTGTTTTAGCAGCATAAATGCACGACTTG
AGG 

D220N CCTCAAGTCGTGCATTTATAATGCTAAAACAGA
TCCCC 

GGGGATCTGTTTTAGCATTATAAATGCACGACTTGA
GG 

K222A GCATTTATGATGCTGCAACAGATCCCTTCTGCC
C 

GGGCAGAAGGGATCTGTTGCAGCATCATAAATGC 

N238D GGCAAAATAGTGGAGGACGCAGGACACAGTT
TCC 

GGAAACTGTGTCCTGCGTCCTCCACTATTTTGCC 

N238A GGCAAAATAGTGGAGGCCGCAGGACACAGTTT
CC 

GGAAACTGTGTCCTGCGGCCTCCACTATTTTGCC 

K234A CCATATTCCGTCTTGGCGCAATAGTGGAGAAC
GCAGG 

CCTGCGTTCTCCACTATTGCGCCAAGACGGAATATG
G 

rP2X4 N220D CCTCAAATCGTGCATTTACGATGCTCAAACGGA
TCCC 

GGGATCCGTTTGAGCATCGTAAATGCACGATTTGA
GG 

D238N GGCACAATCGTGGGGAACGCGGGACATAGCTT
CC 

GGAAGCTATGTCCCGCGTTCCCCACGATTGTGCC 
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The PCR reaction consisted of: 5 µL of 10x reaction buffer; 20 ng of plasmid DNA template; 1.25 µL of 

oligonucleotide primer #1 (c=10 µM); 1.25 µL of oligonucleotide primer #2 (c=10 µM); 1 µL of dNTP mix; 

3 µL of QuickSolution, and 36. 5 µL ddH20. PCR was performed for 16-18 cycles using Pfu turbo 

polymerase (2.5 U/µL) and products were digested with DpnI for 1 hour at 37°C. NEB 5-alpha competent 

E.coli cells (C2992 New England Biolabs, UK) were transformed with 5-10 µL of digested product and 

colonies selected following growth at 37°C for 16 -24 hours. Plasmids were extracted using Qiagen 

miniprep and mutations verified by sequencing (Eurofins Genomics). 

 

2.20. Evaluation of VR Game Bug Off Pain© 

To protect players’ confidentiality and security of their data, all data was collected anonymously. Here, 

evaluation of the public opinion by a Likert-type survey and VR-based learning by the use of pre- and 

post-tests are explained in greater detail.   

 

2.19.1 Likert-Type Scale  

Bug Off Pain was tested and evaluated at two independent events, namely Norwich Science Festival and 

Norwich Gaming Festival by 112 people (ages 16-74). Out of them, 78 didn’t have any prior science 

background.   

The survey with 14 statements and responses based on a Likert-type scale, was designed to collect the 

opinions about Bug Off Pain. Before distributing the original survey at the public engagement events we 

perform a test-run among 22 students at the University of East Anglia. Here, the respondents had to 

answer the questions such as “Does the survey or test measure what it intended to measure?” and “Is 

this question measurement in the survey essential to the intended measurement?” Since more than 

83% participants answered “Yes” and “Yes, relevant”, respectively, we concluded that our survey 

actually measures what it claims to and thus is deemed valid and reliable. All player feedback and 

opinions were acquired through either a printed (Figure 2.1) or electronic form 

(https://goo.gl/RM99sZy) containing 14 statements used to evaluate the game.  

 

 

 

https://goo.gl/RM99sZy
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Statement 
Strongly Disagree Neutral Strongly Agree 

1 2 3 4 5 6 7 8 9 10 

1 

The immersive environment via 

VR adds to STEM engagement 

and motivation to learn more 

          

2 

Bug Off Pain is an innovative 

approach to gamify chemistry-

related subjects 

          

3 
The game is fun, dynamic and 

easy to play 
          

4 I like to play Bug Off Pain           

5 

I acquire a new knowledge 

about chronic pain and spider 

venoms 

          

6 
Content of the Bug Off Pain is 

relevant and useful 
          

7 

The design of the game is 

attractive and captures the 

attention of the player 

          

8 

Bug Off Pain should be 

extended to other STEM 

subjects 

          

9 
The scoring system is well in 

place 
          

10 

Bug Off Pain has an easy to 

understand navigation (user 

interface) 

          

11 

Music and voice-over is 

appropriate and adds to the 

game 

          

12 
VR Sickness has not been 

experienced during the game 
          

13 

I find this VR approach as a 

good alternative to public 

engagement and education via 

VR 

          

14 

This game changes my 

perception of what I think about 

STEM-related subjects 

          

15 

I didn’t know before that 

science can be fun – I am more 

eager to study chemistry-

related subjects now 

          

Figure 2.1. Printed survey administrated to collect the player’s opinions and feedback about Bug Off 
Pain. 
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2.19.2. Pre- and Post-Test 

This study compared two different types of groups – video clips and VR game Bug Off Pain. The video 

clips corresponding to the control group and VR game group corresponding to the experimental group. 

Both groups included identical learning assessments and were located in the same place (City College 

Norwich in Norwich, UK). Here, our hypothesis formulations were the following:  

 Students from the virtual group would have significantly greater learning performance in 

biochemistry of spider venoms and chronic pain than students from the video clips group 

 Evaluations would show that the virtual reality game have significantly greater appeal to 

students than video clips  

The intention of this assessment was to collect quantitative data based on two questionnaires: a pre-

test and a post-test. While the pre-test aimed to assess the student’s knowledge before the scientific 

concepts were explained either by video clips or Bug Off Pain, the post-test aimed to measure, after the 

study, student’s knowledge of the obtained scientific principles. The questionnaire had ten multiple-

choice questions aimed at high school-student level (aged 17-18). Pre- and post-tests are used to model 

the knowledge gained from participating in a learning course. In this context, we evaluated the 

knowledge obtained by playing Bug Off Pain using pre- and post-test questions.  Each of these questions 

was designed to analyze the effect of the educational role of Bug Off Pain for learning about the 

biochemistry of spider venoms and chronic pain. Students with a fear of spiders opted out of this study.  

These studies were carried out on 44 high-school students in City College Norwich in Norwich (UK) and 

overseen by two teachers. The students were randomly chosen and assigned to one of the two groups - 

experimental group (EG) or control group (CG). The students had 30 min to respond to each test, shown 

in Figure 2.2.  
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“SPIDER” Exam  
Pre-test and post-test for “VR Bug Off Pain” Educational Evaluation 

Identification 
No: 

 
X Result:  

Class:  X Date: XX/XX/XXXX 

Instructions 

Read each of the questions slowly and carefully and choose the letter that best describes the answer.  
Then, print a letter of the correct answer next to the question (on the left).  

Part I: Why does it hurt?   

 

 

Part II: How to treat pain? 

 

 

1)  What are the two main types of pain? 

 a. Headache and back pain  

 b. Chronic and acute pain 

 c. Nausea and stomach pain 

2)  Choose and answer that doesn’t describe chronic pain: 

 a. It helps us survive and serves as a protective function  

 b. Rheumatoid arthritis is one form of it 

 c. When a person is experiencing this sort of pain, only one area of the brain is active 

3)  What is one of the symptoms of chronic pain?  

 a. Headache 

 b. Sunburn  

 c. Heightened sensitivity to touch   

1)  Choose the answer that is correct: 

 a. Local anesthetic is good when you want to treat a pain at a specific location 

 b. Opioids don’t have many side effects 

 c. Ibuprofen is useful for different types of pain  
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   Part III: Venom gang 

 

 

Figure 2.2. Pre- and post-test questionnaire. 

 

2)  Can people develop addiction when taking opioids?  

 a. Usually yes 

 b. No, never 

3)  Chose the answer that describes some of the most common side effects of opioids:   

 a. Stomach pain, heartburn, vomiting, constipation  

 b. Addiction, delusion, depression, anxiety, hostility towards others 

 c. Nausea, vomiting, constipation, dry mouth, sedation, dizziness, tolerance, addiction 

4)  Which venom CAN NOT be used to treat chronic pain? 

 a. Cone snail venoms 

 b. Spider venoms 

 c. Grasshopper venom 

5)  What is Ziconotide? 

 a. A drug that is used to treat chronic pain  

 b. Cone snail venom 

 c. Spider venom   

1)  Choose the incorrect answer that describes brain cells (neurons): 

 a. Neurons send signals with a help of neurotransmitters  

 b. Microglial cells are cells that surround neurons in our brains 

 c. Neurons and microglia are less likely to communicate between each other 

2)  Chose the correct answer: 

 a. Communication between microglia and neurons don’t contribute to chronic pain 

 b. Proteins found on the surface of the microglial cells contribute to chronic pain 

 c. P2X4 is a protein and is not involved in chronic pain 
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2.19.3. 3D Models and Software Tools 

The following 3D models were adapted as CC (creative commons) from either 

http://assetstore.unity.com: spiders (22986), academy theatre (75378) and massive fantasy spider 

“Tarantula” (10104); http://fre3d.com: Lego® bricks (94903), Spiderweb (10239); 

http:///www.turbosquid.com: Lightbulb (494548), Brains (833681); Neuron (277076), Microglia 

(374179), Cell membrane (808791). The PDB file for P2X4 was obtained from the Protein Data Bank 

(4DW1). The game was designed with Unity3D and several other software components such as 

Autodesk Maya, Blender, and iTween that are designed to support work with Unity. Modeling of 

proteins was conducted on either UCSF Chimera/Pymol. The generated QR is shown on the Figure 2.3. 

 

 

 

 

 

 

Figure 2.3. QR Code for Bug Off Pain. 

 

2.21. Data Analysis  

GraphPad, v. 8.0 (GraphPad, California, USA) was used to analyse data collected from the Flexstation 3 

using SoftMax Pro v5.4 software; in Softmax Pro analysis of kinetic fluorescence data the baseline was 

set to zero to normalise the data from multiple wells. Curve fitting was performed with Prism® 

(GraphPad 8.0) using nonlinear regression (least squares regression) and common sigmoidal dose 

response equations. Data is reported as the mean ± SD with the experiments performed in triplicates, 

except where otherwise specified. For two groups, a paired samples t-test or Wilcoxon signed-rank test 

was performed. In the case of more than two groups, one-way repeated measures ANOVA was used. All 

data for cell viability and cytotoxicity were obtained in fluorescence units and expressed as a percentage 

of the negative control (culture medium). Statistically significant differences from controls are indicated 

by *, p<0.05; **, p<0.01; ***, p<0.001. 

http://assetstore.unity.com/
http://fre3d.com/
http://www.turbosquid.com
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For the evaluation of the VR game, we utilized the multiple comparison tests (two-way ANOVA and 

Wilcoxon test) between the differences in of the average number of correct answers (ANCA).   

Cohen’s d values were calculated by mean differences between two groups, and then divided by the 

pooled standard deviation. In each questionnaire (pre-test and post-test) the total of correct answers 

were calculated and presented as a total score ranging from 0 to 10 points. To investigate the 

effectiveness of either the video clips or Bug Off Pain, the repeated one-way ANOVA was used. In order 

to study the appeal and opinion of Bug Off Pain, the mean score of 144 answers (on the Likert scale 

ranged from 1-10) was calculated. Finally, in order to compare the scores between the two groups, the 

ANOVA was used. All of the analysis were performed using GraphPad 8.0 application with the 

significance level set at 0.05.  
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~CHAPTER THREE~ 
 

 

Development of High-Throughput Fluorescent-Based 

Screens for the Rapid Discovery of Novel Animal Toxin Hits 

Against P2X Receptors 
 

 

 

 

 

 

 

 

 

 

This Chapter contributed to a research article published as: 

Bibic L., Volker H., King G.F., Stokes L. Development of High-Throughput Fluorescent-Based Screens to 

Accelerate Discovery of P2X Inhibitors from Animal Venoms. J Nat Prod 2019, 82.9., p.2559-2567.  
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3.1. Introduction  

Natural products have been exploited throughout history for their medicinal properties and it is 

estimated that half of the top-selling drugs in the world came from natural sources.187 In recent years, 

animal venoms have arisen as a prime source of therapeutically beneficial compounds. These include 

toxins from spiders,191 cone snails,224 snakes,225 sea anemones,226-227 jellyfish228 and scorpions229 – all of 

which have offered a diversity of inhibitors with high affinity and selectivity towards their biological 

targets.179 However, the biochemical resources of these venomous animals has barely been explored 

due to a variety of biological, historical, technological, and even practical reasons.230  

Fortunately, venom research can gain leverage from high-throughput ‘omics techniques (genomics, 

transcriptomics, proteomics, and metabolomics). Together with advances in bioinformatics, these new 

platforms can exploit the remarkable biochemical diversity of venom pharmacopoeia in the quest for 

new drugs. So far, six venom-derived drugs are currently on the market.179 Most of them have been 

developed from snakes because they yield large amounts of venom. For that reason, many venoms 

haven’t been studied with respect to their biological targets. Thus, it is perplexing that a robust high-

throughput screening (HTS) assay that could access this unexplored chemical space and determine the 

molecular targets of venom toxins hasn’t been extensively pursued. However, a substantial 

advancement in HTS robotics now allows the screening of much smaller quantities of venom, allowing us 

to unveil the therapeutic compounds within previously unexplored venoms.230-231  

Another major bottleneck in the HTS approach is its application to investigate drug targets such as ion 

channels.232 Usually, electrophysiological platforms are used for the characterisation of compound 

activity. While these approaches are information-rich, they are labour intensive, represent a 

reproducibility challenge with the cells being used, and are low-throughput.233 Thus, HTS-based cell 

assays that utilize ion flux (Ca2+-sensitive), and membrane potential dyes have become integral 

components of ion-channel drug discovery programs.234 For example, statistical analysis of recently 

approved drugs suggests that HTS could indirectly provide new molecular entities.  

In combination with the unrealised potential of venoms, HTS may indeed access this uncharted chemical 

space and potentially lead to hit identification and lead compound generation.235 Cell-based functional 

HTS assays are the essential requirement for the screening of ion channels. Among ligand-gated ion 

channels, purinergic receptors have been nearly ignored as promising drug targets for new toxins from 

venoms.  
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Only a single study from Grishin et al.138 explored whether toxins from spider venoms are capable of 

targeting purinergic receptors. The team reported a potent and selective cysteine knot peptide from the 

venom of a wolf spider (family Lycosidae) against the human P2X3 receptor that is implicated in chronic 

pain.151 However, despite being published for almost a decade, the purinergic field has fallen short of 

identifying novel, effective, safe and well-tolerated treatments for a condition such as chronic pain. We 

endeavoured to develop a high-quality venom HTS screen to bridge the gap between the exciting 

progress in HTS development and the pursuit of P2X-targeted drugs for clinical use.236 Animal venoms 

may help populate the currently unexplored P2X receptor pharmacological space using an easily 

automated, fast, reliable, and robust platform that provides quantitative data that can be thoroughly 

validated data.  

 

3.2. Results and Discussion 

In this chapter, the design and development of three fluorescence-based high-throughput cell assays 

that selectively detect toxin hits from different animal venoms towards stably expressed purinergic 

receptors hP2X3, hP2X4, and hP2X7 are described. These in vitro platforms are capable of screening 

multiple venoms against multiple targets, improving testing characteristics, all while minimizing costs, 

specimen material requirements, and testing time. Furthermore, our assays can be applied to other 

natural product libraries that may yield new compounds against P2X targets and thus promote the 

discovery of therapeutically valuable medicines towards a range of pathologies.  

 

3.2.1. Assay Design  

In order to investigate the effect of venom toxins against P2X channels, appropriate heterologous 

expression systems were developed. Here, adherent 1321N1 and HEK293 cell lines were chosen because 

solely using the HEK293 cell line would be insufficient; HEK293 cells endogenously express high-levels of 

cell-surface P2Y receptors (GPCRs) which may mask P2X calcium signalling. In order to avoid this 

potential susceptibility to false positive hits, the 1321N1 cell line – which possesses no endogenous P2 

receptors that may interfere with calcium signalling – was chosen as a suitable validation platform for 

our studies. Once the crude venom hits were identified in HEK293-hP2X4, a secondary screen on 

1321N1-hP2X4 was carried out to validate bona fide hits.  
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Despite similar efforts towards P2X4 and P2X7 receptor screening employed by us237-238 or others,239 the 

research community still lacks a HTS that could be rigorously validated, both analytically and 

biochemically, when subjected to natural products such as venoms. As seen in Figure 3.1, a screening 

and fractionation workflow was developed to enable rapid exploitation of either crude venoms or semi-

pure venom fractions. The general scheme involves the following steps: A) Identifying hits with cell-

based in vitro assays using three different fluorescent dyes; B) fractionating the crude venoms and 

identifying the toxin hits via activity-guided fractionation; and C) validation of toxin hits. For collecting 

information about the calcium/dye flux, a Flexstation 3 multimode plate reader240 was used to capture 

the response kinetics of the P2X channels.  

Figure 3.1. High-throughput screen of crude venoms against P2X receptors. A: A portion of crude 
venom (150 µL at concentration of 1 g/L) is injected in triplicates into the wells of a 96-well plate. Here, 
three fluorescent-based dyes (Fura-2 AM, YO-PRO-1, and FLIPR Calcium-6) are used to aid the screening 
against 1321N1-hP2X4, HEK293-hP2X7, and HEK293-hP2X3 stable cell lines. B: Once the crude venom 
hits are identified (A), these are then fractionated using reverse-phase (RP) HPLC. After the separation of 
fractionated toxins, the fractions are then screened in the HTS assays against hP2X3, hP2X4 and hP2X7 
receptors and hit fractions identified. C: RP-HPLC fractionated hits are further purified using orthogonal 
chromatography techniques to identify the bioactive compound, which is then analysed using mass 
spectroscopy techniques such as MALDI-TOF, LCMC, MS-MS. The pure (>91%) toxin hit is then subjected 
to pharmacological evaluation and later validation using two stable cell lines expressing the P2X 
receptor of interest.  
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Overall, this workflow was deemed to be robust and easy to implement. Since these fluorescent-based 

assays require the fluorescence to be measured from the bottom of the well (to reduce the background 

fluorescence), cells had to be firmly adhered. The signal may be compromised if the cells move or 

detach during venom and agonist injection, thus we developed a range of stable adherent cell lines.  

Transfecting 1321N1 and HEK293 with human P2X3, P2X4 and P2X7 plasmids resulted in the following 

cell lines; HEK293-hP2X3; 1321N1-hP2X4; HEK293-hP2X4; and HEK293-hP2X7. Generating 1321N1-

hP2X3 and 1321N1-hP2X7 stable cell lines was attempted without any measurable success. This may be 

due to the fact that astrocytoma 1321N1 cells are extremely challenging to transfect. Marucci and 

others241 demonstrated the inability of 1321N1 cell lines to be efficiently and transiently transfected. 

Generating stable cell clones for use in a rigorous HTS thus posed some difficulties.   

A plethora of assay formats are now commercially available to support compound screening. We 

restricted the assay format to a 96-well plate format to facilitate liquid handling. Literature suggests that 

researchers often experience significant problems with bubble-formation using a 384-well format due to 

the repeated wash steps, especially in a less controlled good manufacturing practice (GMP) 

environment.234 Prior to screening, dyes were optimised for use with HEK293-hP2X3, HEK293-hP2X4, 

1321N1-hP2X4, and HEK293-hP2X7 in order to choose the ideal dye for a particular cell line. Since the 

YO-PRO-1 assay was already routinely used in our lab,237-238, 242 we utilized YO-PRO-1 for HEK293-hP2X4 

and HEK293-hP2X7 experiments. However, when considering which Ca2+ dye to use for 1321N1-hP2X4 

and HEK293-P2X3 experiments, we had to ensure that Ca2+ signal responses were relatively consistent in 

these cell lines. Based on our observations, we selected fluorescent dyes Calcium-6 and Fura-2 AM (from 

now on as Fura-2) to evaluate the modulation of P2X4 and P2X3 in 1321N1 and HEK293, respectively. 

By quantifying agonist ATP-induced increases in cytosolic Ca2+ concentrations (Fura-2 and Calcium-6) or 

dye uptake (YO-PRO-1), we monitored relative changes in the level of [Ca2+]i or dye uptake in real-time. 

The fluorescence intensity of Fura-2 and Calcium-6 is proportional to the intracellular free calcium 

concentration in cytosol (between 0.1 – 0.2 µM at resting state) which is up to ten times less than the 

extracellular concentration (2 mM). In contrast, the intra- and extracellular concentrations of other ions 

such as K+, Na+, and Cl- are not as radically different and our ability to detect these changes is low. Thus, 

the fluorescent dyes that are susceptible to these ions are not widely utilized. The ability of Fura-2 and 

Calcium 6 to bind to free intracellular calcium allowed us to monitor the influx of Ca2+ through their 

dedicated channels such as P2X targets.243 The use of a robotic system that is able to detect and 

measure the fluorescent signal emitted by the dyes is another important consideration.  
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In this study, the Flexstation 3 was the best option as it combined the functionality of a kinetic plate 

reader, with compatible speed, sensitivity and ratiometric output.  

 

3.2.2. Assay Optimization  

When developing the assays in 96-well format, a variety of systematic investigations in assay parameters 

led to the following optimal conditions that are outlined in the Chapter 2. Critically, the incubation 

buffers used in the Fura-2, YO-PRO-1, and Calcium-6 assays differ; the use of Fura-2 on 1321N1-hP2X4 

requires a calcium-containing buffer while the buffer for YO-PRO-1 and Calcium-6 assays on HEK293-

hP2X3 and HEK293-hP2X7 is devoid of Mg2+ ions and contains a very low concentration of Ca2+ ions. The 

variation in incubation buffer is crucial since these ions were shown to inhibit hP2X7 pore formation,244-

245 however, extracellular Ca2+ ion concentration didn’t seem to affect hP2X4 nor hP2X3. While 

facilitating protein function is critical, the real power of such in vitro assays lies in their HTS 

performance. Thus, the assay conditions were optimized to suit screening requirements. Here we had to 

consider two desirable outcomes – evaluation of inhibition and identification of toxin hits. 

First, the pharmacological suitability of Fura-2, YO-PRO-1 or Calcium-6 assays for P2X targets on the 

chosen cell lines (Figure 3.2 – 3.4).  

In order to calculate EC50 values in these cell lines, concentration-dependant studies were carried out 

with ATP in 1321N1-hP2X4 (Figure 3.2), HEK293-hP2X7 (Figure 3.3), and α,β-meATP in HEK293-hP2X3 

(Figure 3.4). The resultant values corresponded well with the values in the literature.246-249 Since these in 

vitro assays must be capable of identifying inhibitors with the desired potency and mechanism of action, 

these EC50 values were used to investigate the effect of several commercially available antagonists for 

hP2X3 (purotoxin-1), hP2X4 (BX430, PSB12062, 5-BDBD) and hP2X7 (AZ10606120).  
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In order to compare all data, the normalised concentration-response curves were fitted with a sigmoidal 

graph and their EC50 and IC50 values determined. For 1321N1-hP2X4 cell line, the EC50 was found to be 

1.96 ± 0.39 µM (Figure 3.2B). Against 1321N1-hP2X4 (Figure 3.2A) the calculated IC50 values were found 

to be 0.42 ± 1.02 µM; 5.36 ± 1.30 µM (5-BDBD); and 0.55 ± 0.99 µM (BX430). Despite high ATP potency, 

5-BDBD was unable to completely abolish ATP-evoked Ca2+ responses in 1321N1-hP2X4 cells. In HEK293-

hP2X4 (Figure 3.2C) the calculated IC50 values were found to be 0.76 ± 0.67 µM (PSB12062); 9.20 ± 0.69 

µM (5-BDBD); and 1.30 ± 0.62 µM (BX430). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Validation of the stable cell lines expressing hP2X4 for HTS. A, B: Normalized concentration-
response curves of commercially available hP2X4 antagonists (n=3) PSB12062, 5-BDBD, and BX430 using 
the ATP concentration of 1.6 µM (EC50) on the 1321N1-hP2X4 cell line with the Fura-2 dye. C: 
Normalized concentration-response curves of commercially available hP2X4 antagonists (n=3) 
PSB12062, 5-BDBD, and BX430 using the ATP concentration of 1.6 µM (EC50) on HEK293-hP2X4 with the 
YO-PRO-1 dye.  
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On HEK293-hP2X7 (Figure 3.3), the EC50 for ATP was found to be 286.6 ± 35.4 µM (Figure 3.3A). This 

concentration was then used to determine the IC50 for P2X7 antagonist AZ10606120 which was 

calculated to be 92.0 ± 15.8 µM (Figure 3.3B). 

Figure 3.3. Validation of the stable cell line expressing hP2X7 for HTS. A: Normalized concentration-
response curve of ATP on a stable HEK293-hP2X4 cell line (n=3) (EC50 = 286.6 ± 35.4 µM). B: Normalized 
concentration-response curve of commercially available hP2X7 antagonist AZ10606120 (n=3) using the 
ATP concentration of 286 µM (EC50) on HEK293-hP2X7. The experiments were carried out using YO-PRO-
1 dye. 

 

On HEK293-hP2X3 (Figure 3.4), we showed the calculated EC50 to be 15.8 ± 2.87 µM (Figure 3.4A), and 

the IC50 value for purotoxin-1 (PT1) was found to be 6.26 ± 3.56 nM (Figure 3.4B). Once this cell line was 

pre-incubated with PT1 at 1 µM, the α,β-meATP responses were reduced by 79% (Figure 3.4A).  

 

 

 

 

 

 

 

Figure 3.4. Validation of the stable cell line expressing hP2X3 for HTS. A: Normalized concentration-
response curve (black line) of α,β-meATP (EC50 = 15.8 ± 2.87 µM) and pre-incubation (green line) with 
1 µM of the commercially available hP2X3 antagonist PT-1. B: Normalized concentration-response curve 
of PT1 (n=3) using the α,β-meATP concentration of 16 µM (EC50) on HEK293-hP2X3. The experiments 
were carried out using Calcium 6 dye.  
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All the IC50 literature values, except those for hP2X3, are reported in Table 3.1. In case of hP2X3, the IC50 

value for purotoxin-1 was reported as 12 nM by Kabanova and others246 which is two magnitudes higher 

than the value reported here but is still within a similar range. 

Table 3.1. IC50 values of known P2X inhibitors calculated using our HTS assays against 1321N1-hP2X4, 
HEK293-hP2X4, and HEK293-hP2X7cell lines. *Literature values.  

 

Based on these results, we concluded that our assays represent a good starting point for the 

pharmacological characterization of known drugs. That said, IC50 values for the 5-BDBD, PSB12062 and 

AZ10606120 in HEK293-hP2X4, 12321N1-hP2X4, and HEK293-hP2X7 respectively, differed from 

published examples by sometimes up to 9-fold. This may be due to the independent assessment of IC50 

values in different laboratories and the influence of using different assays. Comparing IC50 values 

measured under similar conditions would be ideal and as the IC50 values from BX430 were the most 

comparable (and showed only 2-3 fold difference to the ones in the literature153, 251), BX430 was chosen 

as the positive control for the hP2X4 assays. 

For hP2X4 activation, a concentration of 10 µM ATP (rather than the EC50 of 1.96 µM) was used 

throughout the screening. This was primarily to avoid issues with reproducibility when using the 

estimated EC50 with 1321N1-hP2X4. Using a higher concentration of agonist (ATP) to activate stably 

expressed P2X4 in 1321N1 cell lines has been employed before by various groups for the discovery of 

novel antagonists.167, 252 Sometimes these cells responded poorly due to the high passage number (>20 

passages) and stopped responding after the 25th passage. For that same reason, the cells were not used 

for any pharmacological evaluation after the 20th passage. 

 

Inhibitor Cell line 

 

1321N1-hP2X4 HEK-hP2X4 HEK-hP2X7 

*IC50 

[µM] 

IC50  

[µM] 

95% Cl 

 

*IC50 

[µM] 

IC50  

[µM] 

95% Cl 

 

*IC50 

[µM] 
IC50 [nM] 95% Cl 

BX430 1.56
247

 0.55 0.34–0.87 0.54
153

 1.30 1.15–1.46 
N.A. 

N.A. 

N.A. 

5-BDBD N.A. 5.36 4.33–6.65 1.20
250

 9.20 8.36–10.01 

PSB12062 3.31
247

 0.42 0.25–0.73 1.38
166

 0.76 0.69–0.83 

AZ10606120 N.A. N.A. ~10.00
251

 92.0 80.9–10.5 
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3.2.3. Screen of Animal Venoms Against hP2X4   

Following the optimization of the screening conditions, we ventured into larger-size libraries, such as 

venoms, to determine assay performance. First, crude venoms were dissolved in water and diluted up to 

25-fold from a 1 g/L stock solution into the 96-well assay plate. For our typical HTS crude venom screen, 

toxins were applied directly onto cells in a 96-well plate at 30 sec prior to application of agonist (ATP) at 

100 sec. This incubation time of 70 sec was sufficient to block either P2X4 or P2X7. The fluorescent 

responses were monitored for a further 200 sec per well following the second application of agonist. 

In total, 180 crude venoms (for details see Chapter 2) from arachnids, centipedes, hymenopterans and 

cone snails were arranged in standard 96-well drug plates and tested in duplicate (L. Stokes, personal 

communication). A subset of venoms were tested for dose dependent effects in triplicate (10 μg, 2 μg, 

0.4 μg per well). Usually, chemical libraries are stored in organic solvents such as EtOH or DMSO253 and 

cell-based assays have to be configured to avoid toxic concentrations of these solvents.  Conveniently, 

the venoms (and later fractionated toxins) were all dissolved in low-calcium containing buffer, and thus 

solvent effects were mitigated. Then, 10 µL of both crude venom and agonist were applied at 30 s and 

100 sec, respectively, and fluorescent responses were measured as a function of time. Critically, while 

Ca2+ responses were measured as Fura-2 dye ratios in 1321N1-hP2X4 cells (Figure 3.5A-B), YO-PRO-1 

dye uptake (Figure 3.5C-D) was measured as area under the curve in HEK293-hP2X4 cell lines.  

Since the venoms are complex mixtures of hundreds of components that are found in the crude venoms 

in various concentrations, the exact concentration of the toxins used in the assays could not be 

determined. Nevertheless, the studies performed with the diluted series of crude venoms helped to 

distinguish venoms with higher or lower activity. Hits were then defined as crude venoms/fractions that 

showed concentration-dependent inhibition with at least 50% inhibition at the highest concentration 

(10 µg/well), and whose activities were reproducibly validated.  

While venom SV7 did not show modulation of hP2X4, a hit venom - spider venom 1 (SV1) – inhibited 

activity of 1321N1-hP2X4 in a dose-dependent manner with 10 µg, 2 µg and 0.4 µg venom resulting in 

~69%, 27%, and 4% inhibition, respectively (Figure 3.5A). This effect was confirmed in HEK293-hP2X4 

using another dye (YO-PRO-1) and monitoring dye uptake rather than Ca2+ release with Fura-2 dye as 

used previously (Figure 3.5C). Notably, 10 µg of SV1 venom yielded 69 – 80% inhibition, respectively. 

This is interesting because the inhibition is similar to the commercially available hP2X4 antagonist BX430 

(75% inhibition at 10 µM).  
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The response for each crude venom that was plotted as a function of time and is shown on Figures 3.5B 

and Figure 3.5D with 1321N1-hP2X4 and HEK293-hP2X4, respectively.   

 

Figure 3.5. Screen of crude venoms against 1321N1-hP2X4 and HEK293-hP2X4 with Fura-2 (at 340/380 
nm ratio) and YO-PRO-1 (490 nm). A: Representative figure showing the effect of spider venom 1 (SV1) - 
Acanthoscurria brocklehursti and SV7 - Hickmania troglodytes together with the controls (buffer, ATP, 
hP2X4-specific antagonist BX430) on 1321N1-hP2X4 and HEK293-hP2X4 cell lines. While some venoms 
(e.g. SV1) showed concentration-dependant inhibition of hP2X4 activity, some venoms (e.g. SV7) had no 
effect. To investigate whether the crude venoms have an effect on their own (data denoted as “Venom 
SV1/SV7 only”), they were applied alone via Flexstation 3 automated injection system without the later 
application of the P2X4 agonist ATP. B: The kinetic responses of 1321N1-hP2X4 to venom and ATP 
agonist are plotted. C: The dose-dependent inhibitory effect of SV1 was confirmed against the HEK293-
hP2X4 cell line via YO-PRO-1 dye and its kinetic responses are shown (D). Data points represent mean ± 
SD of three replicated experiments with triplicates on each plate except fraction injections.  
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3.2.4. Fractionation of Crude Venom Hits 

Once the crude venom hits were identified, the crude mixtures were simplified through the creation of 

fractionated venom product libraries. This activity-guided fractionation was previously shown to 

enhance the identification of minor components in the assay240 and help confirm the fraction hits. C18 

RP-HPLC approach was selected to separate components on the basis of their relative hydrophobicity. 

The elution of fractions was monitored via absorbance at three different wavelengths (ʎ1=214 nm, 

ʎ2=254 nm and ʎ3=280 nm). Some venoms contained fractions that eluted very closely together, 

resulting in fractions containing multiple toxins. An additional chromatography step was required in 

such cases to obtain the fractions in higher purity. This was often as simple as an additional C18 RP-HPLC 

fractionation with a shallower gradient. 

All the fractions were separated and collected based on absorbance at 214 nm (Figure 3.6). The 

chromatograms from L. klugi (Figure 3.6A), C. geographus (Figure 3.6C), V. germanica (Figure 3.6D), and 

A. mellifera (Figure 3.6E), are consistent with the chromatograms for these species reported in the 

literature.224, 254-256 The elution profiles varied between cross-families, but not so within-families. The 

number of fractions varied from 25 to 49 relative to the particular venom, and most fractions 

represented only a small part of the overall venom profile. However, the venom of L. klugi represented a 

unique exception since the six fractions (out of 25) appeared to account for >75% of venom toxins. 
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Figure 3.6. Representative RP-HPLC chromatograms displaying the fractionation of crude venoms from 
various venomous animals. A: Bahia scarlet tarantula (Lasiodora klugi); B: Brazilian tarantula (Nhandu 
chromatus); C: Marine cone snail (Conus geographus); D: German wasp (Vespula germanica); E: 
European honeybee (Apis mellifera); F: Asian hornet (Vespa velutina nigrithorax). Crude venoms were 
fractionated and purified on an analytical C18 RP-HPLC column and components eluted at a flow rate of 
1 mL/min using a gradient of solvent B (90% MeCN), 0.05% trifluoroacetic acid (TFA in H2O) in solvent A 
(0.05% TFA in H2O) as indicated by the dotted lines. Absorbance was monitored at 214, 254 nm and 280 
nm, however, for easier representation, only the 214 nm absorbance is plotted here.  
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3.2.5. Assay Hit Identification and Validation  

Broach and Thorner257 have suggested that a well-designed HTS that delivers information on selectivity 

may be obtained by running a counter-screen with a target related to the protein of interest. For that 

reason, venom fractions were screened against hP2X3 and hP2X7 versus hP2X4 and toxins exhibiting 

activity against only the primary (hP2X4) receptor were targeted, as they may be more selective. 

