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Abstract Early Huntington's disease (HD) include over-activation of dopamine D 1 receptors
(D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D 1R
over-activation, we present a strategy based on targeting complexes of D 1R and histamine H3

receptors (H 3R). Using an HD mouse striatal cell model and HD mouse organotypic brain slices we
found that D 1R-induced cell death signaling and neuronal degeneration, are mitigated by an H 3R
antagonist. We demonstrate that the D 1R-H3R heteromer is expressed in HD mice at early but not
late stages of HD, correlating with HD progression. In accordance, we found this target expressed
in human control subjects and low-grade HD patients. Finally, treatment of HD mice with an H 3R
antagonist prevented cognitive and motor learning deficits and the loss of heteromer expression.
Taken together, our results indicate that D 1R - H3R heteromers play a pivotal role in dopamine
signaling and represent novel targets for treating HD.
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Introduction
Huntington's disease (HD) is a dominant inherited progressive neurodegenerative disorder caused
by expansion of a CAG repeat, coding a polyglutamine repeat within the N-terminal region of hun-
tingtin protein ( Macdonald, 1993 ; Vonsattel and DiFiglia, 1998 ). Although dysfunction and death
of striatal medium-sized spiny neurons (MSSNs) is a key neuropathological hallmark of HD
(Ferrante et al., 1991 ; Vonsattel et al., 1985 ), cognitive deficits appear long before the onset of
motor disturbances ( Lawrence et al., 2000 ; Lemiere et al., 2004 ). It has been postulated that alter-
ations in the dopaminergic system may contribute to HD neuropathology ( Chen et al., 2013a ;
Jakel and Maragos, 2000 ), as dopamine (DA) plays a key role in the control of coordinated move-
ments. Increased DA levels and DA signaling occur at early stages of the disease (Chen et al.,
2013a ; Garret et al., 1992 ; Jakel and Maragos, 2000 ), resulting in an imbalance in striatal neuro-
transmission initiating signaling cascades that may contribute to striatal cell death ( Paoletti et al.,
2008 ; Ross and Tabrizi, 2011 ). Several studies demonstrated that DA receptor antagonists and
agents that decrease DA content reduce chorea and motor symptoms while dopaminergic stimula-
tion exacerbate such symptoms (Huntington Study Group, 2006 ; Mestre et al., 2009 ; Tang et al.,
2007 ).

Within the striatum, two different MSSNs populations can be distinguished: 1) MSSNs expressing
enkephalin and dopamine D 2 receptors (D2R), which give rise to the indirect striatal efferent path-
way, and 2) MSSNs expressing substance P and dopamine D1 receptors (D1R), comprising the direct
striatal efferent pathway. Recently, several studies with experimental models have changed the tradi-
tional view that D 2R-MSSNs are more vulnerable in HD (Cepeda et al., 2008 ; Kreitzer and Malenka,
2007 ), proposing a new view in which D 1R-MSSNs are more vulnerable to the HD mutation. In this
view, it has been demonstrated that mutant huntingtin enhances striatal cell death through the acti-
vation of D 1R but not D 2R (Paoletti et al., 2008 ). More recently, it has been described that, at early
stages of the disease, HD mice show an increase in glutamate release onto D1R neurons but not D2R
neurons while, later in the disease, glutamate release is selectively decreased to D 1R cells
(AndreÂet al., 2011a ), indicating that several changes occur in D1R neurons at both early and late
disease stages. Strategies that might reduce D 1R signaling could prove successful towards prevent-
ing HD (AndreÂet al., 2011a ; AndreÂet al., 2011b ; Ross and Tabrizi, 2011 ; Tang et al., 2007 ). How-
ever, D1Rs are highly expressed in many tissues (Beaulieu and Gainetdinov, 2011 ) and broad use of
D1R antagonists as a preventive treatment has important drawbacks including locomotor impair-
ments (GimeÂnez-Llort et al., 1997 ), or induce depression, parkinsonism and sedation in HD patients
(Frank et al., 2008 ; Huntington Study Group, 2006 ).

Histamine is an important neuromodulator with four known G protein-coupled receptors (GPCRs).
H3Rs are expressed in brain regions involved in both motor function (striatum) and cognition, such
as the cortex, thalamus, hypothalamus, hippocampus and amygdala ( Panula and Nuutinen, 2013 ). It
is known that in at least striatal GABAergic dynorphinergic neurons ( Pillot et al., 2002 ; Ryu et al.,
1994a ; Ryu et al., 1994b ), both D 1R and H3R are co-expressed and we and others have found that
they establish functional negative interactions by forming molecular complexes termed heteromers
(Moreno et al., 2011 ; SaÂnchez-Lemus and Arias-Montan Äo, 2004 ). Hence, in this work, we hypothe-
sized that targeting D 1R through these receptor complexes of D 1R and H3R might serve as a more
efficient and targeted strategy to slow the progression of HD. Specifically, we demonstrate that
D1R-H3R heteromers are expressed and functional in early HD stages but are lost in late stages. An
H3R antagonist acting through D 1R-H3R heteromers acts as a protective agent against dopaminergic
imbalance in early HD stages improving learning and long-term memory deficits and rescuing the
loss of D1R-H3R complexes at late stages of HD.

Results

Functional D 1R-H3R heteromers are expressed in wild type STHdh Q7

and HD STHdh Q111 striatal cell models
To test whether D 1R-H3R heteromers could indeed be targets for controlling D 1R signaling in HD,
we first analyzed the expression of both receptors in immortalized striatal cells expressing endoge-
nous levels of full-length wild-type STHdh Q7 or mutant STHdhQ111 huntingtin ( GineÂs et al., 2010 ).
Ligand binding determined that both STHdh Q7 and STHdhQ111 cells endogenously express similar
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levels of D1R and H3R (Supplementary file 1 ). By proximity ligation assays (PLA), D1R-H3R hetero-
mers were detected as red spots surrounding the blue stained nuclei in both cell types ( Figure 1A ,
left panels of both cell types) and in cells treated with control lentivirus vector ( Figure 1Ðfigure sup-
plement 1A ) but not in cells depleted of H 3R (Figure 1A , right panels of both cell types) by shRNA,
as shown by RT-PCR and functionality (Figure 1Ðfigure supplement 1B,C ), or in negative controls
(Figure 1Ðfigure supplement 1D ). To ensure that D1R-H3R heteromers were functional in STHdh
cells, cell signaling experiments were performed. Using both STHdh Q7 and STHdhQ111 cells and con-
centrations of ligands previously shown to be optimal for receptor activation of the ERK1/2 pathway
(Ferrada et al., 2009 ; Moreno et al., 2014 ; Moreno et al., 2011 ), we observed that the D 1R ago-
nist SKF 81297 was able to increase ERK1/2 phosphorylation whereas it was prevented by D1R
antagonist SCH 23390, and by the H3R antagonist thioperamide ( Figure 1Ðfigure supplement 2A,
B) via cross-antagonism. In addition, we tested a previously described alternative signaling pathway
activated downstream of D 1R, Ca2+ mobilization ( Chen et al., 2007 ; Jose et al., 1995 ). When cells
were treated with the D 1R agonist SKF 81297 a robust and rapid increase in cytosolic Ca2+ was
detected in both STHdh Q7 and STHdhQ111 cells (Figure 1B,C ). Importantly, this calcium release
could be dampened with the H 3R antagonist thioperamide (cross-antagonism) (Figure 1B,C ). The
above signaling data strongly support the presence of functional D 1R-H3R heteromers in STHdh
cells.

To further demonstrate that an H 3R antagonist is dampening D 1R activation involving D1R-H3R
heteromers, we evaluated the effect of interfering peptides, which are synthetic peptides with the
amino acid sequence of domains of the receptors involved in the heteromeric interface. This
approach has been used by us and others to disrupt other heteromer complexes
(Bonaventura et al., 2015 ; Guitart et al., 2014 ; Hasbi et al., 2014 ; Lee et al., 2014 ; VinÄals et al.,
2015 ). In a previous study we showed the efficacy of this approach in demonstrating heteromeriza-
tion of D 1R with D3R, using a peptide with the sequence of D 1R transmembrane domain 5 (TM5) but
not TM7 (Guitart et al., 2014 ). We therefore investigated whether synthetic peptides with the
sequence of TM5, and TM7 (as a negative control) of D 1R, fused to HIV-TAT, were also able to dis-
rupt receptor D 1R-H3R heteromers measured by PLA. In agreement with our hypothesis, there was a
near complete loss in PLA fluorescence signal when STHdhQ7 and STHdhQ111 cells were incubated
with TAT-TM five peptide ( Figure 1D,F ), but not for the negative control in which the TAT-TM seven
peptide was used (Figure 1H,J ). We next evaluated whether TM5 or TM7 would interfere with the
observed cross-antagonism in calcium mobilization assays. Clearly, pretreatment of both STHdh Q7

and STHdhQ111 cells with the TAT-TM5 (Figure 1E,G ) but not TAT-TM7 (Figure 1I,K ) peptide dis-
rupts the ability of the H 3R antagonist thioperamide to dampen D 1R calcium signaling. These results
support that TM5 forms part of the interface of the D 1R-H3R heteromer and demonstrate that the
H3R antagonist effect is driven through direct interaction between D 1R and H3R.

