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Summary

 Efficient seed germination and establishment are important traits for field and glasshouse 

crops. Large-scale germination experiments are laborious and prone to observer errors, leading 

to the necessity for automated methods. We experimented with five crop species, including 

tomato, pepper, Brassica, barley, and maize, and concluded an approach for large-scale 

germination scoring. 

 Here, we present the SeedGerm system, which combines cost-effective hardware and open-

source software for (1) seed germination experiments, (2) automated seed imaging, and (3) 

machine-learning based phenotypic analysis. The software can process multiple image series 

simultaneously and produce reliable analysis of germination- and establishment-related traits, 

in both comma-separated values (CSV) and processed images (PNG) formats.
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 In this article, we describe the hardware and software design in detail. We also demonstrate 

that SeedGerm could match specialists’ scoring of radicle emergence. Germination curves 

were produced based on seed-level germination timing and rates rather than a fitted curve. In 

particular, by scoring germination across a diverse panel of Brassica napus varieties, 

SeedGerm implicates a gene important in abscisic acid (ABA) signalling in seeds. 

 We compared SeedGerm with existing methods and concluded that it could have wide utilities 

in large-scale seed phenotyping and testing, for both research and routine seed technology 

applications. 

Keywords 

Seed germination, seed imaging, germination scoring, phenotypic analysis, machine learning, big 

data biology, crop seeds  
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Introduction

Seeds are essential for human beings, not only as important food sources, but also for efficient 

crop production. High-vigour seeds with better seed germination and seedling emergence rates can 

ensure reliable emergence under varied agricultural conditions and hence are key to yield potential 

and uniformity (TeKrony & Egli, 1991). A common scoring method for seed germination is to 

assess radicle protrusion, which quantifies the speed and frequency of germination (Finch-Savage 

& Bassel, 2016). Traditionally, the task was accomplished by seed technologists through visual 

inspections on colour and morphological changes during physiological processes of seed 

germination (Lin, 1999); however, this approach is labour-intensive and subjective (Joosen et al., 

2010; Demilly et al., 2015).

   Routine germination scoring still commonly relies on human observation, which has practically 

constrained the frequency, scale, and accuracy of such experiments (Reyazul et al., 2015; Jahnke 

et al., 2016; Zhang et al., 2018). This bottleneck has led to many attempts to automate both seed 

imaging and associated phenotypic analysis, resulting in several research-based solutions such as 

GERMINATOR and the package,  phenoSeeder, and the MultiSense tool (Ducournau et al., 2005; 

Joosen et al., 2010; Demilly et al., 2015; Jahnke et al., 2016; Ligterink & Hilhorst, 2016; Keil et 

al., 2017). More recently, advanced computer-vision (CV) and machine-learning (ML) techniques 

are being applied to germination assays, including the Rice Seed Germination Evaluation System 

(RSGES) for assessing the germination status of Thai rice species using an artificial neural 

network (ANN) classifier (Lurstwut & Pornpanomchai, 2017); machine-vision based analysis on 

visible and X-ray images for evaluating soybean seed quality based on physical purity, viability 

and vigour (Mahajan et al., 2018); deep learning (DL) algorithms such as U-Net and ResNet for 

segmenting and classifying rice seed germination status (Nguyen et al., 2018); linear discriminant 

analysis and multispectral imaging combined for classifying cowpea seeds into categories of 

ageing, germination, and normality (Elmasry et al., 2019), and a high-throughput micro-CT-RGB 

(HCR) phenotyping system for dissecting the rice genetic architecture from seedling (Wu et al., 

2019). 

   The above solutions include customised hardware devices (e.g. bespoke germination trays, 

image sensors and seed handling system) and tailored analytic software built on MATLAB 

Toolbox, ImageJ/Fiji, Microsoft Excel macros, image analysis libraries (e.g. VideometerLab3 and A
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OpenCV), and ML/DL libraries (e.g. PyTorch). Although not fully automated, they have been 

successfully applied to impute germination traits from the acquired seed images, including the 

quantification of morphological traits (e.g. size and shape), cumulative germination rates (e.g. 

time to 50% germination, T50, and the proportion of seeds germinated at the conclusion of an 

experiment, Gmax), and quality traits such as viability and vigour (Ducournau et al., 2005; Jahnke 

et al., 2016; Mahajan et al., 2018). Nevertheless, the throughput, automation level, and the range 

of traits of the above solutions are still limited, such that seed imaging and associated germination-

related traits analyses still require human interference. 

   The emergence of plant phenomics in recent years has brought new perspectives to seed science 

research (Dell’Aquila, 2009; Watson et al., 2018). By combining cost-effective digital imaging 

and environment sensors, organ-level plant growth and development can be recorded with detailed 

imagery, at a very high frequency (Tardieu et al., 2017; Pieruschka & Schurr, 2019; Reynolds et 

al., 2019b). In particular, many CV and ML combined analytic methods have been developed to 

enable the automation of organ-level phenotypic analysis, including leaves, roots, and 

reproductive organs (Pound et al., 2017; Sadeghi-Tehran et al., 2017; Xiong et al., 2017; Zhou et 

al., 2017a; Yasrab et al., 2019). By combining colour, texture, morphologies, and growth patterns, 

seed germination can be quantified in a dynamic and objective manner, based on which large-scale 

and reproducible evidence can be produced to enable new biological discoveries for seed 

physiology (Teixeira et al., 2007; Demilly et al., 2015; Reyazul et al., 2015; Lurstwut & 

Pornpanomchai, 2017; Elmasry et al., 2019). Furthermore, the automation of seed germination 

scoring presents a good opportunity to initiate the standardisation of seed science research. Not 

only can seed quality and vigour be digitally assessed, but in addition, biological experiments 

under varied conditions can be cross-referenced quantitatively to increase the confidence of our 

research outcomes.

   Here, we introduce SeedGerm, a platform designed for automating seed imaging and high-

throughput germination analysis for a variety of crop seeds. SeedGerm incorporates cost-effective 

hardware components for seed imaging and experimental conditions (e.g. ambient temperature and 

humidity) acquisition, as well as ML-based analytic software for measuring both germination- and 

establishment-related traits during the germination process. Utilising SeedGerm, we are able to 

quantify the performance of seed lots based on individual seeds rather than a fitted germination A
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curve. The analytic software embedded in SeedGerm is able to process multiple image series at the 

same time and export analysis results in both comma-separated values (CSV) files and processed 

images (e.g. germination masks, in PNG format), at both seed and panel levels (normally one 

genotype per germination panel). We also demonstrate that SeedGerm matches seed specialists’ 

observations for the scoring of radicle emergence timing for crop species such as tomato, pepper, 

Brassica, barley and maize seeds, which can also be used as a research tool to identify the genetic 

basis of germination differences between varieties. 