Moreover, examining the range of toxins that score positively as hits may help to pinpoint the structural 

characteristics that are responsible for the efficacy of the toxins. Such preliminary structure-activity 

relationships may assist in further optimizing lead compounds and deliver information about achieving 

cytotoxicity requirements. 

For the purpose of method validation, the inhibitory activity of fractions from Nhandu chromatus, 

followed by agonist application, was investigated in detail here. These fractions were assessed for hP2X4 

inhibitory activity using the fluorescent-based bioassays developed on four stable cell lines 1321N1-

hP2X4, HEK293-hP2X4, HEK293-hP2X3 and HEK293-hP2X7 (Figure 3.7). Crude venom from N. chromatus 

yielded 48 fractions which were initially screened using 1321N1-hP2X4 via the Ca2+ based Fura-2 assay 

(Figure 3.7A). These fractions were then validated on an additional cell line (HEK293-hP2X4), using 

another dye (YO-PRO-1) as seen on Figure 3.7B. Furthermore, to test for the target selectivity of the 

fractions, the evaluation was carried out on HEK293-hP2X3 (Figure 3.7C) and HEK293-hP2X7 (Figure 

3.7D). The appropriate P2X positive and negative controls (ATP, ivermectin,258 buffer, hP2X4-antagonist 

BX430,153 hP2X7-antagonists AZ10606120 and JNJ47965567;251 α,β-meATP;259 and the hP2X3-antagonist 

PT1) were included in the assays.  
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Figure 3.7. Screening of N. chromatus venom fractions. Here, A) 1321N1-hP2X4 cell line, B) HEK293-
hP2X4 cell line, C) HEK293-hP2X7; and D) HEK293-hP2X3 cell lines were used. Fractions coloured green 
selectively inhibited hP2X4. The dash represents 100 % hP2X4 activity as induced by 10 µM ATP. Data 
points represent the mean ± SD of three replicated experiments, with triplicates on each plate except 
fraction injections. Significant differences between the positive control (ATP) and the fractions on either 
1321N1-hP2X4 or HEK293-hP2X4 cell line are indicated by * (P < 0.05) using one-way ANOVA followed 
by Dunnett’s test.  
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By comparing the results between P2X3, P2X4 and P2X7 expressing cell lines, some noteworthy 

inhibitory patterns of venom fractions can be seen. For example, 10 out of 48 fractions inhibit hP2X4 by 

>75% (Figure 3.7A) in the 1321N1 cell line and nine of these 10 were also active against the HEK293-

hP2X4 cell line (Figure 3.7B). This validation rate of 90% falls into an acceptable range for HTS assays.240 

Furthermore, fractions F10 - F13, F40, F44 - F45 displayed <20% inhibition on hP2X7 (Figure 3.7C) or 

hP2X3 (Figure 3.7D); F39 and F42 did not exhibit inhibition on either of these two receptors; and F5, F44 

showed a slight potentiation on hP2X3. These examples further highlighted the selectivity of our toxin 

hits for hP2X4.This set of assays also allowed the exclusion of several hit fractions identified using the 

1321N1-hP2X4 (Fura-2) cell line since they couldn’t be validated using the HEK293-hP2X4 (YO-PRO-1) 

cell line. We call these fractions false positive hits (e.g. F15 - F18, F21, F31 - F32).  

In addition to false positive hits, the toxin fraction hits that were active against hP2X3 and hP2X7 (e.g. 

F16, F21 - F24, F37 - F38 and F28, F35, respectively) were omitted as non-specific hits. Generally, the 

entry point for any drug discovery screening is the identification of modulators with specific and potent 

activity against the target of interest.260 Thus, these initial hits from our HTS provided a valid starting 

point to rapidly trace pharmacologically relevant compounds.   

While this establishes the fluorescent Fura-2 and YO-PRO-1 assays as effective for measuring inhibitory 

activity on venom fractions on 1321N1-hP2X4 and HEK293-hP2X4, respectively, there are still some 

limitations worth mentioning. First, some venom toxins yielded non-specific calcium responses prior to 

agonist application, and some wasp venoms (e.g. V. germanica) either interfered with the fluorescent 

signal generation or had cytotoxic pore-forming activity (Figure 3.8). As soon as these crude venoms 

were applied to the 1321N1-hP2X4 cells at 30 sec, they initiated a strong Ca2+ response (denoted as 

arrow “Venom” on Figure 3.8A-C, green) prior to injection of ATP at 100 sec. While our buffer control 

did not elicit any response at 30 sec (Figure 3.8A-C, black), the application of venom caused up to 2-fold 

greater calcium responses, relative to the control. Part of the observed effect might be either a presence 

of agonist-like toxins; highly concentrated biogenic amines (spermine, spermidine, histamine, 

acetylcholine, and serotonin), pore-forming and cytolytic toxins (mellitin256); or high concentrations of 

the crude venom itself. These fractions may simply modulate some endogenously expressed receptors 

in these cell lines such as NMDAs261 or GPCRs, and were thus categorized as non-specific.  

Critically, the majority of the fractionated compounds from V. germanica exhibited yellow or red colour 

– which is not ideal since it may present a limitation to our fluorescence-based assays.  
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As Simeonov and Davis262 suggested, coloured compounds might display autofluorescence, absorb light 

itself, and thus interfere with the fluorescence assay.262 Thus, we subjected these wasp fractions to the 

interference assay (data now shown). Unsurprisingly, the coloured fractions absorbed the excitation 

light within a wide range of investigated wavelengths (340 nm, 380 nm and 490 nm for Fura-2 and YO-

PRO-1, respectively). This interference resulted in decreased measured fluorescent intensity of the 

assays using these fractions as a consequence of fluorescent quenching. Thus, we had to disregard these 

samples and conclude that the vast majority of the wasp venom fractions could not be used in the 

fluorescent assays reported here. Alternatively, a different method utilizing patch-clamp 

electrophysiology could be used that would not involve using the fluorescent dyes.231 However, due to 

the time constraints, probing wasp venom fractions using a non-fluorescent technique was deemed 

beyond the scope of this body of work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Nonspecific Ca2+ responses on 1321N1 cells. The experiments were carried out with Fura-2 
dye from A) crude spider venoms B) wasp venom toxins, and C) cytotoxic and pore inducing peptides 
interfering with the fluorescent dye measurements.  
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3.2.6. Assay Specificity  

Once the crude venoms and their respective venom fractions were screened and preliminary hits 

identified, evaluation of assay precision, reproducibility, specificity, and variability was carried out. To 

assess these parameters, fractions F14, F28 and F47 that had no effect on any of the studied P2X 

receptors were chosen as the negative controls alongside F5 that showed inhibition of hP2X4 (Figure 

3.9). When F5 was tested on 1321N1-hP2X4 (Figure 3.9A) and HEK293-hP2X4 (Figure 3.9B), Ca2+ signals 

and YO-PRO-1 dye uptake, respectively, were similar and resulted in an up to 50-fold difference in signal 

when compared to the ATP control. However, against off-target hP2X7, that difference was significantly 

less pronounced in HEK293-hP2X7 cells (Figure 3.9C) where ATP control and each of the fraction (F5, 

F14, F24, F47) signals produced similar patterns.   

Generally, the evaluation of assay specificity verified that these assays are specific for the intended 

measure (inhibition) and analytes (toxins), and can select the active venom constituents from a complex 

mixture of crude venom without positive or negative interference. In some cases, assay specificity may 

also be evaluated by examining a difference in fluorescence between a sample and its physiochemically 

similar analyte. These two compounds (fraction F5 spiked with F14/F28/F47) would be co-administered 

as spiked concentrations to determine the lower limit of quantification (LLOQ) and estimate the 

concentration at which interference is most likely to take place. Due to the scarcity of toxin material, 

this type of evaluation could not be realized practicably.263   
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Figure 3.9. Assay specificity. A hit venom fraction (F5) was tested for a response in the A) Fura-2 
1321N1-hP2X4, B) YO-PRO-1 HEK293-hP2X4 and C) YO-PRO-1 HEK293-hP2X7 assays, together with the 
commercially available compounds (BX430, PSB12062, AZ10606120, IVM) that are known modulators of 
hP2X4 and hP2X7, and inactive venom fractions (F14, F28, F47). Data points show the mean ± SD of 
three experiments with triplicates on each plate except when stated otherwise. Significant differences 
between the positive control (ATP) and the fractions on either 1321N1-hP2X4 or HEK293-hP2X4 cell line 
are indicated by * (P < 0.05) using one-way ANOVA followed by Dunnett’s test.  

 

3.2.7. Assay Reproducibility  

For the assay to be deemed reproducible across assay plates and different days within the compound 

screening program, the Z’ factor is usually evaluated.  
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This is a standard statistical parameter for judging the quality of HTS assays and a common method for 

measuring assay quality per plate.220-221, 234 One of the strengths of the Z’ factor is to consider the signal 

window in the assay as well as the variance between both - the high and low signals in the assay. While 

Z’ values range from 0 to 1, many industry groups prefer to work with a Z’ factor >0.6. However, a value 

higher than 0.4 is still considered robust enough to indicate a valid HTS.234  

Some authors use signal window (SW) rather than Z’ factor to assess reproducibility. Yet, when studies 

were carried out comparing both, SW and Z’ factor, the authors264 point out that Z’ factor can more 

accurately measure reproducibility. Another advantage of Z’ factor is its simplicity and intuitive clarity of 

results which reduces the amplitude and variability in assay signals to a single parameter. Throughout 

the assay development, when the conditions are being constantly optimised to achieve the ideal output, 

Z’ factor is highly suitable to fit these needs. On the basis of their264 and the others,221, 265-266 it was 

concluded that using Z’ factor for tracking assay performance over time was sufficient for our assay 

settings.  

To determine Z’ factor we calculated the mean and standard deviation values for positive (buffer + ATP) 

and negative (antagonist + ATP) controls. The Z’ factor was calculated using the following formula:221  

     
                          

                      
 

 

Here,   is the standard deviation of either positive (         ) or negative (           control, and µ 

represents the mean of positive             negative             control. The Z’ experiment was 

performed twice with positive and negative controls (ATP and buffer/inhibitor, respectively) that were 

used throughout the assay development. Similarly to Zhang,221 60 positive controls (ATP) and 36 

negative controls (hP2X4/hP2X7 antagonist) were tested in the first experiment. In the second 

experiment, 48 positive controls (ATP) and 48 negative controls (hP2X4/hP2X7 antagonist) were tested.  

As suggested by Zhang and colleagues,221 the experiment was only repeated once and the averaged Z’ 

factor, together with the coefficient of variation (CV), for experiments on 1321N1-hP2X4, HEK293- 

hP2X4, and HEK293-hP2X7 cell lines were as following: 0.565 ± 0.023 (CV 4.11%); 0.697 ± 0.0323 (CV 

4.43%); and 0.557 ± 0.012 (CV 2.17%), respectively.  
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Since our Z’ factor is > 0.55, this falls within the range of robust and reproducible assays and indicates 

that our screening assays are appropriate for HTS applications. Critically, it shows that any plate or 

systematic errors that may potentially affect the reproducibility of the assay are not substantial.  

3.2.8. Assay Variability    

In addition to Z’ factor, other HTS quality parameters include intra- and inter-plate variability. Here, well-

to-well (intra-plate) variability as well as plate-to-plate (inter-plate) variability on six venom fractions 

and two controls (ATP, antagonists) was determined. As a 96-well format limits experiment design to 

four controls per plate, and eight replicates each, that left the space for only eight compounds with 

eight replicates each. Therefore, six venom fractions and two controls were chosen. Due to the scarcity 

of toxin material, each fraction could only be injected eight times per plate thus different fractions had 

to be selected for each plate. Critically, these fractions were chosen randomly, prepared as described in 

Chapter 2, and stored at 4°C for the duration of the study until used. Each prepared fraction was tested 

on three different days with eight replicates per plate throughout one month.  

For the 1321N1-hP2X4 assay (Table 3.2), inter-plate variability analysis resulted in a mean %CV of 9.98 

(min – 6.43%, max – 13.82%, median – 8.83%). The calculated intra-plate variability was 4.47% (min – 

0.84%, max – 10.26%, median – 3.01%). Since the variability distribution is rather skewed, the median 

may give a more realistic estimate of central value and was thus chosen as a more robust measure of 

data distribution relative to the mean. Signal AUC values for positive controls on each plate were 

averaged to normalize results for each fraction and exposed AUC signal values were calculated as a 

percentage of a positive control signal. Normalised mean was calculated by normalising data to the 

control, expressed as 1.0. 

Table 3.2. Assay variability between runs on 1321N1-hP2X4. Assay variability between runs was 
evaluated on eight compounds: venom fractions, a negative control (10 µM BX430) and a positive 
control (10 µM ATP) on 1321N1-hP2X4 that were included on each plate. NC=negative control.  

Fraction Normalised Mean %CV 

NC F4 0.89 10.3 

NC F7 0.97 7.3 

NC F15 1.04 6.5 

NC F21 0.92 2.9 

NC F29 0.86 0.8 

NC F34 0.85 3.2 

NC F37 0.85 2.3 

Control (BX430) 1.00 2.6 



109 
 

 

For the HEK293-hP2X4 assay (Table 3.3), inter-plate variability analysis demonstrated a mean %CV of 

13.59% (min – 11.68%, max – 14.97%, median – 14.13%). The calculated intra-plate variability yielded 

4.94% (min – 1.66%, max – 7.52%, median – 5.25%). 

Table 3.3. Assay variability between runs on HEK293-hP2X4. Assay variability between runs was 
evaluated on eight compounds: venom fractions, a negative control (10 µM BX430) and a positive 
control (10 µM ATP) on HEK-hP2X4 that were included on each plate. NC=negative control. 

 

The last variability calculation was carried out on HEK293-hP2X7 cell line (Table 3.4). Here, the inter-

plate variability determination yielded a mean %CV of 14.88% (min – 12.88%, max – 17.49%, median – 

14.82%). The calculated intra-plate variability was 5.22% (min – 2.61%, max – 6.07%, median – 5.68%). 

Table 3.4. Assay variability between runs on HEK293-hP2X7. Assay variability between runs was 
evaluated on eight compounds: venom fractions, a negative control (10 µM AZ10606120) and a positive 
control (300 µM ATP) on HEK-hP2X7 that were included on each plate. NC=negative control. 
 

 

Since it would make little sense to run a cheap and easy assay that is highly variable or overly sensitive 

to inhibition and sample/liquid handling, as well as cell clumping, a coefficient of variation of signal and 

background (expressed as %CV) was measured. Generally, %CV are rarely below 5%. Even more, if the 

assays display %CV below 16%, is still considered a good assay with low variability.267   

Fraction  Normalised Mean  %CV 

NC F6 1.12 12.9 

NC F9 1.08 17.5 

NC F17 1.11 14.7 

NC F23 1.08 13.0 

NC F31 1.11 15.0 

NC F35 1.06 14.5 

NC F36 0.99 14.5 

Control (BX430) 1.05 16.5 

Fraction  Normalised Mean  %CV 

NC F3 1.01 14.7 

NC F8 1.07 14.9 

NC F16 0.99 14.4 

NC F22 1.02 15.3 

NC F30 0.96 11.7 

NC F40 1.01 13.9 

NC F41 0.96 11.8 

Control (AZ10606120) 0.99 12.1 
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Judging from the intra- and intraplate variabilities, reported as %CV, is clear that these assays 

demonstrate low variability and high signal to background ratios with mean values between 5.22% – 

14.88%. This data points out that the assays are stable, and relatively insensitive to variation in liquid 

handling, detection instruments and other random errors. As such, the false negatives and false 

positives may be eliminated from the dataset based on the minimal variability demonstrated by these 

results and characteristics.  

Ideally, a suitable HTS assay would involve a method that generates sample signal that is broadly 

separate from background. As argued by Sue and Wui,266 one summary statistic, known as S/B (mean 

signal/mean background) may partially capture that information as a single parameter. Thus, some 

research groups have adapted S/B measurement rather than %CV as a measure of suitability. While S/B 

may be useful in early assay development to investigate the plate format or preliminary screenings, it is 

an incomplete indicator of assay quality. It mainly assesses the separation between signal and 

background, and doesn’t evaluate the variability suggesting it is less appropriate for the assessment of 

HTS assays.  

Another value that can be used to determine assay quality is variability between the pharmacological 

controls. Within each assay, the controls (ATP and antagonists) fell within a predefined range (%CV 

between 1.9 – 5.3%), and is thus deemed acceptable (Tables 3.2 – 3.4). Additionally, the fractions used 

in this study remained relatively stable (purity only dropped from >91% to >80%), as measured by RP-

HPLC within one month (data not shown). These assessments indicate that our fluorescent-based assay 

provides a rapid and sensitive strategy for HTS screening of animal venoms, and imply that these sorts of 

assay may be adapted to other libraries of natural products as well.   

 

3.3. Conclusions  

In the last century, HTS has been the primary backbone of drug discovery within the pharmaceutical 

industry. However, in the last decade, it has also made its way into academic settings. This has 

predominantly been made possible by the development of the robust robotic systems, parallel 

processing and miniaturization of pharmacological assays – all of which have greatly increased the 

throughput while keeping costs at bay. The main aim of HTS is to rapidly and accurately screen a large 

quantity of diverse chemicals to identify “hits” for a specific target.  
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While the plating formats and number of chemical compounds per plate vary, the automated process 

allows screening of several hundred plates over a screening program of several weeks. Once identified 

hits are reproduced, a secondary screen is carried out in order to validate bona fide hits. Despite HTS 

showing promise in directly identifying drugs that received FDA approval (cyclosporine A and 

mevastatin), usually this is not the case. This drawback exists because HTS does not assess the design 

and development of a successful drug; thus, the final compound that eventually progresses through 

strict FDA policies, may be very different from the initial molecule from the chemical library. Rather, 

medicinal chemistry and pharmacological studies are required to convert a HTS-identified compound 

into a useful drug. Some of the HTS limitations include: bioavailability (a drug should be absorbed well 

after oral intake); pharmacokinetics (a drug should remain in the body for a certain time period); toxicity 

(the nonspecific effects of a drug should be kept at minimum); and absolute specificity (a drug should 

act on the desired target with minimal effect on the other physiologically-relevant targets).  

It is thus not surprising that despite a current popularity of HTS programs, the number of new drugs 

reaching the market and being approved has declined.260 The literature suggests that the root of this 

problem may lay in assay optimization and validation.234-235, 268 In order to fulfil the promise of HTS, some 

authors suggest that improving hit specificity and sensitivity cannot be advanced by technological 

improvements, thus, progress in validation techniques and data analysis are crucial.269 This maturation 

in HTS programs initiated other shifts as well. For example, a greater emphasis is now placed on the 

quality and robustness of data, investigation of uncharted targets and novelty of screens rather than the 

numbers screened within the HTS environment.231, 235, 270 

With this consideration, unexplored ion channel targets - purinergic receptors – were probed via a 

robust HTS assay. Since these ion channels are Ca2+ permeable, the measurement of changes in 

intracellular concentration of these ions may be monitored by using either fluorescent-ion dyes or 

radiolabelled ions. The approach described in this chapter utilizes the fluorescent indicators in a cell-

based 96-well format. The main reason for choosing this approach is due to the fact that fluorescent 

readout is widely used for Ca2+ channels such as P2X receptors. By monitoring the influx of Ca2+ ions 

through open channels, we can measure the relative difference in intracellular concentration of Ca2+ 

levels (usually between 100 – 1000 fold) via a range of commercially available fluorescent Ca2+ probes 

such as Fura-2, and Calcium-6 are the most widely used fluorescent dyes for purinergic receptor 

functional evaluation. Taking advantage of the large pore formation, a hallmark of P2X receptors, YO-

PRO-1 was used to monitor the dye uptake.  
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Although a cell-and fluorescent-based HTS assay may initially appear daunting, it is still generally 

considered to be the fastest and cheapest path to hit compound identification.  

Some of its limitations include inner filter effect (compounds that absorbs the excitation light such as 

buffer, coloured compounds, biological tissues, plates, etc.), quenching (deactivation of the excited state 

of the fluorescent dye), auto-fluorescence (anything in the assay, except the dye, that adds fluorescence 

intensity at the monitoring wavelengths), light scattering (turbidity resulting from insoluble compounds 

in the medium) and photo bleaching (light-induced reaction such as dye oxidation that results in loss of 

fluorescence and ability to absorb light). All of them, except auto-fluorescence, can decrease 

fluorescence intensity and thus result in false positive hits.  

Apart from photo bleaching, all of these interferences may originate from the venoms/toxins 

themselves. But of equal importance is the limitation of the assay signal to avoid perturbation by the 

toxin’s nonspecific effects. These can usually originate from the assay components themselves and can 

impact HTS directly as false results, both positives and negatives. Consequently, that equates to extra 

testing and more money spent on cross-checking these nonspecific effects.  

Two kinds of nonspecific errors can occur with these assays: “false positives” (inactive toxins against P2X 

targets but score as hits in the assay) and “false negatives” (active toxin against the P2X targets but fail 

to score as hits in the assay). While false negatives don’t represent a substantial issue, pursuing false 

positives may result in resource and time loss. Thus, the suitable controls (ATP, buffers and 

commercially available antagonists in our case) and secondary screens are vital to validate the 

authenticity of an initial hit. This inefficiency may impact upon the assay efficiency, especially if too 

many false positives or negatives are generated.  

Other inferential errors can be initiated by “noise” - in our case, this was sometimes a consequence of 

poor pipette delivery and robotic failures. Since the toxins were all prepared on the day in the water-

based vehicle (buffer), the differences in toxin concentrations due to the evaporation of solvent was not 

substantial. Other factors that could, nevertheless, result in higher assay variation include potency 

differences across toxin fractions, and “edge effect” – column and row bias. If the controls are plated on 

the edges, this is unfortunate since these would affect the measurements of the crude venoms/toxin 

library of compounds as they are adjusted relative to these controls. For example, it was found that 

edge effect alters the detection levels on average compared to the reminder of the plate.  
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For example, in a 96-well plate, we observed that having eight positive controls in the first column and 

four negative controls on the last column was less efficient than the opposite arrangement method.269 

Positive and negative control well locations were randomly alternated along the available edges of the 

plate to minimize this edge-related bias.  

Other ways to circumvent these interferences with the fluorescent dyes include using other 

methodologies such as electrophysiology. By monitoring the direct activity of the ion channels, we 

would thus eliminate the fluorescent dyes that may contribute to these interferences. However, such 

methodologies are multi-step, require complex automation, and are low throughout. For this reason, 

homogenous technologies such as in vitro fluorescent-based cell assays, which circumvent these 

challenges have become more popular.240 Furthermore, the majority of in vitro HTS approaches have 

been miniaturized to assay volumes of 96-, 384-, and 1536-well format, with the capacity to capture 

temporal and spatial target activity data.240 Yet, for these assays to be actually utilized in large screening 

programs (>104 compounds in the chemical library), these assays would need to be scaled-up to suit the 

higher-density formats such as 1536, or even 3456 well. By employing larger formats and more 

dedicated robotic workstations in place, the screening of larger libraries may become more tangible.  

Another observed setback with the cell-based HTS assays and their controls is the variability in cell 

growth patterns, such as cell clumping, or buffer evaporation which may lead to different growth 

conditions and eventually to position-related bias. This results in the increased rates of false positives 

and false negatives, something which has been shown and discussed in detail already by Lundholt and 

others.271 These issues were circumvented by using controls that are located randomly within plates, 

thus avoiding any potential row or column biases.  

Other random errors that may affect measurement precision in our set of assays include inevitable 

influences such as equipment errors (injection dispensing difficulties), human error (compound and 

control preparation and handling)272 or compound-related errors (stability, solubility, autofluorescence, 

and degradation). These factors have been circumvented by obtaining replicates, minimizing external 

variation due to the sample handling, and using statistical power analysis to control the number of false 

hits. For assays described in this chapter, replicates are defined as samples which were measured 

repeatedly under the same experimental conditions.  
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Once the technical and set-up efficiencies have been optimized, and assays carried out, data processing 

is a logical next step. To further investigate the assay variability, averages (e.g. mean, median) across 

replicate measurements were obtained. This was made possible due to replicated measurements which 

provided a direct estimate of variability as well as the probability of detecting true hits. Moreover, as 

suggested by Malo and colleagues,269 replicates tend to reduce the number of false negatives without – 

crucially – increasing the number of false positives.     

Another potential challenge is that a HTS strategy relies heavily on non-robust statistics. While it is fair 

to calculate means and standard deviations, these are greatly influenced by putative hits and their 

statistical outliers. In order to circumvent these issues, more robust parameters may be adopted, such 

as median, Tukey’s biweight function and median absolute deviation. For example, instead of Z’ factor, a 

“normalized percent inhibition”269 or NPI, where the compound measurements are normalized relative 

to the controls can be used. This way, less measurement bias due to the positional effects (row and 

column bias) may be detected.273  

This simply means that we divided the difference between the compound measurement (  ) and the 

mean of the positive controls (  ) by the difference between the means of the measurements on the 

positive and the negative controls (      ), as depicted by this equation:  

      
       

      
 

Another robust analogue of Z’ score is the B score. Its main advantage is being nonparametric (there are 

minimal assumptions in the variability distribution), more robust to statistical outliers; and there’s a 

minimal measurement bias when it comes to the positional effects.269 However, given the current 

statistical trajectory within HTS environment, we have used Z’ factor as the preferred processing 

method.221    

Once HTS data had been processed, the next step was to decide which compounds should be considered 

for a secondary screen. Currently, this stage is not well-defined statistically. A variety of reports suggest 

that these procedures are based on informal “rules of thumb” which arises as a consequence of capacity 

limitations. For that reason, we started to look at a raw or pre-processed measurements against crude 

venoms/toxin hits for each plate separately. Crude venoms/toxin fractions whose inhibitory activity 

deviates from the bulk of the activity measurements are identified as hits.  
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Although this subjective “eyeball” approach may be adequate for identifying highly active compounds, 

toxins with low potency (IC50 > 100 µM) would be challenging to reliably pinpoint in this way, and were 

likely missed. One way to avoid this might lie in a different processing method, for example to display 

hits as a percentage of the fractions with the highest measured inhibition (e.g. top 1%). On the other 

hand, this method is arbitrary and it may result in poor specificity and selectivity across screens. For 

example, the toxins whose activity exceeds a fixed “percent of control” threshold may also be 

considered as hits.  

My experience regarding false negatives is that little can be done about them and so it is best to adopt a 

forward-looking perspective. While it is necessary to quantify potential false hits, deciding whether they 

are negligible in a particular screen or not is also of equal importance. For example, if 0.1% of our 200 

venoms/toxins are truly active, a usual 2% false negative rate269 would represent 4 potential candidates 

lost. So, practically, missing an active toxin hit may matter less if related toxins are detected. While it is 

not ideal for a natural product hit to go completely undetected, the assay optimization required to take 

these hits into account could be, in academic lab setting, economically unfeasible.  

The HTS reported here can be useful strategy for identifying P2X modulators from animal venoms and 

may provide a powerful tool in the hit generation process. In principle, arranging fractions and crude 

venoms into 96-well drug plates allows for rapid screening of hundreds of samples against multiple 

receptor targets. The reported HTS screens against P2X receptors were demonstrated to provide a 

reliable, sensitive, and specific method for HTS assessment of venoms and their fractions against hP2X3, 

hP2X4 and hP2X7. Using these assays, we first showed that this HTS strategy allowed screening of 

multiple targets and subsequently reduced costs. Second, a more meaningful comparison between 

targets at early stage of lead compound generation can be brought to our attention. Third, fractionation 

and further purification of venom fractions allows for the discrimination between cytolytic fractions and 

those with a specific effect on a particular target. Finally, the majority of validated hits against hP2X4 

resulted from spider venoms. This further emphasizes the rich biochemical diversity of this class of 

natural products. The availability of novel and selective modulators from divergent chemical classes 

could be useful in understanding the pharmacological insights into P2X receptor family. Future chapters 

aim to isolate and characterize structurally new P2X4 inhibitors from the spider venoms with an aim of 

accelerating drug discovery in the purinergic field.  
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~CHAPTER FOUR~ 
 

 

Discovery of a Small Molecular Toxin from Spider 

Venom that Selectively Inhibits hP2X4 Receptor 
 

 

 

 

 

 

 

 

 

 

This Chapter is based on a research article, currently in preparation as: 

Bibic L., et al. Discovery of a Novel Spider Toxin that Selectively Inhibits P2X4 Receptor. In preparation. 
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4.1. Introduction  

4.1.1. Small Molecule Toxins in Animal Venoms 

Animal venoms contain a chemically diverse pharmacopoeia of toxins that affect both insect and 

mammalian targets.181 These range from either low molecular weight (MW) organic molecules such as 

acylpolyamines to ones with a greater MW such as peptides, both of which can disturb the function of 

invertebrate and the vertebrate targets due to their structural similarity.274 Together, acylpolymines and 

peptides account for nearly 70% of the spider venom and represent a fertile ground for the discovery of 

novel therapeutic hits.275 While peptides exhibit molecular size smaller than 10 kDa and are usually 

highly hydrophobic, the molecular weight of acylpolyamines is usually less than 1 kDa. Furthermore, 

acylpolyamines are highly hydrophilic181 and share structurally similar features; a lipophilic head group 

(aromatic indole or phenol group) at one end, and either a primary amino, or guanidine moiety at the 

other (Figure 4.1).  

 

 

 

 

 

 

 

 

 

 

Figure 4.1. General structure of spider acylpolyamine.  

 

Between the aromatic core and its primary amino/guanidine group, various lengths of polyamine 

components can be found. The link between a polyamine chain and aromatic pharmacophore can be 

either through an amide bond or through an amino acid linker. Usually the pharmacophore can be 

either a 2,4-dihydroxyphenyl- or indole-3-acetyl-group with or without a hydroxyl group in the 4- and/or 

6-position.274, 276-277 
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In the early eighties, the acylpolyamines were first characterized as metabolites from spiders and wasps 

which are capable of paralyzing their prey. Furthermore, their physiological action demonstrated they 

serve as selective blockers of postsynaptic ionotropic glutamate receptors in invertebrate 

neuromuscular synapses.278 This was unsurprising, since glutamate is the primary chemical messenger in 

the neuromuscular junctions of spider’s prey (insects). Almost a decade later, Sheardown and 

colleagues279 showed that acylpolyamines not only block invertebrate, but also vertebrate and 

mammalian receptors, and may serve as promising leads for development of new therapeutics. By being 

open-channel blockers, they can selectively block iGlu receptors such as N-methyl-D-aspartate (NMDA), 

α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), and kainate receptors that play a role in 

the neurological disorders such as Alzheimer disease and stroke. This ultimately made the 

acylpolyamines the first inhibitors of such targets.279   

However, for acylpolyamines to serve as lead structures, they had to be chemically characterized. The 

first structural elucidation was carried out in 1986 by Grishin and co-workers,280 yielding argiotoxin-636 

(ArgTX-636) from the orb-weaver (Argiope) spider. Shortly after, ArgTX-673, ArgTX-659, and others 

followed.281-282 Following these observations, the Nephila genus was also highlighted as a source of 

various acylpolyamines. Some of these are now known as JSTX-3 (Joro toxin) and NSTX-3 

(neosaxitoxin).277, 283-287 However, it was not until a mass spectrometry was technologically advanced in 

the mid-nineties that rapid identification of acylpolyamines could be performed.181 Now, nearly 90% of 

all acylpolyamines have been structurally elucidated (Figure 4.2).288  

As soon as the chemical synthesis of acylpolyamines became less complex, researchers started exploring 

their roles as labeled and photolabile cross-linked probes. The first radiolabeled acylpolyamine was 

based on 125I-containing JSTX-3.289 Later, analogues comprising of photolabile cross-linkers were 

synthesized that bind to the nicotinic acetylcholine receptors.290-291 Still, it wasn’t until 2009 when the 

first fluorescently labeled analogue was prepared with neosaxitoxin NPTX-594 as a starting point. Not 

only did that analogue structurally resemble NPXT-594, but also its potency was confirmed to be 

equivalent to the original acylpolyamine (Figure 4.2).284 
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4.1.2. Identification and Structural Characterization of Small Molecular Toxins in the 

Animal Venoms 

The first full structural identification of an acylpolyamine toxins was accomplished for argiotoxin-636 

(ArgTX-636), ArgTX-673, ArgTX-659, JSTX-3, NSTX-3 and other structurally related toxins.281-282, 286, 292 The 

isolation and structural elucidation of these toxins was carried out using ion exchange chromatography 

coupled with RP-HPLC, and 1H-NMR with mass spectroscopy, respectively. 2D COSY spectra were used to 

depict the aromatic systems of the protons coupled via two or three chemical bonds. Fast atom 

bombardment (FAB) was used as an ionization technique to analyze the fragmentation patterns of the 

toxins. However, the first chemical synthesis was only achieved later for JSTX-3 and NSTX-3,287, 293 thus 

unequivocally confirming these toxins’ structures (Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Structures of some of the most characterized acylpolyamines. Chemical structures of A) 
MG30, B) NPTX-594, and C) JSTX-3.  

 

Later, MS methods accelerated the characterization of small molecular toxins that were present in even 

very small amounts, and combining MS information with one- and two-dimensional NMR spectroscopy 

enabled characterization of a large number of toxins from Agelenopsis, Nephila and Nephilengys species. 