H3R ligands prevent the D 1R-induced cell death in STHdh Q7 and
STHdQ111 cells
It has been previously reported that upon activation of D 1R, STHdh cell viability is reduced
(Paoletti et al., 2008 ). To explore whether H 3R ligands could impair D 1R activation through D 1R-
H3R heteromers in a pathologically relevant readout, we used D 1R-induced cell death as an output
of D1R activation in STHdh cells. As expected, STHdh cell viability decreased when treated with the
D1R agonist SKF 81297 in a concentration-dependent manner (Figure 1Ðfigure supplement 2C ).
Significant cell death did not occur until 30 mM SKF 81297 was used (Figure 1Ðfigure supplement
2C), an effect prevented by the D 1R antagonist SCH 23390 (Figure 1Ðfigure supplement 2E ). Pre-
treatment with the H 3R antagonist thioperamide, which did not modify cell viability when adminis-
tered alone (Figure 1Ðfigure supplement 2E ), increased the number of surviving cells in the pres-
ence of the D 1R agonist SKF 81297 in both cell types (Figure 1L,M and Figure 1Ðfigure
supplement 2D ). Importantly, the effect of the H 3R antagonist thioperamide was specific since no
protection from D 1R agonist-induced cell death was observed in cells depleted of H 3R with shRNA
lentiviral infection ( Figure 1L,M ), but was observed in cells transfected with the control lentivirus
(Figure 1Ðfigure supplement 2F ). In addition, we also demonstrated that recovery of viability
induced by the H 3R antagonist thioperamide was mediated by D 1R-H3R heteromers since pre-incu-
bation with D 1R TM5 peptide, but not D 1R TM7 impaired the H 3R antagonist protection from D 1R
agonist-induced cell death ( Figure 1L,M ).
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Figure 1. Functional D1R-H3R heteromers are expressed in STHdhQ7 and STHdhQ111 cells. PLA were performed in STHdhQ7 and STHdhQ111 cells (A, D,
F, H and J) or in cells infected with shH3R to silence H3R, observed as green stained cells due to the GFP expression included in the plasmid (A). D1R-
H3R heteromers were visualized in STHdh cells as red spots around blue colored DAPI stained nucleus, but not in STHdh cells infected with shH3R
vector (A). Calcium increases were measured in STHdhQ7 (B, E and I) or STHdhQ111 (C, G and K). Cells were treated (20 min) or not with the H3R

Figure 1 continued on next page
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To better understand the mechanisms involved in D 1R-H3R heteromer action, we determined
which cellular signaling pathways are implicated in the cross-antagonism of H 3R upon activation of
D1R. Both concentrations of the D 1R agonist SKF 81297, cytotoxic (30 mM) and non-cytotoxic (1 mM),
can induce intracellular calcium release, which is more pronounced and persistent at 30 mM (Fig-
ure 1Ðfigure supplement 3A,B ). A correlation between the intensity of calcium responses and the
activation of apoptotic pathways such as p38 ( Semenova et al., 2007 ) has been previously demon-
strated. Thus, we measured changes in p38 phosphorylation levels using both concentrations of the
D1R agonist SKF 81297 (Figure 1Ðfigure supplement 3C,D ). Interestingly, we found that increased
phosphorylation of p38 only occurred at the cytotoxic concentration of SKF 81297. Similar to treat-
ment with 1 mM SKF 81297 (seeFigure 1 ), the calcium release induced by 30 mM SKF 81297 was
also blocked by the H 3R antagonist thioperamide ( Figure 1Ðfigure supplement 4A,B ). Treatment
with the H 3R antagonist thioperamide reduced p38 phosphorylation upon D 1R activation in both cell
types (Figure 1Ðfigure supplement 4C ). Moreover, the p38 inhibitor SB 203580 blocked p38 phos-
phorylation ( Figure 1Ðfigure supplement 4C ) and protected against the cytotoxic effect of the D 1R
agonist SKF 81297 in a dose-dependent manner (Figure 1Ðfigure supplement 4D ), confirming that
p38 is a key pathway involved in D1R-mediated cell death in these cells.

It has been reported that ligands can influence receptor oligomerization. To understand how the
ligands used here might impact D 1R-H3R heteromers we performed PLA after treating with either
vehicle, SKF 81297 or SKF 81297 and thioperamide. We found that SKF 81297-induced a loss of PLA
staining in both STHdh cells (Figure 1Ðfigure supplement 5 ), while pre-treatment with the H 3R
antagonist thioperamide preserved the number of punctate PLA spots ( Figure 1Ðfigure supple-
ment 5 ).

Functional D 1R-H3R heteromers are expressed in wild-type Hdh Q7/Q7

and in Hdh Q7/Q111 mutant knock-in mice at early but not late HD stages
To test whether D 1R-H3R heteromers can indeed be targets for treating HD, we investigated their
expression and function in the striatum, cerebral cortex and hippocampus of a widely accepted pre-
clinical model of HD, the heterozygous Hdh Q7/Q111 mutant knock-in mice, and their wild-type
HdhQ7/Q7 littermates (Giralt et al., 2012 ; PuigdellõÂvol et al., 2015). By PLA we confirmed that both
HdhQ7/Q7 and HdhQ7/Q111 mice display D1R-H3R heteromers at 2 months (mo) (Figure 2Ðfigure
supplement 1 ) and four mo (Figure 2A,B ) of age in all brain regions tested. No signal was observed
in negative controls in which one of the PLA primary antibodies were missing ( Figure 2Ðfigure sup-
plement 2 ). Heteromer expression was similar in all brain areas and no differences were observed
between genotypes at 4 mo of age ( Figure 2B ). Surprisingly, an almost complete loss of D 1R-H3R
heteromers was found in 6 mo and eight mo-old Hdh Q7/Q111 mice but not in Hdh Q7/Q7 mice

Figure 1 continued

antagonist thioperamide (10 mM) before the addition of vehicle or SKF 81297 (1 mM). In (D, E, F, G, H, I, J and K), STHdHQ7 (D, E, H and I) or
STHdHQ111 (F, G, J and K) cells were also pre-treated for 60 min with 4 mM TM5 (D, E, F and G) or TM7 (H, I, J and K) peptides. Heteromers were
visualized as red spots around DAPI (blue) stained nucleus in cells pre-treated with TM7 peptide. Scale: 20mm. For each calcium curve values are
expressed as a percentage increase with respect to untreated cells and are a mean ± SEM of 3 to 5 independent experiments. In (L and M), cell viability
was determined in STHdhQ7 (L) or STHdhQ111 cells (M) pre-treated for 60 min with vehicle (white columns), with 4 mM TAT-TM7 (pale grey columns) or
TAT-TM5 (grey columns) or infected with shH3R to silence H3R (dark grey columns) prior overstimulation with 30 mM SKF 81297. Values represent
mean ± SEM (n = 24 to 30) of cell viability recovery expressed as in-fold respect to SKF 81297 treated cells. Student'st test showed a significant
(***p<0.001) effect over SKF 81297 treated cells.
The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Negative controls for Proximity Ligation Assays (PLA) in striatal cells not depleted or H3R depleted by shRNA.
Figure supplement 2. H3R ligands revert the D1R-mediated decreases in STHdhQ7 and STHdhQ111 cell viability.
Figure supplement 3. Effect of low and high SKF 81297 concentrations in p-p38 and intracellular calcium release.
Figure supplement 4. H3R ligands revert the D1R-mediated decreases in cell viability in STHdhQ7 and STHdhQ111 by modulating calcium signaling and
p38 phosphorylation.
Figure supplement 5. H3R ligands revert the D1R overstimulation-induced heteromer disruption in striatal cells.

Moreno-Delgado et al. eLife 2020;9:e51093. DOI: https://doi.org/10.7554/eLife.51093 5 of 31

Research article Neuroscience



Figure 2. Functional D1R-H3R heteromers are expressed in wild-type HdhQ7/Q7 and mutant Hdh Q7/Q111 mice. Striatal, cortical or hippocampal slices
from 4-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice were used. In (A), by Proximity Ligation Assays (PLA) D1R-H3R heteromers were visualized in all slices
as green spots around blue colored DAPI stained nucleus. Scale bar: 20mm. In (B), the number of cells containing one or more green spots is
expressed as the percentage of the total number of cells (blue nucleus). r values (number of green spots/cell containing spots) are shown above each
bar. Data (% of positive cells or r) are the mean± SEM of counts in 600±800 cells from 4 to 8 different fields from three different animals. Student's t test
showed no significant differences in heteromers expression in HdhQ7/Q7 and HdhQ7/Q111 mice. In (C), striatal, cortical or hippocampal organotypic slice
cultures from 4-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice were treated for 60 min with vehicle, the D 1R antagonist SCH 23390 (10mM) or H3R
antagonist thioperamide (10 mM) before the addition of SKF 81297 (50mM). After 48 h cell death was determined. Values represent mean ± SEM (n = 3
to 19) of percentage of cell death. One-way ANOVA followed by Bonferroni post hoc tests showed a significant effect over non-treated organotypic
cultures (***p<0.001) or of the H3R antagonist plus SKF 81297 treatment over the SKF 81297 (###p<0.001).
The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. D1R-H3R heteromer are expressed in 2-month-old HdhQ7/Q7 and HdhQ7/Q111 mice.
Figure supplement 2. Negative controls for Proximity Ligation Assays (PLA) in mouse brain slices.
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(Figure 3Ðfigure supplement 1 and Figure 3A,B ), indicating that at more advanced disease stages
the D1R-H3R heteromer is lost. Although at 8 mo of age we detected a partial decrease in striatal
D1R expression in HdhQ7/Q111 compared with Hdh Q7/Q7 mice using ligand binding experiments
(Supplementary file 2 ), the loss of heteromer expression is not due to a complete loss of receptor
expression since by radioligand binding ( Supplementary file 2 ) and mRNA expression analysis
(Supplementary file 3 ) both receptors continue to be expressed.

To test the role of D 1R-H3R heteromers, organotypic mouse striatal, cortical and hippocampal cul-
tures were obtained. Cell death was induced by the D 1R agonist SKF 81297 (50mM), and analysis of
DAPI and propidium iodide staining was performed. As expected, D 1R agonist SKF 81297 treatment
increased the percentage of cell death in all three regions compared to vehicle-treated organotypic
cultures without significant differences between genotypes at 4 mo of age ( Figure 2C ). Importantly,
slices pre-treated with the H 3R antagonist thioperamide, that does not modify cell death when
administered alone, protected cells from D 1R elicited cell death in an equivalent manner to the D 1R
antagonist SCH 23390 (Figure 2C ), indicating that functional D 1R-H3R heteromers are expressed in
different brain areas of Hdh Q7/Q7 and HdhQ7/Q111 mice at early disease stages. The dramatic change
in heteromer expression in eight mo-old Hdh Q7/Q111 mice was mirrored by the lack of protection of
the H3R antagonist thioperamide against SKF 81297-induced cell death in organotypic cultures
(Figure 3C ), corroborating that the presence of D 1R-H3R heteromers is needed for the H 3R antago-
nist to prevent D 1R-mediated cell death.