Materials and Methods

Seed batch production and storage

Seed lots were produced in commercial production and stored at 12⁰C and 35% relative humidity 

(RH) until use. For seed production from the 88 B. napus Diversity Fixed Foundation Set (DFFS) 

lines used in this study, plants were vernalised (8-h photoperiod, 5 oC) for 6 weeks at the four-leaf 

stage and grown in a polytunnel. Seeds were used within three months after harvesting. Seed 

batches from independent mother plants constituted biological replicates. High-quality seed 

batches of tomato and Brassica were utilised to generate lower quality batches. To this end, a sub 

batch was taken from these, which was heat-treated for three days at 70 oC. 

Seed germination conditions

A typical experimental setup uses standard A3-sized filter paper, dark blue seed testing paper used 

in the germination chambers supplied by Munktell Ahlstrom (Grade 194, Bärenstein Germany), 

substrate to accommodate six sets of 64 individual seeds (384 seeds in total, in six germination 

panels) for tomato and Brassica seeds. For barley, we carried out experiments with three extended 

germination panels, with 40 seeds per panel and 120 seeds in total. Due to the size of maize seeds, 

the entire germination box was used to host 35 seeds per experiment. For pepper seeds, 81 seeds 

were used in a given panel, resulting in a total of 486. To facilitate sound germination 

classification, a minimum of A4-sized filter paper is recommended to allow sufficient space 

between seeds, but further divisions could also be made to separate different genotypes.

   Typical automated seed imaging was set with an hour interval and normally conducted between 

5 and 10 days depending on the crop species. For example, B. napus seeds were germinated on A
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saturated filter paper in SeedGerm boxes in constant white light at 10°C (in a cold-room or a 

growth chamber). A standard seed testing took 7-14 days, with two key traits (i.e. germination 

frequency and seed vigour) frequently checked by experienced seed technologists. To screen the 

88 B. napus DFFS lines, seeds were gridded in panels of 50 seeds, with six panels per germination 

box and five replicates per line. A fully randomised experimental design was followed. In a 

routine experiment, each SeedGerm box contains two layers of white filter (Grade 3644, 

Hahnemuehle Germany), with a single sheet of blue seed germination paper on top. A fixed 

volume of water (i.e. sterile de-ionised water, 350mls) was added to the filter paper stack prior to 

the start of the experiment. To ensure even absorption across the filter paper, the wetted paper was 

allowed to stand for 2 hours after the addition of water (i.e. a further 30mls), before gridding the 

seeds and starting the experiment. 

Hardware design

To carry out high-quality seed imaging to record physiological processes of germination in a 

continuous manner, we have designed two types of hardware apparatus: (1) a relatively low-cost 

translucent plastic germination box mounted with a fixed camera for routine germination 

experiments, and (2) a more expensive bespoke mini-gantry imaging system built on the top of a 

transparent polyethylene box for long-term experiments. Both designs are shown in Figure 1, 

where the image sensors used in the fixed design are high-definition (HD) Pi camera modules (i.e. 

5 megapixel, MP, with a maximum 2592x1944 pixels per image, Fig. 1a) and the mini-gantry 

design is equipped with an 8 MP HD USB camera, with undistorted wide-angle lens and a 

maximum 4160 × 3120 pixels per image (Fig. 1b). As the focus of the moving USB camera is 

adjustable, the latter design has been used for a variety of experiments to explore the physiological 

processes between germination and seedling (e.g. a 15-day experiment for wheat seeds, Fig. 1b). 

Also, some digital sensors have been installed in the SeedGerm device, recording ambient 

humidity and temperature on an hourly basis. As advised by previously published work 

(Schumann et al., 1995; Afzal et al., 2017), transparent polypropylene used to build SeedGerm 

devices has been tested repeatedly and did not have effects on germination and seedling growth. A 

brief outline of the hardware design and cost of the SeedGerm device can be seen in Supporting 

Information Note S1.  
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   Both SeedGerm hardware designs are controlled by low-cost single-board computers (i.e. 

Raspberry Pi 2 or Pi 3 computers). In a given experiment, users can set up seed imaging via a 

graphic user interface (GUI) based software application (i.e. the imaging module) running on Pi 

computers embedded in the SeedGerm hardware, through which imaging parameters such as 

resolution and interval can be programmed. The GUI control software is cross-platform and was 

developed using Python’s native GUI package, Tkinter (Shipman, 2013), and has been described 

previously (Zhou et al., 2017b). It also allows users to define metadata for each experiment, 

including species, genotypes, experiment duration, and the naming convention for the acquired 

images. A number of experiments can be monitored simultaneously (Figs. 1a&1c). The data 

collation and management are controlled by Linux-based crontab scheduling, at near real-time. 

Users can visually inspect experiments (e.g. tomato in Fig. 1c and wheat in Fig. 1b) from their 

own computers or smart devices using a virtual private network (VPN) or remote desktop software. 

Open-source software system

Besides the seed imaging module, the SeedGerm software system also contains a light-weight data 

management module and a ML-based analysis module (Fig. 2a). An image acquired by the 

imaging module is firstly saved on the SeedGerm hardware’s local storage. Then, the image is 

checked according to its size and clarity; if the size and clarity are greater than a predefined 

threshold value, it will be transferred to a gateway computer via wired (Ethernet) or wireless 

network connections. This synchronisation task is carried out on an hourly basis, between many 

SeedGerm devices and the gateway computer, where images from different devices are collated in 

folders named after their associated experiments defined through the seed imaging module. 

Between the gateway machine and onsite storage (e.g. a dedicated workstation or high-

performance computing infrastructure, HPC), data synchronisation tasks are normally 

accomplished overnight, when onsite network traffic is less busy. The data management module is 

administered by either crontab scheduling on Linux (Debian 9.0 onwards) or Bash scripting on 

Windows (Windows 7 onwards), which have been described in our previous work (Reynolds et al., 

2019a).  

   For different end-users, automated phenotypic analysis can be conducted either centrally on 

HPC or in a distributed manner on a workstation. Each experiment generates a time-lapse image 

series, which is uploaded to the onsite storage progressively during the experiment. Then, users A
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can use the ML-based phenotypic analysis module (i.e. analysis software) to either analyse these 

images through a command-line interface on HPC clusters, or tailored GUI-based software on a 

normal workstation computer. Both approaches output similar analysis results, including the 

quantification of germination- and establishment-related traits in CSV files, as well as a sequence 

of processed images (e.g. dynamic seed masks and panel segmentation images) in PNG format. 