294-296 However, some structures have not been assigned correctly (Agel-489, Agel-489a, Agel-505a)297-298 

and later, the total synthesis of these toxins showed they had to be revised.299 With the large number of 

acylpolyamines structures available, it became necessary to classify them into categories.  
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Nakajima’s group suggested to cluster them based on the polyamine backbone (either cadaverine- or 

putrescine-like) and the aromatic acetyl group (4-hydroxybenzoyl, 2,5-dihydroxybenzoyl or indolylacetyl 

group).277, 296, 300 Most significantly, some might contain amino acids and have N-hydroxylated amino 

groups in the polyamine backbone. Moreover, they suggested that when naming newly discovered 

acylpolyamines, a molecular weight should be added after the initials of the spider from which the toxin 

was first isolated. For example, NSTX-3 which has the molecular weight of 664 Da, and was isolated from 

Nephila Maculata, would be NM-664, although it remains NPTX-1 for historical reasons.  

Not long after these first elucidations, confirmed by synthesis, acylpolyamines from a spider Hololela 

curta were confirmed. In a remarkable study, Tzouros and colleagues301 found two different isomers of 

the polyamine chain that helped the researchers to build the first MS/MS template on how to accurately 

characterize acylpolyamines.301 This exhaustive structural analysis using MS techniques established how 

spider’s biosynthesize these toxins in a combinatorial manner by using only a few building blocks. In 

turn, this shows that the majority of minor acylpolyamines present in the venoms might not be 

identified yet since the spiders discarded the non-optimal toxins through evolution over time. Some 

authors even suggest that the production of the varied acylpolyamine mixtures in the spiders depend 

upon external stimuli and their purpose of injection into their prey (defense or attack).274  

At about same time, Manov and co-workers302 showed that the total synthesis efforts are not only 

crucial for confirming the structures of the individual toxins but also for identifying the minor 

components in the crude venoms. By using parallel synthesis and LC-MS/MS coupled with NMR, they 

were able to depict  the small modifications, such as one hydroxyl group, straight after the isolation.302 

The other species from which the isolation of the acylpolyamines have been attempted is that of wasps. 

Philanthotoxin-433 (PhTX-433) is a toxin isolated from the Egyptian digger wasp303 and its structure 

highly resembles NPTX-622, an acylpolyamine from a spider Nephila Maculata. This clearly points out 

that both of these organisms have evolved from similar biosynthetic pathways when it comes to these 

acylpolyamine toxins.    

Now, small molecular weight toxins from the animal venoms are mostly identified by a combination of 

MS/MS analysis and 2D NMR spectroscopy. Once the standard set of spectra (1H, COSY, HSQC, HMBC 

and NOESY) were combined with LC-MS/MS techniques, this enabled a rapid evaluation of biological 

samples, however in destructive manner. Corroboration of these structures was then undertaken by a 

chemical synthesis of proposed structures, or even via LC-MS and NMR-monitored fractionation of the 

crude sample.304-307  
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However, one major limitation of using NMR is its poor sensitivity. In case of the animal venoms where 

we handle a very limited amount of material, this might restrict the full structural elucidation attempt of 

such toxins,308 although advances in probe design and magnetic field strength look promising.309 

 

4.2. Results and Discussion 

In the previous chapter, the HTS for animal venoms is reported as a reliable, automated, fast, robust and 

quantitative approach for detecting hP2X4 inhibitors from animal venoms. This chapter is concerned 

with identifying and evaluating some of the toxin hits from the cone snail and spider venoms that have 

been screened using our HTS method.     

 

4.2.1. Screening Crude Animal Venoms for hP2X Modulators  

Here, venoms from cone snails and spiders were tested for their blocking activities towards hP2X4, using 

either 1321N1-hP2X4 or HEK293-hP2X4 cell line. Other crude venoms tested were those from scorpion 

and centipede species, bee (Apis mellifera) and wasps (Vespula germanica and Vespa velutina), but 

these have already been mentioned in Chapter 3 (Table 4.1). 
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Table 4.1. Animal venoms that were screened for hP2X modulators.   

Animal Abbreviation Animal venom 

Cone snail 

CS1 Conus textile 

CS2 Conus imperialis 

CS3 Conus geographus 

CS4 Conus victoriae 

Spider 

SV1 Acanthoscurria brocklehursti 

SV2 Phormictopus cautus 

SV3 Ephebopus murinus 

SV4 Haplopelma doriae 

SV5 Poecilotheria regalis 

SV6 Cyriopagopus 

SV7 Hickmania troglodytes 

SV8 Lasiodora klugi 

SV9 Lasiodora parahybana 

SV10 Phormictopus cancerides 

SV11 Acanthoscurria geniculata 

SV12 Haplopelma albostriatum 

SV13 Nhandu chromatus 

SV14 Acanthoscurria cordubensis 

SV15 Poecilotheria rufilata 

 

4.2.1.1. Probing Cone Snail Venoms Against hP2X4 

 

Conus are a group of predatory marine snails possessing venom which contains toxins that act on 

calcium channels, sodium channels, NMDA receptors, nicotinic acetylcholine receptors, acid sensing ion 

channels, voltage-gated calcium and potassium channels, and vasopressin receptors.310 We wanted to 

explore the potential of cone snail venoms against the P2X receptor family. Here, we screened four 

crude venoms from Conus textile (CS1), Conus imperialis (CS2), Conus geographus (CS3) and Conus 

victoriae (CS4), using HEK293-hP2X4 cells with YO-PRO-1 dye. When comparing these responses to our 

positive control - agonist (10 µM ATP) and negative control (10 µM BX430) – the treatment with a 

selective antagonist followed by injection of the agonist, none of the crude Conus venoms demonstrated 

modulation of hP2X4 (Figure 4.3A). The activity of hP2X4 remained between 81 – 119% with no sign of a 

dose-dependent inhibition for 10, 2 or 0.4 µg of crude venom. Furthermore, none of the cone snail 

venoms seem to have any activity on their own without the later application of ATP (denoted as “CS 

only”). This notion excludes the possibility of non-specific effects of Conus venoms on the HEK293-hP2X4 

cell line. 
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Since no hP2X4 - related effects were displayed with Conus venoms, we wondered whether they might 

show inhibition or potentiation on other P2X receptors. However, when probing these same crude 

venoms against HEK293-hP2X7, a similar trend was observed – neither CS1, CS2, CS3 nor CS4 showed 

any significant modulation of hP2X7 as compared to the agonist alone  – 200 µM ATP (Figure 4.3B). The 

activity of hP2X7 was found to be in the range of 92 – 121 %, relative to the ATP control, without any 

difference between 10, 2 or 0.4 µg of venom. Moreover, none of the venoms had an effect on their own.  

Figure 4.3. A concentration-dependent screen of crude cone snail venoms against hP2X4 and hP2X7. A 
fluorescent YO-PRO-1 dye uptake screen was conducted for crude Conus textile (CS1), Conus imperialis 
(CS2), Conus geographus (CS3) and Conus victoriae (CS4) against A) HEK293-hP2X4 and B) HEK293-
hP2X7. Percentage of control (%) was calculated as the ratio between the Area Under the Curve (AUC) 
between YO-PRO-1 uptake (490 nm) of the experimental samples and the positive control (ATP) - 
denoted as 100 %. Data points represent the mean ± SD of three replicate experiments with triplicates 
on each plate except fraction injections.  

 

Then we proceeded to the final target of interest - hP2X3. In this instance, the hP2X3-specific agonist αβ 

methylene ATP (αβ-meATP) was used rather than ATP. This evaluation was carried out in the HEK293 

cell line so the P2X3-specific agonist, rather than ATP, which could activate endogenously expressed P2Y 

receptors, was a preferred option. While CS1, CS2 and CS4 didn’t display any modulation, CS3 (C. 

geographus) was found to mediate > 5-fold potentiation of the maximal αβ-meATP response. This 

potentiation was found to be concentration-dependent (427 ± 14%, 179 ± 39%, 97 ± 42% at 10, 2 and 

0.4 µg, respectively) after application of αβ-meATP (Figure 4.4A).  
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When looking at the kinetics of hP2X3 responses, the shape of 10 µM αβ-meATP – activated hP2X3 

calcium response (Figure 4.4B, black) is consistent with previously reported observations.311 After the 

subsequent application of CS3 (10 µg) this activation increased to 5.2-fold, respectively to the 

magnitude of the maximal activated response of hP2X3 (Figure 4.4B, blue) at 110 sec. However, when 

only CS3 venom was injected (without a second injection of αβ-methyl ATP), this same venom showed 

non-specific responses (Figure 4.4B, brown) at the point of application. Due to these observations, we 

wondered whether the toxins in CS3 venom actually modulate hP2X3 receptor or they merely display 

non-specific effects in the HEK293 cells.  

Figure 4.4. A concentration-dependent screen of cone snail crude venoms against hP2X3. A: A 
fluorescent FLIPR Ca-6 screen was conducted for crude Conus textile (CS1), Conus imperialis (CS2), Conus 
geographus (CS3) and Conus victoriae (CS4). B: The kinetic behaviour of hP2X3 response when CS3 was 
applied. Percentage of control (%) was calculated as the ratio between the Area Under the Curve (AUC) 
between Calcium 6 response (485 nm) of the experimental samples and the positive control (αβ-meATP) 
- denoted as 100%. Data points represent the mean ± SD of three replicate experiments with triplicates 
on each plate except fraction injections. 

 

To understand the effect of each toxin better, fractionation by RP-HPLC was carried out, as previously 

shown in Chapter 3 (Section 3.2.4). The CS3 venom yielded 20 fractions which were applied to both, 

HEK293-hP2X3 (Figure 4.5A) and HEK293 cells (Figure 4.5B), and effects were investigated using cells 

loaded with Calcium 6 dye.  
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Figure 4.5. A concentration-dependent screen of cone snail fractions against hP2X3. A: Application of 
individual fractions from CS3 on HEK293-hP2X3. B: Application of individual fractions from CS3 on a 
native HEK293 cell line. Percentage of activation (%) was calculated as the ratio between the Area Under 
the Curve (AUC) between Calcium 6 response (485 nm) of the experimental samples and the positive 
control (αβ-meATP) - denoted as 100 % in HEK293-hP2X3 cells. In HEK293 cell line, the peak response 
was used to analyse the data.   

 

Early eluting fractions (F2-F5) displayed 3 – 4.5-fold potentiation of the αβ-meATP-induced response in 

HEK293-hP2X3 cell line, as well as eliciting the response in native HEK293 cells. This suggests the toxins 

are non-specific for the hP2X3 receptor. Interestingly, this same positive modulation by CS3 was not 

observed in HEK293-hP2X4 nor HEK293-hP2X7. Part of the reason might lie in the fact that the different 

assays were used; HEK293-hP2X4 and HEK293-hP2X7 were probed with YO-PRO-1 dye uptake assays, 

measuring the dye uptake through the channels, while HEK293-hP2X3 and native HEK293 cells were 

probed using the Calcium 6 dye, measuring the calcium responses upon the toxin application. While it 

may be safe to say that some of the CS3 toxins (F2-F5) yield non-specific effects, investigating which 

endogenous receptor expressed in HEK293 cell lines is responsible for such effects might be a fruitful 

line of inquiry.   
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4.2.1.2. Probing Crude Spider Venoms Against hP2X4 

 

The venoms of spiders are less well studied than those from cone snails. Their only similarity is at the 

level of individual peptides indicating that they may have independently evolved similar strategies for 

immobilizing prey. While the mass distribution in cone snails is skewed toward small peptides (~2.7 

kDa), spiders contain both, small molecules (< 1 kDa) as well as larger peptides (~4.4 kDa).192  

Thus, in order to ascertain whether the spider venoms contain toxins that may differ in their action 

towards hP2X4, a screen of fifteen crude spider venoms (SV1 – SV15) was carried out (Figure 4.6).  

 

 

Figure 4.6. Crude spider venom screen. Here, the concentration-dependent inhibition of SV1, SV8, SV9, 
SV10, and controls (buffer, ATP, IVM and hP2X4-specific antagonist BX430) on 1321N1-P2X4 cells when 
the crude venom mass varied from 10 µg to 0.4 µg is shown.  Percentage of activation (%) was 
calculated as the ratio between the Area Under the Curve (AUC) between Fura-2 Ratio (340/380 nm) of 
the experimental samples and the positive control (ATP) - denoted as 100 %. Data points represent the 
mean ± SD of three replicate experiments with triplicates on each plate except crude venom (“SV only”) 
injections. Significant differences between the control (10 µM ATP) and the venom are indicated by * (P 
< 0.05), ** (P < 0.01) or *** (P < 0.001) using one-way ANOVA followed by Dunnett's test.  
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The crude venoms reported here were tested in triplicates using 1321N1-hP2X4 cells loaded with the 

Fura-2 dye. hP2X4 – mediated Ca2+ responses were inhibited by a range of crude spider venoms, 

belonging to either Acanthoscurria brocklehursti (SV1), Lasiodora (SV8 and SV9) or Phormictopus (SV10) 

family as shown in Figure 4.6 (see above). When comparing their responses to either a positive control 

(10 µM ATP) or negative control (10 µM BX430), we found these crude venoms demonstrated dose-

dependent inhibition of hP2X4 (Table 4.2).  

Table 4.2. SV1, SV8, SV9 and SV10 demonstrated dose-dependent inhibition of hP2X4 when 10, 2 and 
0.4 µg of venom was applied.  

Spider 
venom/mass of 

the crude venom 

10 µg 2 µg 0.4 µg 

% inhibition of hP2X4 

SV1 69 ± 19 % 37 ± 6 % 4 ± 2 % 

SV8 88 ± 3 % 56 ± 5 % < 0 % 

SV9 74 ± 5 % 41 ± 2 % 3 ± 12 % 

SV10 59 ± 9 % 35 ± 8 % 3 ± 14 % 

 

Among them, crude venom from Lasiodora klugi (SV8) demonstrated the most potent inhibition with 10 

µg, 2 µg and 0.4 µg yielding 88%, 56%, and 0% inhibition, respectively, when tested on 1321N1-hP2X4 

cells. Then, the potency of crude venoms was as follows: Lasiodora klugi (SV8) > Lasiodora parahybana 

(SV9) > Acanthoscurria brocklehursti (SV1) > Phormictopus cancerides (SV10).  

Since the effect of the Lasiodora klugi seemed promising, we wanted to verify the dose-dependent 

effect using another stable cell line, and another fluorescent dye (Figure 4.7). This led us to use HEK293-

hP2X4 cells with YO-PRO-1 dye where 92%, 81%, 46% and 0% inhibition with 10 µg, 5 µg, 2 µg and 0.4 µg 

of crude venom Lasiodora klugi, respectively, was observed (Figure 4.7A). The kinetics of YO-PRO-1 

uptake via hP2X4 is shown on the Figure 4.7B; notably, 10 µg of L. klugi yielded greater inhibition than 

the commercially available hP2X4 antagonist BX430 whose inhibition was more similar to 5 µg of L. klugi 

(86% inhibition at 10 µM). We concluded that these results were in accordance with our previous 

findings on 1321N1-hP2X4 cell line, and thus, L. klugi - as a potential source of hP2X4 modulators - might 

be worth exploring further. 
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Figure 4.7. Representation of the crude venom L. klugi screen against HEK293-hP2X4 cell line. A: 
Concentration-dependent effect of L. klugi relative to the controls (buffer, ATP, and hP2X4-specific 
antagonist BX430). B: The kinetic responses for HEK293-hP2X4 are plotted. Percentage of activation (%) 
was calculated as the ratio between the Area Under the Curve (AUC) between YO-PRO-1 (490 nm) of the 
experimental samples and the positive control (ATP) - denoted as 100 %. Data points represent the 
mean ± SD of one experiment with triplicates on each plate. Significant differences between the control 
(10 µM ATP) and the venom are indicated by *** (P < 0.001) using one-way ANOVA followed 
by Dunnett's test.  
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However, some of the other crude venoms (Poecilotheria sp., Haplopelma sp., Cyriopagupus sp., Nhandu 

sp., Hickmania sp., and Ephebopus sp.) that displayed potent inhibition in our preliminary screen on 

HEK293-hP2X4 (L. Stokes, personal communication), showed non-specific calcium responses on 1321N1-

hP2X4 (Figure 4.8).  

Figure 4.8. Non-specific effects of crude venoms on 1321N1-hP2X4 (Fura-2). Non-specific effects of A) 
Poecilotheria sp. (SV5); B) Haplopelma sp. (SV4); C) Cyriopagopus sp. (SV6); and D) Acanthoscurria 
cordubensis or Acanthoscurria geniculata. The venom was applied to the cells at 30 sec prior to the 
agonist (ATP) at 90 sec.  

 

These venoms triggered non-specific Ca2+ signals soon after their application at 30 sec (denoted as 

“Venom” on Figure 4.8A-D, blue). While our control (buffer) did not elicit any response at 30 sec (Figure 

4.8A-D, black), the application of venom caused nearly 1.5-fold increase in Fura-2 ratio units, relative to 

the control. Part of the observed effect might be either a presence of the agonist-like toxins; pore-

forming and cytolytic toxins; or high concentration of the crude venom.256 However, this also implicates 

that the true effect of these venoms on hP2X4 might be masked due to presence of such toxins. Thus, in 

order to enhance the impact of minor components in the assay and deconvolute the crude mixtures, the 

fractionation of crude venoms was carried out.     



130 
 

4.2.2. Activity-Guided Fractionation of the Spider Venoms Against 1321N1-

hP2X4  

To facilitate the identification of the active components, these crude venoms were fractionated using 

RP-HPLC and then individual fractions tested using the 1321N-hP2X4. However, due to the venom 

shortage, only eight crude spider venoms (out of fifteen initial hits that showed a potent inhibition at 

either 1321N1-hP2X4 or HEK293-hP2X4 regardless of the non-specific effects) from L. klugi, L. 

parahybana, A. geniculata and A. cordubensis (Figure 4.9); and P. cancerides, H. albostriatum, E. 

murinus, and N. chromatus (Figure 4.10) were subjected to semi-prep RP-HPLC.  

Figure 4.9. HPLC chromatograms from different spider venoms. HPLC chromatograms from tarantula A) 
Lasidora klugi; B) Lasiodora parahybana; C) Phormictopus cancerides; and D) Acanthoscurria cordubis. 
Venoms were fractionated on an analytical C18 RP-HPLC column (Jupiter 5 μm; Phenomenex) and 
components eluted at a flow rate of 1 mL/min using a gradient of solvent B (90% acetonitrile (ACN), 
0.05% trifluoroacetic acid (TFA) in H2O) in solvent A (0.05% TFA in H2O) as indicated by the dotted lines. 
Absorbance was monitored at 214, 254 nm and 280 nm, but only the 214 nm absorbance is plotted 
here.  
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Figure 4.10. HPLC chromatograms from different spider venoms. HPLC chromatograms from A) Nhandu 
chromatus; B) Haplopelma albostriatum*; C) Acanthoscurria geniculate; and D) Ephebopus murinus. 
Venoms were fractionated on an analytical C18 RP-HPLC column (Jupiter 5 μm; Phenomenex) and 
components eluted at a flow rate of 1 mL/min using a gradient of solvent B (90% acetonitrile (ACN), 
0.05% trifluoroacetic acid (TFA) in H2O) in solvent A (0.05% TFA in H2O) as indicated by the dotted lines. 
Absorbance was monitored at 214, 254 nm and 280 nm, but only the 214 nm absorbance is plotted 
here. *The RP-HPLC had to be abruptly stopped at 62 min (rather than 70 min) due to the high system 
pressure.   

 

The initial separation step showed between 25 - 69 eluted fractions from either of these venoms (Table 

S1, Supporting Information), which is consistent with the chromatograms for these species reported in 

the literature.253, 312-315 The comparison between the RP-HPLC chromatograms for intra-genus species 

showed similar elution pattern and different peak heights, suggesting potentially different 

concentrations of the same toxins.  
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In contrast, the comparison of RP-HPLC inter-genus species chromatograms indicates major differences 

in hydrophobic components, eluting in the range of 30 – 70% (solvent B gradient). That is expected since 

the hydrophobic toxins are mostly peptides with structurally varied composition among species. On the 

other hand, HPLC profiles from the crude hits of Acanthoscurria, Lasiodora, Phormictopus, but not that 

of E. murinus, exhibit similar eluting profiles between 16 – 18 min (inserts on Figure 4.9 and Figure 

4.10). Two other fractionated venoms - Nhandu and Haplopelma also showed some similar eluting 

characteristics, however, less significant than those of Acanthoscurria, Lasiodora and Phormictopus 

venom. This suggests that venoms from Acanthoscurria, Lasiodora, Phormictopus and potentially 

Nhandu and Haplopelma family may contain similar hydrophilic toxins. Thus, for now, I would like to 

draw your attention to the early eluting fractions (Table 4.3), while the late eluting fractions would be 

discussed later. 

Table 4.3. RP-HPLC retention times of the fractionated toxin hits from various spider venoms that 
exhibited a similar eluting pattern. 

Lasiodora klugi Nhandu chromatus 

Fraction Retention time (min) Fraction Retention time (min) 

F10 16.17 F10 17.40 

F11 16.34 F11 17.52 

F12 16.58 F12 18.72 

F13 17.00 F13 19.67 

F14 17.50 - - 

Lasiodora parahybana Acanthoscurria cordubensis 

F7 16.22 F14 15.79 

F8 16.58 F15 16.08 

F9 16.85 F16 16.14 

F10 16.99 F17 16.57 

F11 17.13 F18 16.67 

F12 17.92 F19 16.67 

F13 18.51 - - 

Phormictopus cancerides Acanthoscurria geniculata 

F8 16.39 F12 16.54 

F9 16.69 F13 16.81 

F10 16.90 F14 16.90 

Haplopelma albostriatum 

F7 15.34 F9 15.89 

F8 15.73 - - 
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The fractions were added as a primary injection to a 96-well cell plate containing 1321N-hP2X4 cells. The 

Fura-2 assay was carried out as previously described (Chapter 3). In our activity-guided assays, both - 

early and late eluting fractions from these venoms were shown to contain potent toxins that may inhibit 

hP2X4 (Figure 4.11 and Figure 4.12).  

Figure 4.11. Screening of various spider venom fractions from Acanthoscurria and Lasiodora family 
against 1321N1-hP2X4. Using Fura-2 fluorescent dye, fractions from A) Lasiodora klugi; B) Lasiodora 
parahybana; C) Acanthoscurria geniculata; and D) Acanthoscurria cordubensis were screened against 
1321N1-hP2X4. Fractions coloured blue inhibited hP2X4. The dashed line represents 100% hP2X4 
activity as followed by 10 µM ATP application. Data points represent the mean ± SD of three replicated 
experiments, with triplicates on each plate except fraction injections. 
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Figure 4.12. Screening of various spider venom fractions from Phormictopus, Poecilotheria, 
Haplopelma and Nhandu against 1321N1-hP2X4. Using Fura-2 fluorescent dye, fractions from A) 
Phormictopus cancerides; B) Haplopelma albostriatum; C) Poecilotheria rufilata; and D) Nhandu 
chromatus were screened against 1321N1-hP2X4. Fractions coloured blue inhibited hP2X4. The dash 
represents 100% hP2X4 activity as followed by 10 µM ATP application. Data points represent the mean ± 
SD of three replicated experiments, with triplicates on each plate except fraction injections. 

 

As seen on the two figures above, the fractions from L. klugi (F2, F4, F5, F10 – F14); L. parahybana (F5-

F13); A. geniculata (F12 – F14); A. cordubensis (F14-F19), and fractions from P. cancerides (F8 – F10); H. 

albostriatum (F7 – F9); P. rufilata (F9-F12); and N. chromatus (F10-F13) seemed to potently inhibit 

hP2X4. With the exception of two fractions of A. cordubensis (F16 and F17) and P. rufilata (F11 and F12), 

all these fractions showed >80% inhibition of hP2X4 relative to the positive control (10 µM ATP). 
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Notably, these are the hydrophilic fractions that displayed the similar eluting HPLC pattern. However, L. 

parahybana displayed inhibition of hP2X4 across a wide range of fractions (F5-F13), suggesting the co-

elution of one single hydrophilic compound throughout our RP-HPLC separation which has been 

previously proposed by Guette and colleagues.253 Interestingly, this inhibition wasn’t observed in any of 

the E. murinus fractions (Figure 4.13).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Screening of E.murinus against 1321N1-hP2X4 with Fura-2 dye. The dash represents 100% 
hP2X4 activity as followed by 10 µM ATP application. Data points represent the mean ± SD of three 
replicated experiments, with triplicates on each plate except fraction injections. 

 

Although a crude venom from E. murinus caused a loss of ATP-induced fluorescent signal as it seemed to 

block the hP2X4 activity in HEK293-hP2X4 cells (L.Stokes, personal communication), this inhibition was 

lost upon fractionation probably due to the synergistic effects between the multiple compounds in these 

venoms. Laustsen316 and others317-319 have already discussed this in several papers in both snake and 

spider venoms. Since the application of F8, F18, F19, F22, F23, and F39 resulted in 30 - 39% inhibition on 

1321N1-hP2X4, the synergy between the different venom components targeting hP2X4 might be the 

case with E. murinus as well. Consequently, the combined effect of these individual toxins resulted in a 

seemingly potent block of hP2X4 when initially tested on HEK293-hP2X4. Thus, this venom served us as 

an adaptive control, confirming the importance of the early eluting fractions with the similar eluting 

pattern towards hP2X4. 
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However, as seen before with the cone snail venom (CS3), even though the fractions from above 

venoms seemed to block the ATP-induced fluorescent response via Fura-2 in the 1321N1-hP2X4, this 

doesn’t necessarily mean they exhibit their effect through hP2X4 inhibition. Since the major limitation of 

fluorescent-based screens is their potential interference with the tested compounds which may result in 

fluorescent quenching and false positive hits,262 we wanted to make sure similar inhibition could be 

achieved when the toxin hits would be tested on another cell line (HEK293-hP2X4), under altered 

screening conditions and using a different dye (YO-PRO-1).  

Due to the amount of venom material provided and highest activity of early eluting fractions, toxins 

from L. klugi (found in F2, F4, F5, F10, F11, F12, F13, F14) were chosen as the main fractionated venom 

of interest. By using a stable HEK293-hP2X4 and YO-PRO-1 dye, the most potent fractions were shown to 

be F10 – F14 with all of them displaying inhibition of hP2X4 greater than 90% (Figure 4.14A). This data 

corresponds well to our previous results in the 1321N1-hP2X4 cells (> 80% inhibition) with some minor 

differences in the magnitude of inhibition, possibly indicating the different concentration of the 

individual toxins.  

 

  

 

 

 

 

 

 

 

 

 

Figure 4.14. Validation of spider venom fractions from L. klugi against HEK293-hP2X4. A: Fractions 
coloured blue were validated as the fractions which selectively inhibited hP2X4. B: Using RP-HPLC, we 
pulled out F10-F14 and combined all the other toxins from L. klugi except the inhibiting fractions (F10-
F14). The dash represents 100% hP2X4 activity as followed by 10 µM ATP application. Data points 
represent the mean ± SD of three replicated experiments, with triplicates on each plate except fraction 
injections. 

A B 
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In order to fully confirm these results and show that that the dose-dependent inhibition by the crude 

venom L. klugi is due to the potent effect of fractions 10-14, we pulled out F10-F14 and combined the 

rest (F1-F10 and F15-F25). By applying this combined venom without the fractions 10-14 on our HEK293-

hP2X4 cell line, we showed that the activity of hP2X4 was 97.4 ± 0.6% and 102.5 ± 2.1%, relative to our 

positive control (10 µM ATP) with 10 µg and 1 µg of combined venom (denoted as “L. klugi without F10-

14”, Figure 4.14B), respectively. Without fractions F10-F14, the inhibitory effect of L. klugi was lost 

regardless of the venom concentration and it became clearer that F10-F14 contained potentially 

interesting inhibitors of hP2X4 activity.  

Furthermore, since five fractions showed similar inhibition and eluting pattern on RP-HPLC, we 

wondered whether these compounds contain structurally similar toxins. In order to perform a more 

detailed pharmacological evaluation, the desired purity (>91%)320 of the hits had to be obtained, and the 

exact molecular weight of the toxins needed to be determined. Only when we had gained more insights 

into the toxins’ activity was the structural elucidation of these toxins hits attempted.  

 

4.2.3. Purification and Mass Analysis of Fraction Hits Against hP2X4 

In order to estimate the molecular mass of compounds in the early eluting fractions of crude venom 

hits, the approximate molecular mass of fractions was approximated with MALDI-TOF, and later 

subjected to ESI-LC-MS/MS. In case of MALDI-TOF, approximately 1% of the pooled active peak from the 

initial fractionation was loaded onto a MALDI plate using the alpha-cyano-4-hydroxycinnamic acid 

(CHCA) matrix. However, since MALDI-TOF might give an approximate 1-2 Da mass discrepancy, a more 

accurate LC-MS method had to be used. Interestingly, the vast majority (92%) of the early eluting 

inhibiting fractions from our library of fractionated toxin hits, contained only four compounds which 

yielded either strong peaks, masses of either 365, 455, 601 or 729 (Table 4.4). Interestingly, all these 

toxins were present in L. klugi (F10-F14) and none of these masses matched any structurally known 

small molecules in the literature or MS-MS database.  
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Table 4.4. Most intense m/z ratios of the inhibiting fractions accurately determined by the LC-MS 
spectrum.  

Spider 
venom

/ 
fraction 

L. 
klugi 

L. 
parahybana 

P. 
cancerides 

A. 
geniculata 

H. 
albostriatum 

N. 
chromatus 

A. 
cordubensis 

P. 
rufilata 

m/z m/z m/z m/z m/z m/z m/z m/z 

F2 ? - - - - - - - 

F4 365.66 - - - - - - - 

F5 455.15 - - -  - - - 

F6 - 455.15 - - - - - - 

F7 - 729.35 - - - - - - 

F8 - 
729.35 

652.19 

365.66 

601.38 

729.35 

- - 365.66 - - 

F9 - 
291.87 

601.38 

291.87 

601.38 
- - 

220.54 

601.38 
- - 

F10 
601.38 

729.35 
601.38 

601.38 

729.35 
- 365.66 

365.66 

601.38 

729.35 

- 365.66 

F11 601.73 
601.38 

652.19 
- - 

365.66 

729.35 
- - 

365.66 

729.35 

F12 
365.66 

729.35 

455.15 

601.38 
- 

220.54 

601.38 

365.66 

729.35 
- - 

365.66 

729.35 

F13 
601.73 

729.35 

638.47 

652.19 
- 

365.66 

729.35 
729.35 - - 

601.38 

365.66 

729.35 

F14 
455.15 

3194 
- -  - - 

220.54 

601.38 

220.54 

601.38 

F15 - - -. - - - 601.38 601.38 

F16 - - - - - - 335.56 729.35 

F17 - - - - - - 356.87 - 

F18 - - - - - -  - 

F19 - - - - - -  - 
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Since a reasonable amount of L. klugi venom was available, we then proceeded with these five fractions 

(F10-F14) that showed remarkable inhibition of hP2X4. In order to clarify and determine the purities of 

the toxins, we proceeded with the additional purification step on RP-HPLC.  

This way, the toxins 601 and 729, denoted from now as LK-601 and LK-729, were confirmed to be 95.4% 

(m/z found at ~600.1) and 91.8% (m/z found at ~729.2) for LK-601 (Figure 4.15A) and LK-729, 

respectively (Figure 4.15B). MALDI-TOF was used here to help determining an approximate mass of 

these toxins. The purification of the toxins corresponding to 365, 455 and 3194 was attempted, 

however, they couldn’t be purified to any measurable extent rather than for mass analysis studies.  

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.15. Purification and mass spectroscopy confirmation of LK-601 and LK-729 from L. klugi. A: LK-
601 was purified using RP-HPLC to purity >95% and its mass estimated by MALDI-TOF (~600.10 m/z). B: 
LK-729 was purified using RP-HPLC to purity >91% and its mass estimated by MALDI-TOF (~729.22 m/z). 
Here, x and y axis (MALDI-TOF) represent mass per charge in Daltons (m/z, Da) and absolute intensity of 
signal, respectively, presented here at single wavelength of 214 nm. The x and y axis on RP-HPLC 
chromatograms represent the units of time (min) and the intensity of absorbance (in units of mAU, or 
mili-Absorbance Units), respectively.  
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Looking at the Figure 4.15, some interesting observations should also be noted. First, LK-601 and LK-729 

eluted at 18.8 min (at 12% CH3CN) and 17.5 min (at 11% CH3CN), respectively. Rather than LK-601 and 

LK-729 being sharp peaks, both of them displayed a fairly broad elution, which may be due to the RP-

HPLC conditions used. Since the analysis of highly hydrophilic compounds, such as LK-601 and LK-729, 

purification on a traditional alkyl column (C18 in our case) may be challenging due to the alkyl columns 

dependence on hydrophobic interactions for retention.321 In order to improve the peak resolution, an 

optimization of HPLC conditions could be attempted, using normal phase HPLC, biphenyl columns, 

buffered mobile phases or higher concentration of a mobile phase modifier (TFA) rather than RP-HPLC 

and a C18 column.    

Second, as discussed before, most venoms contain acylpolyamines and peptides. Since the RP-HPLC 

chromatograms indicated the toxins to be hydrophilic compounds, we hypothesised that the active 

fractions are likely to be acylpolyamines; linear and cyclic peptides usually elute later (> 40 min) due to 

their hydrophobic nature. Moreover, due to the high absorbance of the active toxins at either 214 or 

280 nm, suggesting the occurrence of amide bonds or aromatic groups, respectively, this indicated that 

the toxins might be acylpolyamines with aromatic headgroups.322 However, whether they contained 

amino acids or not, was not yet clear.  

Another important observation from RP-HPLC analysis was the striking instability of these toxins (Figure 

4.16). After three weeks, the purity of the lyophilized toxins, stored at -20°C in water, decreased to 44% 

as indicated by the three or five apparent peaks on RP-HPLC chromatogram with either LK-601 (Figure 

4.16A-B) or LK-729 (Figure 4.16C-D), respectively. When monitoring the stability of LK-601 and LK-729 

more carefully, we found out that the toxins remained stable in water for 7-10 days at -20°C, but then 

displayed a slow degradation. Alternatively, their instability might be also due to solvent exposure (e.g. 

hydrolysis) or light sensitivity. This might not only indicate degradation but rather a structural 

rearrangement, as noted previously by Rocha-E-Silva.323 When toxins were left at either room 

temperature or 4°C, the purity was substantially lost (<50%) after a day (data not shown). For that 

reason, all the pharmacological evaluations had to be carried out within a time frame of 10 days after 

the initial purification of the toxins. 