Treatment with thioperamide prevents cognitive and motor learning
deficits at early disease stages
To test whether the H 3R antagonist thioperamide can exert beneficial effects in the initial stages of
the disease we evaluated the effect of chronic thioperamide treatment on motor learning and mem-
ory deficits in mutant Hdh Q7/Q111 mice. Since cognitive decline is observed in these HD mice from 6
mo of age (Brito et al., 2014 ; Giralt et al., 2012 ; PuigdellõÂvol et al., 2015) and the D1R-H3R hetero-
mers are expressed and functional until the age of 5 mo ( Figure 4Ðfigure supplement 1A,B ), we
chose 5mo-old animals to start the thioperamide treatment ( Figure 4Ðfigure supplement 2 ). Corti-
costriatal function in saline and thioperamide-treated Hdh Q7/Q7 and HdhQ7/Q111 mice was analyzed
by using the accelerating rotarod task that evaluates the acquisition of new motor skills
(PuigdellõÂvol et al., 2015). Saline-treated mutant Hdh Q7/Q111 mice were unable to maintain their bal-
ance on the rotarod as wild-type Hdh Q7/Q7 mice revealing impaired acquisition of new motor skills
(Figure 4A ). Chronic treatment with thioperamide completely rescued motor learning deficits in
mutant Hdh Q7/Q111 mice as evidenced by a similar latency to fall in the accelerating rotarod as wild-
type Hdh Q7/Q7 mice. Next, recognition long-term memory (LTM) was analyzed by using the novel
object recognition test (NORT) ( Figure 4B ). After two days of habituation in the open field arena
(Figure 4Ðfigure supplement 3 ), no significant differences were found between genotypes and/or
treatments, demonstrating no alterations in motivation, anxiety or spontaneous locomotor activity.
After habituation, animals were subjected to a training session in the open field arena in the pres-
ence of two similar objects (A and A'). Both saline and thioperamide-treated wild-type Hdh Q7/Q7 and
mutant Hdh Q7/Q111 mice similarly explored both objects indicating neither object nor place preferen-
ces (Figure 4B ). After 24 hr, LTM was evaluated by changing one of the old objects (A') for a novel
one (B). Whereas saline-treated HdhQ7/Q111 mice did not show any preference for the novel object
with respect to the familiar one, indicating recognition LTM deficits, thioperamide treatment
completely prevented this LTM deficit in mutant Hdh Q7/Q111 mice (Figure 4B ). Next, spatial LTM
was analyzed using the T-maze spontaneous alternation task (T-SAT) (Figure 4C ). During the train-
ing, similar exploration time ( Figure 4C , left panel) and similar number of arm entries ( Figure 4Ðfig-
ure supplement 4 , left panel ) were found in all genotypes and treatments. After 5 hr, a testing
session showed that saline-treated Hdh Q7/Q111 mice had no preferences between the novel arm and
the old arm, indicating spatial LTM deficits ( Figure 4C , right panel). Interestingly, mutant Hdh Q7/

Q111 mice treated with thioperamide spent more time in the novel versus the old arm, revealing pre-
served LTM (Figure 4C , right panel). Overall, these data demonstrate the effectiveness of thiopera-
mide treatment in restoring motor learning and preventing spatial and recognition LTM deficits in
mutant Hdh Q7/Q111 mice.

We next tested if the reversion of the HD phenotype in mutant Hdh Q7/Q111 mice induced by thio-
peramide treatment correlated with the preservation of D 1R-H3R heteromer expression. By PLA we
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Figure 3. Functional D1R-H3R heteromers are expressed in wild-type HdhQ7/Q7 but not in 8-month-old mutant Hdh Q7/Q111 mice. Striatal, cortical or
hippocampal slices from 8-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice were used. In (A), by Proximity Ligation Assays (PLA) D1R-H3R heteromers were
visualized in HdhQ7/Q7 mice but not in Hdh Q7/Q111 mice as green spots around blue colored DAPI stained nucleus. Scale bar: 20mm. In (B), the number
of cells containing one or more green spots is expressed as the percentage of the total number of cells (blue nucleus). r values (number of green spots/
cell containing spots) are shown above each bar. Data (% of positive cells or r) are the mean± SEM of counts in 600±800 cells from 5 to 7 different fields
from three different animals. Student's t test showed a significant (***p<0.05) decrease of heteromers expression in HdhQ7/Q111 mice compared to the
respective HdhQ7/Q7 mice. In (C) striatal, cortical or hippocampal organotypic slice cultures from 8-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice were
treated for 60 min with medium, the D 1R antagonist SCH 23390 (10mM) or the H3R antagonist thioperamide (10 mM) before the addition of SKF 81297
(50 mM) and cell death was determined. Values represent mean ± SEM (n = 3 to 6) of percentage of cell death. One-way ANOVA followed by
Bonferroni post hoc tests showed a significant effect over non-treated organotypic cultures (*p<0.05) or of the H 3R antagonist plus SKF 81297 treatment
over the SKF 81297 (#p<0.05).
The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Expression of D1R-H3R heteromers in 6-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice chronically treated with saline.
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Figure 4. Thioperamide chronic treatment prevents motor learning, long-term memory (LTM) deficits and the loss of receptor heteromerization in 6-
month-old Hdh Q7/Q111 mice. In (A), curves illustrating the latency to fall in the accelerating rotarod of 6-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice
treated with saline or thioperamide from 5 months of age are shown. In ( B), the exploration time for saline or thioperamide-treated Hdh Q7/Q7 and
HdhQ7/Q111 mice during the training and the testing (24 hr delay, LTM) sessions in a novel-object recognition task showing that long-term recognition

Figure 4 continued on next page
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observed that in saline-treated 6-mo-old Hdh Q7/Q111 mice the heteromer expression was significantly
diminished with respect to the age-matched Hdh Q7/Q7 mice (Figure 3Ðfigure supplement 1A,B ).
Notably, treatment with thioperamide significantly prevented the loss of D 1R-H3R heteromers in all
brain regions analyzed in HdhQ7/Q111 mice at both 6 ( Figure 4D,E ) and 8 mo of age (Figure 4Ðfig-
ure supplement 5A,B ).

Treatment with thioperamide ameliorates spinophilin-immunoreactive
puncta alterations in the motor cortex and hippocampus of 6-month-old
mutant Hdh Q7/Q111 mice
Alterations in dendritic spine dynamics, density and morphology are critically involved in the synaptic
deficits present in HD ( Brito et al., 2014 ; Ferrante et al., 1991 ; Guidetti et al., 2001 ; Lynch et al.,
2007 ; Milnerwood et al., 2006 ; PuigdellõÂvol et al., 2015; Simmons et al., 2009 ; Sotrel et al.,
1993 ; Spires et al., 2004 ). We recently described a significant decrease in dendritic spine density in
the hippocampus (Brito et al., 2014 ) and the motor cortex of mutant Hdh Q7/Q111 mice
(PuigdellõÂvol et al., 2015) without significant alterations in the striatum. To analyze whether the
improvement of motor learning and memory deficits observed in thioperamide-treated mutant
HdhQ7/Q111 mice was associated with a recovery in the density of dendritic spines, spinophilin immu-
nostaining was performed in CA1 hippocampal and motor cortical coronal slices obtained from 6-
mo-old wild-type Hdh Q7/Q7 and mutant Hdh Q7/Q111 mice (Figure 5A,B and Figure 5Ðfigure supple-
ment 1A ). This methodology was used by us and others to identify structural alterations in dendritic
spines (Hao et al., 2003 ; PuigdellõÂvol et al., 2015; Tang et al., 2004 ). Confocal microscopy analyses
revealed a significant reduction in the density of spinophilin-immunoreactive puncta in the stratum
radiatum (apical dendrites of CA1 pyramidal neurons) and stratum oriens (basal dendrites of CA1
pyramidal neurons) of saline-treated 6-mo-old mutant Hdh Q7/Q111 mice compared to saline-treated
wild-type Hdh Q7/Q7 mice (Figure 5A and Figure 5Ðfigure supplement 1A ). Interestingly, thiopera-
mide treatment prevented the decline in the number of spinophilin-immunoreactive puncta in
mutant Hdh Q7/Q111 mice (Figure 5A and Figure 5Ðfigure supplement 1A ). Similar data was
obtained when the layers of the motor cerebral cortex (M1) were analyzed. A significant reduction in
the density of spinophilin-immunoreactive puncta in layer I and layer II-III, but not layer V, of the
motor cortex of 6-mo-old saline-treated Hdh Q7/Q111 mice was found compared to saline-treated
HdhQ7/Q7 mice (Figure 5B and Figure 5Ðfigure supplement 1A ). Interestingly, thioperamide-
treated Hdh Q7/Q111 mice exhibited a complete recovery in the density of spinophilin-immunoreactive
puncta (Figure 5B and Figure 5Ðfigure supplement 1A ). No significant differences were found
between groups when the mean size of spinophilin puncta was analyzed ( Figure 5Ðfigure

Figure 4 continued

memory deficits are rescued in the thioperamide-treated Hdh Q7/Q111 mice. One-way ANOVA with Bonferroni post hoc showed significant differences
(***p<0.001) compared to the old object recognition. In ( C), bar diagram illustrating the exploration time for saline- or thioperamide-treated Hdh Q7/Q7

and HdhQ7/Q111 mice during the training and the 5 hr later testing in the T-SAT showing thioperamide reverses spatial long-term memory (LTM) deficits.
In (A) to C), 11 saline-treated HdhQ7/Q7 mice, 10 thioperamide-treated Hdh Q7/Q7 mice, seven saline-treated HdhQ7/Q111 mice and nine thioperamide-
treated Hdh Q7/Q111 mice were evaluated at 6 months of age. In (D) PLA were performed in striatal, cortical and hippocampal slices from 6-month-old
HdhQ7/Q7 and HdhQ7/Q111 mice treated with thioperamide. D 1R-H3R heteromers were visualized in all samples as green spots around blue colored DAPI
stained nucleus. Scale bar: 20mm. In (E) the right panel, the number of cells containing one or more green spots is expressed as the percentage of the
total number of cells (blue nucleus). r values (number of green spots/cell containing spots) are shown above each bar. Data (% of positive cells or r) are
the mean ± SEM of counts in 600±800 cells from 4 to 8 different fields from three different animals. Student's t test showed no significant differences in
heteromer expression in thioperamide-treated Hdh Q7/Q111 mice compared to the respective Hdh Q7/Q7 mice.
The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Functional D1R-H3R heteromers are expressed in 5-month-old HdhQ7/Q7 and HdhQ7/Q111 mice.
Figure supplement 2. Schematic representation of pharmacological treatments and behavioral analysis performed after chronic treatment with saline
or thioperamide.
Figure supplement 3. No significant differences in the open field habituation were found between treatments and genotypes.
Figure supplement 4. Training session in the T-SAT showed similar number of arm entries in all genotypes and treatments.
Figure supplement 5. Expression of D1R-H3R heteromers in 8-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice chronically treated with thioperamide.
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supplement 1A ). Altogether, these data demonstrate that the loss of spinophilin immunoreactive-
puncta in mutant Hdh Q7/Q111 mice can be ameliorated by thioperamide treatment.