GUI-based analysis software 

For the ML-based phenotypic analysis module, the workflows for both GUI and command-line 

approaches are fundamentally identical. We therefore use the more accessible GUI software to 

introduce the analysis procedure, which has been designed to execute on either Windows (i.e. the 

.exe executable, Windows 10 tested) or Mac OS (i.e. the .app file, version 10 onwards). The 

analysis software packages can be downloaded from our GitHub repository. The initial GUI 

contains an empty window with a menu bar and users can add experiments via the “Add 

experiment” window (Fig. 2b), through which users can enter a given experiment’s name, select 

an image series for processing, and choose a crop species such as Brassica, maize, pepper, tomato, 

or cereals. New plant species can be trained and added to the software through the Modules 

directory, an approach that is independent of the core analysis algorithm. Users need to briefly 

define the germination experiment associated with the selected image series, including the number 

of panels in a given SeedGerm device, Rows and Columns of seeds in each panel. In particular, 

users can define the Start and End image IDs to initiate and terminate the phenotypic analysis, 

because the background in early images can be over-saturated due to excess water soaked by the 

filter paper, whereas late images can contain too many overgrown seedling and roots (e.g. images 

between the fourth and 167th image will be analysed in Fig. 2b). Default values of the Start and 

End images are the first and last image of the selected series.  

   In order to deal with varied image quality and features caused by lighting, crop species, and 

different establishment phases, a number of ML-based algorithms have been implemented in the 

software. Users can select the ML technique from the “BG remover” dropdown to remove the 

background pixels, which includes U-Net (Ronneberger et al., 2015), Gaussian mixture model 

(GMM) (Stauffer & Grimson, 2003), and stochastic gradient descent (SGD) (Bottou & Bousquet, 

2008), which are explained in the following sections. After an experiment is added, users are 

required to set YUV colour-space ranges (Y stands for the brightness, U and V for colour A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

components (Szeliski, 2010)) to delineate the background (i.e. filter paper) in the first image of the 

selected series (Fig. 2c). By adjusting the sliding bars in the “Set YUV ranges” window, 

backgrounds are mostly retained, representing different types of filter paper used in diverse 

experiments. After defining YUV values, users can click the “Process images” item to start the 

phenotypic analysis (Fig. 2c). Similar to our previous work (Zhou et al., 2017a), the analysis 

software has also employed parallel computing to process multiple experiments simultaneously, 

with up to 12 image series have been analysed at a time on an average computer (Intel Core i5, 

8GB RAM) and over 120 series on HPC (Fig. 2d). This implementation has enabled a multi-

threading analysis running on HPC clusters for greater throughput. 

   Finally, when the analysis is completed, germination traits (e.g. T25, T50, T75, Gmax, and 

germination timing curves for each panel), morphological traits (e.g. area, width and length, extent, 

convex area, and circularity for each seed), and a range of processed images (showing the 

germination procedure and labelling individual seeds) are produced (Fig. 2e). Users can click 

“View results” on the shortcut menu to display the analysis outputs, as well as download a range 

of processed images (Supporting Information Video S1) and the analysis results in CSV files, 

containing phenotypic analysis at the image (overall results), the panel (i.e. a given genotype), and 

the seed levels (see Supporting Information Note S2).

Core analysis algorithm

The core analysis algorithm for SeedGerm includes three key parts: (1) ML-based background 

remover, (2) feature extraction and germination detection, and (3) traits measurement (Fig. 3). To 

establish a more general algorithm to analyse different types of seeds robustly, we have used a 

mixture of deep learning (DL, i.e. U-Net) and supervised ML (i.e. GMM and SGD) to divide 

background (filter paper) and foreground (seeds) pixels. For example, after users set the YUV 

values to retain background pixels, the selected BG remover is trained based on features of the 

background (e.g. RGB, contrast, intensity values) in the image (Fig. 3a). Then, the YUV values 

are applied to representative images across the image series (i.e. images at the beginning, middle, 

and end of the series) to segment background pixels, which allows the ML model to learn 

background features at different establishment stages during a given experiment, without 

overfitting the classifier for a specific crop species or a particular experimental setting. Finally, the A
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trained classifier (i.e. the background remover) is applied to each image in the series, producing 

background masks excluding any seed for each germination panel (Fig. 3b). 

   After producing background masks, they are inverted so that only seed-related objects can be 

retained. SGD has been chosen as the main learning algorithm for germination scoring and was 

used for our routine germination experiments because it performs well when the seed-background 

contrast is high when seeds can be clearly delineated from the surrounding background pixels. 

Unlike SGD, the GMM model is used for image series with low seed-background contrast when 

seeds are slightly out-of-focus. It is slower, but more robust when the background is complex (e.g. 

roots from different seeds are crossing). For images with acceptable quality but under changeable 

lighting conditions, we tend to use U-Net, a recent convolutional neural network (CNN) for 

semantic segmentation, excelling fully convolutional network (Jonathan et al., 2015) by adding 

skip connections and extra upsampling layers to provide both local and global information. The 

implementation of U-Net is exploratory, with the aim of using deep learning techniques to 

improve analysis for unseen datasets (e.g. treated seeds and new plant species). 

   For feature extraction and germination detection (Figs. 3c,d), we applied descriptive statistical 

moments, i.e. Hu Moments (Hu, 1962) to describe a given seed’s area and its centroid position, 

which are invariant to the scale and rotation changes of seeds due to imbibition in early 

germination stages. Features such as minor axis length (seed width), major axis length (seed 

length), length and width ratio, perimeter, delta of Hu moments (i.e. difference of a seed’s Hu 

moments between two consecutive images), delta of seed area, and delta of seed length and width, 

have been computed to monitor a seed’s morphological changes. The aforementioned features 

from the pre-germination stage are extracted from the first 20% of images in the series and are 

then combined to form a training matrix (Fig. 4c) to train a classification model with the 

assumption that the label for all the seeds is non-germinated. The detection model used is called 

novelty detection (Schölkopf et al., 2001), a one-class support vector machine (SVM) established 

on the training matrix generated from the first 20% of images and is then applied to determine the 

germination status of each seed in the image series. Based on the training data, a decision function 

is generated by the model to enclose pre-germination feature vectors, i.e. white circles enclosed by 

the red-coloured contour in the embedding p-dimensional space (Fig. 3d); then, as the germination 

experiment progresses, feature vectors are recomputed. When a seed begins to germinate, its A
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feature vector should gradually leave the boundary of the initial observation region (i.e. abnormal 

with a given confidence in the germination assessment, black circles outside the red-coloured 

contour). The seed’s probability of germination will increase as well. The novelty detection model 

scores germination for all detected seeds, resulting in cumulative germination rates for each seed 

lot in a given germination panel (Fig. 3e). Since the novelty detection model is reinitialised and 

retrained for each experiment using the first 20% pre-germination images of the selected image 

series as training data, the detection model is dynamic and hence the risk of overfitting is low. The 

implementation of the above algorithms can be seen in Supporting Information Note S3.

