NaSn2(PO4)3 submicro-particles for high performance Na/Li mixed-ion battery anodes

Zhao, Beibei, Zhang, Xudong, Xu, Guogang, San Hui, Kwan, Zhu, Jiefang and He, Wen (2020) NaSn2(PO4)3 submicro-particles for high performance Na/Li mixed-ion battery anodes. Journal of Alloys and Compounds, 844. ISSN 0925-8388

[img] PDF (Accepted_Manuscript) - Submitted Version
Restricted to Repository staff only until 30 June 2021.

Download (1MB) | Request a copy


NaSn2(PO4)3 has open framework, high ionic conductivity, low working potential, high theoretical capacity more than twice of graphite. However, its commercial application is limited by its low electrical conductivity and rapid capacity fading. To overcome this challenge, we synthesize NaSn2(PO4)3 submicro-particles (around 100–300 nm in size) by hydrothermally assisted pyrolysis reactions. The synthesized NaSn2(PO4)3 anode for Na/Li mixed-ion batteries delivers an ultrahigh initial discharge capacities, excellent rate performance and superior cycling stability. This design provides a promising pathway for developing high performance mixed-ion batteries.

Item Type: Article
Uncontrolled Keywords: electrochemistry,ionic conductors,lithium-ion batteries,li mixed-ion diffusion,mechanics of materials,mechanical engineering,metals and alloys,materials chemistry ,/dk/atira/pure/subjectarea/asjc/2200/2211
Faculty \ School:
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 01 Jul 2020 00:00
Last Modified: 29 Jul 2020 23:51
DOI: 10.1016/j.jallcom.2020.156082

Actions (login required)

View Item View Item