We also evaluated mutant huntingtin (mhtt) aggregates in the striatum, cerebral cortex and hip-
pocampus of mutant Hdh Q7/Q111 mice after saline or thioperamide treatment, as another pathologi-
cal hallmark of HD (Arrasate and Finkbeiner, 2012 ; Giralt et al., 2012 ; Hoffner et al., 2007 ). 1C2
immunostaining revealed in lysates from either vehicle or treated mutant Hdh Q7/Q111 mice a substan-
tial accumulation of mhtt oligomeric forms detected as a diffuse smear in the stacking gel ( Figure 5Ð
figure supplement 1B ). Thioperamide treatment failed to prevent the accumulation of these

Figure 5. Thioperamide treatment restored spinophilin-immunoreactive puncta reduction in the hippocampus and motor cortex of Hdh Q7/Q111 mice
and exerts no effect on the clearance of mutant huntingtin accumulation. In ( A) spinophilin-immunoreactive puncta were counted in the stratum oriens
and stratum radiatum of CA1 hippocampus and in (B) layers I, II/III and V of motor cortex area 1 (M1) of saline and thioperamide-treated HdhQ7/Q7 and
HdhQ7/Q111 mice. Quantitative analysis is shown as mean± SEM (n = 9 images from three animals/group). Statistical analysis was performed using
Student's two-tailed t test. *p<0.05, ***p<0.001 compared to saline-treated Hdh Q7/Q7 mice. #p<0.05, ##p<0.01, ###p<0.001 compared to saline-treated
HdhQ7/Q111 mice. In (C), Quantification of the protein levels of insoluble mHtt oligomeric forms and soluble mHtt forms of total striatal, hippocampal
and cortical extracts from 6-month-old saline and thioperamide-treated Hdh Q7/Q111 mice analysed by immunoblot. All histograms represent the
mean ± SEM (n = 6±8 per group). Student's t test showed no significant differences between groups.
The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Biochemical and Pathological Effects of Thioperamide treatment.
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oligomeric forms ( Figure 5C and Figure 5Ðfigure supplement 1B ). No significant differences
between groups were found when soluble monomeric mhtt levels were analyzed ( Figure 5C and Fig-
ure 5Ðfigure supplement 1B ).

Thioperamide treatment does not rescue memory and motor learning
deficits in mutant Hdh Q7/Q111 mice when D 1R-H3R heteromers are lost
If the behavioral improvements observed after thioperamide treatment are mediated by the D 1R-
H3R heteromer and not just by the blockade of the single H 3R, then a treatment paradigm in the
absence of the heteromer should have no effect. To test this hypothesis, we used wild-type Hdh Q7/

Q7 and mutant Hdh Q7/Q111 mice at the age of 7 months, when we found the heteromer to be lost.
Animals were chronically treated with saline or thioperamide for 1 month and motor learning was
evaluated using the accelerating rotarod task. As expected, saline-Hdh Q7/Q111 mice exhibited poor
performance in this task showing shorter latency to fall compared to wild-type Hdh Q7/Q7 mice
(Figure 6A ). Notably, thioperamide treatment had no effect on motor learning performance as both
saline- and thioperamide-treated mutant Hdh Q7/Q111 mice were indistinguishable demonstrated by
similar latency to fall in the accelerating rotarod task ( Figure 6A ).

We next asked whether thioperamide treatment could improve cognitive function by rescuing
memory deficits in these same animals. Saline-treated 8-mo-old Hdh Q7/Q111 mice exhibited long-
term memory deficits when recognition memory was analyzed using the novel object recognition
test (NORT) (Figure 6B ). Similar to motor learning results, chronic treatment with thioperamide did
not rescue HdhQ7/Q111 mice from memory deficits ( Figure 6B ). Overall, these results demonstrate
that the effect of thioperamide in learning and memory in Hdh Q7/Q111 mice requires the proper
expression and function of D 1R-H3R heteromers.

D1R-H3R heteromer expression changes occur in other rodent HD
models and in HD patients
The fact that thioperamide treatment 1) prevents cognitive and motor learning deficits, 2) amelio-
rates striatal neuropathology, 3) ameliorates morphological alterations and 4) prevents the loss of
D1R-H3R heteromers at 6 mo and 8 mo of age in a mouse model of HD is suggestive that thiopera-
mide, or a future pharmacologically improved H 3R antagonist specifically targeting D 1R-H3R hetero-
mers, can be used to treat HD symptoms. To test this, we investigated D 1R-H3R heteromer
expression in other transgenic HD mouse models and in human caudate-putamen slices using PLA.
The loss of heteromer expression compared with wild-type littermates was also observed in other
mouse models of HD, the R6/1 and R6/2 mice transgenic for the human huntingtin exon 1 ( Fig-
ure 7Ðfigure supplement 1A,B , respectively). Importantly, D 1R-H3R heteromers were detected as
green spots surrounding the blue stained nuclei in human caudate-putamen slices from control indi-
viduals and low-grade (grade 0, 1 and 2) HD patients ( Figure 7A,B ). In contrast, green spots were
almost absent in samples from high-grade (grade 3 or grade 4) HD patients ( Figure 7A,B ). These
results show that D1R-H3R heteromer formation changes during disease progression and, impor-
tantly, that humans express D1R-H3R heteromers at early disease stages.

Discussion
The imbalance of dopamine inputs throughout HD progression represents a potential `point of no
return' for HD patients as this disequilibrium can eventually lead to substantial neuronal dysfunction
and cell death. In the present study, we demonstrate that 1) excess dopamine signaling via D 1R
leads to cell death by activating the p38 pathway; 2) D 1R-H3R complexes are found within the stria-
tum, cortex and hippocampus of WT mice and in HD mice at early but not late disease stages; 3) tar-
geting D 1R via D1R-H3R complexes can slow progression of the disease in early but not late stages
when the complexes are lost; and 4) D 1R-H3R complexes are expressed in the human brain and thus
represent potential therapeutic targets. This is the first demonstration of GPCR heteromers as
potential targets to treat HD. Together, these data support a novel role for D 1R-H3R complexes in
neuroprotection and HD.

Several studies have revealed that dopamine neurotoxicity increases the sensitivity of MSSNs to
glutamate inputs and leads to striatal neurodegeneration, a role ascribed to aberrant D 1R and not
D2R (Cepeda and Levine, 1998 ; Flores-HernaÂndez et al., 2002 ; Paoletti et al., 2008 ; Tang et al.,
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Figure 6. Thioperamide chronic treatment does not prevent motor learning and long-term memory (LTM) deficits
in 8-month-old Hdh Q7/Q111 mice when the D1R-H3R heteromer is not expressed. In (A), curves illustrating the
latency to fall in the accelerating rotarod of 8-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice treated with saline or
thioperamide from 7 months of age are shown. Two-way ANOVA with repeated measures showed significant
differences (**p<0.01) of saline-treated HdhQ7/Q111 mice compared to saline-treated Hdh Q7/Q7 mice or (##p<0.01)
thioperamide-treated Hdh Q7/Q111 mice compared to saline-treated Hdh Q7/Q7 mice. 11 saline-treated HdhQ7/Q7

mice, 11 thioperamide-treated Hdh Q7/Q7 mice, eight saline-treated Hdh Q7/Q111 mice and nine thioperamide-
treated Hdh Q7/Q111 mice were evaluated at 8 months of age. In (B), bar diagram illustrating the exploration time
for saline or thioperamide-treated Hdh Q7/Q7 and HdhQ7/Q111 mice during the training and the testing (24 hr delay,
LTM) sessions in a novel-object recognition task showing that long-term recognition memory deficits are not
rescued in the thioperamide-treated Hdh Q7/Q111 mice. One-way ANOVA with Bonferroni post hoc comparisons
showed significant differences (***p<0.001) compared to the old object recognition. 11 saline-treated Hdh Q7/Q7

mice, 12 thioperamide-treated Hdh Q7/Q7 mice, 10 saline-treated HdhQ7/Q111 mice and 11 thioperamide-treated
HdhQ7/Q111 mice were evaluated at 8 months of age.
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Figure 7. Striatal D1R-H3R heteromers are expressed in human control subjects and grade 2 HD patients but not
in grade 3±4 HD patients. In (A), by Proximity Ligation Assays (PLA), D1R-H3R heteromers were visualized as green
spots around blue colored DAPI stained nucleus in human striatal slices from age matched control subjects and 0±
2 grade HD patients but not in 3±4 grade HD patients. Scale bar: 20 mm. In (B), the number of cells containing one
or more green spots is expressed as the percentage of the total number of cells (blue nucleus). r values (number
of green spots/cell containing spots) are shown above each bar. Data are mean ± SEM of counts in 600±800 cells
from 10 different fields from subject described in Materials and Methods. Student's t test showed a significant
(***p<0.001) decrease of heteromers expression in 3±4 grade HD patients compared to control subjects.
The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. D1R-H3R heteromer are not expressed in HD R6/1 and R6/2 mouse models.
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2007 ). Thus, pharmacological treatments aimed to reduce D 1R signaling may be beneficial to pre-
vent or slow striatal cell death. Although we cannot rule out the participation of D 2R in striatal
degeneration, our results suggest that D 1R is a major executor of the final signaling cascades that
lead to cell death in HD. This is further supported by the fact that D 1R is in excess over D2R in the
striatum, so it is plausible that the former will be more significantly activated than the latter at
increased DA levels. We have demonstrated that a toxic but not sub-toxic concentration of
SKF81297 activates the p38 pro-apoptotic pathway, despite both concentrations triggering calcium
release, albeit at different levels. Accordingly, p38 inhibitors completely abrogated the cell death
induced by SKF81297 treatment, supporting the benefits of modulation of D 1R signaling as potential
treatment in HD. However, direct manipulation of DA production and/or D 1R signalling via a specific
antagonist has limited therapeutic ability due to associated deleterious side effects. An alternative
approach is to modify D 1R signalling via the histamine neuromodulator. An interaction between H 3R
and the dopaminergic system has been previously reported by us and others ( Kononoff Vanhanen
et al., 2016 ; Rapanelli et al., 2016 ; Rapanelli et al., 2014 ). In this frame, we have demonstrated
that H3R ligands completely abrogate striatal cell death induced by D 1R, likely by inhibition of D 1R-
mediated calcium influx and p38 activation. Importantly, D 1R-H3R complexes were found in the stria-
tum, cortex and hippocampus from wild-type Hdh Q7/Q7 and mutant Hdh Q7/Q111 mice, regions known
to be affected by mutant huntingtin toxicity ( Reiner et al., 1988 ; Rosas et al., 2003 ; Vonsattel and
DiFiglia, 1998 ).