Morphological traits analyses

The last key component of the analysis software is the measurement of morphological features, 

prior to true leaf production from apical meristems. This approach utilises the measure module in 

Scikit-Image (van der Walt et al., 2014), which is enumerated briefly below:

1. “Seed Area” is the total number of pixels in the region of a segmented seed, which quantifies 

the size of a seed together with its associated radicals, if it is germinated. This trait can be used 

to define the size change of seeds during germination (e.g. imbibition).

2. “Seed Perimeter” measures the length of the contour line that encloses a given seed and, if 

germinated, its associated radicals. This trait can be used to verify the change of the seed size 

and radicle emergence during germination.

3. “Seed Major/Minor Ratio” measures the width and length (W/L) ratio of the ellipse that 

encloses a seed and, if germinated, its associated root regions. This trait can be used to define 

the shape change of a given seed during germination.

4. “Seed Convex Hull Area” measures the area of the smallest polygon that can enclose a seed 

and, if germinated, its associated root regions. This trait can be used to define the change of the 

seed and root coverages in a germination panel.

5. “Seed Extent” is the ratio of the total number of pixels contained by a seed to the total pixels 

contained in its bounding box. This trait is useful to assess the seed establishment rate because 

the area of the bounding box should increase faster than the seed area. 

6. “Seed Circularity” calculates the roundness of a seed, and, if germinated, its associated root 

regions. If the seed is a perfect circle, its circularity reading is 1; a line segment would have a 

circularity of 0. The circularity is defined as , where Area is Seed 4 ∗ 𝜋 ∗ 𝐴𝑟𝑒𝑎 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2A
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Area (in pixels) and Perimeter is Seed Perimeter (in pixels). This trait is also used to 

differentiate different crop seeds and their germination rates.

Results

Germination and morphological traits 

A set of germination experiments have been conducted to test and improve the SeedGerm platform. 

The analysis results of an experiment with 384 tomato seeds (six genotypes), which have been 

placed on six panels in a customised germination box, with one genotype per panel (64 seeds) can 

be seen in Figure 4. The imaging interval is 60 minutes and 186 images have been acquired in 

total, within eight days (Fig. 4a). Analysis outputs include two types of traits: (1) germination 

traits quantified using 1st~186th images (Fig. 4b), including cumulative germination curves, T50 

germination rates to assess the uniformity of germination, and Gmax to quantify the proportion of 

seeds germinated at the end of the experiment; and, (2) morphological traits quantified using 

1st~160th images (Fig. 4c), including seed area, width and length (W/L) ratio, and circularity. By 

combining both traits, we can identify morphological changes of six genotypes at the pre-

gemination stage (before the 106th image). As soon as the germination process started, the 

cumulative germination curves and associated morphological features became divergent between 

genotypes. It is observable that there is a strong correlation between the germination curves and 

the seed area curves, fitting in the developmental procedure when radicals coming out of seeds can 

dramatically increase the W/L ratio, and the more roots the lower W/L ratio and circularity. The 

above quantification exhibits the usefulness of combining both germination and morphological 

traits to verify and improve the detection accuracy. 

   Additionally, we also used the analysis outputs to evaluate germination uniformity or variability, 

an important trait requiring complex formulas to compute previously (Ranal & De Santana, 2006). 

For example, box-and-whisker plots are provided amongst the result files to demonstrate statistical 

dispersion of T50 germination rates (Fig. 4b), showing the difference between 25th and 75th 

percentiles of each genotype, as well as the median time to 50% germination of all genotypes. For 

example, genotype 6 seeds (G6) possess lower germination variability and better germination 

uniformity, which is verified by narrower percentile ranges and similar median values across 

tested seed batches. We have removed a number of late images (after T75) when presenting the A
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morphological traits (Fig. 4c), which is due to substantial measurement variations caused by 

overlapped roots at late stages. The analysis results of the experiment can be seen in Supporting 

Information Datasets S1 & S2. 

Germination analysis for different crop seeds

To demonstrate the robustness and generalisation of the SeedGerm system, we have applied 

SeedGerm to score germination for a range of crop seeds. The germination analyses for four 

selected crop species are tomato, pepper, maize and barley (Fig. 5). Seed images at three different 

experiment stages can be seen in the first three columns of images in Figure 5. After conducting 

time-series seed imaging, we used SeedGerm software to measure germination and morphological 

traits. Each germination panel (enclosed by dotted rectangles coloured in red in Fig. 5) contains 

one genotype. Seeds in the panel were monitored continuously, with dissimilar durations due to 

varied research objectives, for example, 165 hours (7 days) for tomato (Groot & Karssen, 1992), 

180 hours (8 days) for pepper (Smith & Cobb, 1991), 138 hours (6~7 days) for maize (Flórez et al., 

2007), and 138 hours (6~7 days) for barley (Al-Karaki, 2001). These experiments were also 

checked by specialists daily, so that manual and SeedGerm scores can be compared and verified.  

   The tomato seed germination experiments were conducted in six panels (i.e. six genotypes), with 

64 seeds per panel and 384 seeds monitored in total (Fig. 5a). Six cumulative germination curves 

have been produced based on hourly measurements for a seven-day period. We could clearly 

identify small differences amongst these genotypes between T50 and T75, when germination rates 

diverted. Similarly, germination variances could also be quantified for pepper and barley 

experiments (Figs. 5b&c). The three barley genotypes monitored exhibited a wide variety of 

cumulative germination, similar to what has been reported previously (Matthews & Khajeh-

Hosseini, 2007). Due to the size of maize seeds, we conducted one experiment per germination 

box (35 seeds per box, Fig. 5d). Still, SeedGerm software can perform sound measurement even 

when the number of germination experiments is changed. The above panel- and seed-level 

germination measures were exported and saved in several CSV files (see Supporting 

Information Datasets S3-6). 

 

   New morphological traits included in the SeedGerm analysis are seed convex area, seed extent 

and seed circularity, which have been used to quantify dynamics of germination of different crop A
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seeds as they were difficult to assess using traditional approaches (TeKrony & Egli, 1991; 

Dell’Aquila, 2009). For example, using the seed convex area trait, we found that maize had the 

quickest establishment rate after T50, while other crop seeds were very similar (Fig. 5e). Due to 

substantial variations caused by too many overlapped radicals at the late germination stage, end 

image IDs for the above analysis are different. Similarly, panel- and seed-level morphological 

measures are saved in CSVs (see Supporting Information Datasets S7-10).