Some of the other issues that we encountered were linked to MALDI-TOF and its poor resolution. The 

peaks were quite broad, thus, the signal to a given toxin may not be completely resolved from the 

signals of its nearest neighbours (the spacing between neighbouring peaks is more less than 1 Da).  
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This difficulty was then circumvented by subjecting the toxins to ESI-LC-MS/MS with an Orbitrap 

analyser that could permit the detection of these compounds with improved selectivity and sensitivity 

to confirm their exact masses for the following pharmacological studies, and reveal a better structural 

fingerprint. 

  

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. HPLC chromatograms show the instability of the toxin hits. HPLC and MALDI-TOF profiles 
shows A,B) three impurities of 601; and C,D) five impurities of 729 denoted as peaks with different 
retention times. Here, x and y axis (MALDI-TOF) represent mass per charge in Daltons (m/z, Da) and 
absolute intensity of signal, respectively, presented here at single wavelength of 214 nm. The x and y 
axis on RP-HPLC chromatograms represent the units of time (min) and the intensity of absorbance (in 
units of mAU, or mili-Absorbance Units), respectively. 

 

After using LCMS QTOF-MS/MS, we could confirm previously identified reoccurring ions 366, 455, 601, 

729 and 3195 as proton [M + H]+ ions. The masses of these five toxins were then accurately determined 

as 365.2563 Da, 454.2274 Da, 600.3712 Da, 728.5026 Da and 3194.4325 Da.  
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Interestingly, LK-601 and LK-729 eluted similarly on LC - a broad peak between 15 and 25 min - 

suggesting these toxins might have similar physiochemical characteristics. To gain more insights into the 

structure of these toxins, we applied MS-MS fragmentation. The fragment ions m/z of LK-601 and LK-

729 are shown in Figure 4.17 and presented in Table 4.5.  

          

 

                  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. Eluting LC-MS profiles and ESI-MS/MS of the [M+H]+ ions of LK-601 and LK-729. A: LC-MS 
profile of LK-601 and B: LK-729 showing a broad eluting peak between 15-20 % acetonitrile (solvent 
gradient not shown). ESI-MS accurately depicted [M+H]+ ions of C: LK-601 (601.3712 Da) and D: LK-729 
(729.5026 Da). The toxins were then subjected to MS/MS fragmentation which showed similar 
fragmentation pattern of E: LK-601 and F: LK-729 with ions at 112.1136, 129.1438, 291.1763, 365.2605, 
509.2766, 527.2847 and 601.3749. Here, x and y axis (MS/MS) represent mass per charge in Daltons 
(m/z, Da) and absolute intensity of signal, respectively, presented here at single wavelength of 214 nm. 
The x and y axis on LC-MS chromatograms represent the units of time (min) and the intensity of 
absorbance (in units of mAU, or mili-Absorbance Units), respectively. 
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Table 4.5. Fragment ions m/z of LK-601 and LK-729 obtained by MS/MS. 

Toxin m/z 

365 112.1136 129.1389 220.0976 291.1689 365.2521 - - - - 

455 - 129.1389 220.0976 337.1550 353.1478 437.2180 455.2271 - - 

LK-601 112.1136 129.1438 220.1041 291.1763 365.2605 509.2864 527.2947 601.3856 - 

LK-729 112.1136 129.1389 220.0976 291.1689 365.2521 509.2766 527.2847 601.3749 729.5060 

 

In order to determine whether the common fragmentation pattern of 365, 600, 728 or 3194 matches 

the annotated spectra of known compounds in the database, we queried the National Institute of 

Standards and Technology (NIST), known as METLIN, as well as ChemSpider MS/MS spectral databases. 

Unfortunately (or fortunately), no matches with the desired fragment ions were found. Thus, it can be 

concluded that the toxin’s structures represent a yet unidentified compound found in the spider 

venoms.  

The fragment ions of 112.1136, 129.1438, 220.1041, 291.1763, 347.2494, 365.2605, 509.2864 and 

601.3749 were recurrent in all toxins except 455, regardless of the collision energy applied, indicating 

that these are specific fragments originating from the structurally similar toxins. The fragment ion at 

291.1763 was highly abundant even at lower collision energies, suggesting the fragmentation may be 

occurring at a highly labile bond such as C-N bond. Moreover, by determining a common fragmentation 

pattern among 365, 600, 728 and 3194, we found that while 365 is a fragment of 600, 600 is found in 

728, and 728 is part of the 3194. In case of 455, the fragmentation pattern was observed only with two 

ions: 129.1438 and 220.1041, indicating that there might be a similarity between 455 and all the other 

toxin hits, however, only partial (Figure 4.18).      

It was found before that molecules with similar structures or even of the same class can share identical 

fragment ions.324 Furthermore, the current literature suggests there may be a template approach for the 

characterization of linear polyamines.301, 325-326 As Tzouros and his colleagues301 suggested, the structural 

identification of acylpolyamine analogues may be possible because such compounds show very unique 

MS fragmentation patterns. By direct correlation of these fingerprint-like signal patterns, the linear 

acylpolyamines could be characterized even within mixtures such as venoms.  

Other authors277, 325-329 also had similar ideas, and even refined the analytical setups for their 

characterization, however, when employing their approaches to the fragmentation pattern of LK-601 or 
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LK-729, no indication for the structural elucidation of LK-601 and LK-729 could be found. While there 

were a few similarities between the fragmentation patterns of ions 112 and 129 (as in case of 

IndAc3334, PA3343, PA3334),301 confirming a spermine-like chain, these approaches could not allow the 

identification of the aromatic ring. One possible reason for this may be the formation of a charged cyclic 

structure within LK-601 and/or LK-729 that would therefore limit the characterization of such structures 

by above methods.  

        

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.18. Mass spectroscopy of small inhibitory toxins. ESI-MS/MS of the [M+H]+ ion at m/z of A: LK-
365/729; B: LK-455; and C: LK-3194 (low mass range fragments, deconvoluted). Here, x and y axis 
(MS/MS) represent mass per charge in Daltons (m/z, Da) and absolute intensity of signal, respectively.  
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When looking for more structural clues, a study330 conducted nearly 30 years ago captured our 

attention. Here, Skinner and colleagues330 confirmed the existence of toxins with the masses of 600 Da 

and 728 Da, but could, nevertheless, only suggest the partial structures of these toxins. Interestingly, 

among nearly hundreds of acylpolyamines identified so far, only 23% of them couldn’t be fully 

elucidated to date – two of them were the toxins with masses 600 and 728 Da.274 Still, Skinner and his 

team pointed out that both, 600 and 728 contain a similar indole-derived headgroup attached to a 

polyamine chain, spermine-like polyamine chain and no amino acids.330 However, apart from the indole 

group, acylpolyamines may also contain the two para-disubstituted hydroxyphenyl ring322 as presented 

earlier (Figure 4.1).  

From our fragmentation data, two other interesting features can be noted. First, since the typical 

fragmentation of the parent ions don’t generate any fragments that would correspond to amino acid 

fragmentation patterns, we can conclude that neither 365, 600, 728 and 3194 contain any amino acids 

and are thus amino acid depleted. This finding is in line with Skinner’s330 results as well. Second, due to 

the high intensity ions at 112.1136 and 129.1389, and common polyamine fragmentation pattern,301 a 

spermine-like chain is likely to be present in 600 and 728. However, whether the toxins have an indole 

or phenol ring, could not be verified by MS/MS.   

To aid the structural elucidation, we then investigated how in silico fragmentation tools such as MS-

FINDER could help us to obtain more structural information about 600 and 728. Here, MS-FINDER 

compares the experimental fragmentation spectrum with the theoretical spectra of all the compounds 

in its database and determines the possible elemental compositions.331-333 Since this in silico 

fragmentation approach aims to identify “known unknowns” – compounds present in the database but 

without any reference spectra – the software calculates a score between the experimental spectra and 

the predicted spectra.332  

However, as much as the theoretical information, such as elemental composition could be appreciated, 

we found that MS-FINDER held a major disadvantage for annotating “unknown unknowns” as pointed 

out before by Blaženkovič.334 Since the characterization of 600 and 728 has not yet been attempted, and 

without any MS/MS reference spectrum in the database, MS-FINDER may only predict the molecular 

formulae and rank based on the error rates [mDa]. A few predictions, based on our MSMS spectrum, 

have been put forward: C35H52O8; C20H48N12O9; C17H10N33O3; C21H44N16O5; C36H48N4O4; C32H44N10O2; and 

C37H44N8 (Figure 4.19).   
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Figure 4.19. An example of graphical user interface of MS-FINDER software calculations for LK-601. 
The formula prediction (top left), database matching results (top right), and the result of structure 
elucidation together with their fragment detail (bottom left) and meta data (bottom right).  

 

After looking at the predictions, we eliminated some of them due to the low resemblance to the 

acylpolyamine characteristics301 such as the lack or the excess of the nitrogen and/or oxygen atoms 

(C35H52O8, C17H10N33O3, C21H44N16O5, C37H44N8, C20H48N12O9). This way, we were left with either C36H48N4O4 

or C32H44N10O2. However, even with these two predicted molecular formulae, we could not confirm the 

structures as suggested by Tzourous’s approach.301  

In order to observe the percentage of carbon (C), hydrogen (H) and nitrogen (N) element in the toxins, 

and confirm (or possibly reject) these predictions, the elemental analysis with the CHN analyser could be 

attempted. However, the lowest concentration that can be reliably analysed is 100 – 200 µg with the 

limit of detection for the pure carbon at around 10-20 µg. Since we couldn’t purify the toxins in 

quantities greater than 50 µg, it would be unlikely we would get meaningful results. 
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Taken together with the destructive nature of elemental mapping, we could not afford to subject LK-601 

and LK-729 to this analysis. That might also be the reason why there is no information on elemental 

analysis of acylpolyamines found in the literature to date. Since no additional support for the structural 

identity of the fragmented ions was provided, either by MS/MS databases, ChemSpider or MS-FINDER, 

our attention focused on LK-601 and LK-729 which could be purified in enough quantities for the 

pharmacological studies. With the accurate molecular weight confirmation for both toxins, we could 

proceed to more detailed pharmacological evaluation and ascertained the potencies, as well as 

specificities of LK-601 and LK-729 toward hP2X4.  

 

4.2.4. Effects of LK-601 and LK-729 against hP2X4 and Related Targets  

We assessed the potency of LK-601 and LK-729 on a ratio of Fura-2 or YO-PRO-1 fluorescence 

measurements of the rise of intracellular calcium levels or dye uptake, respectively, once evoked by ATP 

(Figure 4.20). LK-601 was similarly potent to LK-729, causing inhibition of hP2X4 with an IC50 of 1.14 ± 

2.16 µM and 1.98 ± 1.24 µM (4.53 ± 2.46 µM and 2.26 ± 1.26 µM in case of LK-729) in 1321N1-hP2X4 

and HEK293-hP2X4, respectively (Figure 4.20A-B). By sharing similar dose-inhibition curves, this may 

confirm that these two toxins contain structurally similar motifs. Furthermore, it shows that the 

inhibition may be similar to that of a commercially available antagonist BX430 (IC50 = 0.58 ± 0.81 µM and 

0.85 ± 0.49 µM in 1321N1-hP2X4 and HEK293-hP2X4, respectively) which is a non-competitive 

antagonist at hP2X4.  

To further investigate whether the inhibition of P2X4 activity is competitive or non-competitive, Fura-2 

assays were performed in 1321N1-hP2X4 cells using different concentrations of ATP with a fixed 

concentration of the toxins (10 µM). Concentration-response curves gave an EC50 value of 1.19 ± 0.82 

µM for ATP, with a standard Hill slope (nH) of 1 in the absence of toxins, and a reduced maximal 

response in the presence of 10 µM LK-601 and LK-729 (Figure 4.20C). The inhibitory effect of the toxins 

could not be overcome with increasing concentrations of ATP of up to 100 µM. These two events, i.e., a 

shift in ATP EC50 and a decrease in the maximal response at saturating concentrations of ATP, indicate 

that LK-601 and LK-729 may be non-competitive antagonists and may be binding to an allosteric site on 

the P2X4 receptor channel.    
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Figure 4.20. Pharmacological effects of LK-601 and LK-729 on hP2X4. A: Dose-dependent inhibition of 
LK-601 (IC50 =1.98 µM) and LK-729 (IC50=2.26 µM) on HEK293-hP2X4 cell line. B: The effect seen on 
HEK293-hP2X4 was validated with the dose-dependent inhibition of LK-601 (IC50 =1.1 µM) and LK-729 
(IC50=4.5 µM) on 1321N1-hP2X4 cell line. C: A fixed concentration of either LK-601 or LK-729 (10 µM) 
and continuous application of various concentrations of ATP revealed the toxins to be non-competitive 
antagonists against hP2X4. Data points represent the mean ± SD of five replicated experiments, with 
triplicates on each plate. 
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In order to gain more functional insights in to the binding mode of LK-601 and LK-729, patch-clamping is 

the definitive experiment to probe hP2X4 function. Not only would it be a gold standard to confirm the 

potencies of LK-601 and LK-729, it could also track these effects in real time. However, due to the 

limited amounts of toxins and the low throughput of patch-clamping, we could not ascertain the 

potencies using electrophysiology. Automated patch-clamp could probably be best deployed to solve 

these issues and confirm the activity of toxins discovered by fluorescent assays,335 however, due to the 

equipment restrictions (no automated system) we could not proceed with the electrophysiology at that 

stage.   

Still, having ascertained the potencies on hP2X4 using two fluorescent-based assays, the remaining 

characterization studies of LK-601 and LK-729 were focused on a variety of closely related targets 

(Figure 4.21). Both, LK-601 and LK-729 were tested in calcium influx assays at the other channels such as 

hP2X3, hP2X7 and NMDA 1a/2a in HEK293 cell lines. We found that neither of the toxins inhibits hP2X7 

(the activity of hP2X7 remained 97.4 – 118.6% relatively to the control – 250 µM ATP) at the 

conventional concentration range 3 – 30 µM. The only discrepancy of this observation is noted with LK-

729 at 30 µM where 31.4 ± 4% inhibition was found. This might be merely due to the high concentration 

of the toxin rather than the dose-dependent inhibition, although higher concentrations should be tested 

for this effect (Figure 4.21A).  

Figure 4.21. Selectivity assays of LK-601 and LK-729 among P2X and NMDA subtypes. A: Effects of LK-
601 and LK-729 in concentration range 1 µM – 30 µM on HEK293-hP2X7 cell line (YO-PRO-1 uptake). B: 
Effects of LK-601 (10 µM) on transiently transfected HEK293-NMDA 1a/2a cell line. The agonists were 
applied to the NMDA antagonists and LK-601, and the responses measured with Calcium 6 dye. C: 
Effects of LK-601 and LK-729 in concentration range 10 µM – 50 µM on HEK293-hP2X3 cell line, and the 
responses measured with Calcium 6 dye. Data points represent the mean ± SD of one experiment with 
triplicates on each plate. Significant differences between the control (10 µM ATP) and the venom are 
indicated by * (P < 0.01) using one-way ANOVA followed by Dunnett's test.  
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Since acylpolyamines have been widely reported to act as potent blockers of glutamate receptors 

(including NMDA),181 NMDA 1a/2a served as a model to probe the effects of LK-601 and LK-729 against 

this family of receptors. Agonists such as L-glutamate and the co-agonist L-glycine had to be used in this 

case, and the ability for NMDA 1a/2a to be blocked by MK801 (10 µM) and D-AP5 (100 µM) was 

confirmed prior to the application of the toxins. Interestingly, once LK-601 and LK-729 were applied, no 

inhibiting effect was found with either LK-601 or LK-729 at 10 µM and the activity of NMDA 1a/2a 

remained 90 ± 2 % relatively to the control (Figure 4.21B).  

In stark contrast, LK-729 was found to potentiate hP2X3 (~144%) and was thus deemed less selective for 

hP2X4 than LK-601 (Figure 4.21C). This is unfortunate since potentiating either homomeric P2X3 or the 

heteromeric P2X2/P2X3 would result in the sensation of painful stimuli.336-337 However, this potentiating 

effect was not observed with LK-601. Despite 10 µM of LK-601 seeming to cause 26 ± 3% inhibition at 

hP2X3, however statistically non-significant, 50 µM of LK-601 was found to be ineffective. Thus, we 

shifted our main focus to LK-601 rather than to LK-729.  

So far, our experiments have been done in a heterologous over-expression system of P2X4. While both 

models, 1321N1-hP2X4 and HEK293-hP2X4, seemed to be a good choice when looking at our target of 

interest, we wanted to translate these results to a model expressing endogenous P2X4. For that 

purpose, mouse microglial BV-2 cells were chosen. Furthermore, P2X4-dependent microglial activity is 

crucial for chronic pain symptoms to manifest after nerve injury.63, 338-339 However, one limitation with 

this model is that BV-2 cells express not only P2X4 but also other P2 channels and GPCR receptors that 

produce a Ca2+ increase in response to ATP. Thus, in order to selectively identify a P2X4-mediated 

component in the ATP-induced Ca2+ responses, we had to be able to distinguish P2X4 responses from 

other P2Ys. As suggested by Matsumuta and colleagues,167 ivermectin (P2X4 positive allosteric 

modulator) could help us on this quest.  

Initially, we demonstrated that the prior application of 3 µM IVM clearly potentiated the 25 µM ATP-

induced Ca2+ responses up to 2.5-fold in BV-2 cells (Figure 4.22). We then investigated the inhibition of 

endogenous P2X4 by LK-601 in these cells. The application of LK-601 (10 µM) suppressed the 

potentiation of ATP responses by IVM and the amplitude of ATP+IVM-evoked responses were inhibited 

by 35 ± 3%, suggesting only P2X4 receptors in the BV-2 cell line contribute (Figure 4.22A-B). 

Furthermore, this inhibition seemed to be similar to two commercially available antagonists, PSB12062 

(1 µM) and 5-BDBD (10 µM), which suppressed the IVM potentiation by 48 ± 5% and 41 ± 2%, 

respectively.  
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On the other hand, BX430 (10 µM) did not exhibit these same effects (9 ± 2% inhibition) in BV-2 cells. 

Our results were also in line with the other studies that have used 5-BDBD, PSB12062 and BX430 on 

mouse P2X4.153, 166, 250   

Figure 4.22. Effect of LK-601 in a native microglial model. A: Effects of LK-601 (10 µM) on mouse 
microglial BV2 model. B: Kinetics of LK-601 inhibition at 10 µM in native BV2 model. C: Effects of LK-601 
(10 µM) on P2X7-deficient BV2. All experiments were performed with Fura-2 dye. Data points represent 
the mean ± SD of one experiment with triplicates on each plate. Significant differences between the 
control (IVM + ATP) and the venom are indicated by **** (P < 0.0001) using one-way ANOVA followed 
by Dunnett's test.  
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However, BV-2 cells are known to express both P2X4 and P2X7 receptors.340-341 Since a P2X7-deficient 

BV-2 cell line was available in our lab,238 this allowed us to validate the specificity of LK-601 against P2X4 

in BV-2 cells. ATP-induced calcium responses were comparable in the BV-2 and P2X7-deficient BV-2 cells 

and showed P2X4-like pharmacological characteristics such as potentiation by IVM and reduction in 

responses by P2X4 antagonists 5-BDBD, BX430 and PSB12062. LK-601 (1 µM) gave a statistically 

significant inhibition of the ATP-induced calcium response (39 ± 5%) relative to the control (IVM + ATP), 

similar to the effects seen in the BV-2 cells (35 ± 3%) (Figure 4.22C). This further confirmed that the 

P2X7 receptor is likely not contributing to LK-601 effects observed in the mouse microglial BV2 model, 

and indicated a primary role for the P2X4 receptor in both cell lines.   

Since the primary sequence of P2X4 subunits is highly conserved between vertebrates, from fish to 

primates;342 we next assessed species-dependent effects of LK-601 and LK-729 on mP2X4 and rP2X4 

(Figure 4.23). Despite our results in the BV-2 cell line showing that 10 µM and 1 µM of LK-601 

significantly inhibits P2X4 in mouse microglia, we wanted to confirm these results in a stable 1321N1 cell 

line expressing mP2X4. Only after we generated the stable cell lines (1321N1-mP2X4 and 1321N1-rP2X4) 

and pharmacologically characterized them, we then proceeded with the screening.  

Figure 4.23. Selectivity assays of LK-601 and LK-729 among P2X4 species. A: Effects of LK-601 and LK-
729 (10 µM) on 1321N1-mP2X4 cell line. B: Effects of LK-601 (10 µM) on 1321N1-rP2X4. All experiments 
were performed with Fura-2 dye. Data points represent the mean ± SD of one experiment with 
triplicates on each plate. Significant differences between the control (ATP) and the venom are indicated 
by **** (P < 0.0001) using one-way ANOVA followed by Dunnett's test.  
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However, due to the very limited amount of LK-601 available, we could not perform the dose-inhibition 

studies as seen before on hP2X4. Thus, we chose 10 µM (a concentration that produced strong 

inhibition at hP2X4) as a concentration that could provide a reliable comparison between these species. 

As predicted, LK-601 inhibited mouse P2X4 in 1321N1-mP2X4 cells (49 ± 5%) (Figure 4.23A); however, 

the inhibition was nearly 1.6-fold less effective when compared to the human isoform in the same 

1321N1 cell model (79 ± 1%) and 1.4-fold better than it was shown in our BV-2 model (35 ± 3%). While 

the comparison between our mouse P2X4 models (1321N1-mP2X4 vs BV-2) might be due to the cell line 

differences rather than the mode of action, the comparison between 1321N1-hP2X4 and 1321N1-

mP2X4, as well as 1321N1-hP2X4 and BV-2 models clearly points out the selectivity of LK-601 for both 

human and mouse isoforms.  

Unexpectedly, while LK-601 seemed to affect mP2X4 and hP2X4, the toxins didn’t have any significant 

effect on rat P2X4 (82% and 94% amino acid identity with human and mouse, respectively) when applied 

at 10 µM (Figure 4.23B). Neither LK-601 nor LK-729 inhibited rP2X4 (<19 % inhibition) when tested at 10 

µM, highlighting that both toxins were inactive towards rat P2X4. For comparison, the known P2X4 

antagonist PSB12062 didn’t show any species differences but inhibited P2X4 receptors across species 

(71 ± 4% and 79 ± 3% at mouse and rat, respectively). BX430 didn’t display any statistically significant 

inhibition on either the rat or the mouse P2X4 (19 ± 8% and 28 ± 5% at mouse and rat, respectively) as 

expected.153 Interestingly, 5-BDBD showed a similar selectivity profile as LK-601 as it blocked mP2X4 and 

hP2X4 but not rP2X4 (55 ± 3% and 0 ± 9% at mouse and rat, respectively).  

 

4.2.5. Structural Elucidation of LK-601 and LK-729  

The purified toxins LK-601 and LK-729 were next subjected to NMR spectroscopic analysis. Each toxin 

was weighed (~0.1 mg), dissolved in deuterated water (D2O), and 1H NMR spectra were recorded. First, 

the toxins were probed with NMR 500Hz, but the signal-to-noise (S/N) ratio was too low to allow the 

accurate peak integration and extraction of J-couplings. As the concentration of both toxins, LK-601 and 

LK-729, was below 0.5 mg, either more material or a higher-field NMR spectrometer was required to 

gather structural information about these two toxins.  

In an attempt to overcome this problem, both toxins were then subjected to NMR spectrometry at 800 

MHz (Figure 4.24 and Figure 4.25). 
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Figure 4.24. NMR-spectroscopic analysis of LK-601 by 800 MHz NMR. A: The full 1H – NMR spectrum revealing a highly complex structure. B: 1H 
– NMR signals from the aliphatic chains. C: 1H – NMR signals from the aromatic region. D: Expansions of the corresponding COSY spectrum 
suggested the aromatic ring of LK-601 might have 1,2-substitution. 
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Figure 4.25. NMR-spectroscopic analysis of LK-729 by 800 MHz NMR. A: The full 1H – NMR spectrum revealing a highly complex structure. B: 1H 
– NMR signals from the aliphatic chains. C: 1H – NMR signals from the aromatic group. D: Excerpts of the corresponding COSY spectrum 
suggested two aromatic rings of LK-729 with two 1,4-substitutions. 
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Some of the conclusions we could draw were that the signals in the aliphatic region of LK-601 (Figure 

4.24B) and LK-729 (Figure 4.25B) seemed different, suggesting an aliphatic chain with different 

proton environments. Along similar lines, the aromatic regions were also different. For example, a 

splitting pattern of LK-601 (Figure 4.24C) seemed to have 3 triplets and a doublet while LK-729 had 4 

doublets (Figure 4.25C). In order to obtain more information, the toxins were analysed further by 

using 2D NMR spectroscopy, including COSY, NOESY, HMQC, and HMBC spectra. These investigations 

could confirm the presence of acylpolyamines which should be simply recognized based on the 

typical spin systems of their aromatic head groups, whose links to the polyamine chains should be 

evident form the HMBC spectra. However, as much as these resulting sets of spectra could afford 

sufficient signal dispersion and connectivity information to assign structural fragments, we couldn’t 

gather any valuable information about the carbon couplings. The reason being, HMQC and HMBC 

spectra did not yield any meaningful data, and suggest we need more material.  

The only assessment that might provide some additional information about the polyamine 

headgroup were the COSY experiments which suggested the 1,2-substitution and two 1,4-

substitutions for LK-601 and LK-729, respectively (Figure 4.24C and Figure 4.25C). Previous 

consultation of the literature suggested the headgroups being either indole-derived or para-

disubstituted hydroxyphenyl rings.322, 330 Thus, we hypothesized that LK-601 may contain an indole-

derived (1,2-subtituted) group while LK-729 may have two para-disubstituted hydroxyphenyl (1,4-

subtituted) rings. Complete characterization of the connecting segments was not possible, however, 

because of multiple signal overlap; while the S/N here was better with 800 Mhz, the signals were still 

challenging to integrate due to the heterogeneity of both toxins; 1H NMR spectra in aliphatic regions 

showed primarily broad, unresolved peaks, seemingly devoid of any characteristic signals 

representing a typical polyamine (e.g., spermine, spermidine). Furthermore, NMR spectra acquired 

for the period of 24h clearly pointed out to the instability of these toxins in water (Figure 4.26, 

depicted as “degradation LK-601”) which made it even more difficult to determine which signals 

correspond to which proton. As a result, the overlap of corresponding NMR-spectroscopic 

signals/impurities did not permit complete characterization of individual toxins. Nevertheless, NMR-

spectroscopic analysis enabled the elucidation of the general structural features of the toxins.  
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Figure 4.26. Instability issues with LK-601 and LK-729 as seen by the NMR-spectroscopic analysis.  

 

To further elucidate the structure of the LK-601 and LK-728 toxins, more material would be required, 

a more efficient fractionation method should be in place, and stability of the toxins under specific 

conditions (temperature, solvent) should be further investigated. Additionally, for toxins of this type, 

structural assignments could be confirmed through NMR – spectroscopic spiking experiments using 

original samples of the previously identified acylpolyamines.   

 

4.3. Conclusions  

In the present chapter, we set out to investigate whether the toxins from cone snails and/or spider 

venoms could be found to contain novel inhibitors of hP2X4 channels. These animals, like other 

venomous taxa, expend their venom in both predatory and defensive contexts; they can deliver 

variable quantities within individual doses and from multiple glands at the particularly vulnerable 

region of their prey. Although it is unlikely that any P2X receptors are present in insects,342 the 

venom of these animals may still be rich in P2X modulators.  
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For example, Grishin and colleagues138 showed that Purotoxin-1, a spider venom peptide, exerted 

potent inhibitory action on hP2X3 receptors.138 Since we currently lack a potent and selective 

antagonist of the hP2X4 channel with desirable characteristics for drug delivery,167 venoms may 

contain clues for the design of selective hP2X4 therapeutics involved in a range of pathologies, 

including chronic neuropathic pain.   

Firstly we examined the effects of cone snail venoms on hP2X3, hP2X4 and hP2X7 channels; 

however, none of the crude venoms, and later fractionated toxins, were found to inhibit these 

channels. The only crude venom that initially seemed to modulate hP2X3 receptor was Conus 

geographus, which exhibited potentiating effects. However, the fractionation of the venom later 

showed that the toxins failed to produce hP2X3-specific responses. This non-specific potentiation 

effect may be a consequence of either activated endogenous receptors expressed by HEK293 cells, 

or the toxins’ ability to form pores in the membranes, thus displaying cytotoxicity256 in calcium-based 

assays.  

Notably, this same non-specific effect of CS3 was not noted in HEK293-hP2X7 cells, when assessed 

by YO-PRO-1 dye. It would be interesting to measure the calcium effects on this cell line in order to 

confirm the results seen on HEK293-hP2X3. Unfortunately, there’s no hP2X7-specific agonist thus we 

had to measure YO-PRO-1 dye uptake rather than calcium influx. All the other fractions showed 

similar effects on hP2X3 as its agonist, which may exclude them from being potent modulators of 

hP2X3.  

The HEK293 cell line not only expresses P2X receptors, but also endogenous P2Y receptors, making 

specificity towards these receptors tougher to quantify. Therefore, the human astrocytoma cell line 

1321N1 that possess no endogenous P2 receptors was used. This formed the basis of a high-

throughput Fura-2 assay in which venoms, and fractionated toxins, were monitored for the ability to 

prevent a calcium-related fluorescent response induced by activation of the P2X channels with ATP. 

The inhibitory effects of the toxin hits were validated on both cell lines and any potential non-

specific effects were circumvented early on. Thus, our screens were less susceptible to artefacts and 

false positives. The efforts were then focused towards the most potent and selective toxins able to 

block hP2X4.  

Using this method, we screened 15 crude spider venoms that showed interesting activity against 

hP2X4 in our preliminary screens (L. Stokes, personal communication) by adding diluted venom to 

either HEK293-hP2X4 or 1321N1-hP2X4 prior to an application of 10 µM ATP. Although a number of 

venoms showed non-specific activity, venoms from A. brocklehursti, Lasiodora and Phormictopus 

produced a particularly robust inhibitory effect on hP2X4 channel activated by ATP.  
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For example, only 5 µg of the most potent crude venom (from Lasiodora klugi) produced nearly 

complete inhibition of ATP-activated hP2X4.  

To determine the inhibitory toxins within these venoms, we fractionated 9 crude venoms (Lasiodora 

klugi, Lasiodora parahybana, Acanthoscurria geniculata, Acanthoscurria cordubensis, Phormictopus 

cancerides, Haplopelma albostriatum, Poecilotheria rufilata, Nhandu chromatus and Ephebopus 

murinus) using reverse-phase HPLC with water-acetonitrile gradients and tested individual fractions 

for activity against hP2X4. The HPLC fractionation of crude venoms resulted in the chromatograms 

that contain one predominant clusters of peaks. It has been previously reported that the venom 

components eluting between 15 and 25 min are primarily acylpolyamine toxins, whereas the toxins 

eluting later (> 40min) are primarily peptides.297, 330, 343 When these early eluting fractions were 

examined for activity against hP2X4, inhibitory activity was observed for the cluster of peaks 

corresponding to acylpolyamines with E. murinus serving as an adaptive control venom. This 

occurrence has previously been reported for acylpolyamines from spider venoms targeting TRPV1 

channels344 so this is not a novel concept. Yet, activity against another ligand-gated ion channel 

(hP2X4) is.  

By applying the combined crude venom without the inhibiting fractions of L. klugi on our HEK293-

hP2X4 cell line, the inhibitory effect of the venom was lost regardless of the venom concentration. 

The molecular weight of the toxins was confirmed by mass spectrometric analysis, which 

predominately yielded masses 365.2563 Da, 454.2274 Da, 600.3712 Da, 728.5026 Da consistent with 

some previous observations.253, 330 Interestingly, the fragment ions of 112.1136, 129.1438, 220.1041, 

291.1763, 347.2494, 365.2605, 509.2864 and 601.3749 were recurrent in all toxins except 454.2274, 

regardless of the collision energy applied, indicating that these are specific fragments originating 

from the structurally similar toxins. Our subsequent investigation focused on the ones with masses 

600.3712 Da and 728.5026 Da because these toxins were more abundant in venoms, and thus easier 

to obtain in larger amounts. Both toxins eluted between 11 – 12% CH3CN, and showed interesting 

activity against hP2X4. After another step of purification was performed using RP-HPLC, both toxins 

were obtained in purities > 91%.  

To investigate the concentration dependence for inhibition by these two toxins, different 

concentrations of the toxins were applied to both, HEK293-hP2X4 and 1321N1-hP2X4, using two 

validated assays (YO-PRO-1 and Fura-2) described in the Chapter 3. This way, we discovered two 

novel members of hP2X4 antagonists that were found among different spider venoms species, 

however isolated from Lasiodora klugi.  
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These molecules were named LK-601 and LK-729 as suggested by Itagaki322 whose nomenclature 

proposed to include both the molecular mass and the backbone chain subtype in the nomenclature 

of novel acylpolyamine toxins.322 Both, LK-601 and LK-729 potently inhibited hP2X4 with the 

apparent IC50 values between 1.1 – 4.5 µM, confirmed in two different cell lines and with two 

different sets of fluorescent-based assays.  

Despite the limitation of using fluorescent-based techniques (rather than a more direct method, e.g. 

electrophysiology), the relationship between hP2X4 inhibition and toxin concentration (0.1 – 30 µM) 

could be well documented in these two cell models. Furthermore, we found no significant inhibitory 

effect on the other P2X subtypes (hP2X3, hP2X7), although concentrations >100 µM have not been 

tested. Nonetheless; LK-729 was found to potentiate hP2X3 responses. This is unfortunate since 

potentiating homomeric P2X3 results in the sensation of painful stimuli.336-337 Thus, we shifted our 

focus to LK-601 rather than to LK-729. 

