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Abstract 

Na2FeSiO4 (NFS)/H-N-doped hard carbon nanospheres (HN-HCNSs) hybrid cathodes have been 

synthesized by using ferrous gluconate as template and carbon source via sol-gel method for the first 

time. In the structure of this hybrid cathode, the ultrathin NFS nanosheets are uniformly anchored in 

the mesoporous network structure of HN-HCNSs coating, forming the fast conductive transport 

pathways for electrons and Na+-ions. The NFS/HN-HCNSs hybrid cathode shows a hybrid energy 

storage mechanism with high initial discharge capacity of 218.4 mAh g−1 at 0.1 C and in the voltage 
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range of 1.2−4.6 V versus Na/Na+. It also shows excellent long-term cycling stability (the capacity 

retention rates of 73.8% at 1 C after the 3300 cycles and 56.8% at 5 C after the 750 cycles in the 

voltage range of 1.5-4.6 V). Moreover, the unique mesoporous carbon-coated structural features 

endow the hybrid cathode with a maximum energy density of 331.99 W h kg−1 and a maximum 

power density of 2431.87 W kg−1 within working voltage range of 1.5−4.6 V.  

Keywords: hybrid cathode; Na2FeSiO4; H-N-doped hard carbon nanosphere; mesoporous 

carbon-coated structure; ferrous gluconate  

1. Introduction  

Low cost lithium ion batteries (LIBs) with high energy/power densities, high rate performance 

and long cycling stability have attracted enormous attention due to good safety and its potential 

applications in future electric vehicles, smart electric grids, and even miniaturized 

electronic/optoelectronic devices, etc [1-4]. In design and fabrication of low-cost sodium ion 

batteries (SIBs), the rational design of promising cathode is highly challenging yet critically 

important in practical applications. However, lithium resource storage is limited and expensive, 

while sodium ion storage is abundant and performance is similar to lithium, so low-cost SIBs have 

become potential alternatives to LIBs and are widely welcomed. After the advent of SIBs, various 

cathode materials, such as layered transition-metal oxides, NaFePO4, and Na3V2(PO4)3 and so on 

have been investigated extensively [5-7]. However, metal oxides present relatively low operating 

potentials (ca. 2.8 V) and a poor cycling stability due to larger expansion. Phosphate cathode 

materials contribute lower capacities owing to poor reaction kinetics or a large molecular weight [8]. 

Owing to the large ionic radius of the Na+, cathode materials have to bear complicated 

electrochemical behaviors and larger structure evolution during reversible charge and discharge, 

leading to severe capacity fading with extended cycling. Therefore, cathode materials with low cost, 
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safety and high cycling stability should be developed for high energy/power SIBs. 

Among cathode materials, sodium iron silicate (Na2FeSiO4) (NFS) was regarded as one of the 

most promising cathode materials for low cost SIBs due to the cheap and abundant resources of Na, 

Fe and Si, low toxicity, safety characteristics, robustly crystal structure and high specific capacity 

[9-12]. Zhao et al. firstly explored the possible structures of NFS by the first principles calculations 

[13]. They found that the crystal structure of NFS is similar to Li2FeSiO4, inclining to 

three-dimensional Fe–Si–O framework composed of interconnected tetrahedrons of SiO4, FeO4 and 

NaO4 [14]. In theory, NFS has a high theoretical capacity of 276 mAh g-1 through two-electron 

reactions [12,15]. However, the inherent low electron conductivity and slow sodium ion diffusion of 

Fe–Si–O framework limit its application in high power SIBs [11,16]. In order to improve 

electron/ion transport kinetics of the NFS, several approaches have been attempted, such as the 

addition of various carbon (e.g., carbon nanotube [15,16], citric acid [10] and sucrose [12], etc.), 

nanocrystallization and porous structure of NFS [17]. Guan et al.[12] prepared a NFS/C composite 

with three-dimensional network morphology by using sucrose as carbon source, which has a 

relatively pure triclinic phase and exhibits the highest reversible specific capacity of 181 mAh g-1 at 

C/10 (1 C = 276 mA g-1) and 88% capacity retention after 100 cycles in the voltage range of 1.5-4.5 

V. To improved electronic conductivity, NFS/C composites with cubic structure and different 

morphology, such as nanocrystals [15], irregular sphere-like particles [18], interconnected 

mesoporous NFS nanospheres supported on carbon nanotubes [16] have been successfully 

synthesized through different routes. However, they all have a poor cycle performance (Support 

information Table S1). At present, NFS with high energy and power densities as well as long cycling 

life has rarely been realized and reported. 
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Ferrous gluconate as a template and carbon source has aroused considerable interests in synthesis 

of energy storage materials because of its unique properties and multiple functional groups [19,20]. 