Validation of the SeedGerm platform

To validate analysis produced by SeedGerm, we have used a range of validation methods to 

comprehensively compare human and SeedGerm scores. A multitude of metrics were produced 

(Table 1), including Pearson’s correlation metric (r) to measure the strength of the linear 

relationship between SeedGerm and manual scoring for cumulative germination rates. For all 

tested crop species, SeedGerm’s cumulative predictions yield a Pearson’s correlation greater than 

0.98 (column two in Table 1), indicating a strong linear correlation and goodness of fit. Pearson’s 

correlation (r) was used to evaluate the linear relationship between SeedGerm’s true positive 

germination timings and their respective timings scored by seed scientists (column three in Table 

1). In addition to the correlation metrics, we have also calculated the mean absolute error (MAE, 

column four in Table 1) to interpret the average error in hours of the germination time compared 

with manual scores for each germinated seed. The MAE measures forecast error in SeedGerm’s 

prediction against human scoring (the true value), showing a satisfactory error range. Lastly, the 

F1 score (1 indicates a perfect set of classifications and 0 means all false negatives or false 

positives, (Sasaki, 2007)), a classification metric similar to accuracy but more appropriate for 

imbalanced datasets, was used to incorporate the number of true positives, false positives, and 

false negatives into a single score for evaluating the germination classifications made by 

SeedGerm. Based on F1 scores (column five in Table 1), we can conclude that SeedGerm 

performed well across all tested crop species. The above methods evaluate both SeedGerm’s final 

germination scoring as well as the germination timing of each seed, covering germination rate, 

timing and the uniformity respectively.

   To visualise the correlation between SeedGerm scoring and seed specialists’ counting, we have 

used 19 time series (over 4,000 images in total) to perform the correlation, with three series of 

maize (129 seeds in total), six series of tomato (384 seeds), six series of Brassica (384 seeds), one A
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series of pepper (81 seeds), and three series of barley (120 seeds). Manual scoring was performed 

using the image series, where cumulative germinated seed counts for each image and the image ID 

for when each seed germinates were recorded. There is a strong correlation between SeedGerm’s 

scoring and that of the manual observers, which can be seen in Figure 6. A predicted equals actual 

line (coloured red) is included (Fig. 6a) to show how SeedGerm’s cumulative scores deviate from 

the manual scores. Additionally, line plots contrasting cumulative seed-by-seed scoring between 

SeedGerm and specialists’ counting are shown in Figure 6b. SeedGerm’s scoring is largely 

identical in comparison with manual counting, except for it tending to overestimate the number of 

germinated seeds in crowded experiments such as the later establishment stages for Brassica and 

tomato experiments. 

SeedGerm as a research tool

To test the ability of SeedGerm to be used as a research tool in routine biological experiments, we 

used the B. napus Diversity Fixed Foundation Set (Harper et al., 2012) to detect genetic 

differences in seed germination. After setting replicate seed batches of each variety, biological 

replicates of 50 seeds were sowed in SeedGerm boxes in a randomised design. SeedGerm scored 

the germination parameters of 88 varieties with a range of germination behaviours, with some 

showing strong dormancy, while most seed lots germinated to high levels, but with varying 

kinetics. SeedGerm scored the T10, T50, T90 and Gmax after 8 days (Figs. 7a&b). To test the 

accuracy of the SeedGerm outputs, 60 seed lots were also scored by a manual observer based on 

images. The agreement was strong (Supporting Information Dataset S11), except for T90 in 

varieties requiring the longest time to germination, where SeedGerm has a weak tendency to score 

seeds as germinated before the manual observation. 

   The SeedGerm outputs were then used for associative transcriptomic (AT) analysis, as described 

previously (Harper et al., 2012). The AT found no significant associations between T10, T50 and 

T90 and polymorphisms in B. napus. However, we found a strong association between Gmax and 

genotype on chromosome A5, with both SNPs and gene expression markers (Harper et al., 2012) 

associated with the trait in this region (Figs. 7c-e). This is distinct from those loci identified in 

previous studies (Hatzig et al., 2015, 2018), but significant, even after correcting for multiple 

testing. This region spans approximately 340kb and contains at least 69 known transcribed genes, 

one of which is a B. napus orthologue of the known germination regulator, protein phosphatase 2C A
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known as HIGH ABA INDUCED 3 (HAI3) (Yoshida et al., 2006; Bhaskara et al., 2012), which 

has a role in seed sensitivity to abscisic acid. Although more work is needed to precisely identify 

the underlying gene of interest, it is evident that the SeedGerm platform is capable of automating 

phenotypic analysis of seed germination with sufficient accuracy to perform standard genetic 

analysis of seed dormancy and germination rate.

Discussion

Automated seed phenotyping

Plant phenomics is a fast-developing research area focusing on obtaining meaningful phenotypic 

information to enable scientists to address diverse biological questions, from cellular organisms to 

populations in the field (Tardieu et al., 2017; Zhou et al., 2018; Furbank et al., 2019; Yang et al., 

2020). To study seed germination and seedling vigour, many academic and industrial attempts 

have been made, including research-based tools such as Germinator, phenoSeeder, MultiSense and 

RSGES, as well as commercial solutions such as the PhenoSeeder platform (developed by 

Forschungszentrum Jülich, Germany), SeedAIXPERT and Germination Scanalyzer 

(www.lemnatec.com/products/seed-screening), and Seeds Automatic Germination Analyzer 

(SAGA, France, no longer trading). These methods are capable of carrying out seed imaging, 

advanced 3D seed morphological analysis (i.e. phenoSeeder), and germination related traits 

analyses; however, their applications are limited due to their costs, availability, automation level, 

analysis throughput, and the technical scalability. 

   In this study, we present the SeedGerm system, a platform that combines automated seed 

imaging and vision-based phenotypic analysis with cost-effective hardware to enable high-

throughput analysis of seed germination experiments for a variety of crop species. Based on more 

than three years’ experiments and system improvements, we believe that our system is easy-to-

access and capable of carrying out scalable seed germination scoring for the following reasons: its 

low-cost and easy-to-build hardware design, its flexibility to incorporate different experiments, its 

open-source and modular software design, its scalability of traits analyses, and the availability of 

user-friendly GUI software, source code and design documents.   
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The SeedGerm hardware design 

In comparison with high-end seed phenotyping devices such as phenoSeeder (Jahnke et al., 2016) 

and its commercial version, our hardware design follows a low-cost and easy-to-build strategy. 