Acylpolyamines are also known to interact with ion conduction pores in potassium channels,345-346 

cyclic nucleotide gated channels,347 glutamate receptor channels,281, 286, 344, 348-351 nicotinic 

acetylcholine receptor channel,352 TRPM4,353 TRMP7354 and TRPV1.344 In most cases, acylpolyamines 

block these targets from the intracellular side of the membrane, and inhibition is strongly voltage-

dependent. However, in order to ascertain whether LK-601 blocks some of these channels, we 

tested both toxins on NMDA 1a/2a subtype of glutamate channels. Interestingly, even though the 

majority of identified acylpolyamines inhibit this family of receptors,181 LK-601 did not have any 

effect on HEK293-NMDA 1a/2a. Nevertheless, we cannot exclude the possibility that LK-601 may act 

on other glutamate receptors such as AMPA and kainate channels. Acylpolyamines that antagonize 

non-NMDA glutamate receptors have been found in other spiders with JSTX-3 having subunit-

specific activity on GluR1, GluR3, GluR4, and GluR1/3.355 Probing LK-601 towards other non-NMDA 

glutamate targets would help to address this gap. Still, these results suggest that LK-601 is rather 

selective for this type of acylpolyamines.  

When looking at the species-related effects, LK-601 – while exhibiting a relatively potent inhibitory 

effect at hP2X4 – shows similar actions towards mP2X4 but does not block rP2X4. The effect of LK-

601 on mP2X4 was also confirmed in a BV-2 microglial model. This is not an uncommon 

phenomenon; apart from a recently identified P2X4-selective antagonist NP-1815-PX167 with high 

potency, no species-restricted effect and a good water solubility, other available P2X4 antagonists 

display similar effects to LK-601. For example, the phenylurea BX430,153 N-substituted phenoxazine 

PSB12062,166 and benzodiazepine derivate 5-BDBD250 all selectively block hP2X4 with low micromolar 

potency, but are less potent on rat and mouse P2X4.   
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Hence, in order to investigate how LK-601 might accomplish that, we needed to understand its 

chemical structure better. This would subsequently allow timely characterization of structure-

activity relationship (SAR). Although we attempted to get a reasonable NMR signature, we rather 

failed to obtain a full structural elucidation of LK-601 and LK-729, and could only determine its 

partial structure – similarly to Skinner et al.330 thirty years ago.  

Furthermore, the only other study that might reported a similar compound was from Rocha-E-Silva 

et al.323 where they isolated a small molecule VdTX-1 with a mass of 728 Da from the spider venom. 

They showed that their acylpolyamine may block cholinergic receptors in vertebrate nerve-muscle 

preparations, however, the structural elucidation could not be determined.323  

Nevertheless, some clues could still be derived from our NMR data. The reasons for this are 

numerous. First, while NMR is the dominant method for determining the structure of small 

molecules, it suffers from low sensitivity;308 the quantity of material required is usually between 1 – 

10 mg.356 A relatively good proton spectrum can be acquitted with lower amounts, however, 

determining carbon couplings with an acceptable resolution requires at least 1 mg of material even 

with 800 Mhz. Given the low amounts of isolated toxin (~0.1 mg), LK-601’s striking instability in 

water added to the challenge, making it harder to pinpoint the structure. On the basis of that 

limitation, the only observations we could make were the following: 1) LK-601 and LK-729 contain a 

different aromatic ring with LK-601 likely to be an indole; 2) LK-729 has a longer polyamine chain 

than LK-601; 3) the polyamine chain very likely contains a spermine moiety.  

Another aspect of the same conundrum is that MS/MS fragmentation clearly shows similar 

fragmentation patterns with LK-601 and LK-729 and points to 601 being a part of 729. While NMR 

characterization may elude to the fact that the polyamine chain is longer in LK-729, it is also evident 

that the head group is different (indole vs phenol). This may exclude the possibility of LK-601 being 

part of LK-729 or suggest rearrangement between the aromatic group of LK-601 (indole) and LK-729 

(two phenols). The reasons for this inconsistency remain unclear; however, it is still conceivable that 

the similarity between LK-601 and LK-729 inhibiting effect is merely due to the positive charged 

polyamine chain rather than the aromatic systems of the toxins. Hence, all these obstacles limited 

the full structural characterization of LK-601 and thus, in silico docking studies.  

Although previous studies have shown that direct NMR-spectroscopic analysis can be used to screen 

even crude spider venoms for the presence of sulfated nucleotides, the same authors concluded that 

a complete structural elucidation still requires the use of NMR in combination with mass-

spectrometric analysis and synthesis.  
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Furthermore, they confirmed that the signal overlap in the NMR spectra of the acylated polyamines 

prevented a full NMR spectroscopic elucidation of the structurally novel compounds.308 In our case, 

these issues could be circumvented by either making more chemically stable analogues; having more 

material available which might enable faster and more comprehensive structural determination by 

NMR; using a superconductive NMR probe;357 or using other methods, rather than NMR, that don’t 

require exposure to water (e.g. elemental analysis). However, given the destructive nature of the 

elemental analysis, and with limited supply of the crude venom, we could not afford to subject LK-

601 to these sorts of studies. In spite of these lows, the NMR spectroscopic fingerprint revealed 

some structural features which provided guidance for our next pursuits.   

In summary, we have isolated and characterized two acylpolyamines LK-601 and LK-729 as two novel 

hP2X4 antagonists with good potency and with LK-601 showing a better selectivity for hP2X4. In 

particular, our findings not only provided evidence for spider venoms containing inhibitors of P2X 

channels, but have also enabled us to ask whether the species differences in the effect of LK-601 on 

hP2X4 can hold a clue to the LK-601 binding site. Since the amino acid identity of rat P2X4 is 82% and 

94% when compared to human and mouse, respectively, future studies would focus on obtaining 

more structural insights about LK-601. We would also attempt to identify a smaller fragment of LK-

601 that inhibits hP2X4 with a relatively good potency, selectivity and a better stability. Thus, we 

proceeded with the chemical synthesis of LK-601 potential analogues, followed by the identification 

of the amino acids critical for the binding of LK-601 on hP2X4.  
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~CHAPTER FIVE~ 
 

 

Synthesis, Structure-Activity Relationship and Evaluation 

of LK-601 Analogue LA-3, a Novel hP2X4 Antagonist 
 

 

 

 

 

 

 

 

 

 

 

 

 

This Chapter is based on a research article, currently in preparation as: 

Bibic L., et al. Discovery of a Novel Spider Toxin that Selectively Inhibits P2X4 Receptor. In 

preparation. 
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5.1. Introduction  

5.1.1. Importance of Structure-Activity Relationship (SAR) of Natural Products 

The exploration of structure-activity relationship (SAR) is an important step in medicinal chemistry 

and drug design. SAR investigations might provide a chemical optimization of hits and the 

identification of a novel lead.235, 358 However, small chemical changes can also render active 

compounds completely or nearly inactive, or, contrarily, increase their drug-like properties, such as 

potency, water solubility and stability.235 It has long been established that one of the distinguishing 

characteristics of natural products is the molecular diversity of structurally related analogues.359 

However, why would an organism invest in resources needed to synthetize many analogues that 

serve no biological function? While this might be unclear,235 Macarron and others234 suggest that the 

organism’s need is to generate its own chemical space to optimize the activity of its own active 

metabolites.234 Ultimately, this suggest the organisms are doing their own structure-activity 

relationship (SAR) optimization.  

Although selecting a lead molecule that would function as a pharmacological skeleton is poised with 

difficulties, various investigators have recognized that the natural product libraries, such as venoms, 

can be viewed as a population of structurally privileged new medical entities (NME) selected by 

evolutionary pressures.179, 191-192, 230, 310, 360 By having the characteristics of high chemical diversity and 

biochemical specificity, toxins from venoms are favourable as NME for drug discovery. This 

differentiates them from libraries of synthetic or combinational compounds.359 Although nature is a 

master chemist that often provides the first clues to SAR in the form of chemical analogues, not all 

hits generated from the natural products libraries meet the stringent criteria for potency and 

selectivity.359 Thus, preliminary SAR is essential.  

Alternatively, it might be more effective to adapt approaches that combine both strategies. For 

example, leveraging the unique structural motifs of natural products and use it as a guidance to seek 

more focused libraries might yield a novel bioactive natural product scaffold with improved drug-like 

properties or even biological activity.260 One avenue for exploring SAR in this way might lead to 

identifying a key pharmacophore required for the activity. Once the modulation of biological 

response through chemical modifications is established, the hit might be declared as lead and 

proceeded onwards for additional optimization. This hit-to-lead approach might provide an early 

foundation on which the overall synthetic strategy could be developed.234, 260  
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5.1.2.  Animal Toxins as a Template to Lead Selection 

A lead molecule endowed with an appropriate biophysicochemical properties as well as interesting 

pharmacological profile in terms of potency and selectivity, has been termed as a “universal 

template”.361 In that context, polyamine toxins - a group of small molecules present in spiders and 

wasps – have evolved specifically as open-channel blockers of glutamate, muscarinic and nicotinic 

receptors for paralyzing prey, thus, they might serve as a “universal template” towards a lead 

selection.361-364  

However, apart from G-protein coupled receptors, this approach has also been applied to ligand-

gated ion channels, such as nicotinic receptors. One of these synthetic probes, now known as MR44, 

proved to be one of the most promising pharmacological tool to study binding of a polyamine 

analogues to the nicotinic receptors (Figure 5.1).364 Thus, the ability of the polyamine backbone to 

hit the desired target with having low or no affinity towards the others is evident. The crucial step 

would be to pinpoint the highly cationic cargoes (amino groups) to anionic or aromatic sites to 

ensure high recognition of ion channels while abolishing affinity for other targets.  

 

 

  

Figure 5.1. Structure of MR44. 

 

5.1.3. Chemical Synthesis of Acylpolyamine Toxins Derived from Spider Venoms 

The chemical synthesis of polyamines and their derivatives were performed in solution until the 

nineties365 when Bycroft and others366 reported the first solid-phase synthesis (SPS) of two spider 

toxins, NPTX-9 and NPTX-11, with a diamine backbone(Figure 5.2). Since then, a great variety of 

methods have been introduced for the chemical synthesis of polyamine moieties.274, 276, 367 In 

particular, Fukuyama-Mitsunobu amination reaction applied SPS to yield acylpolyamine toxin 

analogues, although the efficiency of the reaction has dropped extensively due to the solid 

support.276, 368-373 In order to solve this issue, the same authors later devised a higher yielding 

strategy of a notoriously tedious acylpolyamine, Agel-489 (Figure 5.2). With performing Fukuyama 

amination steps in solution rather than on a solid support, their approach furnished this polar 

amino-containing natural product in 31% overall yield.297, 367, 374 
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Other chemical approaches aiming for the total synthesis of the spider toxins involve adaptation of 

the polyamine cargo on a solid support by applying borane reduction of a trityl resin-bound 

tripeptide.303, 375 This has been since extensively used by various groups including Schultz,376 

Jarozewski367 and Hall.303 Also, bidirectional SPS of the polyamines has been reported,377 and either 

N-hydroxylated polyamine units or full-length toxins (ArgTX-636) prepared (Figure 5.2).373, 378  

However, despite their desirable biological properties, the challenges of preparing acylpolyamine 

toxins still remain. One of them is that SPS procedures do not allow for a direct access to the large 

group of polyamine toxins, such as Joro toxin (JSTX-3), one of the most studied acylpolyamine toxin 

to date (Figure 5.2). This, in turn, prevents the systematic SAR studies to improve their biochemical, 

physical as well as pharmacological properties.378-379 Although some recent studies devised strategies 

to accelerate this,379 other methods, rather than SPS, might be worth considering.  

One such approach calls for selective monosubstitution of polyamines. Here, an excess of the 

polyamine is treated over time with the acylating reagent. Once the activated amino esters are 

generated by esterification between nitrophenol and the carboxylic acid of the amino acid, the 

resulted compounds might be coupled directly to the polyamine to yield a mixture of mono- and 

disubstituted products that can be fairly easily separated by RP-HPLC techniques.380-381 The true 

beauty of this method is that a series of simple polyamine/amino acid conjugates can be generated, 

avoiding a limitation of SPS approach described earlier although the resulting yields might be a few 

folds lower.274  
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Figure 5.2. Structures of NPTX-9, NPTX-11, Agel-489, Arg-636 and JSTX-3.  

 

5.1.4. Biological Effects of Polyamines and Acylpolyamines  

As discussed already in Chapter 1, polyamines are polybasic aliphatic amines that are vital for 

protein and nucleic acid synthesis; resistance to oxidative stress; cell growth, differentiation and 

apoptosis; and activity of ion channels, as summarized by Anthony E. Pegg382 in one of his recent 

reviews.  
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Notably, these polyamines are found in various natural products, including animal venoms.298 Among 

them, four polyamines are associated with multiple effects on AMPA383 and NMDA384 receptors: 

cadaverine, putrescine, spermidine, and spermine.385-386 For example, these polyamines showed 

either a voltage-dependent pore blockade,386 or an increase in the apparent affinity for the co-

agonist glycine and glycine-independent potentiation,261, 385, 387 depends on the NMDA subunits. The 

latter effect of polyamines has been studied in-detail due to its remarkable subunit selectivity; only 

NMDAs containing the GluN2B subunit display polyamine potentiation.388-389 Furthermore, these 

polyamines (spermine in particular) were shown to bind at a subunit-subunit interface and serve to 

stabilize the receptor dimer assembly, defining a novel mode of how positive allosteric modulators 

may modulate ligand gated receptors.390 Other channels associated with the biological effects of 

polyamines are potassium (Kir), and transient receptor potential (TRP) channels. Here, polyamines 

act as negative allosteric modulators, able to produce either a voltage-dependent block on Kir 

channels,346 or a strong inhibition on TRP4 and -5 channels.391   

 

Another group of polyamines are so-called acylpolyamines, monoacylated polyamines, which have 

attracted most attention as pharmacological tools, illuminating both positive and negative 

modulators of ionotropic glutamate (iGluR) receptors, such as kainate, NMDA and AMPA. There is a 

vast body of clinical evidence suggesting that glutamate is involved in neurodegenerative disorders 

such as Huntington’s, Alzheimer’s and Parkinson’s disease.392 Thus, a discovery of a specific 

acylpolyamine for these channels has a potential to progress into novel treatments for neurological 

or psychiatric disorders.393 For example, Tikhonov394 identified the polyamine part of one such 

acylpolyamine – ArgTX-636 – to be crucial for selectivity between different NMDA- and AMPA-type 

subfamilies. ArgTX-636 targets NMDA subtypes with up to 100-fold differences in inhibitory potency, 

pointing out to its therapeutic potential in nervous diseases.  

 

Other examples include acylpolyamines such as DACS and JSTX-3 showing neuroprotective effects in 

events such as prolonged hypoxia and ischemia. In particular, JSTX-3 was found to block 

AMPA/kainate receptors expressed in Xenopus oocytes, and demonstrated its action as a subunit-

specific blocker on GluR1, GluR3, GluR4, and GluR1/3. Interestingly, using site-directed mutagenesis, 

Blaschke et al.355 identified a single amino acid position (glutamine in the TM2 domain) that was 

critical for JSTX-3 effect.355 While all these JSTX-3-related effects have given insights into 

pharmacological mechanism of iGluR in various nervous diseases, JSTX-3 was also found to 

specifically blocked allodynia via Ca2+ - permeable AMPA receptors when delivered by intrathecal 

injection.395-398  
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This not only suggested that AMPA receptors are important for the spinal mechanism leading to 

tactile allodynia in their in vivo injury model, but also suggest JSTX-3 as a lead compound when 

studying the development of spinal sensitization.  

 

Other authors399 suggest that spinal sensitization effect contributing to secondary hyperalgesia (but 

not primary mechanical hyperalgesia) modulated by JSTX-3 requires AMPA/kainate receptors. Their 

data, obtained in in vivo rat models, demonstrated that behavior for secondary mechanical 

hyperalgesia may not effect the behavior for primary mechanical hyperalgesia, and can thus be 

separated from spontaneous pain and secondary mechanical hyperalgesia in postoperative patients.  

Metzger and others396 also showed that JSTX-3 modulates Ca2+ influx via AMPA/kainate receptors in 

the cultures of motor neurons, resulting in dendrite outgrowth that may have implications in motor 

neurodegenerative diseases.396 Nowadays, JSTX-3 is commercially available, and serves as a potent, 

subunit-specific blocker on iGlu receptors.  

 

However, one of the major limitations of using acylpolyamines as potential drug candidates, is their 

lack of selectivity for iGluR; they block both NMDA and non-NMDA receptors. Moreover, their drug-

like properties are not ideal; they possess poor physio-chemical attributes (poor chemical stability 

and permeability), and are usually bigger than 500 Da. In order to circumvent these effects, some 

synthetic analogues of acylpolyamines have been successfully synthetized. For example, in cultured 

hippocampal neurons, Naspm reversibly blocked kainite-activated currents in a non-competitive 

manner, suggesting its potent action on non-NMDA channels.283  

 

On that note, acylpolyamines might not be only useful as potential therapeutics, but also 

insecticides.400 This led other group of researchers to study their SAR in a greater detail. This way, a 

wasp acylpolyamine philanthotoxin-433 (PhTX-433) – a nonselective antagonist at iGlu and nicotinic 

acetylcholine (nACh) receptors – was used to improve affinity at either iGlu (AMPA) receptors368 or 

nACHRs.401 Soon, a number of analogues (PhTX-83, PhTX-56, PhTX-12 Phtx-343) followed (Figure 

5.3).   

 

Interestingly, while replacing one of the amino group in PhTX-433 with a methylene group renders 

the toxin selective for AMPA receptors (PhTX-83),368 changing two amino groups in PhTX-433 with 

two methylene groups shows a remarkable selectivity towards nAChR and potency at nanomolar 

concentration (PhTX-12).401 Furthermore, modifications to the head group (replacing the phenol 

with the cyclohexylalanine) also resulted in improved selectivity towards nAChR.401  
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P2X receptors are another class of ligand-gated ion channels, however, with barely any structural or 

sequence similarity to iGlu or nACTh channels. Yet, no acylpolyamine has been found that would 

target P2X receptor family with a reasonable potency and selectivity profile, nor any SAR attempted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Structures of PhTX-83, PhTX-56, PhTX-12, PhTX-343 and PhTX-433.  

 

5.2. Results and Discussion 

In the previous chapter, we have isolated and characterized two acylpolyamines LK-601 and LK-729 

as the novel P2X4 antagonists with good potency in low micromolar concentrations, and with LK-601 

showing a better selectivity profile compared with other P2Xs. We concluded that LK-601 may not 

only provide evidence for spider venoms containing inhibitors of P2X channels, but also serve as a 

chemical template to synthetize LK-601 analogues that may yield better physiochemical and/or 

pharmacological properties. Thus, this Chapter will deal with SAR investigations where a variety of 

polyamines, indole-like compounds and a structurally similar acylpolyamine would be probed 

towards hP2X4 in order to ascertain functional motifs that are crucial for the LK-601 activity towards 

hP2X4.   
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We would use the obtained information as a structural guide towards synthesizing the smaller 

molecules that might resemble a structure of LK-601 that still retains a required potency and 

selectivity while avoiding some of the less appealing biochemical properties such as chemical 

instability of LK-601. Moreover, prediction of the amino acids that might be crucial for the binding of 

LK-601 and/or its structural analogues on hP2X4, would be proposed and the validation attempted. 

 

5.2.1. Investigating the Nature of Structure-Activity Relationship in LK-601 

5.2.1.1. Simple Polyamines do not Modulate hP2X4 Receptor 

To ascertain whether the polyamine tail in LK-601 is responsible for the inhibitory effect on hP2X4, 

four polyamines (cadaverine, putrescine, spermine and spermidine) have been tested in the 

concentration range from 3 – 300 µM using two stable cell lines (HEK293-hP2X4 and 1321N1-hP2X4). 

The polyamines were applied prior to the injection of ATP (10 µM), and hP2X4 activity was then 

measured via Ca2+ influx or YO-PRO-1 dye uptake (Figure 5.4). We also probed the cell lines with the 

concentration of spermine up to 1 mM, however, these higher amounts elicit a non-specific 

response.   

Figure 5.4. Application of polyamines prior to 10 μM ATP application in two stable cell lines. A: 
Application of cadaverine, spermidine, spermine and putrescine to 1321N1-P2X4 cells (Ca2+ influx) in 
concentration range of 3 – 300 μM (n=4). B: Application of cadaverine, spermidine, spermine and 
putrescine to HEK-hP2X4 cells (YO-PRO-1 uptake assay) in concentration range of 300 – 3 μM (n=4). 
Data is presented as the mean ± SD with 10 µM ATP as a control.  

 

While neither polyamines at any given concentration showed any significant inhibitory effect on 

hP2X4 that could be validated by both assays (the activity of hP2X4 was found to be between 76 – 

101 % and 102 – 136% in 1321N1-hP2X4 and HEK293- hP2X4, respectively), we concluded that 

polyamine motifs in isolation do not block hP2X4 receptor.  
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It first seemed that spermidine, spermine and putrescine potentiated hP2X4 at concentration >30 

µM (Figure 5.4A); however, these effects could not be confirmed on HEK293- hP2X4 (Figure 5.4B). 

When probing the higher concentration of polyamines on a native 1321N1 cell line, we found that 

this potentiating effect is specific to 1321N1 cell line rather than to hP2X4 modulation (data not 

shown).  

 

5.2.1.2. Indole-based Compounds Modulate hP2X4 Receptor 

To test whether the indole ring may modulate the activity of hP2X4 channel, we first screened a 

library of indole-like compounds that we had available in-house. These included 1H-indole (1), 1-

methylindole (2), 1-hydroxymethyl-1H-indole (3), indole-2-carboxylic acid (4), indole-3-carboxylic 

acid (5), 2-(1H-indol-3-yl)ethanamine or tryptamine (6), (2S)-2-amino-3-(1H-indol-3-yl)propanoic acid 

or tryptophan (7), and 3-(2-aminoethyl)-1H-indol-5-ol or serotonin (8) (Figure 5.5). While compound 

1 was not modified from its original structure (1H-Indole), other chemicals (2-5) were either N-

substituted (with the –CH3 2 or -CH2OH 3 group), or had modifications on the five-membered pyrrole 

ring (-COOH on either 2’- 4 or 3’ position 5). The other three compounds were either precursors of 

amino acids (tryptamine 6 and serotonin 8) or amino acids (tryptophan 7) with both, the carboxylic 

and primarily amino group found on the pyrrole ring. These compounds were assigned numbers 

from 1 to 8 and the following in vitro screens were performed in blinded experiments.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Chemical structures of eight indole-like compounds that were screening in our 
preliminary assays. These included 1H-Indole (1), 1-Methylindole (2), 1-Hydroxymethyl-1h-Indole 
(3), Indole-2-Carboxylic Acid (4), Indole-3-Carboxylic Acid (5), 2-(1H-Indol-3-yl)ethanamine or 
Tryptamine (6), (2S)-2-amino-3-(1H-indol-3-yl)propanoic acid or Tryptophan (7), and 3-(2-
aminoethyl)-1H-indol-5-ol or serotonin (8).  
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These eight compounds were first screened in HEK293-hP2X4 cell line in which the inhibitory activity 

of the compounds was measured by YO-PRO-1 dye uptake assay. Among these compounds, only 

tryptamine (6), tryptophan (7) and serotonin (8) were identified to significantly inhibit hP2X4 with 10 

µM showing 32 ± 5%, 39 ± 6% and 43 ± 5% inhibition, respectively (Figure 5.6). This effect has not 

been noted with lower concentrations (3 µM). Interestingly, while the indole itself, N-substituted 

analogues or carboxylic modifications at the position 2 or 3 did not show any measurable inhibition 

at hP2X4 (the activity of the channel remained between 91 – 102%), the compounds with a primary 

amine connected to position 3 of the indole via a 2 carbon chain showed an inhibition at 10 µM 

concentration, which was lost at 3 µM.  Yet, this inhibition was 4-5 times less effective than our 

control (BX430). The beauty of this set of results lie in the fact that we could now be more certain 

that LK-601 may contain an indole pharmacophore, as already suggested by 1,2-substitutions on our 

COSY spectrum (Chapter 4). Furthermore, it showed us that the substitution at the position 3 (-

CH2CH2NH2) might be essential for the inhibitory activity of LK-601 at hP2X4. Contrarily, presence of 

the -OH group on the position 5 of the indole and a -COOH group on the position 2 of the carbon 

chain does not make a difference when trying to block hP2X4 at the tested concentration of 10 µM.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Application of simple indol-based compounds prior to 10 μM ATP application in two 
stable cell lines. Application of 1H-Indole (1), 1-Methylindole (2), 1-Hydroxymethyl-1h-Indole (3), 
Indole-2-Carboxylic Acid (4), Indole-3-Carboxylic Acid (5), 2-(1H-Indol-3-yl)ethanamine or Tryptamine 
(6), (2S)-2-amino-3-(1H-indol-3-yl)propanoic acid or Tryptophan (7), and 3-(2-aminoethyl)-1H-indol-
5-ol or serotonin (8) to HEK293-P2X4 cells (YO-PRO-1) at either 10 or 3 µM concentration (n=4). Data 
is presented as the mean ± SD with 10 µM ATP as a control. Significant differences between the 
control (10 µM ATP) and the venom are indicated by * (P < 0.01) using one-way ANOVA followed 
by Dunnett's test.  
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Intrigued by these results, we decided to screen a more extensive library of compounds with a hope 

to reveal more SAR insights and/or potential motifs of LK-601. Among many synthetic libraries 

available, the National Cancer Institute-Developmental Therapeutics Program (NCI-DTP) provides a 

diverse array of functionally relevant compounds with some great research outcomes already 

reported.402 Notably, this same library contained a vast array of structurally relevant indole-like 

compounds for our screening purpose. On the flip side, since NCI-DTP library contained 1047 indole-

like compounds, attempting to screen a library as such, called for a more systematic search. On the 

basis of known structural information of LK-601, and the insights we obtained with our first indole 

screen, we thus generated a SMARTS string of: O=C(NCCCNCCCCNCCC)CC1=C[N]([H])C2=CC=CC=C12 

(Figure 5.7).  

Figure 5.7. Structure of SMARTS 

 

Once we subjected the SMARTS to the NCI-DTP library and limited the structure similarity to >90%, 

we were left with 22 hits (out of 1047 in total). However, only 14 compounds were available in 

sufficient amounts so we had to initially proceed with those (Table 5.1).   

This set of 14 compounds were tested at four different concentration (0.3, 3, 30 and 100 µM) in two 

different cell lines (1321N1-hP2X4, HEK293-hP2X4) with two different dyes (Fura-2 and YO-PRO-1) 

and with an activity cut-off at 50% inhibition for the concentration range of 30 - 100 µM. This is two-

fold higher than suggested by Hughes403 (cut-off at 25% inhibition at the 100 µM), however, our aim 

was not to identify novel hits from the NCI-DTP library, but rather to gather some structural insights 

into the SAR of LK-601.  
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Table 5.1. A set of 14 compounds from the NCI-DTP library compound set. Each compound had an 
already assigned NCI-DTP number. Here, chemical names and CAS identifiers are provided.  

NCI-DTP 
number 

Chemical name 
CAS 

identifier 

329271 
4,7-Methano-1H-isoindole-1,3(2H)-dione, 4,5,6,7,8,8-hexachloro-

2-[[[(3-chlorophenyl)amino] carbonyl]oxy]hexahydro- 
N.A. 

17815 Indole-1-propionamide 21017-50-5 

1513 1-nitro-3-[(2-oxo-3-indolinylidene)amino]guanidine 5347-87-5 

1969 1H-Indole-3-acetamide 879-37-8 

13964 Indoxyl acetate 608-08-2 

16892 1H-Indole-3-methanamine 87-52-5 

17812 1-(3-Indolylacetyl)hydrazine 5448-47-5 

63799 1-(3-Indolylacetyl)hydrazine 5448-47-5 

113928 5-Methoxy-N-acetyltryptamine 73-31-4 

135831 N'-(4-chloro-2-nitrobenzylidene)-2-(1H-indol-3-yl)acetohydrazide 28558-55-6 

673655 N-[2-(5-chloro-1H-indol-3-yl)ethyl]acetamide N.A. 

608048 
2-(2-(1H-indol-3-yl)-2-oxoacetamido)-3-(4-

hydroxyphenyl)propanoic acid 
N.A. 

369856 
(N-(2-(3-Hydroxy-2-oxo-2,3-dihydro-1H-indol-3-yl)ethyl)-3-

phenylacrylamide) 
79087-89-1 

339919 
2-amino-N-(1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)-3-

(1H-indol-3-yl)propanamide hydrochloride 
N.A. 

 

In this preliminary screening, four compounds seemed to block the activity of hP2X4 when tested on 

HEK293-hP2X4 via YO-PRO-1 uptake. These chemicals corresponded to NCI-DTP identifiers of 1513, 

13964, 135831 and 1969 (Figures 5.8. – 5.10). While 1513 demonstrated a concentration-dependent 

inhibition (49 ± 6%, 37 ± 4%, 26 ± 6%, and 8 ± 5% at 100, 30, 3 and 0.3 µM, respectively), and 

compound 13964 seemed to block the 31 ± 3% and 49 ± 4% activity of hP2X4 at 100 and 30 µM 

concentration, compounds 329271, 16892 and 17812 did not display any significant inhibitory effect 

(Figure 5.8). Thus, two hits (1513 and 13964) with a cut-off at 50% inhibition at either 100 or 30 µM 

were found.   
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Figure 5.8. Application of the compounds (1513, 329271, 13964, 16892 and 17812) from the NCI-
DTP library in HEK293-hP2X4. The compounds were pre-incubated at either 100, 30, 3 or 0.3 µM 
concentration (n=4). Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM) and BX430 
(10 µM) as the controls. Significant differences between the control (10 µM ATP) and the venom are 
indicated by *(P < 0.05) using one-way ANOVA followed by Dunnett's test.  

 

Next, we evaluated compounds 17815, 63799, 113928, and 135831. As shown in Figure 5.9, while 

135831 demonstrated a concentration-dependent inhibition (63 ± 5%, 26 ± 4%, 25 ± 8%, and 10 ± 4% 

at 100, 30, 3 and 0.3 µM, respectively), compounds 17815, 63799 and 113928 did not display any 

significant inhibitory effect within our cut-off limit. Thus, another hit (135831) with a cut-off at 50% 

inhibition at either 100 µM was found. 
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Figure 5.9. Application of the compounds (17815, 63799, 113928 and 135831) from the NCI-DTP 
library in HEK293-hP2X4. The compounds were pre-incubated at either 100, 30, 3 or 0.3 µM 
concentration (n=4). Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM) and BX430 
(10 µM) as the controls. Significant differences between the control (10 µM ATP) and the venom are 
indicated by *(P < 0.05) using one-way ANOVA followed by Dunnett's test.  

 

As the last set of experiments on HEK293-hP2X4 cell lines, we evaluated compounds 1969, 339919, 

369856, 608048 and 673655. We found that while compounds 339919, 369856, 608048 and 673655 

did not display any significant inhibitory effect on this cell line, 1969 demonstrated a concentration-

dependent inhibition (63 ± 5%, 26 ± 4%, 25 ± 8%, and 10 ± 4% at 100, 30, 3 and 0.3 µM, 

respectively).  
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Figure 5.10. Application of the compounds (1969, 339919, 369856, 608048 and 673655) from the 
NCI-DTP library in HEK293-hP2X4. The compounds were pre-incubated at either 100, 30, 3 or 0.3 
µM concentration (n=4). Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM) and 
BX430 (10 µM) as the controls. Significant differences between the control (10 µM ATP) and the 
venom are indicated by *(P < 0.05) using one-way ANOVA followed by Dunnett's test.  

 

After an initial screen on HEK293-hP2X4 via YO-PRO-1 uptake, the identified hits were typically 

validated using another method. In our case, the validation was conducted with the already 

established Fura-2 assay on the 1321N1-hP2X4 cell line (Chapter 3). As seen on Figure 5.11, while 

compound 1513 exhibited an inhibition of 27 ± 6%, 26 ± 8%, and 20 ± 10% at 100, 30 and 3 µM, 

respectively, one of the compounds - 16892, previously identified as hit, seemed to completely block 

Ca2+ signalling.  

Since it would be very unlikely that a single compound exhibits these properties at three different 

concentrations, we wondered whether 16892 interferes with Fura-2 dye excitation and emission, 

leading to potential false positive.  
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Figure 5.11. Application of the compounds (1513, 329271, 13964, 16892, 17812 and 17815) from 
the NCI-DTP library in 1321N1-hP2X4. The compounds were pre-incubated at either 100, 30 or 3 µM 
concentration (n=4). Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM) and BX430 
(10 µM) as the controls. Significant differences between the control (10 µM ATP) and the venom are 
indicated by *(P < 0.05) using one-way ANOVA followed by Dunnett's test.  

 

Since we wanted to confirm that 13964 interferes with Fura-2 measurements, either by quenching 

(absorbing either the excitation or emitted light from the dye) or autofluorescence (fluorescence of 

the compound in the same detection region with the dye), we conducted the interference assays 

with both, Fura-2 and YO-PRO-1 (Figure 5.12). The latter served us as the control experiment since 

we did not observed any assay interference in our HEK293-hP2X4 (YO-PRO-1) assay. As predicted, 

only 13964 was found to exhibit an autofluorescence when excited at 340 and 380 nm, which 

overlaps with the Fura-2 detection region (Figure 5.12A), but not of YO-PRO-1 region (490 nm) 

(Figure 5.12B).  
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Figure 5.12. Interference Assays.  Compounds 1517, 16892, 135831, 1969 and 13964, together with 
the buffer control were subjected to the fluorescent screen in either A) Fura-2 or B) YO-PRO-1 set of 
assays. RFU represents the relative fluorescent units. All samples were prepared at the same 
concentration, and the data are representative results from two independent experiments.  

 

That said, the extent of interference depends on the concentration of fluorescent molecule (e.g. 

13964) in the Fura-2 assay and its relative fluorescence intensity in our assay condition. 

Furthermore, as already noted by Simeonov and Davis,262 just because 13964 is fluorescent or a 

quencher that does not mean that it cannot also have a relevant biological activity. It only means 

that having an orthogonal method (e.g. YO-PRO-1 in our case) to confirm the percent of inhibition at 

hP2X4 that was not prone to fluorescence interference is extremely useful. Thus, we concluded that 

13964 still exhibited an interesting blocking activity at hP2X4, however, when tested on HEK293-

HP2X4 via YO-PRO-1 uptake produces an assay interference.  