Herein, we develop low cost sodium-ion supercapacitors (SISs) with high energy/power densities by 

using Na2FeSiO4 (NFS)/H-N-doped hard carbon nanosphere (HN-HCNS) hybrid cathode. The 

NFS/HN-HCNS hybrid cathode with mesoporous carbon-coated structure and mesoporous structure 

was synthesized by using ferrous gluconate as a template and carbon source via sol-gel method for 

the first time. The synthesis conditions (such as additive amount of ferrous gluconate, annealing 

temperature and holding time) were optimized, and the synthesis mechanism was proposed. The 

challenge of this design is to retain efficient Na ion diffusion in NFS/HN-HCNS hybrid cathode due 

to its unique structure. The NFS/HN-HCNS hybrid cathode can achieve high energy and power 

densities as well as long cycling life for SISs. Several merits of this design have: (1) H-N-doped hard 

carbon nanospheres (about 7.98 wt.%) provide high electron conductivity and more Na ion storage 

sites; (2) mesoporous structure makes the Na ions and electrolyte easily penetrate; (3) unique 

mesoporous carbon-coated structure has high interface areas for the insertion/extraction of Na ions 

and fast Na+ migration, which is the most significant factor for high rate performance and excellent 

long cycling life; (4) H-N-doping (H:1.07 wt.%, N:0.55 wt.%) in HN-HCNS can adjust the surface 

functional groups of carbon, enhancing electric conductivity, in favor of the charge transfer and 

electrode–electrolyte interactions [21-23];. (5) the ferrous gluconate is based on abundant renewable 

resource, which makes this synthesis technology simple and cost effective. Owing to these merits, 

the NFS/HN-HCNS hybrid cathode exhibits the high energy and power densities as well as long 

cycling life, which are among the best thus far reported for NFS (Table S1 lists some recently 

reported NFS). 
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2. Experimental 

2.1. Materials synthesis 

Anhydrous sodium acetate (CH3COONa), tetraethyl orthosilicate (TEOS) and ammonia 

(NH3·H2O) were purchased from Damao Chemical Reagent Factory. Ferrous gluconate 

(C12H22FeO14·2H2O) was obtained from Shanghai Macklin Biochemical Co., Ltd. And iron nitrate 

nonahydrate (Fe(NO3)3·9H2O) was from Tianjin Hengxing chemical reagent Co., Ltd. Preparation of 

Na2FeSiO4 (NFS) precursors by sol-gel method and the specific synthetic route is shown in Fig. S1. 

Typically, stoichiometric amounts of tetraethyl orthosilicate (TEOS) were dissolved in deionized 

water and ethanol under stirring at 45 °C. And a certain amount of nitric acid is added for catalysis. 

Then, stoichiometric CH3COONa (AR) was dispersed in deionized water and added into this solution 

under continuous stirring. Meanwhile, a certain molar ratio of Fe(NO3)3·9H2O (AR) and 

C12H22FeO14·2H2O (AR) were added to the solution and use ammonia to adjust the pH to 4-5 while 

stirring for 4 h. The solution was allowed to stand for 3 days to form a sol at room temperature. After 

being dried at 60 °C all day, the dry gel was ground to powders. Lastly, the resultant powder was 

heated at 300 °C for 3 h. The precursor further calcined at different temperature 650 °C in a tubular 

furnace under N2 atmosphere over 8 h with a ramping rate of 3 °C min-1. The precursors of 

Fe(NO3)3·9H2O and C12H22FeO14·2H2O with a molar ratio of 4:6, 3:7, 2:8 and 1:9 are labeled as 

NFS/HN-HCNS-1, NFS/HN-HCNS-2, NFS/HN-HCNS-3 and NFS/HN-HCNS-4, respectively.  

2.2. Characterization 

The composite samples were characterized by powder X-ray diffraction (XRD, Shimadzu-6100, 

CuKα radiation, in the range of 2θ angles of 10 ° to 70 °), transmission electron microscopy (TEM, 

Talos F2100X) and Raman (LabRam HR). The morphology of the sample was observed by a 
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scanning electron microscope (SEM, ZEISS SUPRA 40). The pore size distribution and nitrogen 

adsorption-distribution isotherm were measured at 77 K on an adsorption analyzer (Micromeritics, 

Gemini V2380, USA) to analyze specific surface area and pore size distribution. 

2.3 Electrochemical evaluation 

The working electrode was mixed with a NFS/HN-HCNS active material (70 wt.%), a 

polyvinylidene fluoride (PVDF) binder (10 wt.%) and acetylene black (20 wt.%) in a solvent of 

N-methylpyrrolidone (NMP), and then coated on an aluminum foil. Subsequently, after drying at 

110 °C overnight in a vacuum drying oven, the NFS/HN-HCNS cathode was made into a wafer with 

an area of 1.76 cm2, which the average load was about 1.0 mg/cm-2.  

Using a sodium metal as a reference electrode, a Whatmanglass microfiber filter (GF/F grade) 

was used as a polypropylene separator, and a CR 2032 coin cell was assembled in a glove box 

(MBraun, Germany) filled with a high purity argon atmosphere (O2 and H2O levels<0.01pp). A 1 M 

NaClO4 solution in EC: PC (1:1) +5% FEC was used as the electrolyte. The galvanostatic cycle 

stability and rate performance (relative to Na+/Na) of the battery was tested on a Channels battery 

analyzer (CT3008W) with a voltage range of 1.5-4.6 V. The cyclic voltammetry (CV) voltage range 

of 1.4-4.6 V was tested on a PARSTAT 2263 electrochemical workstation. Electrochemical 

impedance spectroscopy (EIS) studies were performed on a Solartron Analytical instrument in the 

frequency range of 0.01 Hz to 100 kHz. 