The material used to build the device can be easily accessed (see Supporting Information Note 

S1). The germination box was made of either translucent plastic for the fixed design or transparent 

polyethylene for the more expensive gantry design, which can ensure reliable germination and 

seedling growth. To provide biologically relevant data from imbibition to seedling, an overhead 

image sensor (e.g. a Pi camera module or an HD USB camera) was installed to acquire high-

quality seed image series during the entire germination procedure. To increase the throughput of 

seed imaging, we used Raspberry Pi computers (e.g. Pi 2 Model B or Pi 3 Model B+) to control 

imaging and collect metadata via SeedGerm’s seed imaging module. Because a fixed-camera 

design such as GERMINATOR (Joosen et al., 2010), the MultiSense tool (Keil et al., 2017), and 

RSGES (Lurstwut & Pornpanomchai, 2017) is relatively limited in automation, we therefore 

developed a mini-gantry design to improve the automation level to monitor more germination 

experiments. A single-axis camera movement framework has been built to move the camera 

module to specific positions to monitor different experiments, with programmed intervals 

controlled by the Pi computer. By extending the length of the gantry system and the size of the 

germination box, more experiments can be included. The mini-gantry design consists of a pulley 

system, belts, 3D-printed supports, an extendable steel bar for rails, and a stepper motor with 

driver circuit.   

   To assess and compare germination performance for different seed batches with varied 

treatments is often laborious and prone to errors. Previous work (Ligterink & Hilhorst, 2016; 

Mahajan et al., 2018) relies on CV and ML techniques to calibrate obtained images to ensure the 

soundness and the experiment. However, because experiment conditions (e.g. temperature and 

humidity) are also key to seed germination, we therefore have installed affordable environmental 

sensors (e.g. combined ambient temperature and humidity) and a fluorescent lighting device in the 

SeedGerm hardware to facilitate continuous experiment monitoring. 

   We followed open hardware suggestions (Gibney, 2016; Czedik-Eysenberg et al., 2018) to 

improve the flexibility of SeedGerm. The hardware design is freely available to the community 

and allows changes for other research requirements. For example, by replacing the image sensor A
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with multi- or hyper- spectral cameras, seed germination can be studied beyond visible bands. 

Also, adding a side image sensor (Humplík et al., 2015) or 3D imaging (Roussel et al., 2016) in 

the SeedGerm system can support the analysis of seedling growth with vertical information. Such 

hardware improvements can be carried out without any restriction, which is likely to provide 

flexible options for seed research rather than mainly relying on costly commercial solutions such 

as Germination Scanalyzer or SAGA. Although SeedGerm is low-cost, its design is capable of 

carrying out high-quality (e.g. each pixel equals to 0.15-0.2 mm) and automated seed imaging to 

provide sufficient visual evidence and sensor data for biological experiments. Also, the low-cost 

feature is prone to increase the scalability of SeedGerm, as more devices can be built relatively 

cheaply to accommodate more experiments, which is hard to achieve previously.   

The SeedGerm software design 

There is a growing need for standardising plant phenotyping in recent years, resulting in the ISA-

Tab format (Sansone et al., 2012), minimal Information About Plant Phenotyping Experiments 

(MIAPPE) (Ćwiek-Kupczyńska et al., 2016), and ontology approaches to enable comparative 

phenomics research (Oellrich et al., 2015). Much previous work (Demilly et al., 2015; Nguyen et 

al., 2018; Wu et al., 2019) in seed phenotyping has employed bespoke data collection processes 

and data formats, limiting external researchers and laboratories to utilise and support these 

methods. Hence, when designing SeedGerm’s software system, we chose to standardise the 

collection of image and sensor datasets following the ontological suggestions. Additionally, to 

calibrate images acquired by different SeedGerm devices, users were required to enter metadata to 

define their experiments, including experiment ID, genotype, biological replicates, treatment, and 

experiment duration; then, imaging intervals, image resolution, white balance, exposure mode, and 

shutter speed were controlled automatically by the imaging module to largely standardise the data 

collection. 

   To increase the scalability of the phenotypic analysis, we chose to implement our algorithms in 

Python instead of MATLAB as previously reported (Jahnke et al., 2016; Elmasry et al., 2019). 

The reasons are that Python is easy-to-understand, cross-platform, and self-contained (Millman & 

Aivazis, 2011), which is supported by a wide range of open-source libraries such as Scikit-Image 

(van der Walt et al., 2014), OpenCV (Howse, 2013), Scikit-Learn (Pedregosa et al., 2011), and 

Keras/TensorFlow (Rampasek & Goldenberg, 2016). Publicly available development kits have A
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enabled us to extend and upgrade our software relatively easily. For example, new crop species 

and traits can be added to the core analysis algorithm through new modules, where guideline seed 

morphological features can be predefined. Also, we followed the modular software design, so that 

modules developed for one species can be shared by other functions in analysis and parallel 

computing. 

   Recently, deep learning has become a powerful technique used by some seed germination 

analysis software (Mahajan et al., 2018; Nguyen et al., 2018; Halcro et al., 2020), for which it was 

applied to extract features, segment seeds, and classify germination status. Although DL is 

relatively easy to implement through Python presently, the reasons we chose a combined CV and 

ML approach are: 1) DL requires a very large amount of training datasets to perform better than 

supervised ML and CV-based methods; for features that need to be engineered frequently such as 

varied seed germination experiments, DL might not be suitable. 2) normally we need to build a 

dedicated DL model of each species; hence, it is time-consuming and ineffective to employ DL 

techniques for analysing a large number of crop species. 3) DL is likely to be overfitting for 

particular experiment settings and becomes problematic when conditions are changed. To allow 

our solution to be adopted by a broader research community that has varied experimental settings, 

we chose supervised GMM, SGD and novelty detection learning techniques based on generalised 

feature selection. More importantly, by designing the ML models to reinitialise and retrain with 

background features at different establishment stages for each experimental setting, the learning 

models embedded in SeedGerm are dynamic and can be updated for each experiment, enabling us 

to avoid overfitting the learning models for a specific crop species or a particular experiment. 

   By employing CV algorithms, SeedGerm can also measure cumulative germination rates and 

seed morphologies such as size, width and length, extent and circularity to assess seed quality and 

seedling vigour, from germination to seedling. For example, we have measured imbibition using 

the change of seed size, radical protrusion based on seed major/minor ratio, and germination speed 

through seed extent. If new biological questions are proposed, new traits and features could be 

designed jointly by biologists and computer scientists, instead of relying on DL techniques blindly. 

Because the SeedGerm software can be easily extended and accessed, we believe it is scalable and 

easy-to-access.A
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Applications of the SeedGerm system

Our work has demonstrated that SeedGerm is capable of scoring germination and measuring 

morphological changes automatically, for five major crop species and between different genotypes. 

The results show that SeedGerm could be employed to score germination frequency and seedling 

vigour, based on which the preformation of seed batches can be assessed. These traits were 

regularly checked by experienced seed engineers and scientists in order to provide certificates of 

seed germination and establishment performance in seed testing and seed insurance (Khurana & 

Singh, 2001; Dell’Aquila, 2009). Hence, it is evident that SeedGerm has the potential to provide a 

replacement for manual assessment of germination frequency and radical emergence activities. 