Once the hit 1513 was validated, we evaluated the last set of compounds: 63499, 113928, 135831 

and 1969. As shown in Figure 5.13, while 135831 and 1969 both demonstrated a concentration-

dependent inhibition (83 ± 9%, 46 ± 8%, 25 ± 7%, and 89 ± 11%, 66 ± 1%, 55 ± 4% at 100, 30, 3 and 

0.3 µM, respectively), other  compounds (63799 and 113928) did not display any significant 

inhibitory effect within our cut-off limit. Thus, two other hits (135831 and 1969) were validated on 

1321N1-hP2X4.  
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Figure 5.13. Application of the compounds (63799, 113928, 135831 and 1969) from the NCI-DTP 
library in 1321N1-hP2X4. The compounds were pre-incubated at either 100, 30 or 3 µM 
concentration (n=4). Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM) and BX430 
(10 µM) as the controls. Significant differences between the control (10 µM ATP) and the venom are 
indicated by *(P < 0.05) using one-way ANOVA followed by Dunnett's test.  

 

So far, the experiments were performed without the prior awareness of the structural information 

of the compounds – mainly to avoid any potential biases. However, once all the hits were confirmed, 

we took a careful look at their chemical structures (Figure 5.14). All four hits (1513, 13964, 135931, 

1969) contained an indole pharmacophore and a substituted aliphatic chain at the position 3 that 

brings with it the hydrogen bonding ability (either donating or accepting). Longer chains might also 

be well tolerated (1513, 135931).  
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Figure 5.14. Selected indole-like “hit” compounds from the NCI-DTP library. Shown are structural 
examples of hits (1513, 13964, 135931 and 1969) from NCI-DTP database that showed promise in 
our bioassays.  

 

When comparing the potencies of our four identified NCI-DTP hits, we noted that while on HEK293-

hP2X4 the compounds were ranked as 1513 > 1969 > 13964 > 135831, this characteristic was 

different in 1321N1-hP2X4 cell line: 1969 > 135831 > 1513. This might merely be a consequence of a 

different cell line. Yet, in order to fully determine the potencies, we conducted another set of 

experiments; here, we aimed to determine IC50 of the above hits, and see whether their chemical 

structures might hold a clue for elucidating the structure of LK-601. Critically, we attempted to 

determine IC50 not only for hP2X4 (in HEK293-hP2X4) but also for hP2X7 (in HEK293-hP2X7). Since LK-

601 was shown to inhibit hP2X4 but not hP2X7, we hypothesized that a particular structural element 

within the identified hits might play a role in blocking hP2X4 but not hP2X7.   

First, we characterized 1513 (Figure 5.15), and confirmed an inhibition of 60 ± 6%, 40 ± 2%, and 25 ± 

4% at 100, 30, and 10 µM, respectively, however, this effect was similar in HEK293-hP2X7 cell line as 

well (59 ± 4%, 41 ± 5%, and 15 ± 4% 100, 30, and 10 µM, respectively).  
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Figure 5.15. Dose-dependent inhibition of 1513. The compound 1513 was pre-incubated at either 
100, 30, 3, 0.3 or 0.1 µM concentration (n=4) and tested in A) HEK293-hP2X4 and B) HEK293-hP2X7. 
Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM), BX430 (10 µM) and ATP (300 
µM), AZI106 (10 µM) as the controls for P2X4 and P2X7, respectively. Significant differences 
between the control (10 µM ATP or 300 µM ATP) and the venom are indicated by *(P < 0.05) 
using one-way ANOVA followed by Dunnett's test. On the chemical structure, blue represents a 
nitrogen donor and red depicts an oxygen acceptor – both of which are susceptible of forming 
hydrogen bonds with the amino acid residues (protein/target).   

 

Second, we characterized 13964 (Figure 5.16), and confirmed the hP2X4 inhibition of 52 ± 2%, 38 ± 

3%, 33 ± 3%, 29 ± 4 %, 25 ± 3%, and 18 ± 2%  at 100, 30, 10, 3, 1 and 0.3 µM, respectively.  

 

Figure 5.16. Dose-dependent inhibition of 13964. The compound 13964 was pre-incubated at either 
100, 30, 3, 0.3 or 0.1 µM concentration (n=4) and tested in A) HEK293-hP2X4 and B) HEK293-hP2X7. 
Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM), BX430 (10 µM) and ATP (300 
µM), AZI106 (10 µM) as the controls for P2X4 and P2X7, respectively. Significant differences 
between the control (10 µM ATP or 300 µM ATP) and the venom are indicated by *(P < 0.05) 
using one-way ANOVA followed by Dunnett's test. On the chemical structure, blue represents a 
nitrogen donor and red depicts an oxygen acceptor – both of which are susceptible of forming 
hydrogen bonds with the protein/target.   
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When probing the same hit on HEK293-hP2X7, an inhibition of 42 ± 7% was observed only at the 

relatively high concentration of 100 µM. Next, we assessed 135831 (Figure 5.17), and confirmed the 

hP2X4 inhibition of 83 ± 1%, 37 ± 2%, 27 ± 3%, 14 ± 3%, 13 ± 3%, and 2 ± 1% at 100, 30, 10, 3, 1 and 

0.3 µM, respectively. When evaluating the same hit on HEK293-hP2X7, a striking inhibition of 96 ± 2 

% and 95 ± 1% was observed at 100 and 30 µM concentration with 81 ± 5%, 37 ± 3% and 4 ± 3%, and 

5 ± 7% at  10, 3, 1 and 0.3 µM, respectively.   

Figure 5.17. Dose-dependent inhibition of 135831. The compound 135831 was pre-incubated at 
either 100, 30, 3, 0.3 or 0.1 µM concentration (n=4) and tested in A) HEK293-hP2X4 and B) HEK293-
hP2X7. Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM), BX430 (10 µM) and ATP 
(300 µM), AZ106 (10 µM) as the controls for P2X4 and P2X7, respectively. Significant differences 
between the control (10 µM ATP or 300 µM ATP) and the venom are indicated by *(P < 0.05) 
using one-way ANOVA followed by Dunnett's test. On the chemical structure, blue represents a 
nitrogen donor and red depicts an oxygen acceptor – both of which are susceptible of forming 
hydrogen bonds with the amino acid residues (protein/target).   

 

Finally, the last hit – 1969 (Figure 5.18) was evaluated, however, we only managed to confirm the 

hP2X4 inhibition of 44 ± 5%, 29 ± 4%, and 0 ± 11% at 100, 30, and 10 µM, respectively. However, this 

compound was more potent at the HEK293-hP2X7, showing the inhibition of 59 ± 4%, 42 ± 3%, 32 ± 

6%, and 23 ± 3 at 100, 30, 10 and 3 µM, respectively.   
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Figure 5.18. Dose-dependent inhibition of 1969. The compound 1969 was pre-incubated at either 
100, 30, 3, 0.3 or 0.1 µM concentration (n=4) and tested in A) HEK293-hP2X4 and B) HEK293-hP2X7. 
Data is presented as the mean ± SD with ATP (10 µM), IVM (3 µM), BX430 (10 µM) and ATP (300 
µM), AZI106 (10 µM) as the controls for P2X4 and P2X7, respectively. Significant differences 
between the control (10 µM ATP or 300 µM ATP) and the venom are indicated by *(P < 0.05) 
using one-way ANOVA followed by Dunnett's test. On the chemical structure, blue represents a 
nitrogen donor and red depicts an oxygen acceptor – both of which are susceptible of forming 
hydrogen bonds with the amino acid residues (protein/target).   

 

Once it became apparent that the three structural elements (indole ring, the 3-substituted aliphatic 

(negatively and/or positively charged, and no substitution at the position 2 chain) might be 

important for an inhibitory activity at hP2X4, we looked at the structures of both, hits and no-hits 

(Figure 5.19), and some conclusions were made:  

1. The indole group alone is not enough for the inhibitory activity at hP2X4 

2. The indole ring might be replaced with another suitable aromatic group  

3. The polyamine chain alone is not enough for the inhibitory activity at hP2X4 

4. A hydroxyl group (-OH) at position 5 of the indole ring does not affect the hP2X4 activity, 

thus this substitution might be well tolerated 

5. A primary amine with a two carbon spacer in position 3 of the indole is not essential for the 

P2X4 activity as previously thought after the first indole screening   

6. Longer aliphatic side chains are well tolerated 

7. An amine on the sidechain needs more than one carbon spacing from the indole  
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Figure 5.19. Hits and other indole-like compounds from the NCI-DTP library that did not show 
promised as the hits (“no hits”). Shown are structural examples of “hits” (6, 8, 7, 13964, 1969, 1513, 
135931) (left) and “no-hits” (1, 2, 3, 4, 5, 17815, 16892, 17812, 69799, 329271, 113928, 673655, 
608048, 369856, and 339919) that did not show any meaningful effect in our bioassays (right). 
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5.2.1.3. An Indole-based Acylpolyamine (Argiopinin-1) Does Not Modulate hP2X4 

To find out whether the combined structural elements (1H-Indole that is acetylated with the 

polyamine chain on the 3 position of the indole ring) might play a role in blocking hP2X4, we tested 

Argiopinin-1 – an indole-based acylpolyamine initially isolated from the crude Argiope lobate venom 

(Figure 5.20).282  

Figure 5.20. The chemical structure of Argiopinin-1.  

 

Argiopinin-1 was demonstrated to be an antagonist of glutamate receptors, containing the 1H-Indole 

ring, and aliphatic polyamine chain, however, with an arginine residue and a hydroxyl residue in the 

chromophore. The amino acid fragment is especially important for the biological activity at the 

glutamate receptors with the role of hydroxyl groups still being unclear.282 

Since Argiopinin-1 was shown to block (different) glutamate receptors in range of 1-10 µM, with a 

complete block at 10 µM,282 10 µM was chosen to examine the effect of the toxin on hP2X4. As seen 

on the Figure 5.21, Argiopinin-1 was not able to block Ca2+ responses via hP2X4 activation by 10 µM 

ATP. However, a modest inhibition of 19 ± 18% was achieved, which – when statistically assessed by 

One-way ANOVA (Dunnet’s multiple comparison test) – have not resulted as significant inhibition of 

hP2X4 in 1321N1-hP2X4 cells (Figure 5.21A). When examining the antagonizing ability of 10 µM 

Argiopinin-1 on an ATP concentration response, the toxin was not able to produce any measurable 

antagonism of subsequent P2X4 agonist responses (Figure 5.21B), suggesting that Argipinin-1 does 

not appear to block P2X4 responses.  
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Figure 5.21. Evaluating the effects of argiopinin-1 on 1321N1-hP2X4 cell line. A: Pre-incubation of 
1321N1-hP2X4 with 10 µM Argiopinin-1, together with the positive (10 µM ATP) and negative 
control (10 µM BX430), as assessed with the Fura2 dye. B: ATP dose response when 1321N1-hP2X4 
were pre-incubated with the Argiopinin-1 (10 µM) with BX430 (10 µM) as the control antagonist. 
Data is presented as the mean ± SD with 10 µM ATP as a control, obtained in three independent 
experiments (n=3). The dashed line represents 100% hP2X4 activity as followed by 10 µM ATP 
application.  

 

This set of results with polyamines, indole-like compounds, and finally acylpolyamine showed some 

apparent features: 1H-Indole with no additional substitution on the aromatic ring, and substitution 

with a polyamine chain on the position 3 without the additional charges (amino acid residues) might 

be some of the essential elements of LK-601. However, the full structure of LK-601 which would 

confirm these observations, and shine a light on whether LK-601 is linear or cyclic, has not been 

elucidated. Despite these discrepancies, we decided to proceed with the chemical synthesis of 

structurally similar analogues of LK-601 and hope to find a smaller, yet potent and selective, 

analogue against hP2X4.  

 

5.2.2. Chemical Synthesis of LK-601 Analogues 

So far, numerous reports described the synthesis of acylpolyamines using a solid-state synthesis274, 

276, 367 as described in the introduction section of this chapter. However, this approach requires a 

minimum of three steps, expensive reagents, and would involve the use of suitable linkers and 

protecting group strategies.303, 404-405 Since we wanted to synthetise a number of simple 

acylpolyamines with a 1H-Indole pharmacophore that would be substituted on either 2 or 3 position 

with or without a short –CH2– linker, we had to adapt a more economical and rapid, yet effective, 

approach that would give us the desired molecules.  
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One such method, described by Krapcho,406 Blagbrough and co-workers,381 and later improved by 

Burns,380 calls for the selective monosubstitution of the polyamines. Here, the polyamine (e.g. 

spermine) is treated with the acylating reagent (e.g. activated ester), thus yielding a mixture of two 

compounds – monosubstituted primary amide product (monomer) and its disubstituted analogue 

(dimer) with a higher yield of a desired monomer. In our case, 1H-Indole-3-carboxylic acid, 1H-

Indole-3-acetic acid and 1H-Indole-2-carboxylic acid were used to form activated esters with 4-

nitrophenol, resulting in activated 4-nitrophenyl esters. Once each activated ester was synthetized, 

it was then coupled directly to spermine (1 equiv) to give a mixture of mono- and disubstituted 

products together with the unreacted starting material (Figure 5.22).    

Figure 5.22. Reaction outline for the chemical synthesis of Lucas analogues (LA).  

 

As shown in Figure 5.22, the compounds 1-2 were obtained in two steps. In the first step, either 1H-

indole-3-carboxylic acid, 1H-indole-3-acetic acid or 1H-indole-2-carboxylic acid were esterified with a 

4-nitrophenol (0.9 eq) using HATU (1 eq) and DIPEA (2 eq) as the coupling reagents in DMF over 24h 

at the room temperature. Then, the activated esters were used as the precursors for compounds 1-

2. By amidation of activated esters with spermine (1 eq) in methanol under nitrogen conditions at 

the ambient temperature, and subsequent pH adjustment with HCl, the predominantly 

monosubstituted 1a (LA-1), 1b (LA-5) and 1c (LA-3) acylpolyamines as well as disubstituted 2b (LA-2) 

and 2c (LA-4) acylpolyamines were obtained (Figure 5.23).  
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Figure 5.23. Structures of Lucas analogues (LA). 1a represents a monomer LA-1, 1b represents a 
monomer LA-5, 1c represents a monomer LA-3, 2b represents dimer of LA-5 denoted as LA-2, 2c 
represents dimer of LA-3 denoted as LA-4. 

 

The ratio of primary amine to activated ester was critical in order to avoid di-protection (-NH2) and 

polyprotection (-NH-). The higher nucleophilicity of the secondary amines (-NH-) is masked by 

corresponding steric effects, thus selectivity for primary over secondary amines.381, 407 This way, 

reasonable yields of desired monosubstituted products were obtained (67 – 91%) with sufficient 

yields of the disubstituted products. However, 2a was not obtained and the reason for this 

discrepancy are yet unclear. This crude mixture of mono- and disubstituted products were 

effectively separated using a preparative HPLC (Figure 5.24), and the purity of monomers and dimers 

confirmed (> 95%). All monosubstituted analogues gave satisfactory analysis by 1H and 13C-NMR, 

HRMS by ESI(+)/ESI(-) and/or melting point determination (Supporting Information).   
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Figure 5.24. HPLC Chromatogram of toxin analogues. HPLC shows the purification of LK-601 
analogues with three represented peaks. Peak 1 and 2 are denoted as monomer and dimer, 
respectively, while peak 3 is a starting material (1H-indole-3-carboxylic acid, 1H-indole-3-acetic acid 
or 1H-indole-2-carboxylic acid).  

 

5.1.1. In Vitro Evaluation of LK-601 Analogues 

Here, a series of 5 analogues (LA1 – LA5), structurally inspired by LK-601, were investigated with the 

YO-PRO-1 assay. These compounds were initially tested at 30, 10 and 1 µM for their potency to 

inhibit ATP-induced YO-PRO-1 uptake in either stable HEK293-hP2X4 or HEK293-hP2X7. The 

experiments were conducted together with the ATP control (5 µM) and BX430 (10 µM) in case of 

hP2X4, and ATP control (300 µM) and AZ10606120 (10 µM) in case of hP2X7. Starting material (SM) 

was tested subsequently (1H-indole-3-carboxylic acid [SM-1], 1H-indole-3-acetic acid [SM-2] or 1H-

indole-2-carboxylic acid [SM-3]) (Figure 5.25).  
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Figure 5.25. Effects of LK-601 analogues. Dose-dependent effect of A) LA-1 and LA-2; B) LA-3 and LA-
4; and (C) LA-5 on HEK293-hP2X4. Dose-dependent effect of D) LA-1 and LA-2; (E) LA-3 and LA-4; and 
(F) LA-5 on HEK293-hP2X7. % of activation means 100% hP2X4 activity as followed by ATP 
application. Data points represent the mean ± SD of five replicated experiments. Significant 
differences between the control (ATP) and the venom are indicated by * (P < 0.01) using one-way 
ANOVA followed by Dunnett's test.  

 



193 
 

When testing LA-1 and LA-2 no significant dose-dependent inhibition was observed (Figure 5.25A), 

and the only (however modest) inhibition was found with LA-2 at 30 µM (18 ± 3%), yielding these 

analogues virtually inactive towards hP2X4. SM-1 exhibited an inhibition of hP2X4 in range of 26% 

when 10 µM concentration was tested.  On the contrary, LA-3 exhibited an inhibition of 95 ± 2%, 73 

± 2%, and 53 ± 3% with 30, 10 and 1 µM, respectively.  

The corresponding dimer of LA-3, LA-4, also displayed inhibition of hP2X4 with 55 ± 4%, 39 ± 3% and 

8 ± 2% with 30, 10 and 1 µM, respectively (Figure 5.25B). While 30 µM of the SM (1H-indole-3-acetic 

acid) displayed 26 ± 2% inhibition, lower concentration were found to be ineffective. The LA-5 

analogue and its respective SM (1H-indole-3-carboxylic acid) did not show an inhibitory effect 

confirmed with LA-3, still, LA-5 displayed an inhibition of 32 ± 3%, 13 ± 4%, and 2 ± 5% with 30, 10 

and 1 µM, respectively (Figure 5.25C). Following the hP2X4 assay, LA analogues were probed against 

hP2X7, however, neither of them profoundly inhibited hP2X7 in HEK293-hP2X7 cells, although LA-3 

and LA-5 showed an inhibition of 27 ± 4%, 23 ± 3%, 1 ± 6%, and 29 ± 6%, 19 ± 4%, 10 ± 3% with 30, 

10 and 1 µM, respectively (Figure 5.25D-F).  

Overall, the potencies of LA against hP2X4 follows as: LA3 > LA4 > LA5 >> LA1 > LA2. With LA-3 being 

the most potent compound (73% inhibition at 10 µM), it became clear that the short methylene (-

CH2-) linker between the indole and acetylated polyamine chain on the position 3 may be essential 

for the inhibitory activity of LA-3 towards hP2X4.  Since only LA-3 showed potent inhibition within 

the concentration range of 1-30 µM, full concentration-response curves were determined and IC50 

values were calculated for this compound (Figure 5.26). An ATP concentration of 2 µM (which 

caused ~50% of the maximal effect as shown in Chapter 3), was used for receptor stimulation. While 

LA-3 exhibited an IC50 value of 18.6 ± 5.6 µM in 1321N1-hP2X4 (Figure 5.26A), it was found to be 

slightly more potent when evaluated on HEK-hP2X4 (YO-PRO-1), displaying an IC50 of 9.67 ± 0.96 µM 

(Figure 5.26).  
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Figure 5.26. Effects of LK-601-inspired analogue LA-3. A: Dose-dependent inhibition of LA-3 with 
IC50 =18.6 µM and IC50=365.4 µM on 1321N1-hP2X4 and 1321N1-mP2X4 with no effect on 1321N1-
rP2X4. B: The effect of LA-3 seen on 1321N1-hP2X4 was validated with the dose-dependent 
inhibition of LA-3 on HEK293-hP2X4 (IC50=9.67 µM) with no effect towards hP2X3 and hP2X7 in the 
same cell line. 

  

For P2X4 receptor, large species differences between potencies at human versus rodent P2X4 have 

been described.153, 166 Thus, we investigated the sensitivity of diverse P2X4 orthologues to the 

inhibitory effect of LA-3 at mouse and rat P2X4 receptors, using 1321N1-mP2X4 and 1321N1-rP2X4 

(Figure 5.26A) and calcium influx assays.  
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Despite the high similarity with human P2X4, rat P2X4 channels (87% amino acid identity) ATP-

evoked calcium responses were not affected by the application of LA-3 in the concentration range 

0.1 – 30 µM.  

In contrast, mouse P2X4 receptors (95% amino acid identity) displayed a modest sensitivity to LA-3 

with IC50 being 365.4 ± 19 µM, yielding LA-3 approximately 20-fold less potent on mouse versus 

human P2X4.  These results not only showed that species differences may be common for P2X4 

receptor antagonists, but also points out to the different binding modes of LA-3 against 

human/rat/mouse P2X4.  

Furthermore, selectivity of the most potent analogues was assessed versus hP2X3, and hP2X7 in 

stably expressing HEK293 cells via YO-PRO-1 assay. As shown in Figure 5.26B, LA-3 displayed a good 

selectivity towards hP2X4 over hP2X3 and hP2X7 with virtually no inhibitory activity towards these 

two otherP2Xs. These results indicate that LA-3 can be used as a good starting point to develop 

selective indole derivatives as well as antagonists for hP2X4.      

 

5.1.1.  Ligand Docking and Prediction of Binding Mode to hP2X4 of LA-31   

Due to the differential sensitivity of LA-3 to block P2X4 orthologues, the alignment of the amino acid 

sequences of human/rat/mouse P2X4 was used as an approach for the identification of amino acids 

and/or subdomains accountable for the inhibitory effect of LA-3. Thus, we specifically looked for 

residues identical or similar of LA-3-sensitive human P2X4 orthologues while physicochemically 

different in LA-3-resistant rat orthologues (Figure 5.27).  

Since it has been reported that polyamines, such as spermine, are highly protonated at physiological 

pH (85% tetracation, 15% trication), the ability for polyamine chain to interact with the carboxylate 

anions fixed to the backbone of a protein might offer clues about LA-3 binding pocket. However, this 

might be open for discussion since we don’t have knowledge about how relevant these cationic 

interactions are on the surface where hydration plays an important role as well.  

 

 

                                                           
1 The figures for this subchapter were generated by Dr Marco M.D. Cominetti.  
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Figure 5.27. Alignment of the amino acid sequences of human (first row), mouse (second row) and 
rat (third row) with marked sites (S1 –S9) depicting the differences in the amino acid residues. The 
red lines mark the N and C-terminal, which are not available in the crystal structure of zebrafish 
P2X4 (pdb 4dw0).  

 

Still; two available crystal structures of P2X4 were inspected (pdb 4DW0, 4DW1) and the structure of 

zebrafish P2X4 in its closed, apo state (pdb 4DW0) was selected to build the homology models of 

human and mouse P2X4 prior to the identification of potential LA-3 binding sites. Among nine 

potential binding sites (S1 – S9), S1 was particularly interesting because major differences in charged 

residues are present in all three orthologues (Figure 5.28). Furthermore, the region is involved in 

conformational changes upon ATP binding and subsequent channel opening. 
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Figure 5.28. Model of a single human P2X4 subunit in surface view (A) and ribbon view (B). The 
spots of interest (S1 – S7) which present mutations between rat and mouse are highlighted in green. 
The surface displays positively charged (blue) and negatively charged (red) areas.  

 

Other interesting spots were also S2 and S3 – while S2 is located just above the ATP binding site, S3 

is not involved in known conformational changes upon channel opening. However, we attempted to 

dock LA1 – LA5 compounds to S2 but the only mutation which differs between rat and mouse (A199 

> V199) does not appear to be relevant and could not easily explain the differences observed in the 

assays.  

Other potential binding sites (S4 – S9) didn’t involve any interesting pockets or residues that might 

explain the differences in binding; S4 mainly involved the mutations between hydrophobic residues 

while the major changes appear to be on the distal part, far from regions involved in conformational 

changes; S5 site contains only one different amino acid residue (His in rat P2X4 and Leu in 

human/mouse) with the surrounding residues being conserved in all three isoforms; S6 is a 

transmembrane domain with highly lipophilic amino acid residues that may be difficult for 

antagonist to access; S7 is distant with no conformational change in the area; S8 is part of the centre 

of the P2X4 which makes it inaccessible for the antagonists; and S9 is an intracellular domain for 
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which the structural information is not available. Thus, we focused on S1 and predicted in silico 

binding of LA1 – LA3 to human and mouse P2X4.  

As seen in Figure 5.29A-C, LA-3 seems to wrap around the double loop constituted by residues 217 – 

228 where the positively charged spermidine chain interacts with two negatively charged aspartate 

(D) residues (220, 224) while the carbonyl oxygen forms a hydrogen bond with the backbone 

hydrogen of Ala (A221), Lys (K234) and Asn (N210). The last amino group on the polyamine tail 

interacts with two backbone residues, namely D224 and T223. The indole group is arranged in 

hydrogen bond interactions with the backbone of Tyr (Y274). On the contrary, LA-5 does not 

maintain that same orientation and lacks some crucial interactions seen with LA-3 (Figure 5.29D-F). 

This might possibly explain the difference in activities between LA-3 and LA-5.  
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Figure 5.29. Modelling of the LA in human P2X4. Docking of the LA-3 on the homology model of 
human P2X4 based on X-ray crystallographic data of the zebrafish construct ΔzfP2X4(A)-GFP in its 
closed state (pdb code 4DW0) in either A) ribbon, B) surface or C) structural view. Docking of the LA-
5 on the homology model of human P2X4 based on X-ray crystallographic data of the construct 
ΔzfP2X4(A)-GFP (pdb code 4DW0) in either D) ribbon, E) surface or F) structural view.  
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We then checked how LA-3 docks within mouse P2X4 (Figure 5.30A-C). While LA-3 maintains similar 

orientation within mouse P2X4 as in human P2X4 binding pocket, it forms only one interaction 

(D224) between the last amino group of polyamine tail and receptor backbone instead of two (D224, 

T223). It is interesting to note how an altered sequence (N220/D238 in mouse and D220/N238 in 

human) doesn’t allow for similar interactions between the positively changed residues on the 

polyamine tail and protein backbone. Furthermore, this swap restrains the carbonyl oxygen that is 

now able to interact only with R222. However, this third mutation between human/mouse (R222 > 

K222) still allows the sidechain of the arginine to maintain hydrogen bonding interactions with the 

carbonyl oxygen and π-stacking with the indole, while the amide hydrogen interacts with the 

carbonyl of D238. The different position of the indole allows the hydrogen bond interaction of the 

indole N-H with the hydroxyl group of Y219. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30. Modelling of the LA-3 in mouse P2X4. Docking of the LA-3 on the homology model of 
model P2X4 based on X-ray crystallographic data of the zebrafish construct ΔzfP2X4(A)-GFP in its 
closed state (pdb code 4DW0) in either A) ribbon, B) surface or C) structural view. 
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5.1.2. Structural Basis for the Pharmacological Properties of LA-3 

To look closer into the nature of interaction between LA-3 and human P2X4, we carried out a series 

of systematic substitutions of human and rat P2X4 amino acids (Table 5.2). Since our docking studies 

indicated that two residues - D220 and N238 – might be the crucial players in LA-3 interaction with 

hP2X4, our hypothesis was that we would lose LA-3 sensitivity to hP2X4 while increase the sensitivity 

of rP2X4 to LA-3. Two of these residues (D220, N238) were replaced with amino acids with different 

side chains, such as nonpolar neutral (alanine) and either polar neutral (asparagine) or negatively 

charged (aspartate) in hP2X4.  

Table 5.2. Summary of amino acid substitutions in our generated mutants targeting either human 
or rat P2X4. 

Receptor Mutations  

human P2X4 

D220>A 

D220>N 

K222>A 

N238>D 

N238>A 

K234>A 

rat P2X4 
N220>D 

D238>N 

 

Plasmids encoding P2X4 mutants derived from human and rat P2X4 were transiently transfected in 

HEK293 cells and a YO-PRO-1 dye uptake assay was performed 48 h later. All mutants of human and 

rat P2X4 generated consistent responses evoked by 30 µM ATP, however, the responses were lower 

than the wild-type P2X4. This tells us that while the mutants are fully functional and the mutations 

do not profoundly affect the ATP binding, S1 domain is, as predicted, involved in conformational 

change upon binding of ATP (Figure 5.31).  
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Figure 5.31. Effect of different mutant variants of hP2X4 and rP2X4 on ATP responsiveness. 
HEK293 cells were transiently transfected with plasmids encoding for different hP2X4 and rP2X4 
mutants and stimulated with either 3, 10, 30 or 100 µM ATP. In every group, each bar represents a 
single concentration of 3, 10, 30 or 100 µM ATP and these numbers are denoted with hP2X4 WT. 
The arrow represents a concentration of 30 µM where the responses were the most consistent with 
the WT and the mutants. Data points represent the mean ± SD of three replicated experiments.  

 

To monitor whether we can block the ATP-evoked response of hP2X4, the transiently transfected 

HEK293 cells were exposed to BX430 (10 µM) and YO-PRO-1 dye uptake in response to ATP was 

measured. It has been shown that BX430 may bind to I312 in human P2X4 and that the nature of this 

extracellular residue in either rat or mouse P2X4 might cause the variability in the sensitivity of 

BX430 to block P2X4 orthologues;408 thus we chose to use BX430 as a good control inhibitor for 

these studies. PSB12062 was chosen for rP2X4 since it was shown by us and others that BX430 does 

not block rP2X4.166 As shown in Figure 5.32, 10 µM of BX430 managed to block >90 % of ATP-evoked 

responses in the hP2X4 wild type and all the mutants except in K234A (82%). In case of PSB12062, 

that block was noted to be 46% and 69% with D238>N and N220>D, respectively.  
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We observed that while LA-3 managed to block hP2X4 WT (55 ± 8%), that inhibition was less 

pronounced with D220>A (22 ± 7%) and N238>A (27 ± 10%) – see the summary of results in Table 

5.3. A similar impact of replacing alanine with either asparagine (D220>N) or aspartate (N238>D) 

was found, however, with lower sensitivity (32 ± 12% and 35 ± 7% of inhibition with D220N and 

N238D, respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32. The inhibitory effect of LA-3 on different mutant variants of hP2X4 and rP2X4. HEK293 
cells were transiently transfected with plasmids encoding for different hP2X4 and rP2X4 mutants 
and stimulated 30 µM ATP. In every group, each bar represents either application of ATP (30 µM), 
BX430/PSB12062 (10/50 µM) or LA-3 (10 µM). Data points represent the mean ± SD of three 
replicated experiments.  

 

The importance of the chosen amino acids substitution have been suggested before by Ase et al.408 

where they noted a similar trend. Even more, they showed that while I312A, I312L and I312F result 

in loss of sensitivity to BX430, the mutants with aromatic side chains I312Y and I312W showed a 

significant potentiation of the ATP response in the presence of BX430.408 The differential impact of 

amino acid substitutions at one position on the sensitivity of human P2X4 to LA-3 might be 

demonstrated by this data. 
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Table 5.3. Summary of % of P2X4 inhibition by LA-3 (10 µM). 

Mutant 
% of P2X4 inhibition 

(LA-3) 

hP2X4 WT 55 ± 8 

hP2X4 D220A 22 ± 7 

hP2X4 D220N 32 ± 12 

hP2X4 K222A 30 ± 11 

hP2X4 N238D 35 ± 7 

hP2X4 N238A 27 ± 10 

hP2X4 K234A 48 ± 11 

rP2X4 WT 12 ± 5 

rP2X4 N220D 10 ± 2 

rP2X4 D238N 11 ± 4 

 

Two other substitutions at human P2X4, namely K222A, K234A, did not profoundly affect the 

sensitivity of LA-3 to inhibit hP2X4 (% inhibition was noted to be 30 ± 11% and 48 ± 11%) in these set 

of assays. Unexpectedly, substitutions at the positions 220 and 238 of rat P2X4 did not make these 

mutants more sensitive to LA-3. In comparison to wild type rat P2X4 (12 ± 5% of inhibition), similar 

block is observed with either residues (10 ± 2% and 11 ± 4% at N220>D and D238>N, respectively). 

Nevertheless, we could not exclude the influence of different cell populations on YO-PRO-1 

responses; typically, transient transfection results in cells transfected with the mutated plasmid 

(mutants) and non-transfected cells, however the expression levels in transiently transfected cells 

usually varies. This might indeed explain the variability in ATP-evoked as well as LA-3 inhibiting 

responses.   

To mitigate this effect, we could select the P2X4-selected cells based on their antibiotic resistance 

and try to generate a variety of stable cell lines. In the latest scenario, the variability in ATP-evoked 

YO-PRO-1 responses might be reduced since the level of expression would be similar.  

In summary, we report a novel antagonist of hP2X4, LA-3, which has been identified based on our 

fragment-based screening approach, and which guided us towards a chemical synthesis of similar 

toxin analogues.   



205 
 

LA-3 has demonstrated to inhibit hP2X4 with IC50 of 9.7 - 18.6 µM and showed selectivity to hP2X4 

over hP2X3, hP2X7 and rP2X4 with a modest inhibition at mP2X4 (IC50 = 365.4 µM). Due to the 

differential sensitivity of LA-3 to block P2X4 orthologues, homology models of human, mouse and rat 

P2X4 were build and the potential binding site was identified. The validation of the predicted amino 

acid residues in binding LA-3 showed that D220 and N238 might be involved in LA-3 binding site, 

however, more experiments are needed to fully confirm that effect. 

 

5.2. Conclusions  

This chapter provide evidence for the existence of a smaller molecule, LA-3, based on a spider 

venom toxin, that is able to inhibit human P2X4 with a reasonably low potency and acceptable 

selectivity profile. Furthermore, by comparing the primary sequences of LA-3 sensitive and/or 

resistant P2X4 orthologues (mouse, rat and human P2X4), we were able to predict two residues (at 

position D220 and N238 in human P2X4) as the potential determinants for the inhibitory effect of 

LA-3. However, due to the variability of our ATP-evoked responses in the last set of experiments, we 

could not convincingly provide the evidence for the existence of a novel allosteric binding site for LA-

3.    

In the past decade, the combination of HTS and fragment-based screening, together with the 

untapped potential of natural products libraries, have increased hit rates for molecules of low 

complexity.409 Since each of these strategies might not represent a “one size fits all” solution for the 

problems of drug discovery against P2X targets, the combination of these approaches might explore 

that chemical space more effectively. That might especially hold true in our case, when limited 

supply of venom and instability issues with the inhibitory toxin (LK-601) prevented to get a 

meaningful NMR spectroscopic fingerprint, and thus achieve a full structural elucidation of such 

toxins.  

