Streptomyces endophytes promote host health and enhance growth across plant species

Worsley, Sarah, Newitt, Jake, Rassbach, Johannes, Batey, Sybil, Holmes, Neil A., Murrell, Colin, Wilkinson, Barrie and Hutchings, Matt (2021) Streptomyces endophytes promote host health and enhance growth across plant species. Applied and Environmental Microbiology, 86 (16). ISSN 0099-2240

[thumbnail of Manuscript_09_06_20]
Preview
PDF (Manuscript_09_06_20) - Accepted Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Streptomyces bacteria are ubiquitous in soils and are well-known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana Here we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface washed A. thaliana roots and generated high quality genome sequences for five strains which we named L2, M2, M3, N1 and N2. Re-infection of A. thaliana plants with L2, M2 and M3 significantly increased plant biomass individually and in combination whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the Take-all fungus, Gaeumannomyces graminis var. tritici N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA) suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against Take-all disease. We conclude that at least some soil dwelling streptomycetes confer growth promoting benefits on A. thaliana while others might be exploited to protect crops against disease.Importance. We must reduce reliance on agrochemicals and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypothesis that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth promoting properties, including production of IAA, siderophores and ACC deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat Take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.

Item Type: Article
Faculty \ School: Faculty of Science > School of Biological Sciences
Faculty of Science > School of Environmental Sciences
Faculty of Science
University of East Anglia Research Groups/Centres > Theme - ClimateUEA
UEA Research Groups: Faculty of Science > Research Centres > Centre for Ecology, Evolution and Conservation
Faculty of Science > Research Groups > Environmental Biology
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 13 Jun 2020 00:06
Last Modified: 20 Mar 2023 14:48
URI: https://ueaeprints.uea.ac.uk/id/eprint/75594
DOI: 10.1128/AEM.01053-20

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item