The mechanisms of action of D1R-H3R heteromers can be multiple including allosteric effects.
Indeed, the efficacy of the disrupting peptides supports protein-protein-driven effects. A second
and potentially additional mechanism is that heteromer formation may alter the trafficking of D 1R,
which could have pleiotropic consequences on signaling. For example it is known that overstimula-
tion of D 1R induces receptor internalization promoting rapid intracellular signaling ( Kotowski et al.,
2011 ) and that receptor internalization can activate secondary signaling pathways ( Lohse and Cale-
biro, 2013 ). We observe in vitro that thioperamide treatment maintains the PLA signal while in vivo
we see similar effects. The signaling effects we observe appears to be on a variety of concentrations
and timescales in agreement with previous studies showing that GPCR signaling occurs with varied
kinetics (Calebiro et al., 2010a ; Calebiro et al., 2010b ). Indeed, part of the concern of trying to tar-
get GPCR heteromers for therapeutic purposes is the uncertainty around their stability and thus indi-
rectly whether they can impact GPCR signaling at every timescale. For the case of D 1R-H3R
heteromers, it appears that they are stable enough that they can affect both rapid receptor signaling
(e.g., Ca2+ mobilization) and longer cell signaling pathways like p38, two events that have previously
been involved in neuronal cell death in HD ( Dau et al., 2014 ; Fan et al., 2012 ; Muller and Leavitt,
2014 ; Taylor et al., 2013 ; Wang et al., 2013 ). It is unclear what controls D1R-H3R heteromer forma-
tion or why it is lost during progression of HD. Whether it is a change in expression of an accessory
protein, a post-translational modification or a change in cell physiology/morphology remains to be
explored.

Our findings do not rule out that H 3R ligands by targeting D 2R-H3R heteromers (Ferrada et al.,
2008 ) could block D 2R signaling and contribute to cell death protection. However, several findings
argue in favor of D 1R-H3R heteromer as uniquely responsible for the effects of thioperamide on cell
death reduction. First, D 1R over-activation induces cell death-related pathways and D 1R-H3R disrup-
tion. In addition, pre-treatment with H 3R ligands can block D1R-induced cell death and prevent D 1R-
H3R loss. Finally, the effect of TAT-peptide analogues of D 1R transmembrane domains in D1R-H3R
stability and function demonstrate that we are observing specific D 1R-H3R, and not D2R-H3R, signal-
ing and function. Thioperamide has recently been suggested to act via the H 4R receptor. However,
several pieces of our data suggest H4R is not responsible for the observed effects. First, we mea-
sured similar effects using VUF 5681, a different H3R antagonist. In addition we lose all effects of thi-
operamide in cells where H 3R expression was silenced or when D1R-H3R heteromers are lost in the
mice yet H4R should still be expressed. Finally, H4R is thought to be mainly expressed peripherally,
while our data from brain slices and from mice which are predominatly cognitive in nature, strongly
implicate the CNS.

Besides striatal and cortical cell death, growing evidence points to neuronal dysfunction as
responsible for the earliest HD disturbances in cognitive and behavioral changes ( Lemiere et al.,
2004 ; PuigdellõÂvol et al., 2016). Despite these early changes, no effective treatments are currently
available to treat cognitive decline in HD. Moreover, the timing of intervention is also critical since
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atrophy and dysfunction progress with age and treatment may be different according to the stage
of illness. In this scenario, and given the well-known role of both dopamine and histamine in synaptic
plasticity and memory ( Cahill et al., 2014 ; Ellender et al., 2011 ; Haas et al., 2008 ; Komater et al.,
2005 ; LoÂpez de Maturana and SaÂnchez-Pernaute, 2010 ; Mohsen et al., 2014 ; Orsetti et al.,
2002 ; Pascoli et al., 2009 ; Wiescholleck and Manahan-Vaughan, 2014 ), it is possible that the ther-
apeutic potential of H 3R ligands as modulators of D1R-H3R heteromers could also be extended to
improve learning impairments and cognitive decline in HD. This is supported by our data showing
that chronic treatment with the H 3R antagonist thioperamide at 5 months of age prevented motor
learning deficits, as well as impaired spatial and recognition memories in mutant Hdh Q7/Q111 mice.
Importantly, thioperamide treatment does not induce off-target effects (such as alterations in spon-
taneous locomotor activity or anxiety-like behaviors) neither in wild-type Hdh Q7/Q7 nor in mutant
HdhQ7/Q111 mice. In addition, early chronic treatment with thioperamide prevented disruption of the
heteromer at 6 and 8 months of age and the subsequent cognitive decline. It seems unlikely that
there is a direct link between D 1R-H3R heteromers and cognitive deficits, but the data do suggest
that whatever neuronal changes occur during progression of the disease they are blocked or at mini-
mum delayed. Importantly, we can say that D 1R-H3R heteromers are required for this effect as thio-
peramide treatment at 7 months of age (when the heteromer is lost in HD mice) is not able to
prevent cognitive and motor learning deficits. This latter result might explain the results of the
effects that GSK189254, an H3R antagonist, have in a Q175 mouse model of HD (Whittaker et al.,
2017 ). The authors saw no change in motor performance and mild improvement in exploratory
behavior as measured in the Open Field test and in cognitive function as measured by a T-maze.
Our data suggest that D 1R-H3R heteromer expression is crucial to the efficacy of H 3R antagonists as
a therapeutic option in HD.

What disease-driven neuronal changes are prevented by H 3R antagonism through the D 1R-H3R
heteromer is not completely clear. However, we did find that chronic thioperamide treatment at
early stages completely rescue the reduction in the density of spinophilin-immunoreactive puncta in
HD mice in both hippocampal and cortical areas, suggesting that adequate dopaminergic signaling
is required for normal forms of synaptic structural plasticity and cognitive processes. Substantial data
support the importance of dopamine receptors for synaptic plasticity in the cortex and hippocampus
(Levy and Goldman-Rakic, 2000 ; Robbins, 2000 ; Sajikumar and Frey, 2004 ). In this view, any
dopamine imbalance with both suboptimal and supra-optimal dopamine activity has been reported
to modify cognitive performance ( Mattay et al., 2003 ; Vijayraghavan et al., 2007 ). As the early
stages of HD may reflect a hyperdopaminergic stage ( Chen et al., 2013a ; Mochel et al., 2011 ),
treatments reducing dopamine signaling may have therapeutic benefits. In fact, dopamine-depleting
drugs such as tetrabenazine or dopamine-stabilizers as pridopidine showed neuroprotective effects
in HD mice (Wang et al., 2010 ), and improve motor coordination abnormalities in HD patients
(Huntington Study Group, 2006 ; de Yebenes et al., 2011 ), while specific D1R inhibition rescues
electrophysiological changes in excitatory and inhibitory synaptic transmission in full-length HD
mouse models (AndreÂet al., 2011b ). However, none of these treatments have demonstrated cogni-
tive improvements. The suggestion that D 1R-H3R heteromers may be legitimate targets for the treat-
ment of HD shines a spotlight on what continues to be an elusive drug target. Indeed, in the context
of this study, the loss of the heteromer in disease progression despite the fact that the receptors
themselves are still expressed and functional, points to the heteromers as optimal targets rather
than the single receptors. The concept of heteromers have been known for over a decade but physi-
ologic examples have only recently come to be appreciated ( Bonaventura et al., 2015 ;
VinÄals et al., 2015 ; Baba et al., 2013 ; Fribourg et al., 2011 ; GonzaÂlez et al., 2012a
GonzaÂlez et al., 2012b ; Kern et al., 2012 ; Navarro et al., 2015 ). In sum, our study showing that
H3R antagonists can prevent learning and memory deficits by blocking D 1R in D1R-H3R complexes,
along with the role of these heteromers on neuronal cell death, predict a critical role of the histamin-
ergic system as modulator of the dopamine imbalance in HD, and may help to overcome the delete-
rious effects of directly manipulating DA-production and/or signaling, thus opening new and
important alternatives for HD therapeutics.
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Materials and methods
Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(H. sapiens)

HEK293 (Human
embryonic kidney293 cells)

American Type
Culture Collection

Cell line
(M. musculus)

STHdhQ7; STHdhQ111

(mouse striatal
neuronal progenitor cells)

Dr M Macdonald
(Center for Genomic
Medicine, Boston, USA)

Strain, strain
background
(Mus musculus)

HdhQ7/Q111; HdhQ7/Q7 Dr M Macdonald
(Center for Genomic
Medicine, Boston, USA)

HdhQ111

MGI:1861935

Strain, strain
background
(Mus musculus)

R6/1; R6/2 The Jackson Laboratory
(Bar Harbor, ME, USA)

R6/1:
MGI:2389466
For R6/2:
MGI:2386951

Strain,
strain background
(H. sapiens)

Post-mortem
human brain
sections containing
caudate-putamen

Tissue Bank at Hospital
Universitario FundacioÂn
AlcorcoÂn (Madrid, Spain)
Netherlands Brain Bank
(Amsterdam, The Netherlands)

For details and
characteristics of
human samples see:
ªMoreno E., et al.,
Neuropsychopharmacology.
2018
PMID:28102227'

Antibody anti-D 1R (guinea pig) Frontier Institute Cat. # D-1R-GP-Af500
RRID:AB_2571595

Dilution: 1/200; 1/100

Antibody anti-H 3R
(rabbit polyclonal)

Alpha diagnostic Cat. # H3R31-A
RRID:AB_1617140

Dilution: 1/200

Antibody goat Alexa Fluor
488 anti-guinea
pig antibody

Jackson
Immunoresearch
Laboratories

Cat. #106-545-003
RRID:AB_2337438

Dilution: 1/100

Antibody anti-phospho-p38
MAPK (Thr180/Tyr182)
(rabbit polyclonal)