Based on the structural hits of the LK-601, we attempted to circumvent these issues by adapting a 

fragment-based approach. Using four polyamines and applying a library of indole-like compounds 

against hP2X4, we aimed to discover structural motifs with inhibitory activity towards hP2X4.  

While no polyamine has been identified as a potential fragment with the inhibitory activity against 

hP2X4, indole-like compounds, such as tryptamine, tryptophan and serotonin were found to 

significantly inhibit hP2X4 up to 43% with 10 µM concentration.  
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Once it became apparent that these structural elements might hold a key to a novel pharmacophore 

with the ability to block hP2X4, the SMARTS algorithm was carried out, and subjected to the NCI-DTP 

library. After a pre-programmed cluster analysis of hits with more than 90% similarity, 22 

representative compounds were suggested (out of 1047 in total, 2%).  

However, only 14 compounds were available in sufficient amounts and were subjected to our 

biological assays. Using YO-PRO-1 assay, 4 of out of 14 compounds demonstrated a potent 

concentration-dependant inhibition: 1513, 1969, 13964, 135831. Their activity was confirmed using 

Fura-2 assay, however, the potencies were somehow different. This might merely be a consequence 

of using a different cell line, and different set of assay parameters.   

From our structural-activity investigations we found that both the indole ring and the 3-substituted 

aliphatic chain seem to contribute to the overall inhibitory effect at hP2X4. On the contrary, 

presence of the -OH group on the position 5 of the indole and a -COOH group on the position 2 of 

the carbon chain does not make a difference when trying to block hP2X4. The notion that a drug 

with an indole moiety might modulate P2X4 is not novel,410 however, a potent and selective 

antagonist for P2X4 with an indole pharmacophore still hasn’t been reported to date. For example, Li 

and Fountain410 have found that fluvastatin supresses hP2X4 function, however, the authors did not 

report an IC50 value for fluvastatin, and only showed a suppression of 10 µM fluvastatin once the 

cells were evoked by a relatively high concentration of agonist (100 µM). Furthermore, fluvastatin 

contains structural elements that do not seem to be similar to our structures.  

Furthermore, just recently, Beswick et al.171 reported an extensive SAR of some interesting indole-

like compounds (namely compound 10, 53, 58 and 108-145 in their paper). However, a visual 

inspection of these structures suggest that these compounds contain an indole with an additional 

aromatic ring (compound 10 and 108-145) or are substituted at 2 position (-CO-; -CONH-, 

compounds 58 and 53, respectively).171 While an indole might be an attractive feature, our 

investigations show that 3-substituted aliphatic chain seem to have a vital role in inhibiting hP2X4. 

Their robust fragment library series did not, unfortunately, contain any acylpolyamine-like 

structures. On the other hand, both – theirs and our studies – show that a struggle to identify 

consistent SAR is real.  

Since no acylpolyamine has been reported (to date) to have an inhibitory activity at P2X channels, 

we wondered whether the acylpolyamine-like structure can be a general structural motif that might 

explain the antagonistic effect. To probe that, we used Argiopinin-1 which was previously 

demonstrated to be an antagonist of glutamate receptors, containing the 1H-Indole ring, and a 

polyamine chain.  
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However, when examining the antagonizing ability of 10 µM Argiopinin-1 on ATP dose response, the 

toxin does not appear to block P2X4 responses. That might be due to additional structural motifs, 

such as arginine residue and a hydroxyl residue in the chromophore group, especially as it has been 

shown that the amino acid fragment is important for the biological activity at the glutamate 

receptors 282 but might not be relevant for P2Xs. 

To develop compounds with a reduced molecular weight that would resemble LK-601 structure, 

together with a desired potency, selectivity and improved stability, five analogues have been 

chemically synthetized. After biological evaluation against hP2X4, one of them, LA-3, has been 

discovered as potent and selective hP2X4 receptor antagonist. Our YO-PRO-1 and Fura-2 assays 

showed low micromolar level activity with IC50 values of 9.67 ± 0.96 µM and 18.6 ± 5.6 µM, 

respectively, at human P2X4, and good selectivity versus the other P2X receptor subtypes. Thus, LA-

3 may be a new starting point for the development of potent and selective P2X4 receptor 

antagonists, and these structural classes of compounds (acylpolyamines) might present room for 

further optimization with regard to affinity and improvement of their physiochemical properties.   

However, LA-3 was not equally active at rat and mouse P2X4 (zero activity at rat P2X4; IC50: mouse, 

365.4 µM). Thus, a differential effect of LA-3 may be dependent on a specific sequence or 

subdomain that is not shared between these P2X4 orthologues. This has been just recently 

suggested before by Ase et al.408 where they showed that only a single residue located in the 

ectodomain of P2X4 may determine the inhibitory activity of P2X4 antagonist BX430. Moreover, they 

demonstrated that the nature of this residue in various P2X4 orthologues, including mouse and rat, 

underlies the specific resistance to the antagonistic effects of BX430. Some previous examples of 

species-specific pharmacology in the P2X field include P2X3 antagonist R051,411 P2X4 antagonists 

suramin and PPADS,248, 412 P2X7 antagonist AZ11645373413 and positive allosteric modulator 

ivermectin.  

Focusing on the different subdomains between rat, mouse and human P2X4, our in silico predictions 

suggested that residues at position 220, 222, 234 and 238 might be involved in LA-3 differential 

binding to P2X4 orthologues. Critically, two residues, aspartate and asparagine at position 220 and 

238, respectively, that are swapped between human and rat (D220 and N238 in human; N220 and 

D238 in rat) might be essential for sub-species differences in LA-3 binding. However, once the 

systematic single mutations on these residues were carried out, the substitution of amino acids with 

different side chains (negatively charged aspartate at 220 with polar uncharged asparagine in 

human, and vice versa at the position 238) did still cause a minor inhibition (22 – 27%) of LA-3 at 10 

µM.  
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This series of mutagenesis experiments might or might not exclude our hypothesis that the 

predicted residues are crucial for LA-3 inhibitory activity. Since aspartate and asparagine are two 

predicted amino acids with the charged side chains, these physiochemical properties might be 

required for LA-3 binding and inhibitory effects.  

However, from this series of mutagenesis experiments, it might be premature to judge whether the 

single mutations at either D220, K222, K234 or N238 of human P2X4 render the channel insensitive 

to blockade by LA-3.  

It remains to be elucidated whether these amino acids are actually the key players in LA-3 

interaction with the human P2X4. Our future work would focus on probing whether the generation 

of stable cell lines of hP2X4 mutants or even a double-site mutations (D220A and N238A) might help 

to elucidate these effects. Furthermore, more amino acid substitutions targeting these residues in 

human P2X4 should be tested since a strong functional impact of replacing N220 (or N238) with 

alanine or asparagine/aspartate residues.  
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6.1. Introduction  

6.1.1. Science Communication  

People learn through observation and direct experience, but also by engaging in conversations with 

others. In fact, a defining human quality is our ability to learn from others, also known as social 

learning. In this context, science is an example of social learning at its best. However, not many 

people are trained in science. Even for those of us who are, it can be still challenging to read the 

literature outside of our field. For that reason we have to rely on science communication to inform, 

educate, share, and raise awareness of science-related topics. This way we can gather facts about 

issues on which we need to make decisions. Ultimately this means that science communication 

becomes a substitute for social learning within policymakers, scientists, educators, and research 

institutions.414 Yet, educating the public about particular scientific topics has been ineffectual.   

The underlying reason for this may be either widely publicized examples of scientific misconduct and 

commercialisation, like Theranos case,415 or scientific malpractice. These cases are not only 

misleading but seriously harm the public’s trust in science. Although most scientists agree that 

communicating science is necessary,416 the participation rates still remain low.417-418 Across 

disciplines, scientists don’t participate in public engagement activities as much. This might come 

down to various reasons, such as their attitude towards such activities and beliefs that they don’t 

feel prepared to successfully interact with the public.417-419 Since science shapes the life as we know 

it, we need to better engage the public with scientific discoveries,420 and help to restore credibility 

within the non-scientific community.  

Still, communicating science effectively often requires an unnatural act: collaboration across 

disciplines. Science communication practitioners might employ a different set of methodology that is 

more common among social scientists, and challenge norms and practises that life scientists want to 

adapt. Unless these two worlds fail to connect, with practitioners helping scientists to shape their 

communication, and scientists helping practitioners to structure the scientific information, the 

communication of science will suffer.421        

But sometimes the problem is broader. Haerlin and Perr422 framed a question of “who is responsible 

for the integration of scientific discoveries and where are the scientific authorities and the editorials 

challenging public and corporate research strategies and perspectives?”422  
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For that reason, some professional societies such as the Royal Society;419 funding agencies as the 

National Science Foundation; and publishing houses as Nature422 and Science,420 are calling for 

increased dialogue between life scientists and the public. In trying to improve the participation rates 

and the effectiveness of science communication, a more scientific approach, might be worth trying.  

For decades, the social sciences have collected a vast body of empirical evidence on how scientific 

outreach can be practised. The majority of these findings suggest that educating the public must be 

implemented with the same rigour as in science in order to effectively share findings with the 

public.423 Furthermore, to communicate scientific findings in a meaningful way, scientists need to 

adhere to effective, yet engaging, approaches.424 Since we live in a technological era, this quest has 

led educators in Science, Technology, Engineering, and Mathematics (STEM) to harness digital 

technology that would benefit engagement.  

 

6.1.2. Digitalization in Science Education  

There is growing evidence that people’s learning preferences are undergoing a major shift. For 

example, since it is now common for young people to grow up with technological aids such as 

computer games, the preferred leisure styles, social interactions and even learning styles of such 

pupils have adjusted. This generation is usually referred as a “net generation”;425 “digital natives”426 

or “gamer generation.”427 Thus, this new learning preference requires new ways of teaching. 

Csiksyentmihalyi428 argues that the “net generation” requires new motivations that capture and hold 

their attention, all while still engaging them in the learning process. By combining active learning, 

communication of science and popular culture in an informal educational setting, an awareness of 

natural sciences as well as engagement might be improved. Some of these examples include 

“PubScience”,429 “Reaction! Chemistry in the Movies”,430 “Wow”431 and “SciPop Talks”.432 While 

“SciPOP talks” and “PubScience” are the models of a successful campus outreach, “Wow” strategy 

uses movies and movie clips to teach chemistry.  

However, using movie aids in education is not a novel concept. The earliest guidelines for using 

video clips to teach science were proposed in Science in Cinema and later updated as Fantastic 

Voyages433.   These examples mainly focused on science fiction movies to teach scientific concepts in 

a physics course. Since then, the list of movies has expanded. Now, a vast array of movies based on 

true chemical narratives includes Apollo 13 (1995) and October Sky (1999). These examples drove 

discussions concerning lithium hydroxide carbon dioxide scrubbers, rocket fuel comparison, model 

rocket propellants, and persistence in the face of setbacks. Jurassic Park (1993) was used to facilitate 

discussions about cloning, protein and DNA structures, genetic engineering, and scientific ethics.  
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Yet, none of these examples provided empirical evidence that would clearly point out to the 

pedagogical utilities.     

It was not until 2003 that it was recognized that student understanding of science and scientists is 

strongly driven by movies and television cartoons, sitcoms, dramas and other out-of-school forces. 

During a more than a decade long search of identifying suitable movie clips for teaching and learning 

chemistry, Griep and others430-431 have incorporated dozens of pedagogically useful movies into 

public outreach lectures. However, as much as movies provide engagement and motivation in our 

digital society, their learning benefits are still restricted to the two dimensional environment. Since 

they lack the interactive three dimensional side of it, other means of animation-mediated learning 

may be worth exploring.   

 

6.1.3. A Science of Games  

Alongside educational movies, computer games may add a three dimensional layer to engagement. 

In recent years, educational games have received increased attention from educators and 

researchers.434 In this respect, gamification (application of game design elements and mechanics to 

engage users and solve problems) can be an appropriate way to improve learning and enhance 

public interest in STEM-related subjects.435 Since video games are user-centered, they promote 

challenges, engagement, active learning, and the development of problem-solving strategies.435  

Of course, the idea of playing to learn is not a new concept. But it was only in 2002, when an 

initiative known as serious gaming began. While usual games have a story, art and software, serious 

games also involve pedagogy; activities that educate and impart knowledge or skill. This addition is 

what makes games serious. Here, a development team usually includes scientists, communicators, 

subject matter experts, designers, and software developers. It was not until America’s Army - a 

recruiting tool game - had been released, that educators and game developers started thinking how 

to advance game technology for educational implementations.436-437  

Now, various research groups have explored the roles of these games in supporting pedagogical 

goals. Some of them resulted in games such as Chairs!;438 Chirality-2;439 and Say My Name.440 All of 

which have been shown to be useful instruments for learning specific strategies and acquiring 

chemical knowledge. But as much as this progress is valuable, it is also about investigating how these 

educational games may impact student academic performance. However, this type of research is not 

yet well established. Moreover, there’s been scarce evidence of research in educational gaming and 

researchers still struggle for its academic credibility.437  
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This may merely be a generation-gap issue because children who have grown up since the 1980s 

have been exposed to video games their entire lives (“digital natives”), while older generations have 

not had this opportunity.436   

Designing educational games that have a rich narrative is not an easy undertaking. HI FIVES, a joint 

effort of researchers in science, educators and computer scientists to improve science 

understanding among students, was the first one to provide a tool for teachers to design their own 

video games.441 By generating a much higher level of positive emotional engagement and making 

learning more appealing, students learned to think critically about the particular topic while 

simultaneously gaining embedded knowledge through interacting with the environment. 

Furthermore, these games motivated passive students to contribute more than they usually would 

in a conventional learning environment.  

With all that said, video games in the classroom are not a replacement for good pedagogy but 

merely an aid that engages students and provides avenues to learn challenging concepts in a 

comfortable environment.  

 

6.1.4. Virtual Reality as an Interactive Learning Environment  

At the forefront of the 21st century, gamers got a new tool to explore – virtual reality (VR). In 1997, 

Jayaram et al.442 defined VR as a “synthetic or virtual environment which gives a person a sense of 

reality” and a feeling of being there. On this continuum, VR is an artificial environment, allowing the 

user to interact within that environment using special electronic devices, such as VR goggles to allow 

a full-immersion.443-445 This way, the user suspends their disbelief and accepts it as a real 

environment.  

Several authors have already suggested that incorporating gaming aspects into immersive and 

interactive learning environments, such as VR, could be educationally beneficial. For example, Feng 

and others443 suggested it improves learning outcomes, “makes learning fun”, and offers powerful 

tools for “learning through doing”,443 as discussed in a comprehensive review.444 These researchers 

believe that VR has vast potential to engage, stimulate and motivate students; help to teach STEM 

topics such as astronomy or geology where gaining real-world first-hand experience might not be 

feasible; foster student’s creativity and imagination; assist students to be in charge of their learning 

at their own pace; and to build an authentic learning environment that suits various learning styles.  
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Furthermore, VR games have vast potential to reach an audience of hundreds of thousands to 

millions.445 Taken together with the challenges enticing the public to STEM subjects, and regaining 

the people’s trust and appreciation in scientific matters,446 VR games may come to the rescue.434, 447   

So far, several works have reported remarkably successful VR methods in chemistry education and 

outreach such as VR-Engage;448 calorimetric titration app;449 mixed reality software;450 and others 

such as Water VR, Molecular Zoo and Fishtank.450 One such example, mixed reality applied in 

chemical outreach and education, and showed numerous pedagogical benefits. Some of the 

students showed better engagement, more accurate and nuanced understanding of scientific 

concepts, and better clarity when articulating their thoughts.450  

Yet, none of these approaches tried to gamify any of the relevant research topics in VR, and evaluate 

them accordingly. Since the primary focus of my research is the application of spider venoms in 

alleviating chronic pain, I have chosen VR as an educational tool to present, communicate, increase 

awareness, and educate the public on this topic. Moreover, this topic has not been pedagogically 

utilized in VR yet. This context encouraged me to create Bug Off Pain – an educational VR game that 

aims to bridge the gap between scientific and non-scientific community (general public). Bug Off 

Pain is available for free worldwide on both Oculus Rift (computer) and Android (mobile) platforms 

by downloading the game or scanning its QR code. Here, the development and implementation of 

such a game is reported.   

 

6.2. Results and Discussion 

6.2.1. The Game 

The story of Bug Off Pain includes numerous elements from theatrical movies and encourages active 

learning in an immersive and interactive virtual theatrical world. While navigating in the VR 

environment, the players have the opportunity to discover information about chronic pain, 

biochemistry of animal venoms and engage themselves in competitive play on both VR platforms, 

Oculus Rift and Google Cardboards (Figure 6.1).  
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Figure 6.1. The graphical abstract of VR game Bug Off Pain. The game can be played on two 
different platform: Oculus Rift (left) and Google Cardboards (right).  

The VR environment was modeled on the existing academy theatre as a template (see Chapter 2 for 

more details on the 3D models) and can be seen in Figure 6.2. Here, the ultimate goal is to find the 

correct spider venom that shuts down pain signaling. However, to achieve this goal, the player has to 

achieve enough points through watching three VR- embedded movie clips. 

 

 

 

 

 

 

 

Figure 6.2. The model of our academy theatre in the VR environment for Bug Off Pain. 

The narrative of the game includes the scientific concepts (parts) about biochemistry of spider 

venoms in relation to chronic pain (Table 6.1). 
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Table 6.1. Learning objectives related with the contents and characteristics of Bug Off Pain 
application.  

Learning objects Content of VR game Bug Off Pain 

Neuroscience  
(chronic pain) 

 Neuroscience of pain 

 Two major types of pain (acute and chronic) 

 Communication between neurons and microglia 

 Involvement of ion channels, including P2X4 in pain 

Natural products 
(animal venoms and 

toxins) 

 Chemistry of the venom (small molecules, peptides, proteins) 

 From venoms to drugs (drug development) 

 Utility of venoms in various diseases, including chronic pain 

Drugs  
(analgesics) 

 Current treatments for both, acute and chronic pain 

 The pitfalls of current treatments for chronic pain 
 

The first part is a VR introduction about the neuroscience of pain. Here, the player has to find a 

screen element “play” and start watching an animated clip “Pain: Why does is hurt so much?”. This 

clip is incorporated into the game and introduces the player to the neuroscience of pain, both acute 

and chronic (Figure 6.3A). It includes an interactive exercise to allow players to try the navigational 

input device (arrows and “play and pause” elements) on the user interface (Figure 6.3B).  

A     B 

Figure 6.3. VR environment before the first movie clip. A: Model of the human brain that allows the 
users for immersive interaction. B: Close-up of the brain and nervous system as part of the first 
movie. 

 

As soon as the player gets the first point (Figure 6.4A), a new video appears. By clicking either the 

left or right arrows on the user interface followed by “play”, the player starts watching another 

video; “How can we treat pain?”. Here, the player is familiarized with the treatment types used to 

help manage acute and chronic pain.  
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A number of options are explained, together with the pitfalls of current therapies for chronic pain 

such as the inadequate effects of opioid drugs. Players get to learn about different types of 

venomous animals such as cone snails and spiders and judge the positive and negative effects on the 

targets that are included in pain signaling. Moreover, by interacting with the user interface, the 

player gets to know more about the chemical structures of some of the major components in their 

venom such as small molecules, peptides, enzymes and proteins (Figure 6.4B). In the game, one is 

educated on how the chemical diversity of venoms makes them the potential candidates for chronic 

pain treatment. Once that video ends, the player gets the second point and moves to the final 

educational movie. 

A          B 

Figure 6.4. Two environments of Bug Off Pain. A, B: The end of the first movie where the player gets 
the first point (A) and the end of the second clip (B).  

 

Finally, the players are transformed into a final scene: a 3D-movie (Figure 6.5). By listening to the 

voice-over narration, the player learns how different cells, such as neurons and microglia (Figure 

6.5A) are involved in chronic pain. Furthermore, the gamers gets to familiarize themselves with the 

concepts such as microglia-neuron communication (Figure 6.5B) and roles of the microglia in chronic 

pain. 
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A      B 

Figure 6.5. 3D-movie that allows the player to travel inside the brain. A: Depiction of neurons 
(brown) surrounded by microglia (green). B: Zoom-in to neuron-microglia communication depicted 
as red and blue dots.  

 

Alongside microglia, concepts such as receptors and ion channels are explained. In particular, a 3D 

model of a human purinergic receptor P2X4 is introduced and its role in the pathophysiology of pain 

is explained (Figure 6.6). We modeled this target (depicted as receptor in beige color) together with 

its respective membrane (depicted as blue dots and white lines as phospholipid bilayer) and their 

contribution to chronic pain. This experience ends when the player gets the last (third) point. 

 

 

 

 

 

 

 

Figure 6.6. Representation of one specific target (purinergic receptor P2X4) in the brain (PDB: 
4DW1). 

 

Soon after the player collects the final point, the experience translates back to the academy theatre 

and that same purinergic target on Figure 6.6 appears on the theatre’s stage, together with the 

various spiders dropping down from the theatre ceiling.  

This part includes an explanation of the scientific concept (seeking for spider venom toxins that 

would block the protein involved in pain pharmacology), followed by an explanation of the game 

rules (under what condition the spider venoms would inject the venom and how the player could 

probe the protein for its response to the venoms) and an interactive-gaming part (Figure 6.7).  
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To start the game, the players must click on each spider and after they split venom (represented as a 

building block in different colors and shapes), the gamers have to find a best way to “hit” the target 

on the stage. Some venom is active towards a target, and others are not. Critically, if the inactive 

venom is chosen, the target rejects it and the player cannot click on that spider venom. After each 

unsuccessful attempt, for which the player is not penalized, one has to click on another spider for 

the new venom to appear (Figure 6.7A). The players are thoroughly guided through these different 

stages of the game. Yet, after four failed attempts, a tarantula drops down from the ceiling and spits 

its venom (depicted as the green building block). The game ends as soon as the player drags that 

final venom to the purinergic receptor on the stage. That specific venom fits the target and fireworks 

appear (Figure 6.7B).  

A                        B 

Figure 6.7. VR environment with the target on the stage. A: environment after probing the wrong 
venom. B: environment after the player finds right venom.  

 

As soon as the game for Oculus Rift was build, we re-coded it to Android and created QR code via 

which the game can be downloaded (Figure 6.8). 

 

 

 

 

 

Figure 6.8. QR code for Bug Off Pain. 

 

At the end, the player can choose to see a plot summary together with an explanation of how 

identifying the right spider venom towards purinergic P2X targets might bring novel discoveries that 

patients suffering from the chronic pain might benefit from.  
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Soon after, the credits appear and the player can share their score and feedback to our website 

where we gather their feedback for our research evaluation.  

 

6.2.2. Evaluation of General Public Opinion about Bug Off Pain 

Evaluations are the most credible way of linking the developed application with reality. Here, we 

obtained the public opinion and evaluated feedback from the Bug Off Pain through manual or 

electronic forms (Figure 6.9).   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Printed survey. This was administrated to collect the players’ opinions and feedback 
about Bug Off Pain (electronic version can be accessed here: https://goo.gl/RM99sZy).  

https://goo.gl/RM99sZy
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This survey contains 15 statements with responses based on a 10 point Likert-type scale (Figure 

6.10). The level of agreement with the statements displayed a range from 6.02 to 10.0 among the 

general public (non-scientists). Some of these questions were related to the participant’s satisfaction 

with Bug Off Pain. These were related to: the game is fun, dynamic and easy to play; I like to play 

Bug Off Pain; and, the content of Bug Off Pain is relevant and useful; and the scoring system is well in 

place. These four questions were used as the satisfaction variables.  

Figure 6.10. The survey. The results show the mean Likert scores together with their standard 
deviations for evaluators’ responses (n=144) by survey statement.  

 

The next six questions were focused on people’s opinion about Bug Off Pain as a science 

communication tool and VR experience: the immersive environment via VR adds to STEM 

engagement and motivation to learn more; Bug Off Pain is an innovative approach to gamify 

chemistry-related subjects; Bug Off Pain should be extended to other STEM-subjects; VR sickness has 

not been experienced during the game; I find this VR approach as a good alternative to public 

engagement and education via VR; and, this game changes my perceptions of what I think about 

STEM-related subjects for the better. These six questions were used as the VR experience variables.  

Other questions focused either on the design, navigation or content of the game: the design of the 

game is attractive; Bug Off Pain has an easy to understand navigation (user interface); music and 

voice-over is appropriate and adds to the game, or the potential educational benefits: I acquire a 

new knowledge about chronic pain and spider venoms; and, I didn’t know before that science can be 

fun – I am more eager to study chemistry-related subjects now. These five questions were used 

either as the reflective or educational variables.  
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Since our results suggest that the statements are closer to “strongly agree” (8-10) than to “neutral” 

(4-7) or even “strongly disagree” (1-3), this may predict a true trend. However, one possible 

limitation was that the survey respondents were self-selected. This suggests that the sample might 

not represent the total public population. Still, on the basis of these responses, users pointed to the 

game being easy to play, dynamic, fun (7.66 ± 1.32), and with an attractive (8.71 ± 1.07) and easy to 

understand interface (9.14 ± 0.80). Furthermore, the content is relevant (8.21 ± 1.18) and it helps 

the public to shift their perception about STEM-related subjects (7.71 ± 1.11). The general public 

would be interested in playing these types of games if these would be extended to other STEM 

topics (9.97 ± 0.16) since they found Bug Off Pain as a good alternative to public engagement and 

education via VR (8.80 ± 1.06). However, a better reward system should be in place and the scoring 

system should be designed better (6.02 ± 0.55).  

While the motivational aspect could be improved, other game elements such as the duration of the 

game were taken into serious consideration. The reason for this is that a lot of VR players have 

reported  VR-related sickness.451 The evaluations showed zero VR-related sickness during the 

gameplay (10.0 ± 0.00) which may be due to the game duration being between 7-10 min. Other 

authors such as Regan451 reported that symptoms of VR sickness are most pronounced at 20 min 

when almost half of the players reported VR sickness. This seems to be in line with these studies as 

well.  

In the game presented by Price and others452 an important aspect of evaluation also considered a 

desire to continue interacting and playing. Such a statement was not included as part of our survey, 

however, that implication might still be there (99% people would like to see Bug Off Pain extended 

to other STEM topics).    

While much research in educational sciences involves measuring people’s opinions and attitudes, 

scales such as Likert-type scales are usually applied. For the evaluation of the public’s opinion we 

employed the 10-point Likert scale since these scales are easy to understand and its responses are 

easy to quantify when subjected to statistical analysis. Moreover, the scales with more categories 

are more reliable and provide more valid information. Since it doesn’t require the responders to give 

a concrete “yes” or “no” answer or take a stand on a specific topic, this allows the participants in our 

survey to respond in a degree of agreement. This accommodates neutral opinions of participants 

which are then easily analyzed and presented. Moreover, the participants answers were either 

electronically or manually obtained and are thus quick, efficient and inexpensive methods for 

collection of opinions about Bug Off Pain.       
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Despite this strong support for Likert-scales, these types of scale only gave us 5-10 options of choice, 

and some authors suggest that the space between each choice might not be of equal distance.453 As 

a result, it may fail to measure the real attitudes of participants. Moreover, people usually avoid the 

“extreme” choices even if the “extreme “(1 or 10) would be the most accurate. Another limitation of 

our method may be the linguists’ aspect of the statements. Specifically, since the statements are all 

positively worded, this doesn’t force the responders to reverse their thinking. Next time, negative 

statements should be included in this type of evaluation as well.454  

Although the Likert scales are still a topic of debate (and taste) among educators, it is clear that the 

scales with more categories (such as 10-point scales) are more reliable and provide more valid 

information.454 After the 10-point scale was chosen, we had to ensure its reliability and validity. 

Before we distributed a survey at the Norwich Science Festival (where the game was officially 

launched), we first ran a test-run among a small panel of students at the University of East Anglia. 

Here, the respondents had to answer two questions in respect to the validity of the Likert-type scale. 

The majority (>83%) of the panel answered “Yes” and “Yes, relevant” to the questions “Does the 

survey measure what it intended to measure?” and “Is this question measurement in the survey 

essential to the intended measurement?” respectively. Thus, we have concluded that our survey 

measures what it claims to and this is deemed valid and reliable.  

On the basis of our findings, the game Bug Off Pain is not only a good approach to public 

engagement via VR, but the gamification of scientific concepts such as chronic pain and biochemistry 

of venoms, may be seen as an alternative way to STEM outreach activities. These results are 

encouraging because they imply that students can also learn out-of-the-classroom at any time 

without demanding full control over their learning process. Yet, that does not necessarily mean that 

Bug Off Pain is educationally effective. To further evaluate this, we then embarked on quantifying 

VR-based learning influenced by the use of Bug Off Pain.  

 

6.2.3. Evaluation of VR-based Learning by Use of Bug Off Pain Among High 

School Students 

Several authors have pointed out that there is still a lack of research concerning how VR games 

might enhance learning outcomes. Since it is difficult to measure the knowledge and capability of 

the individual student,455 the performance on the test can be quantified.456  

A study was carried out to find out whether the educational VR game Bug Off Pain may facilitate 

learning better than educational software without a gaming element.  
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Critically, the design and evaluation of Bug Off Pain was inspired by various pedagogical concepts 

from Kolb457 to Garder’s458 theory. The purpose of all these theories is based on experiential 

learning, which consists of a concrete experience (feeling), a reflective observation (watching), an 

abstract conceptualization (thinking), and an active experience (doing). The idea that the players 

may learn by playing Bug Off Pain, is based on their experience. For example, players learn about the 

neuroscience behind chronic pain and the biochemistry of venoms by collecting rewards (points) 

throughout the game (concrete experience); reflecting on the game feedback after probing the 

wrong venoms (reflective observation); creating a concept about the chronic pain issue (abstract 

conceptualization); and actively experimenting with the biochemical concepts of venoms during the 

game (active experience).  

Once these theories were considered, the evaluation was conducted by a cohort of 44 high-school 

students, aged 17-18. The study resulted in a controlled pretest-posttest design to analyze the 

educational benefit of Bug Off Pain (Figure 6.11). Here, the game was compared to a conventional 

method (video clips) without the immersion or the virtual reality environment. Indeed, these video 

clips are also embedded in the VR setting, however, the subjects in the control group (video clips) 

were not subjected to the VR nor its game elements. The tested hypothesis was: students from the 

virtual group would have significantly greater learning performance in biochemistry of spider 

venoms and chronic pain than students from the video clips group.  

Figure 6.11. Pre- and post-test questionnaire.  
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Once the results from the pre-test and post-test were analyzed, they showed that in all groups there 

was an improvement in the average number of correct answers (ANCA) in the post-test, relatively to 

the previous pre-test (Table 6.2). The analysis of the pre-test showed no major differences in the 

number of correct answers between the control group (3.045 ± 1.397) and experimental group 

(3.818 ± 0.958). This indicates that the two groups had similar background knowledge about chronic 

pain and animal venoms. At the same time it is clear that this score improved in both groups after 

the students were exposed to either video clips (5.773 ± 1.110) or VR game (8.696 ± 1.093). When 

calculating the average score differences, these were 2.323 and 4.878 for video clips and VR game, 

respectively.   

These findings suggest that the students had a high level of learning (with approximately 87% of 

correct answers in VR group in respect to 57% in video clips group). This implies that the students 

improve their knowledge by utilizing both methods, yet, VR seemed to improve that performance to 

a greater amount. However, the study has not measured the level of understanding the explained 

concepts. Since some studies459-460 show that while the performance might be better, the level of 

understanding is lower. That means the students appear to understand the concepts better when 

using the traditional methods such as textbooks and video clips.461-462  

Despite this, Papastergiou435 and Connolly463 showed that digital games promote student motivation 

and improve their learning experience. Critically, this resulting likeability and motivation is usually 

not part of the traditional classroom lesson. Thus, advancing the level of scientific understanding 

among primary and/or high school students may result in increased interest in STEM. 

Still, on the basis of this data, we can conclude that the Bug Off Pain context and the VR game itself 

could have been a powerful transmitter of knowledge. This is line with other studies conducted on 

educational benefits of VR-based games.461 

Table 6.2. Comparison of pupils’ average scores by instructional method 

Assessmenta Mean Scoresa (SD) by Group, N = 22 

 Control Group:  
Video Clips 

Experimental Group: 
VR Game 

Pretest 3.045 (1.397) 3.818 (0.958) 

Post-test 5.773 (1.110) 8.696 (1.093) 

Av. Score 
Differences 

2.323 4.878 

a The scale has a range of 1-10 
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As a continuation, we decided to statistically examine these results by the multiple comparison tests 

(two-way ANOVA and Wilcoxon test) between the relative differences of the number of correct 

answers (Table 6.3). The analysis showed a statistical difference between the pre-test and post-test 

in either video clips (P value 0.0001) or VR game (P value <0.0001). Lastly, the calculation of the 

effect size (Cohen’s d value) between the post-tests (video clips vs VR game) was considered. This 

assessment showed the effect size to be very large (d>2) based on the guidelines outlined by 

Cohen464 further emphasizing that the differences between these two groups is substantial. Thus, it 

can be concluded that the students learned some new information during both types of activities. 

Yet, the educational effectiveness of virtual reality, relative to video clips, resulted in a Cohen’s value 

of 4.76 and better learning outcomes (P=0.0001).   

Table 6.3. Comparative student performance relative to instructional method 

Structure of analysis P value b 

(N = 22) 
Cohen’s d value 

Video clips (pretest vs posttest) 0.0001 2.16 

VR Game (pretest vs posttest) <0.0001 4.76 

∆video clipsa vs ∆VR gamea 0.0002 NA 

Posttest (video clips vs VR game) 0.0001 2.65 
aRelative difference of right answers between pre- or posttest. bAll the p 
values were found to be significant (P<0.05) 

 

This data might be further supported by a notion that 3D virtual environments allow the users to be 

active rather than passive participants. According to Lim,465 3D virtual environments are 

characterized by two elements - immersion and interaction – with immersion being a process when 

awareness begins to disappear, and the engagement level increases.465 Moreover, the reward 

system incorporated in Bug Off Pain as a form of points and feedback allows the players a sense of 

control and serves as extrinsic motivation similar to when a lecturer compliments students on their 

good work.  