Furthermore, as many traits measured by SeedGerm are highly correlated with seed performance 

and the effectiveness of post-harvest seed enhancement processes, SeedGerm is likely to 

contribute towards seeds certification, guidance on sowing density, or even seed insurance in the 

future. 

    Besides routine seed testing on germination frequency, the applications of SeedGerm could also 

be expanded to the seed vigour (i.e. how fast and uniform radical emergence) through monitoring 

morphological traits, which are important for estimating canopy closure, weed suppression, and 

crop yields through seed research (Attree et al., 1992; Nelson et al., 2012; Paparella et al., 2015). 

Beyond existing traits analyses, the continuous phenotypic analysis can extend our insights into 

the entire physiological procedure of germination to understand phenotypic effects of individual 

seed and seed batches under dissimilar treatments. Furthermore, we also set up a range of 

experiments to score germination rates and timing across a diverse panel of B. napus varieties to 

demonstrate the biological relevance of SeedGerm as a research tool to measure the effect of 

genetics. We showed that SeedGerm outputs can be used successfully for GWAS, identifying an 

association on B. napus chromosome A5 that explains the difference between high and low 

germinating varieties in the panel (Figs. 7b-e). Although the GWAS study identified associations 

over a 100kb region, this region does contain one gene BnaA05g27660D, a homologue of 

Arabidopsis AHG3, known to regulate ABA signalling during germination in Arabidopsis 

(Yoshida et al., 2006), which would be a strong candidate for further study. The low-germinating 

allele is only present in older spring varieties including Bronowski and Duplo, suggesting that it 

has been consistently selected against by modern oilseed rape breeders. Hence, we believe that A
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SeedGerm has a great potential to have significant utilities in seed germination scoring and seed 

testing, for both research and routine seed technology applications. 

Issues of SeedGerm

It is also important to point out some edge cases where the system has struggled. Due to camera 

position and lighting problems, some image series were of poor quality. Although we have added 

software calibration to allow users to improve the classification accuracy on the low-quality 

datasets (e.g. colour features), the analysis could still suffer. For such datasets, only through 

manually selecting image IDs (see Supporting Information Note S4) could we realistically 

reduce variance and improve the analysis accuracy. SeedGerm’s scoring tends to overestimate the 

number of germinated seeds in crowded experiments such as the later stages for Brassica and 

pepper experiments. To provide reproducible measures of the uniformity, timing and germination 

rates, we have scored large numbers of seed samples and found that distancing the seeds from 

each other with at least 1 cm apart has improved the analysis accuracy noticeably for crowded 

experiments. As different crop seeds have very diverse morphologies, some morphological 

measures cannot be easily transferred from one species to the other, which indicates the 

application of Online-Leaning or Transfer Learning mechanisms (Wen et al., 2017) could be 

potentially beneficial in future development. Although the learning models embedded in 

SeedGerm are dynamic for each experiment, the cost of such a design is that additional 

computational resources are required, demanding users to build a decent computer (i7 CPU with 

16GB memory) to perform analysis. Notably, to maintain the reliability of the parallel computing, 

we do not recommend more than eight tasks to be paralleled on an average computer, because 

processing multiple image series simultaneously requires a high demand of computing resources 

and some Python functions have been locked because they are not thread-safe during multi-thread 

processing.

Conclusion

In conclusion, limitations of current seed imaging and scoring approaches have prevented 

automated and scalable analysis of seed germination. In this paper, we present the SeedGerm 

system that integrates cost-effective hardware and user-friendly software for performing seed 

imaging and ML-based analysis for measuring establishment- and germination-related traits. The A
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system has been applied to many germination experiments for five crop species, through which we 

could assess the performance of seed batches quantitatively. Morphological traits such as seed size, 

width and length, extent and circularity were also measured to provide insights into the 

physiological procedure of seed germination. We demonstrate that SeedGerm matches seed 

specialists’ observations for the scoring of radicle emergence timing and its biological relevance in 

identifying a gene important in ABA signalling in seeds with associative transcriptomics. We trust 

that the SeedGerm system could have wide utilities in seed testing and germination scoring, for 

both research and industrial applications. 

Availability and requirements 

Project name: SeedGerm

Project release page and source code: https://github.com/Crop-Phenomics-

Group/SeedGerm/releases

Testing image series: barley (109 MB), Brassica (638 MB), corn (257 MB), pepper (572 MB), and 

tomato (563 MB). 

GUI software: SeedGerm.exe (128 MB)

Operating system(s): platform-independent

Requirements:  Python 3.7, Scikit-Image, OpenCV, Scikit-Learn, Keras

Open Access 

The source code is distributed under the Creative Commons Attribution 4.0 international license, 

permitting unrestricted use, distribution, reproduction in any medium, provided you give 

appropriate credit to the original authors and the source, provide a link to the Creative Commons 

license, and indicate if changes were made. Unless otherwise stated the Creative Commons Public 

Domain Dedication waiver applies to the data and results made available in this paper 

(http://creativecommons.org/licenses/by/4.0/). All the source code and design documents of our 

work are freely available for academic use at https://github.com/Crop-Phenomics-

Group/SeedGerm/releases. 

Abbreviations

Abscisic acid (ABA), artificial neural network (ANN), associative transcriptomic (AT), 

background (BG), central processing unit (CPU), comma separated values (CSV), computed A
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tomography (CT), computer vision (CV), convolutional neural network (CNN), deep learning 

(DL), diversity fixed foundation set (DFFS), Gaussian mixture model (GMM), graphic user 

interface (GUI), high definition (HD), high-performance computing (HPC), identifier (ID), 

machine learning (ML), megapixel (MP), portable network graphics (PNG), red green blue (RGB), 

Seeds Automatic Germination Analyzer (SAGA), single nucleotide polymorphism (SNP), 

stochastic gradient descent (SGD), support vector machine (SVM), three dimensional (3D), 

universal serial bus (USB),  width and length (W/L).
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Tables

Table 1 Table of validation metrics used to compare between manual counting and 

SeedGerm scoring.

r (Cumulative Rate) r (Image ID) MAE (hours) F1

Barley 0.981072 0.803827 13.27500 0.961039

Brassica 0.992307 0.885759 9.140625 0.935779

Maize 0.993662 0.873848 3.542857 0.985507

Pepper 0.999013 0.952276 6.025000 0.993631

Tomato 0.992766 0.888033 4.903226 0.991736

r denotes Pearson’s correlation, MAE denotes mean absolute error, F1 denotes F1 score.
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Figure legends 

Figure 1: Two types of SeedGerm hardware with wired and wireless connectivity used for 

acquiring seed germination image series for different crop species.