Cell Signaling Cat. #9211S
RRID:AB_331641

Dilution: 1/1,000

Antibody anti- b-tubulin
(mouse monoclonal)

Sigma Cat# SAB4200715
RRID:AB_2827403

Dilution: 1/10,000

Antibody IRDye 680 goat
anti-rabbit antibody

Li-cor Cat. #926±68071
RRID:AB_10956166

Dilution: 1/10,000

Antibody IRDye 800 goat
anti-mouse antibody

Li-cor Cat. # 926±32210
RRID:AB_621842

Dilution: 1/10,000

Antibody anti-spinophilin
(rabbit polyclonal)

Millipore Cat# 06±852
RRID:AB_310266

Dilution: 1/250

Antibody Cy3 anti-rabbit
secondary antibodies

Jackson Immuno
Research
Laboratories

Cat# 111-165-003
RRID:AB_2338000

Dilution: 1/200

Antibody Anti-1C2
(mouse monoclonal)

Millipore Cat# MAB1574
RRID:AB_94263

Dilution: 1/1,000

Recombinant
DNA
reagent

Clone V3LHS_638095 Thermo Scientific

Recombinant
DNA
reagent

Clone V3LHS_638091 Thermo Scientific

Recombinant
DNA reagent

psPAX2 Addgene#12260

Recombinant
DNA reagent

pMD2.G Addgene#12259

Recombinant
DNA reagent

RHS4346 Thermo Scientific

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

H3R-shRNA and
control-shRNA

This study See Materials
and methods

Sequence-
based reagent

RT-qPCR primers This study See Materials
and methods

Peptide,
recombinant protein

TAT-TM peptides This study See Materials
and methods

Commercial
assay or kit

Duolink II in situ PLA
detection reagent red Kit

Sigma Cat. #DUO92008

Commercial
assay or kit

Duolink II PLA probe
anti-guinea pig minus

Sigma Cat. #DUO92010

Commercial
assay or kit

Duolink II PLA probe
anti-rabbit plus

Sigma Cat. #DUO92002
RRID:AB_2810940

Commercial
assay or kit

High Capacity cDNA
Reverse Transcription Kit

Applied Biosystems Cat. #4368814

Commercial
assay or kit

Amplified Luminiscent
Proximity Homogeneous
Assay kit

AlphaScreen SureFire
p-ERK 1/2
(Thr202/Tyr204)
Assay Kits
PerkinElmer

Cat. # TGRESB

Commercial
assay or kit

[3H] SCH 23390 PerkinElmer Cat. # NET930 0.02 nM to 10 nM

Commercial
assay or kit

[3H] R-a-methyl histamine Perkinelmer Cat. # NET1027 0.1 nM to 20 nM

Commercial
assay or kit

SB 203580 Tocris Cat. # 1402 1mM; 10 mM
(see Materials and methods)

Commercial
assay or kit

SKF 81297 Tocris Cat. # 1447 100 nM; 1mM; 30 mM; 50 mM
(see Materials and methods)

Commercial
assay or kit

SCH 23390 Tocris Cat. # 0925 one to 50mM
(see Materials and methods)

Commercial
assay or kit

Thioperamide
maleate salt

Sigma-Aldrich Cat. #T123 10mM (cells)
10 mg/kg
(mice)

Software,
algorithm

Grafit Erithacus
(http://www.erithacus.com/grafit/ )

Software,
algorithm

ImageJ ImageJ
(https://imagej.nih.gov/ij/ )

RRID:SCR_003070

Software,
algorithm

SMART junior Panlab
(http://www.panlab.com/
panlabWeb/Software/
php/displaySoft.php?name
Soft=SMART JUNIOR)

RRID:SCR_012154

Software,
algorithm

GraphPad Prism GraphPad Prism
(https://www.graphpad.com/ )

RRID:SCR_015807 Version 6

Human brain slices
Paraffin-embedded post-mortem 4 mm-thick brain sections containing caudate-putamen were
obtained and provided by the Tissue Bank at Hospital Universitario FundacioÂ n AlcorcoÂ n (Madrid,
Spain) and the Netherlands Brain Bank (Amsterdam, The Netherlands) according to the standardized
procedures of both institutions. The samples analyzed were from patients with HD (1 grade 0; 1
grade 1; 2 grade 2; 3 grade 3 and 3 grade four patients) and from age matched controls with no
neurological disease (three subjects). All protocols were approved by the institutional ethic
committees.
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Cell cultures
Mouse striatal wild-type STHdh Q7 and mutant STHdhQ111 cell lines were provided by Dr M. Macdon-
ald (Center for Genomic Medicine, Boston, USA) and confirmed by PCR. These conditionally immor-
talized wild-type STHdh Q7 and mutant STHdhQ111 striatal neuronal progenitor cell lines expressing
endogenous levels of normal and mutant huntingtin with 7 and 111 glutamines, respectively, have
been described previously (Trettel et al., 2000 ). These cells do not exhibit amino-terminal inclusions
allowing the study of changes involved in early HD pathogenesis ( Trettel et al., 2000 ). Striatal cells
were grown at 33ÊC in DMEM (Sigma-Aldrich), supplemented with 10% fetal bovine serum (FBS), 1%
streptomycinpenicillin, 2 mM L-glutamine, 1 mM sodium pyruvate, and 400 g/ml G418 (Geneticin;
Invitrogen).

HEK293 cells were purchased from ATCC and kept below passage 20. Cells were grown in Dul-
becco's modified Eagle's medium (DMEM) (Gibco, Paisley, Scotland, UK) supplemented with 2 mM
L-glutamine, 100 mg/ml sodium pyruvate, 100 U/ml penicillin/streptomycin, essential medium non-
essential amino acids solution (1/100) and 5% (v/v) heat inactivated fetal bovine serum (Invitrogen,
Paisley, Scotland, UK) and were maintained at 37ÊC in an atmosphere with 5% CO2. Cells were tran-
siently transfected with the corresponding fusion protein cDNA using Lipofectamine 3000 (Invitro-
gen, Paisley, Scotland, UK). Both cell lines were routinely test for mycoplasma contamination
monthly by PCR.

Animal models of HD
Knock-in mice, with targeted insertion of 109 CAG repeats that extends the glutamine segment in
murine huntingtin to 111 residues, and the corresponding littermates having seven glutamine resi-
dues were maintained on a C57BL/6 genetic background ( Lloret et al., 2006 ). HdhQ7/Q111 heterozy-
gous males and females were intercrossed to generate age-matched Hdh Q7/Q111 heterozygous and
HdhQ7/Q7 wild-type littermates. Only males were used for all experiments. Hemizigous male mice
transgenic for exon 1 of the human huntingtin gene with a greatly expanded CAG repeat ( ~115
CAG repeats in R6/1 mice and ~160 CAG repeats in R6/2 mice) (Mangiarini et al., 1996 ) and wild-
type littermates were used when indicated in proximity ligation assays. Animals were housed under
a 12 hr light/dark cycle with food and water ad libitum.

Mouse brain slices preparation
For PLA experiments, 2-, 4-, 6- and 8-month-old Hdh Q7/Q7 and HdhQ7/Q111 mice were deeply anes-
thetized and immediately perfused transcardially with saline (PBS) followed by 4% paraformaldehyde
(PFA)/phosphate buffer. Brains were removed and post-fixed overnight in the same solution, cryo-
protected by immersion in 10, 20, 30% gradient sucrose (24 hr for each sucrose gradient) at 4ÊC and
then frozen in dry ice-cooled methylbutane. Serial coronal cryostat sections (30 mm) through the
whole brain were collected in PBS-0.025% azide as free-floating sections and stored at 4ÊC until PLA
experiments were performed. For cell death determination, Hdh Q7/Q111 and HdhQ7/Q7 mice were
killed by cervical dislocation at the age of 4, 5 and 8 months. Mouse brains were rapidly removed
and placed in ice-cold oxygenated (O 2/CO 2: 95%/5%) Krebs-HCO3bold

- buffer (124 mM NaCl, 4 mM
KCl, 1.25 mM NaH2PO4, 1.5 mM MgSO 4, 1.5 mM CaCl2, 10 mM glucose and 26 mM NaHCO 3, pH
7.4). Cerebral hemisferes were split and sliced coronally using a McIlwain chopper (Ted Pella, Inc,
California) in sterile conditions. Striatum, cortex and hippocampal slices (300 mm thick) were kept at
4ÊC in Krebs-HCO3bold

- buffer during the dissection and transferred into a Millicell Insert (Millipore).

Cell death determination in striatal cells and in mouse organotypic slice
cultures
Striatal STHdhQ7 or STHdhQ111 cells were grown to reach 50% of confluence on 12-well plates con-
taining 3 cm2-glass coverslips. Medium was then replaced by a new supplemented medium contain-
ing 0.5% FBS. Vehicle, SCH 23390, thioperamide or SB 203580 were added at the indicated
concentrations to cells and incubated for 1 hr before the addition of D 1R. When TAT-TM peptides
were applied to cell cultures, these were added 4 hr before the addition of D 1R agonist. After ago-
nist addition, an additional incubation period of 24 hr was performed. Then cells were washed twice
in cold-PBS and fixed with 4% paraformaldehyde for 1 hr at 4ÊC. Sample nuclei were stained with
Hoechst 1:1000. Stained cells were then washed with PBS and mounted under glass coverslips with
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Mowiol. A minimum of 10 fields were taken from each coverslip using a fluorescence microscope
and the plugin Image-based Tool for Counting Nuclei for ImageJ was used for the quantification of
the total nuclei. In mouse organotypic cultures, brain slices (300 mm thickness, see above) were cul-
tured for 24 hr into a Millicell Insert in Neurobasal medium supplemented with 20% horse serum,
0.5% B27, 2 mM L-glutamine, 100 mg/ml sodium pyruvate, non-essential amino acids solution (1/100)
and 100 units/ml penicillin/streptomycin (all supplements were from Invitrogen, Paisley, Scotland,
UK) before replacing with fresh medium. Vehicle, SCH 23390, thioperamide were added at the indi-
cated concentrations to organotypic cultures and incubated for 1 hr before the addition of D 1R ago-
nist. TAT-TM peptides were applied to cell cultures 4 hr before the addition of D 1R agonist. After
agonist addition, an additional incubation period of 48 hr was performed. Then, 10 mM propidium
iodide (PI) was added to organotypic cultures and maintained at 37ÊC for 1 hr. Organotypic cultures
were washed twice in cold-PBS and fixed with 4% paraformaldehyde for 1 hr at 4ÊC. Total nuclei
were stained with Hoechst 1:1000. The Hoechst stained and PI positive nuclei in organotypic cultures
were counted to evaluate cell death in the brain slices. Quantification was performed using Leica
SP2 confocal microscope (20x; UV, 561 lasers) and the quantification performed with the program
Image-based Tool for Counting Nuclei for ImageJ. Cell death is expressed as the percentage of PI
positive cells in the total Hoechst-stained nuclei.