Furthermore, as Lim465 noted, when too much effort is put into navigating and interacting with the 

material presented in a virtual world, mental resources available for the task itself diminishes. For 

that reason, Bug Off Pain only incorporated essential elements such as arrows, element “play”, 

spiders and venoms depicted as building blocks which may prevent them from exploring the VR 

environment as a whole. On the other hand, a recent meta-analysis study from Merchant and 

others466 suggested that simulations and VR worlds were effective in improving learning outcome 

gains.  
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For example, a student’s performance was improved when they play the game individually rather 

than in a group.466  While a consensus on learning benefits of VR games has not yet been reached, 

the choice of the platform might add to its educational outcomes as well.    

Since the game was developed on two different platforms, Oculus Rift and Google Cardboard, the 

evaluation was carried out only on Google Cardboard. While Oculus Rift is one of the head-mounted 

platforms that allows for full immersion, Google Cardboard is cut out of pieces of cardboard, folded 

into 3D viewer for smartphones, and is considered as an inexpensive alternative to Oculus Rift.467 

Consequently, Google Cardboard as a content delivery system may offer a lower level of immersion 

and limited interaction compared to Oculus Rift.468 Despite these limitations, the cardboard 

platforms may restrict the players to only performing one virtual task thus offering better learning 

outcomes in respect to other VR games.465  

While this data suggests that VR games, such as Bug Off Pain, facilitate learning better than 

traditional methods such as textbooks and video clips, other examples showed that this may not be 

the case. For example, the evaluation of the VR game E-junior469 showed no significant differences in 

the learning performance between the traditional and the virtual group. The authors suggest this 

may be due to the distractions of the attractiveness and complexity of the immersive environments 

on the children. Other authors465 also observed the correlation between immersion in the virtual 

world and loss of focus on their learning tasks. By engaging within a 3D space, the students failed to 

engage with the quests, indicating a disengagement rather than engagement. Still, this might be 

because of the collaborative game play rather than individual.466   

However, it should be noted that E-junior didn’t incorporate the narrative aspects of gaming, as Bug 

Off Pain did, which may one of the reasons for this distraction. According to the Malone,470 

Provenzo,471 Rieber,472 and Gee,473 incorporating the narrative within a game design is beneficial for 

the learning process. First, it provides opportunities for reflection, evaluation, illustration, 

exemplification and inquiry.474 Second, the narrative facilitates comprehension as well as serving as a 

tool for navigating in VR environments.475 So far, the research in this field has been scarce, 

nevertheless, some of the game components may involve the mission, a cover story, roles, and 

scenario operations, all of which Bug Off Pain incorporated into its initial design.476  

Interestingly, while the children playing E-junior reported to be more engaged and satisfied, this 

didn’t result in better learning outcomes as it did in Bug Off Pain. On the other hand, Bug Off Pain 

only obtained quantitative data from its evaluation so it is difficult to compare how qualitative 

factors such as gender; age; school; grades; frequency of computer use and gaming; and enjoyment 

of computer games may influence our results.  



228 
 

Further, the evaluation process also gives a lot of interesting information for improving the 

evaluation methodology. First, it should be noted that we have not employed any surveys after the 

post-tests which would gather the post-test feedback such as perceived usefulness; engagement; 

intention to use; perceived educational value; intrinsic motivation; and enjoyment. Thus, we should 

employ these close-ended questions after the post-test in order to improve the application of the 

pedagogical value of Bug Off Pain.  

It should also be noted that evaluation of the learning effectiveness should be studied further. In our 

study, only a declarative type of knowledge (facts) was considered. Since the learning process not 

only concerns facts but also procedures of how to transfer this information to other situations 

(strategic knowledge) and actions (procedural knowledge), these objectives should be taken into 

account in both short-term and long-term evaluation. This certainly might be a challenge for virtual 

reality gaming environments, but could be, nevertheless, an interesting point to evaluate.  

Finally, Virvou and others477 suggest that if a traditional group is used as a control group in order to 

compare it with new technology (e.g. VR game), it assumes that the virtual technology is destined to 

replace traditional methods rather complementing it. In our case, Bug Off Pain is not intended as a 

total replacement to any current effective pedagogy. Rather, it is meant as a valuable addition to the 

teaching toolbox that educators can leverage to engage and educate the modern learner.  

Once these practical challenges are met and overcome, this may open new opportunities for 

educators to apply similar concepts to their own field. Because Bug Off Pain only needs a minimum 

setup that includes Google Cardboard, mobile phone and internet connection, the learning activity 

may not be challenging.  

 

6.3. Conclusions  

Considering the increasing use of mobile applications among young people, VR games such as Bug 

Off Pain may have great potential as pervasive educational games. It is clear that such games allow 

the traditional public engagement process to become more effective when permeated with VR tools. 

Here, a study on the educational benefits of multi-platform, immersive and engaging VR game Bug 

Off Pain is presented. The game is now freely available online, and has been tested and evaluated by 

non-scientists (general public) and high school students. 
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The Bug Off Pain experience entails overcoming a series of challenges (watching video clips 

embedded in our game and finding a spider venom that takes down the pain) in pursuit of a goal. 

The player is therefore presented with some obstacles and must use his/her available game actions 

to create a solution that gets the player past the obstacle and further toward his/her goal. This 

comes from the challenge of correctly using critical thinking skills and problem-solving abilities to 

create a desirable outcome (finding the “perfect” venom). Apart from the problem-solving roles, 

another reason why Bug Off Pain may be good for pedagogy is the promotion of creativity and self-

direction – all of which stand out as less-tangible, non-academic benefits. Other researchers478-479 

continue to demonstrate that games are productive in applying, synthesizing, and thinking critically 

about what is learnt. However, these games might lack the necessary characteristics for successful 

integration into traditional learning environments such as classrooms.    

Our results showed that Bug Off Pain can help public, as well as high-school students, to develop a 

deeper and accurate understanding of important concepts about the chemistry of venoms and 

chronic pain. The game’s insights showed that VR representation is an effective tool for 

communicating and remembering scientific ideas and solving problems – for example, a chemical 

structure that shows the shape of a venom peptide or other small molecules found in the venoms. 

Furthermore, these representations are intended to convey information to the non-scientific 

community and may omit the complexities in order to communicate better and educate the central 

idea. These findings demonstrate that the VR game Bug Off Pain is a valuable aid in science 

communication, education, and public engagement.  

For future work, more qualitative as well as quantitative evaluations should be carried out at 

different schools to produce more empirical data associated with the game. While Bug Off Pain 

focuses on chronic pain and spider venoms, it would be interesting to apply these same concepts to 

a different research area. Moreover, by addressing specific aspects and evaluating them, one may 

improve the game before its launch. Another possible future idea would be to check long-term 

learning. Since Bug Off Pain only centers on short-term acquisition of knowledge, it would be 

interesting to determine its long-term effects.    

The game itself may be enhanced as well. By adding multiplayer mode, Bug Off Pain could be more 

competitive or collaborative. Another challenge could be to make the VR game more dynamic and 

less predictable so that students may play it more often, and keep building new knowledge each 

time. One aspect to consider is to adapt the game to the students with different learning abilities.  
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While I recognize that it is daunting to convince students, teachers and lecturers that playing a VR 

game belongs in a lecture theatre, the intention of Bug Off Pain is merely to show the importance of 

emergent pedagogy of play when permeated with VR aids. While new technologies used in 

education must be cautiously chosen and applied so that the students not only enjoy the aesthetical 

features but also learn while playing, this research brings us one step closer to understanding the 

potential of VR technology to support and enhance learning.    
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General Conclusion and Future Directions  
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7.1. General Conclusion   

It is clear that spider venoms might offer almost endless potential for drug discovery. That is further 

highlighted by the fact that evolution has redefined the biological diversity and led to the 

development of pharmacologically active and potent toxins that are pre-optimized for the medicinal 

chemist. Taken together with the fact that one fifth of human population suffers from chronic pain, 

and with no appropriate treatment for chronic neuropathic pain, exploring less conventional ion 

channels that are involved in pain processing – such as P2X4 – with spider venoms might be a fruitful 

line of inquiry. This project aimed to examine whether animal venoms contain pharmacologically 

interesting compounds for P2X4 receptor in microglia. 

However, a screening of nearly 200 animal venoms towards P2X channels, called for a method that 

could rapidly screen our samples against multiple receptor targets. One such tool that might help us 

in the hit generation process is called high-throughput screening (HTS) assay. Hence, our first aim 

was to develop a HTS for discovering promising molecules targeting P2X channels. Notably, no HTS 

to detect the spider venom hits against P2X4 channel has been reported (to date), although similar 

efforts have focused on other P2X receptors239, 480 and even voltage-gated sodium channels.481 This 

task was thus accomplished with our development of fluorescent-based screens that measure 

agonist-induced calcium responses (P2X3, P2X4) within cells or agonist-induced dye uptake 

responses (P2X7) using a Flexstation 3 plate reader. These assays were robustly tested for 

reproducibility (Z’ factors > 0.55) and validated – both analytically and pharmacologically, as 

suggested by Zhang and collegues.221 We showed that our in vitro platforms are capable of screening 

multiple venoms (cone snail, scorpion, spider, bee, wasp and centipede venoms) against multiple 

targets (P2X3, P2X4, P2X7), all while minimizing the specimen material, testing time and costs. 

Furthermore, fractionation and purification of venom fractions helped us to distinguish between 

cytolytic (non-specific) fractions from those with a specific effect on a particular P2X target.  

Our robust, fast, automated, and quantitative HTS technique resulted in potential toxin hits, both 

small molecules and peptides, as hit inhibitors against hP2X4. While no specific hP2X3-; hP2X4- or 

hP2X7-related effects were displayed with cone snail venoms, our screen with the spider venoms 

resulted in several inhibitors against hP2X4 in two heterologous expression systems (HEK293 and 

1321N1 cells). Although we initially screened and validated 15 spider venoms, only venoms from 

Acanthoscurria, Lasiodora and Phormictopus showed a seemingly potent inhibitory effect on hP2X4 

channel activated by ATP. Other crude venoms (Haplopelma, Poecilotheria, Nhandu, Ephebopus) 

showed a non-specific activity and were thus subjected to fractionation in order to more clearly 

observe the effect of each fraction.    
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By using a combination of chromatographic and mass spectrometric techniques (RP-HPLC, ESI-LC-

MS/MS, MALDI-TOF), we fractionated 9 crude venom “hits” and identified a common appearance of 

four inhibitory toxins, which were confirmed to be structurally uncharacterized acylpolyamines, 

found in a number of “hit” spider species. The molecular weight of the toxins was determined to be 

365.2563 Da, 454.2274 Da, 600.3712 Da, and 728.5026 Da with the similar fragmentation ions 

occurring in all toxins (except 454.2274). Since 600.3712 Da and 728.5026 Da were abundant in all 

venoms and could be thus obtained in larger amounts, we focused our investigations on these two 

toxins.  

Once we investigated the concentration dependence for inhibition by these two toxins, we found 

that both, LK-601 and LK-729, potently inhibited hP2X4 with the apparent IC50 values between 1.1 – 

4.5 µM, confirmed in two different cell lines and with two different sets of fluorescent-based assays. 

However, only one of them – LK-601 – showed an acceptable selectivity over other P2X subtypes 

(P2X3, P2X7) and NMDA 1a/2a receptor. Interestingly, while acylpolyamines typically antagonize 

glutamate receptors (such as NMDA), LK-601 and LK-729 do not exhibit these effects. Furthermore, 

both toxins do not seem to block rat P2X4, however, have a modest effect at mouse P2X4. This 

phenomenon was previously reported with BX430,153, 408 PSB12062166 and 5-BDBD,250 all 

commercially available antagonists inhibiting hP2X4 at low sub- or micromolar concentration but 

being less potent on either rat or mouse P2X4 or both.  

In order to better understand how LK-601 inhibits hP2X4 and mP2X4 while being inactive towards 

rat P2X4, we attempted a full structural elucidation using NMR techniques. However, we could only 

determine LK-601 partial structure which is in line with Skinner et al.330 results. The only other 

investigation reporting LK-601 and/or LK-729 was carried out by Rocha-E-Silva et al.323 in which the 

authors observe a remarkable light sensitivity of LK-729 toxin, which in turn prevented a full 

structural elucidation. In our hands, LK-601 and/or LK-729 also showed a water instability which 

further prevented to get a decent NMR fingerprint. Still, we managed to note down a few interesting 

observations: 1) LK-601 and LK-729 contain a different aromatic ring with LK-601 likely to be an 

indole; 2) LK-729 has a longer polyamine chain than LK-601 and contains a phenol ring; 3) the 

polyamine chain very likely contains a spermine moiety. Furthermore, our MS/MS data pointed out 

to the fact that LK-601 may be a part of LK-729. While NMR characterization may elude to the fact 

that the polyamine chain is longer in LK-729, it is also evident that the aromatic group is different 

(indole vs two phenols). This may exclude the possibility of LK-601 being part of LK-729 or suggest 

rearrangement between the aromatic group of LK-601 (indole) and LK-729 (two phenol groups).  
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Unfortunately, the reasons for this inconsistency remain unclear, but it is possible that the 

fragmentation similarities are due to the polyamine chain (spermine) rather than the aromatic 

ring.301 In order to circumvent these issues, we aimed to explore the structure-activity relationship 

(SAR) of LK-601 and synthesize its analogues. Moreover, the potency differences between P2X4 

orthologues (human, mouse, rat) enabled us to ask whether this might hold a clue to LK-601 binding 

site. Since the amino acid identity of rat P2X4 is 82% and 94% when compared to human and mouse, 

respectively,408 our investigations focused not only on identifying the smaller analogue of LK-601 

that inhibits hP2X4 with a similar potency and selectivity, but also on pinpointing the amino acid 

residues that might be critical for the binding of LK-601 on hP2X4.  

By using a fragment-based approach, we aimed to get more structural insights into motifs with the 

potential inhibitory action towards hP2X4. We concluded that while polyamines such as cadaverine, 

putrescine, spermidine and spermine do not seem do modulate hP2X4, indole-like compounds such 

as tryptamine, tryptophan and serotonin showed an interesting inhibition, when tested at 10 µM 

concentration – and that effect was abolished with lower concentrations.  

To further validate our hypothesis, we selected 22 representative compounds from NCI-DTP library 

on the basis of the cluster analysis,402 and tested 14 of them. Using two different set of assays, 4 

molecules (1513, 1969, 13964, 135831) demonstrated an interesting concentration-dependent 

inhibition. From these structural-activity investigations we found that both the indole ring and the 3-

substituted aliphatic chain seem to contribute to the overall inhibitory effect at hP2X4. On the 

contrary, presence of the -OH group on the position 5 of the indole and a -COOH group on the 

position 2 of the carbon chain does not make a difference when trying to block hP2X4.  

While one study has already reported a drug (fluvastatin) with an indole moiety that might modulate 

P2X4,410 no acylpolyamine has been found to inhibit P2X4 channels. To develop compounds that 

would resemble the acylpolyamine-like structure of LK-601, and demonstrated a similar potency and 

selectivity, however, with improved stability, we synthetized five analogues: LA1 – LA5. One of them, 

LA-3, was found  as a potent hP2X4 receptor antagonist (IC50 values between 9.67 ± 0.96 µM and 

18.6 ± 5.6 µM in 1321N1-hP2X4 and HEK293-hP2X4, respectively) with a good selectivity over P2X3 

and P2X7. However, while the molecular mass was reduced to half, the stability of LA-3 has not been 

improved. Despite these drawbacks, LA-3 might still be used as a new starting point for the 

development of potent and selective P2X4 receptor antagonists. Furthermore, these results might 

simply point out to the fact that there is still room for further optimization with regard to affinity 

and improvement of LA-3 physiochemical properties.   
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We then focus our efforts on trying to decipher a binding site for LA-3. Once the alignment of the 

sequences between human, mouse and rat was carried out, the specific sequences that are not 

shared between these three P2X4 orthologues were identified.  

Proceeding to the in silico docking suggested that the following residues might be crucial in how LA-3 

binds to human P2X4: D220, K222, K234 and N238. Critically, two residues, aspartate and asparagine 

at the position 220 and 238, respectively, that are swapped between human and rat (D220 and N238 

in human; N220 and D238 in rat) might be essential for sub-species differences in LA-3 binding. The 

validation of the predicted amino acid residues in binding LA-3 showed that D220 and N238 might be 

involved in LA-3 binding site, however, more experiments are needed to fully confirm that effect. 

So far, this story has seen the side of only the small molecules. But in addition to small molecular 

weight toxins, our HTS showed that some of the late-eluting fraction hits against hP2X4 might be 

peptides (Figure 4.10 – 4.11, Chapter 4). These peptide hit fractions (F) were found in spider venoms 

of Lasidora klugi (F25), Haplopelma albostriatum (F46, F53-55, F60, F63, F68), Nhandu chromatus 

(F39-42, F44-45), Acanthoscurria geniculata (F31-33, F37-38), and Acanthoscurria cordubensis (F20, 

F32-33). Here, we would like to briefly draw your attention to our efforts on the peptide front 

(Supporting Information). We first focus on F25 from Lasiodora klugi – a peptide which we managed 

to obtain in purity >91 % (Figure S2A). Using MALDI-TOF technique, its monoisotopic peak was 

estimated to be 7756 Da (with an observed fragment ion at 3879 Da) (Figure S2B), and its accurate 

mass confirmed on LC-MS Orbitrap to be 7769.85 Da (Figure S3A). By subjecting peptide F25 to 

trypsin digestion (Figure S3B-S3D) and N-terminal sequencing (Figure S3E), we attempted to obtain 

its amino acid sequence.  

While we confirmed its N-terminal sequence to be AEFGF, and found peptide fragments of LASSFR, 

GEPCQFHCECR, CMIVR, IFECVMACDIEK, GLFVTCTPGK, ALEKLASSFR and LNAELGPYALADR – similar to 

the previously identified U3-theraphotoxin-Lsp1a from the same spider (Lasiodora) – we could not 

align these fragments in any sensible order. By that we mean; having established its N-terminal 

sequenced (AEFGF) and, on the basis of U3-theraphotoxin similarity, possibly its C-terminal order 

(ALEKLASSFRCE), we could not overlap any other identified peptide fragments, and failed to deliver a 

complete sequence for F25. A reason for this might be a presence of peptide impurities that were 

detected by mass spectroscopy once the trypsin digestion was applied. Even though a relatively 

good purity of 91.26% was confirmed by RP-HPLC, gel-isolated techniques might give us a better 

separation and thus, less impurities.  
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Despite these difficulties, we still proceeded with the pharmacological evaluation of F25. However, 

even though F25 showed promising results in our initial HTS screen, the validation of its inhibitory 

effect on 1321N1-hP2X4 cell lines when tested at 5 µM (Figure S4) could not be confirmed. Thus, 

evaluating the peptide hits might call for a more careful evaluation or even a different 

methodological approach.  

While some promising peptide fractions in Haplopelma albostriatum (F46, F53-55, F60, F63, F68), 

Nhandu chromatus (F39-42, F44-45), Acanthoscurria geniculata (F31-33, F37-38), and Acanthoscurria 

cordubensis (F20, F32-33) were found, we have to be aware these might or might not be actual hits. 

In order to validate these effects, the peptide’s purity should be determined not only by 

chromatographic (RP-HPLC) methods but also by gel-isolation techniques (polyacrylamide gels), 

which could be coupled by high-sensitivity nanoelectrospray mass spectroscopy for the molecular 

analysis of the peptides.482 This could not only solved the purification issues observed with F25, but 

also material shortage.  

In summary, a novel toxin from a spider venom with inhibitory activity at human P2X4 ion channels 

that shows selectivity at hP2X4 over other P2X receptors was discovered. In addition to small 

molecules, our HTS showed some potential inhibitory peptides that might block hP2X4 receptor. 

Further characterisation and validation is required to understand whether these novel compounds 

could be useful as analgesics. 

 

7.2. Future Directions 

As already suggested by Beswick et al.171 identifying P2X4 receptor ligands is challenging. Even 

though a combination of natural product libraries, high throughput and fragment-based screening, 

and in silico docking techniques were used, the other complimentary approach that would 

undoubtedly verify our results is electrophysiology. Apart from testing LK-601 and/or LA-3 using 

whole cell patch clamp, taking advantage of molecular dynamics simulation to model the docking of 

LA-3 on a potentially identified allosteric site (around D220 and N238) might provide more clues 

about the natural mode of binding rather than the “lock-and-key” theory.408 Although our in silico 

docking was performed in both, rigid and flexible modes, P2X4 was still modelled as frozen and 

motionless receptor which is thought to accommodate a small molecule without undergoing any 

conformational rearrangements.  
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While our results on LK-601, and later on LA-3, might indicate that these acylpolyamine-like 

structures, based on LK-601, provide a novel tool to study P2X4 receptors, it still remains uncertain 

whether these compounds can truly abolish the chronic neuropathic pain (and/or its symptoms) via 

P2X4 and its P2X4-BDNF-p38 MAP kinase-KCC2 cascade. Since the inhibiting effects of LA-3 are 

limited in rodents, one way of testing this could be using LK-601 in mouse models. Since LK-601 

showed good inhibitory effects at mP2X4, mouse models with P2X4 knock-down or knock-out in the 

spinal cord could be used to see whether the application of LK-601 results in PNI-induced tactile 

allodynia.99, 483 This could indicate LK-601 might need P2X4 receptors to work as a potential 

analgesic.  

An alternative approach might be to use LK-601 and/or LA-3 on activated microglia (via P2X4 

inhibition) and monitor the release of BDNF – a marker that changes the transmembrane anion 

gradient in dorsal horn lamina I neurons via KCC2, which results in depolarization of these 

neurons.99, 113 This might further confirm that LK-601/LA-3 is able to inhibit microglial P2X4 and 

modulate the pathogenesis of neuropathic pain. However, to yield LK-601 in greater quantities, an 

optimized purification method should first be in place.               

Another burning question in the field is how to develop analgesic drugs that are not limited by their 

side effects. For example, opioids (currently used for treating neuropathic pain) cause addiction, 

tolerance and hyperalgesia after chronic treatment; COX2 inhibitors produce cardiovascular defects; 

and antidepressant drugs (gabapentin, pregabalin) cause dizziness, drowsiness and nausea and have 

a limited effectiveness in some patients.30, 35 On the other hand, ziconotide (Prialt) is clinically 

effective and safe to use in patients with severe chronic pain, however, its intrathecal drug delivery 

is often less preferred option over oral analgesics.484 To overcome these disadvantages of current 

pain medicines, the research efforts have to focus on not only identifying small molecule inhibitors 

that might enable oral delivery, but also overcoming the drawbacks of opioids, COX2 inhibitors and 

antidepressants. Along these lines, even though LA-3 currently might not display potentially good 

pharmacokinetics characteristics, performing a more extensive SAR on LA-3 and testing whether any 

of its analogues can overcome the above mention limitations might accelerate this quest. 

With the hope of designing drugs with fewer side effects, developing compounds with a good 

selectivity profile over one particular target brings in the promise of finding novel therapeutics for 

neuropathic pain that may lack side effects associated with current therapies.59 In this work, the 

selectivity of LK-601 over other P2X receptor subtypes (P2X3, P2X7) and NMDA 1a/2a was tested. 

However, in order to assess a broader selectivity profile of LK-601 and LA-3, more targets should be 

evaluated.  
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This repertoire might include receptors such as P2X1, P2X2 and others relevant targets for 

acylpolyamine toxins – for example, AMPA and kainate channels as well as serotonin receptors.181  

This could ascertain whether LK-601-like toxins might represent the “holy grail” of neuropathic pain 

research, developing powerful analgesic drugs devoid of the side effects linked with opioids.    

Another fruitful line of inquiry might be to study acylpolyamines and P2X receptors in evolutionary 

terms. Since spiders pray on insects, one would expect that insects have developed purinergic 

targets which, in turn, acylpolyamines might target. Surprisingly, this is not the case with P2X 

receptors – insects are likely to be devoid of these targets.342 Investigating why spiders would 

strategically develop acylpolyamines that target P2X receptors might give us the reason for such a 

functional redundancy.  

Some of the possible causes, as comprehensively reviewed by Nentwig et al.,485 might involve 

different predators, environmental changes and diet composition. For example, a remark that 

Lasiodora species is a bird eating spider might hold a clue that could keep the evolutionary wheel 

turning. 
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Supporting Information  
 

Table S1. Retention times of the spider venom fractions (RP-HPLC) 

Lasiodora klugi 

Fraction  Retention time (min) 

F1 4.507 

F2 5.205 

F3 6.056 

F4 7.140 

F5 11.366 

F6 11.730 

F7 14.215 

F8 14.360 

F9 15.989 

F10 16.168 

F11 16.381 

F12 16.581 

F13 17.000 

F14 17.500 

F15 18.080 

F16 18.224 

F17 18.645 

F18 19.163 

F19 19.943 

F20 24.904 

F21 25.860 

F22 27.648 

F23 30.127 

F24 35.945 

F25 58.800 

  

Lasiodora parahybana 

F1 4.462 

F2 4.792 

F3 5.108 

F4 13.052 

F5 15.657 

F6 15.931 

F7 16.220 

F8 16.581 

F9 16.852 

F10 16.999 

F11 17.128 

F12 17.923 

F13 18.510 

F14 18.720 

F15 19.919 
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F16 20.740 

F17 25.773 

F18 26.776 

F19 28.301 

F20 57.099 

F21 58.124 

F22 58.531 

F23 58.865 

F24 59.080 

F25 59.589 

  

Nhandu chromatus 

F1 3.849 

F2 4.135 

F3 4.208 

F4 4.613 

F5 5.847 

F6 6.341 

F7 6.624 

F8 6.578 

F9 15.402 

F10 16.522 

F11 17.068 

F12 18.719 

F13 19.666 

F14 19.963 

F15 27.236 

F16 27.845 

F17 28.086 

F18 29.060 

F19 29.337 

F20 31.052 

F21 31.438 

F22 31.666 

F23 32.515 

F24 32.782 

F25 33.542 

F26 34.052 

F27 35.129 

F28 35.463 

F29 35.990 

F30 36.931 

F31 37.369 

F32 38.253 

F33 41.622 

F34 42.101 

F35 43.818 

F36 44.529 

F37 45.570 

F38 46.243 
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F39 46.688 

F40 46.883 

F41 47.323 

F42 47.689 

F43 48.367 

F44 49.076 

F45 49.502 

F46 50.370 

F47 50.752 

F48 51.539 

F49 52.279 

F50 52.765 

F51 53.152 

F52 53.568 

F53 53.981 

F54 54.367 

F55 55.102 

F56 55.855 

F57 56.466 

F58 56.823 

F59 57.187 

F60 57.849 

F61 58.170 

F62 58.573 

F63 58.684 

F64 58.851 

F65 59.334 

F66 59.603 

F67 59.851 

F68 60.143 

F69 78.474 

  

Acanthoscurria geniculata 

F1 3.731 

F2 4.263 

F3 5.625 

F4 6.820 

F5 7.321 

F6 12.298 

F7 13.062 

F8 13.720 

F9 14.474 

F10 15.543 

F11 16.402 

F12 16.544 

F13 16.814 

F14 16.901 

F15 17.183 

F16 17.506 

F17 18.306 
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F18 19.040 

F19 31.600 

F20 32.330 

F21 33.421 

F22 34.309 

F23 37.530 

F24 38.100 

F25 49.519 

F26 56.163 

F27 57.268 

F28 58.620 

F29 59.011 

F30 59.478 

F31 60.490 

F32 60.971 

F33 78.472 

  

Acanthoscurria cordubensis 

  

F1 3.620 

F2 3.872 

F3 4.117 

F4 4.704 

F5 5.019 

F6 9.237 

F7 10.046 

F8 11.785 

F9 12.282 

F10 13.137 

F11 13.569 

F12 14.265 

F13 14.670 

F14 15.785 

F15 16.082 

F16 16.137 

F17 16.569 

F18 16.665 

F19 16.670 

F20 28.435 

F21 39.575 

F22 48.371 

F23 49.737 

F24 50.568 

F25 51.660 

F26 52.273 

F27 52.739 

F28 53.226 

F29 55.120 

F30 56.374 

F31 57.778 
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F32 58.302 

F33 58.721 

F34 59.250 

F35 59.500 

F36 59.643 

F37 60.200 

F38 60.400 

F39 60.850 

F40 63.800 

F41 64.000 

F42 64.867 

F43 78.726 

  

Ephebopus murinus 

  

F1 3.675 

F2 4.523 

F3 4.716 

F4 7.974 

F5 8.694 

F6 12.507 

F7 14.880 

F8 15.180 

F9 15.851 

F10 16.467 

F11 16.661 

F12 17.098 

F13 17.327 

F14 17.763 

F15 18.202 

F16 18.630 

F17 19.123 

F18 19.384 

F19 20.416 

F20 20.589 

F21 20.930 

F22 21.675 

F23 22.314 

F24 23.973 

F25 24.563 

F26 24.836 

F27 25.170 

F28 25.683 

F29 26.490 

F30 27.113 

F31 28.819 

F32 29.249 

F33 30.676 

F34 32.861 

F35 34.111 
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F36 37.499 

F37 38.726 

F38 39.872 

F39 40.728 

F40 42.316 

F41 43.958 

F42 44.877 

F43 45.461 

F44 51.445 

F45 53.445 

F46 58.205 

F47 78.464 

  

Phormictopus cancerides 

F1 3.479 

F2 3.759 

F3 4.963 

F4 4.077 

F5 5.265 

F6 11.980 

F7 12.387 

F8 16.387 

F9 16.689 

F10 16.902 

F11 17.980 

F12 18.387 

F13 19.387 

F14 19.689 

F15 19.902 

F16 20.113 

F17 21.509 

F18 26.132 

F19 27.846 

F20 28.321 

F21 28.813 

F22 29.053 

F23 29.512 

F24 29.769 

F25 30.257 

F26 30.992 

F27 31.706 

F28 32.789 

F29 33.539 

F30 34.152 

F31 34.869 

F32 35.176 

F33 35.638 

F34 36.870 

F35 37.519 

F36 38.111 
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F37 38.549 

F38 39.449 

F39 41.974 

F40 42.319 

F41 44.943 

F42 45.386 

F43 46.176 

F44 46.424 

F45 47.199 

F46 47.624 

F47 48.913 

F48 49.937 

F49 50.611 

F50 51.555 

F51 52.456 

F52 53.074 

F53 54.562 

F54 55.366 

F55 56.121 

F56 57.094 

F57 58.277 

F58 58.772 

F59 59.065 

F60 59.616 

F61 60.204 

  

Haplopelma albostriatum 

F1 3.537 

F2 6.526 

F3 6.668 

F4 7.107 

F5 7.853 

F6 11.943 

F7 15.342 

F8 15.731 

F9 15.898 

F10 16.251 

F11 16.346 

F12 16.729 

F13 17.101 

F14 17.438 

F15 17.536 

F16 18.242 

F17 18.700 

F18 20.904 

F19 21.266 

F20 23.236 

F21 23.623 

F22 24.097 

F23 24.628 
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F24 25.278 

F25 25.990 

F26 27.788 

F27 29.222 

F28 29.541 

F29 29.996 

F30 30.430 

F31 31.274 

F32 31.768 

F33 32.805 

F34 33.374 

F35 34.719 

F36 35.783 

F37 36.286 

F38 38.546 

F39 39.261 

F40 40.060 

F41 41.862 

F42 46.139 

F43 58.465 

F44 59.074 

F45 59.394 

F46 59.568 

F47 60.332 
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Figure S1. NMR Spectra of the activated esters (intermediates) and the final products (LK-601 
analogues). 1H and 13C NMR spectra were recorded at 400 MHz on a Bruker Avance III 
spectrometer.  
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Figure S2. Peptide F25 Purification and Mass Estimation. A: RP-HPLC Chromatograms of crude 
venom (Lasidora klugi) and the purified F25 (purity was estimated to be 91.2 %). B: MALDI-TOF 
estimation of the peptide mass (two peaks were found at m/z 3.8 and 7.7 kDa with 7.7 kDa being the 
dimer of the 3.8 kDa one). 
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Figure S3. Peptide F25 Mass Determination and Identification. A: LC-MS Orbitrap determination of 
the exact peptide mass (one peak was found with the accurate molecular weight of 7769.85 Da). B: 
Trypsin digestion (peptide mass was 150 µg) was carried out and the peptide fragments identified. C: 
Zoom in on two later fragments is presented in greater detail. D: The identified peptide fragments 
were subjected to the protein database to match any already identified peptides. E: The N terminal 
portion of F25 was sequenced (Cambridge Peptides Inc.) and first five amino residues (N-terminal 
end) identified.  
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Figure S4. A concentration-response curve of F25 on 1321N1-hP2X4 (Fura-2) cell line. Normalized 
concentration-response curves of two commercially available hP2X4 antagonist (n=3) 5-BDBD (10 
µM), and BX430 (10 µM), together with F25 (5 µM) using the ATP concentration of 1.6µM (EC50).  

 

 

Figure S5. ESI-MS for 1H-Indole-3-carboxylic acid, 4-nitrophenyl ester. m/z calcd for C15H10N2O4 
(M+H) 283.25, found 283.0535.  
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Figure S6. ESI-MS for 1H-Indole-3-carboxamide, N-[3-[[4-[(3-aminopropyl) amino]butyl] amino] 
propyl]- and its dimer. m/z calcd for C19H31N5O (M+H) 346.49, found 346.2355. For the dimer, 
m/z calcd for C28H36N6O2 (M+H) 489.63, found 489.2634. 
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Figure S7. ESI-MS for 1H-Indole-3-acetic acid, 4-nitrophenyl ester. ESI: m/z calcd for C16H12N2O4 
(M-H) 295.28, found 295.0985 

 

 

 

 

 

 

Figure S8. ESI-MS for 1H-Indole-3-acetamide, N-[3-[[4-[(3-aminopropyl)amino]butyl]amino] 
propyl]- and its dimer. m/z calcd for C20H33N5O (M+H) 360.52, found 360.2506. For the dimer: m/z 
calcd for C30H40N6O2 (M+H) 517.69, found 517.2922  
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Figure S9. ESI-MS for 1H-Indole-2-carboxylic acid, 4-nitrophenyl ester. m/z calcd for C15H10N2O4 
(M-H) 281.26, found 281.0846. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10. ESI-MS for 1H-Indole-2-carboxamide, N-[3-[[4-[(3-aminopropyl)amino]butyl] amino] 
propyl]-. m/z calcd for C19H31N5O (M-H) 344.49, found 344.2810.  

 

 

 

 