(a) A set of imaging devices (dimensions: H31, W39, D48 cm) installed in a cold-room for 

acquiring seed germination images during experiments. Image sensors used in the fixed design are 

controlled by Raspberry Pi computers (in the small window) and data is transferred via Ethernet 

connection. (b) The mini-gantry design is equipped with an undistorted wide-angle lens USB 

camera affixed to the top of the germination box (dimensions: H25, W30, D45 cm) for recording 

images of long-term germination experiments and data is transferred via WiFi connection. (c) 

Stylised view of SeedGerm devices shows the connection with a gateway machine to allow for 

device configuration and imaging data transfer. Single panel of Brassica seeds monitored in a 

short experiment illustrates the germination procedure at various establishment stages.

Figure 2: The software components and data flows of the SeedGerm software together with 

GUI-based analysis software designed for processing multiple germination image series 

using supervised machine learning, computer vision and parallel computing.  

(a) Three software modules designed for automated seed imaging, data management and machine-

learning based phenotypic analysis. (b) The input parameters that can be set by users before 

automated phenotypic analysis. (c) The background pixels in germination panels (i.e. filter paper) 

identified using user-configured YUV colour-space ranges. (d) After processing a number of 

experiments, germination and morphological traits are quantified and ready to be downloaded. (e) 

Cumulative germination curves, uniform and Gmax plots produced to score seed quality and seed 

vigour together with dynamic seed masks recording entire germination procedures for different 

genotypes in a germination box.

Figure 3: Crop analysis algorithm embedded in the SeedGerm analysis software for 

automated seed germination scoring and phenotypic analysis.

(a) Location of individual experiments in a given germination box, which is identified from the 

first image by panel segmentation using the YUV colour-space ranges. (b) Background removal 

models trained using labelled background (filter paper) and foreground (seeds) pixels, which are 

subsequently applied to retain seed-related objects. (c) Descriptive statistical moments (i.e. Hu A
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moments) are used to measure seed morphological features for each seed in a given germination 

panel. Features across the image series are combined to form a set of training vectors. (d) A 

novelty detection model (one-class SVM) is trained based on the training vectors and is then 

applied to the time series to classify the germination status for each seed, germinated (closed 

circles) and non-germinated (open circles). (e) Germination scoring and morphological traits for 

all seeds are collated to produce cumulative germination curves and germination timing plots.

Figure 4: Germination-related and morphological traits quantified by the SeedGerm 

software.

(a) The time-lapse image series of six tomato genotypes (384 seeds) acquired in an eight-day 

experiment. (b) The quantification of germination related traits, including cumulative germination 

curves, T50 germination rates, and Gmax final germination rate. For the whisker box plot in the 

middle, boxes show the quartile values (25-75%) of the T50 germination data, with vertical lines 

(coloured orange) at the median. The whiskers extended from the boxes show the range of the data 

(i.e. the lower quartile minus 1.5 multiplied by the interquartile range, the upper quartile plus 1.5 

multiplied by the interquartile range). Data beyond the whiskers are considered as outliers (open 

circles). (c) The quantification of morphological traits, which include seed area, width and length 

ratio, extent, and circularity. Coloured shading areas denote confidence intervals, between the 15th 

and 85th percentiles of the data. The three red dashed lines indicate the corresponding image IDs 

when germination has started, 50% of seeds have germinated, and 75% of seeds have germinated.

Figure 5: Germination scoring for four crop seeds with varied experimental settings together 

with comprehensive morphological traits measurements.

(a) 384 tomato seeds (six genotypes) used for seed germination experiments, producing six 

cumulative germination curves on hourly measures during a seven-day period. (b) 486 pepper 

seeds (six genotypes) used for germination experiments, producing six cumulative germination 

curves on hourly measures during an eight-day period. (c) 120 barley seeds (three genotypes) used 

for germination experiments, producing three cumulative germination curves on hourly measures 

during a six-day period. (d) 35 maize seeds (one genotype) used for a germination experiment, 

producing a cumulative germination curve on hourly measures during a six-day period. (e) 

Morphological measurements produced by plotting hourly changes against the duration of 

experiments, so that all experiments can be compared on similar bases, including a number of A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

traits such as seed area (in pixels), W/L ratio (0~1), seed circularity (0~1), and convex area (in 

pixels). Coloured shading areas denote confidence intervals, between the 15th and 85th percentiles 

of the data.

Figure 6: Pearson’s correlation (r) performance metric to evaluate SeedGerm’s scoring 

using manual cumulative germination rates and seed-by-seed germination scoring for five 

crop species. 

(a) For all tested species, SeedGerm’s predictions display a strong linear correlation and goodness 

of fit (r > 0.98) based on cumulative germination rates. Each point represents the number of seeds 

classified as germinated in a panel in an image, meaning multiple populations are plotted together. 

The red line displays SeedGerm’s cumulative count equalling the cumulative manual count. The 

number of panels associated with each scatterplot is denoted as p. (b) Seed-by-seed scoring 

between SeedGerm and specialists’ counting plotted to demonstrate the reliability of SeedGerm 

scoring as well as its tendency to predict additional germinated seeds at the end of crowded 

experiments.

Figure 7: SeedGerm applied to detect genetic differences of 88 varieties of Brassica napus 

with a range of germination behaviours. SeedGerm scored the T10, T50, T90 and Gmax after 8 

days. 

(a) Germination time (in hours) for T10, T50, and T90 cumulative germination rates for 88 B. napus 

varieties. (b) Gmax cumulative germination rates for 88 B. napus varieties. (c) A SNP association 

between Gmax and genotype on chromosome A5, blue dashed line indicates significant associations 

with an FDR of 0.1. (d) Box plot to show germination scores for variety sets with each allele score 

for the most significant SNP on chromosome A5. Boxes show the quartile values (25-75%) of the 

maximum germination data, with horizontal lines at the median and crosses at the mean. The 

whiskers extended from the boxes show the range of the data. Data beyond the whiskers are 

plotted as outliers (open circles). (e) Analysis with correlated gene expression markers showed 

that the expression of at least two genes in this region are correlated with germination, 

demonstrating sufficient accuracy of SeedGerm to perform standard genetic analysis of seed 

dormancy and germination rate. Blue dashed line indicates significant associations with an FDR of 

0.005.
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Supporting Information

Notes S1 SeedGerm hardware design and cost

Notes S2 The analysis results of SeedGerm

Notes S3 Code fragments for background-removal and germination novelty detection algorithms

Notes S4 The selection of image IDs before SeedGerm analysis

Datasets S1 Cumulative germination data

Datasets S2 Morphological traits

Datasets S3 Barley cumulative data

Datasets S4 Tomato cumulative data 

Datasets S5 Pepper cumulative data

Datasets S6 Maize cumulative data

Datasets S7 Barley morphological data

Datasets S8 Tomato morphological data

Datasets S9 Pepper morphological data
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Datasets S11 B. napus SeedGerm and manual comparison

Video S1 Time series of seed germination and automated scoring
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