Lentivirus production and cell transduction
Silencing lentiviral vectors were produced by co-transfecting HEK293 producing cellsT with lentiviral
silencing plasmids GIPZ Human histamine H3 receptor shRNA (Clone V3LHS_638095 or Clone
V3LHS_638091, Thermo Scientific) with packing plasmid psPAX2 and envelope coding plasmid
pMD2.G (Addgene#12260 and #12259, respectively) using the calcium phosphate method. For pro-
duction of control non silencing lentiviral particles the H 3R silencing plasmid were substituted with
GIPZ Non-silencing Lentiviral shRNA Control (RHS4346, Thermoscientific). Infectious lentiviral par-
ticles were harvested at 48 hr post-transfection, centrifuged 10 min at 900 g to get rid of cell debris,
and then filtered through 0.45 mm cellulose acetate filters. The titer of recombinant lentivirus was
determined by serial dilution on HEK293T cells. For lentivirus transduction, striatal cells were subcul-
tured to 50% confluence, cells were transduced with H 3R-shRNA-expressing lentivirus obtained with
plasmid (Clone V3LHS_638095) or control-shRNA-expressing lentivirus (LV control) at a multiplicity
of infection (MOI) of 10 in the presence of polybrene 5 mg/ml. Virus-containing supernatant was
removed after 3 hr. Puromycin was added to the culturing media at the final concentration of 1 mg/
ml 2 days after infection. 5 days after puromycin selection cells were transduced with the second
H3R-shRNA-expressing lentivirus obtained with plasmid Clone V3LHS_638091 to improve the level
of silencing achieved. LV control infected cells were re-infected with control-shRNA-expressing lenti-
virus. The second infection was carried out as the first one. Cells were tested 72 hr after the second
transduction was performed.

RNA and real-time PCR
RNA was extracted using TRIzol Reagent (Molecular Research Center). 10 mg of total RNA were
treated with RQ1 RNAse free DNAse (Promega) according to manufacturer instruction. DNAse
treated DNA was quantified again and cDNA was synthesized using 2 mg total RNA with a High
Capacity cDNA Reverse Transcription Kit; (Applied Biosystems). The mRNAs of actin, H3R and D1R
were amplified by real-time (RT)-PCR using 1 mL cDNA and power SYBER green PCR Master Mix
(Applied Biosystems) on a 7500 Real Time PCR system (Applied Biosystems). Primer sequences are
as follows: MsACT For: ATGAGCTGCCTGACGGCCAGGTCAT, MsACT Rev: TGGTACCACCAGA-
CAGCAC TGTGTT, H3R For: GCAACGCGCTGGTCATGCTC, H3R Rev: CCCCGGCCAAAGG
TCCAACG, D1R FOR: ACCTCTGTGTGATCAGCGTG, AND D1R REV: GCGTATGTCCTGCTCAACC
T. Thermal cycling conditions for amplification were set at 50ÊC for 2 min and 95ÊC for 10 min,
respectively. PCR denaturing was set at 95ÊC for 15 s and annealing/extending at 60ÊC for 60 s for
40 cycles. mRNA levels normalized for actin are expressed as fold change relative to control cells.
The results were quantified with the comparative Ct method (known as the 2 � ddCt method).
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In Situ Proximity Ligation Assays (PLA)
Cells or mouse or human brain slices were mounted on glass slides and treated or not with the indi-
cated concentrations of receptor ligands or TAT-TM peptides for the indicated time. Then, cells or
slices were thawed at 4ÊC, washed in 50 mM Tris-HCl, 0.9% NaCl pH 7.8 buffer (TBS), permeabilized
with TBS containing 0.01% Triton X-100 for 10 min and successively washed with TBS. Heteromers
were detected using the Duolink II in situ PLA detection Kit (OLink; Bioscience, Uppsala, Sweden)
following the instructions of the supplier. A mixture of equal amounts of the primary antibodies:
guinea pig anti-D 1R antibody (1/200 Frontier Institute, Ishikari, Hokkaido, Japan) and rabbit anti-H 3R
antibody (1:200, Alpha diagnostic, San Antonio, Texas, USA) were used to detect D 1R-H3R hetero-
mers together with PLA probes detecting guinea pig or rabbit antibodies, Duolink II PLA probe anti-
guinea pig minus and Duolink II PLA probe anti-rabbit plus. Then samples were processed for liga-
tion and amplification with a Detection Reagent Red and were mounted using a DAPI-containing
mounting medium. Samples were observed in a Leica SP2 confocal microscope (Leica Microsystems,
Mannheim, Germany) equipped with an apochromatic 63X oil-immersion objective (N.A. 1.4), and a
405 nm and a 561 nm laser lines. For each field of view a stack of two channels (one per staining)
and 9 to 15 Z stacks with a step size of 1 mm were acquired. For PLA with brain slices, after image
processing, the red channel was depicted in green color to facilitate detection on the blue stained
nucleus and maintaining the color intensity constant for all images. A quantification of cells contain-
ing one or more spots versus total cells (blue nucleus) and, in cells containing spots, the ratio r (num-
ber of red spots/cell containing spots) were determined, using the Fiji package (http://pacific. mpi-
cbg.de/), considering a total of 600±800 cells from 4 to 10 different fields within each brain region
from three different mice per group or from three human control subjects, 3 human grade 3 or
grade 4 HD patients, 2 grade 0 or grade 1 HD patients or 1 grade 2 HD patient. Nuclei and spots
were counted on the maximum projections of each image stack. After getting the projection, each
channel was processed individually. The nuclei were segmented by filtering with a median filter, sub-
tracting the background, enhancing the contrast with the Contrast Limited Adaptive Histogram
Equalization (CLAHE) plug-in and finally applying a threshold to obtain the binary image and the
regions of interest (ROI) around each nucleus. Red spots images were also filtered and thresholded
to obtain the binary images. Red spots were counted in each of the ROIs obtained in the nuclei
images.

Membrane preparation and radioligand binding
Striatal cells or mouse striatal, cortical or hippocampal tissue were homogenized in 50 mM Tris-HCl
buffer, pH 7.4, containing a protease inhibitor mixture (1/1000, Sigma). The cellular debris was
removed by centrifugation at 13,000 g for 5 min at 4ÊC, and membranes were obtained by centrifu-
gation at 105,000 g for 1 hr at 4ÊC. Membranes were washed three more times at the same condi-
tions before use. Ligand binding was performed with membrane suspension (0.2 mg of protein/ml)
in 50 mM Tris±HCl buffer, pH 7.4 containing 10 mM MgCl 2, at 25ÊC. To obtain saturation curves,
membranes were incubated with increasing free concentrations of [ 3H] SCH 23390 (0.02 nM to 10
nM, PerkinElmer, Boston, MO, USA) or [3H] R-a-methyl histamine (0.1 nM to 20 nM, PerkinElmer,
Boston, MO, USA) providing enough time to achieve stable equilibrium for the lower ligand concen-
trations. Nonspecific binding was determined in the presence of 30 mM non-labeled ligand. Free and
membrane bound ligand were separated by rapid filtration of 500 ml aliquots in a cell harvester
(Brandel, Gaithersburg, MD, USA) through Whatman GF/C filters embedded in 0.3% polyethyleni-
mine that were subsequently washed for 5 s with 5 ml of ice-cold Tris±HCl buffer. The filters were
incubated overnight with 10 ml of Ecoscint H scintillation cocktail (National Diagnostics, Atlanta, GA,
USA) at room temperature and radioactivity counts were determined using a Tri-Carb 1600 scintilla-
tion counter (PerkinElmer, Boston, MO, USA) with an efficiency of 62%. Protein was quantified by
the bicinchoninic acid method (Pierce Chemical Co., Rockford, IL, USA) using bovine serum albumin
dilutions as standard. Monophasic saturation curves were analyzed by non-linear regression, using
the commercial Grafit software (Erithacus Software), by fitting the binding data to the equation pre-
viously deduced (equation (3) in Gracia et al., 2013 .
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Immunocytochemistry
Cells (60% confluence) were treated with vehicle or 30 mM SKF 81297 and after 45 min cells were
kept at 4ÊC to block endocytosis/exocytosis, washed twice in cold-PBS, fixed in 4% paraformalde-
hyde for 15 min and washed with PBS containing 20 mM glycine (buffer A) to quench the aldehyde
groups. After permeabilization with buffer A containing 0.05% Triton X-100 for 5 min, cells were
washed with buffer A containing 1% bovine serum albumin (blocking solution) for 1 hr and labeled
with the primary guinea pig anti-D 1R antibody (1/100, Frontier Institute, Ishikari, Hokkaido, Japan,
ON at 4ÊC), washed with blocking solution, and stained with the secondary goat Alexa Fluor 488
anti-guinea pig antibody (1:100, Jackson Immunoresearch Laboratories, West Grove, PA, USA, 2 hr
at RT). Samples were washed twice with blocking solution, once with buffer A and finally with PBS.
Nuclei were stained with 1:1000 Hoechst. Cells were mounted with Mowiol and observed in a Leica
SP2 confocal microscope.

Signaling in striatal cells
To determine ERK1/2 phosphorylation, cells (35,000/well) were cultured with a non-supplemented
medium overnight before pre-treated at 25ÊC for 20 min with the antagonists and stimulated for an
additional 7 min with the indicated agonists. Phosphorylation was determined by alpha-screen bead-
based technology using the Amplified Luminescence Proximity Homogeneous Assay kit (Perki-
nElmer, Waltham, MA, USA) and the Enspire Multimode Plate Reader (PerkinElmer) following the
instructions of the supplier. To determine calcium release, striatal cells were transfected with 4 mg of
GCaMP6 calcium sensor (Chen et al., 2013b ) using lipofectamine 3000. After 48 hr, cells were incu-
bated (0.2 mg of protein/ml in 96-well black, clear bottom microtiter plates) with Mg +2-free Locke's
buffer pH 7.4 (154 mM NaCl, 5.6 mM KCl, 3.6 mM NaHCO 3, 2.3 mM CaCl2, 5.6 mM glucose and 5
mM HEPES) supplemented with 10 mM glycine. When TAT-TM peptides treatment was performed
they were added 1 hr before the addition of receptor ligands at the indicated concentration. Fluo-
rescence emission intensity of GCaMP6s was recorded at 515 nm upon excitation at 488 nm on an
EnSpire Multimode Plate Reader (PerkinElmer, Boston, MO, USA) for 330 s every 5 s and 100 flashes
per well. The fluorescence gain was defined as a delta function of DF/F(t) = (F(t) ± F0)/F0, where F0
is the average fluorescence intensity in the first six measures from the start of recording and F(t) is
the fluorescence intensity at a given time and was expressed in %. To determine p38 phosphoryla-
tion, striatal cells (80% confluence) were cultured with a non-supplemented medium 4 hr before the
addition of the indicated ligand concentration for the indicated time and were lysed with 50 mM
Tris-HCl pH 7.4, 50 mM NaF, 150 mM NaCl, 45 mM b-glycerophosphate, 1% Triton X-100, 20 mM
phenyl-arsine oxide, 0.4 mM NaVO 4 and protease inhibitor cocktail. Lysates (20 mg protein) were
processed for western blot a mixture of a rabbit anti-phospho-p38 MAPK (Thr180/Tyr182) antibody
(1:1000, Cell Signaling) and a mouse anti-b-tubulin antibody (1:10,000, Sigma). Bands were visualized
by the addition of a mixture of IRDye 680 anti-rabbit antibody (1:10,000, LI-COR Biosciences) and
IRDye 800 anti-mouse antibody (1:10,000, LI-COR Biosciences) for 2 hr at room temperature and
scanned by the Odyssey infrared scanner (LI-COR Biosciences). Band densities were quantified using
the Odyssey scanner software. The level of phosphorylated p38 MAPK was normalized for differen-
ces in loading using the b-tubulin band intensities.

Mice thioperamide treatment
Thioperamide maleate salt (Sigma-Aldrich, St. Louis, USA) was prepared fresh daily being dissolved
in sterile 0,9% saline (NaCl) in order to deliver a final dose of 10 mg/kg in a final volume of 0.01 ml/g
of body weight, as previously described ( Charlier et al., 2013 ). The vehicle treatment consisted of
an equal volume of saline solution. All injections were given via the intra-peritoneal route ( i.p). Three
i.p injections per week were administered to wild-type Hdh Q7/Q7 and mutant knock-in Hdh Q7/Q111

mice from 5 months of age until 6 months of age (when one cohort of animals was perfused to ana-
lyze PLA after behavioral assessment) or until 8 months of age (when a second cohort of animals
were perfused to analyze PLA at this more advanced disease stage). A total of 11 saline-Hdh Q7/Q7

mice, 10 thioperamide-Hdh Q7/Q7 mice, seven saline-HdhQ7/Q111 mice and nine thioperamide-Hdh Q7/

Q111 mice were treated. For these experiments, a total of 11 saline-Hdh Q7/Q7 mice, 10 thioperamide-
HdhQ7/Q7 mice, seven saline-HdhQ7/Q111 mice and nine thioperamide-Hdh Q7/Q111 mice were treated.
Similarly, three i.p injections per week were administered to wild-type Hdh Q7/Q7 and mutant knock-
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in HdhQ7/Q111 mice from 7 months of age until 8 months of age to perform the behavioral studies
when the D1R-H3R heteromers were lost. For these experiments, a total of 11 saline-Hdh Q7/Q7 mice,
12 thioperamide-Hdh Q7/Q7 mice, 10 saline-HdhQ7/Q111 mice and 11 thioperamide-Hdh Q7/Q111 mice
were treated. All treatments were performed in the afternoon to avoid the stress caused by the
treatments during the behavioral assessment. Thus, during behavioral analysis treatments were per-
formed after the evaluation of motor learning or cognitive tasks.

Behavior assays
Accelerating rotarod was performed as previously described ( PuigdellõÂvol et al., 2015). Animals
were placed on a motorized rod (30 mm diameter). The rotation speed gradually increased from 4
to 40 rpm over the course of 5 min. The time latency was recorded when the animal was unable to
keep up on the rotarod with the increasing speed and fell. Rotarod training/testing was performed
as four trials per day during three consecutive days. A resting period of one hour was left between
trials. The rotarod apparatus was rigorously cleaned with ethanol between animal trials in order to
avoid odors.

For T-maze spontaneous alternation task (T-SAT), the T-maze apparatus used was a wooden
maze consisting of three arms, two of them situated at 180Ê from each other, and the third, repre-
senting the stem arm of the T, situated at 90Ê with respect to the other two. All arms were 45 cm
long, 8 cm wide and enclosed by a 20 cm wall. Two identical guillotine doors were placed in the
entry of the arms situated at 180Ê. In the training trial, one arm was closed (new arm) and mice were
placed in the stem arm of the T (home arm) and allowed to explore this arm and the other available
arm (old arm) for 10 min, after which they were returned to the home cage. After 5 hr (LTM), mice
were placed in the stem arm of the T-maze and allowed to freely explore all three arms for 5 min.
The arm preference was determined by calculating the time spent in each arm x 100/time spent in
both arms (old and new arm). The T-maze was rigorously cleaned with ethanol between animal trials
in order to avoid odors.

Novel object recognition test (NORT) consisted in a white circular arena with 40 cm diameter and
40 cm high. Mice were first habituated to the open field arena in the absence of objects (2 days, 15
min/day). During these two days of habitation, several parameters were measured to ensure the
proper habituation of all mice in the new ambient. As a measure of anxiety or motivation behaviors,
the distance that each mice rove in the periphery or in the center of the open field arena was mea-
sured as the rove distance in the periphery or in the center x 100/the total distance. The same analy-
sis was performed by counting the number of entries in the periphery and in the center as well as
the time that each mouse spent exploring the periphery or the center. The total distance that each
mice rove during these two days of habituation was also recorded as a measure to evaluate sponta-
neous locomotor activity. On the third day, two similar objects were presented to each mouse dur-
ing 10 min (A, A' condition) after which the mice were returned to their home cage. Twenty-four
hours later (LTM), the same animals were re-tested for 5 min in the arena with a familiar and a new
object (A, B condition). The object preference was measured as the time exploring each
object � 100/time exploring both objects. The arena was rigorously cleaned with ethanol between
animal trials in order to avoid odors. Animals were tracked and recorded with SMART junior software
(Panlab, Spain).

Immunohistochemistry, confocal microscopy and immunofluorescence-
positive puncta counting
Saline and thioperamide-treated heterozygous mutant Hdh Q7/Q111 and WT HdhQ7/Q7 mice at 6
months of age (n = 3 per group) were deeply anesthetized and immediately perfused transcardially
with saline followed by 4% paraformaldehyde (PFA)/phosphate buffer. Brains were removed and
postfixed overnight in the same solution, cryoprotected by immersion in 30% sucrose and then fro-
zen in dry ice-cooled methylbutane. Serial coronal cryostat sections (30 mm) through the whole brain
were collected in PBS as free-floating sections. Sections were rinsed three times in PBS and permea-
bilized and blocked in PBS containing 0.3% Triton X-100% and 3% normal goat serum (Pierce Bio-
technology, Rockford, IL) for 15 min at room temperature. The sections were then washed in PBS
and incubated overnight at 4ÊC with Spinophilin (1:250, Millipore) antibody that were detected with
Cy3 anti-rabbit secondary antibodies (1:200, Jackson ImmunoResearch, West Grove, PA). As
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negative controls, some sections were processed as described in the absence of primary antibody
and no signal was detected. Confocal microscopy analysis and immunofluorescence-positive puncta
counting spinophilin-positive spine-like structures was examined as previously described
(PuigdellõÂvol et al., 2015). Briefly, the images were acquired with Zeiss LSM510 META confocal
microscope with HeNe lasers. Images were taken using a � 63 numerical aperture objective with � 4
digital zoom and standard (one Airy disc) pinhole. Three coronal sections (30 mm thick) per animal
(n = 3 per group) spaced 0.24 mm apart containing the motor area M1 or CA1 hippocampus were
used. For each slice, we obtained three fields/cortical layer (I, II/III and V) of the M1 area and three
fields/CA1 hippocampus ( stratum oriens and stratum radiatum ). The number and area of spinophilin-
positive puncta were measured using NIH ImageJ version 1.33 by Wayne Rasband (National Insti-
tutes of Health, Bethesda, MD). To analyze spinophilin immunolabeling, brightness and contrast of
fluorescence images were adjusted so that only punctate fluorescence, but no weak diffuse back-
ground labeling was visible. In the article, we use the term `puncta' and `cluster' interchangeable to
refer to discrete points of protein at the fluorescence microscope. Positive puncta/cluster within a
specific field was recognized by identifying the presence of overlapping 10±100 pixels.

Western blot analysis
Saline and thioperamide-treated heterozygous mutant Hdh Q7/Q111 and WT HdhQ7/Q7 , mice were
killed by cervical dislocation at 6 months of age, after behavioral assessment. Brains were quickly
removed, dissected, frozen in dry ice and stored at � 80ÊC until use. Protein extraction (n = 5±9 per
group, only males) and western blot analysis were performed as previously described
(PuigdellõÂvol et al., 2015). The primary antibody 1C2 (1:1,000, Millipore) was used. Loading control
was performed by reproving the membranes with an antibody to a-actin (1:20,000, MP Biochemi-
cals). ImageJ software was used to quantify the different immunoreactive bands relative to the inten-
sity of the a- actin band in the same membranes within a linear range of detection for the enhanced
chemiluminescent kit reagent. Data are expressed as the mean ± SEM of band density.

Statistical analysis
All the results were analyzed using GraphPad Prism software version 6.0. Data were presented as
mean ± standard error of the means (SEM). Statistical analysis was performed using the unpaired
two-sided Student's t test (95% confidence), one-way ANOVA or two-way ANOVA with the Bonfer-
roni's post hoc test. Values of p<0.05 were considered statistically significant.
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