3. Results and discussion 

The NFS/HN-HCNSs hybrid cathodes were synthesized by using ferrous gluconate as a 

template and carbon source via sol-gel method. Ferrous gluconate controlled the formation of 

nanocomposite structure and enhanced electrochemical performances of the NFS/HN-HCNSs hybrid  
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Fig. 1.  (a-d) Schematic diagram of sol-gel process, (a,b) TEOS hydrolysis process, (c) self-assembly of sol particle with 

metal ions, (d) structure of sol-gel matrix. (e-g) Schematic presentation of crosslinking and carbonizing process of 

ferrous gluconate, (e) structure of ferrous gluconate, (f, g) crosslinking reaction of ferrous gluconate. (h) Structure model 

of NFS/HN-HCNSs. (i, j) Schematic diagram of the Na+ rapid diffusion during charge and discharge.  

 

cathodes. The formation mechanism of NFS/HN-HCNS was illustrated in Fig. 1. To obtain a smaller 

sol particle size, nitric acid was used as catalyst for adjusting hydrolysis reaction of TEOS solution 

(Fig. 1ab). When Fe cations were added into the sol solution, they were combined with the sol 

particles (Fig. 1c), and were self-assembled to the surface of sol particles by electrostatic interaction. 

To obtain sol-gel matrix, the nitric acid was used as catalyst for adjusting polycondensation reaction 

of sol solution (Fig. 1d). Ferrous gluconate was naturally crosslinked through the nitric acid 
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oxidation (Fig. 1ef) and carbon matrix was formed by adding ammonium hydroxide to adjust the pH 

value in the sol-gel process (Fig. 1g). Finally, sol-gel matrix particles assembled with carbon matrix 

particles at high temperature and formed NFS/HN-HCNSs hybrid cathode (Fig. 1h). The unique 

carbon-coated structure has high interface areas for the insertion/extraction of Na ions and fast 

electron and Na+ migration (Fig. 1i), and mesoporous structure in HN-HCNS-coated layer makes the 

Na ions and electrolyte easily penetrate (Fig. 1j). 

The crystal structure of Na2FeSiO4 has the complex families of the robust Fe–Si networks and 

only two phases (triclinic cell and cubic cell) have been synthesized at present [10,12,24]. The XRD 

patterns of the of different samples synthesized with different molar ratio of Fe(NO3)3·9H2O and 

C12H22FeO14·2H2O at 650 °C for 8 h are shown in Fig.2a. The main diffraction peaks in each sample 

can be well matched with the cubic crystal system structure of Na2FeSiO4 with a space group of 

Fm-3m, which is isostructural to Na2CaSiO4 (PDF#01-1067) [10,25]. Apparently, all the sample have 

sharp and intense (111) diffraction peak, showing the well-crystallized characteristics.  

Summary of the structural features of the different samples calculated by using Jade 6 XRD 

pattern-processing software is shown in Table S2. By comparison, it can be found that the (222) 

diffraction peak intensity of NFS/HN-HCNS-3 is higher than that of other samples. 

NFS/HN-HCNS-3 has larger cell volume and smaller strain, indicating that the crystal growth of 

NFS can be controlled by ferrous gluconate. The element contents of the different samples 

synthesized with different molar ratio of Fe(NO3)3·9H2O and C12H22FeO14·2H2O at 650 °C for 8 h 

were determined by using Vario EL IIICHN elemental analyzer (Table S3). The results show that the 

carbon content increases as the molar ratio of Fe(NO3)3·9H2O and C12H22FeO14·2H2O increases. The 

NFS/HN-HCNS-3 has carbon content of 7.98 wt%, hydrogen content of 1.07 wt% and nitrogen  
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Fig.2. (a) XRD patterns of different samples synthesized with different molar ratio of  Fe(NO3)3·9H2O and 

C12H22FeO14·2H2O at 650 °C for 8 h, NFS/HN-HCNS-1 (4:6), NFS/HN-HCNS-2 (3:7), NFS/HN-HCNS-3 (2:8) and 

NFS/HN-HCNS-4 (1:9). (b) Raman spectrograms deconvoluted by four Gaussian peaks for NFS/HN-HCNS-3 sample. (c) 

Nitrogen adsorption-desorption isotherm of NFS/HN-HCNS-3, the insert (d) is Barret-Joyner-Halenda (BJH) pore size 

distribution curve of NFS/HN-HCNS-3.  

 

content of 0.55 wt%, but no diffraction peaks of graphitized carbon are detected from the X-ray 

diffraction pattern in Fig. 2a, suggesting that the carbon in NFS/HN-HCNS-3 belongs to the 
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amorphous structure [26,27]. As the carbon content increases, the intensity of (111) peak decreases 

and the peak width increases, indicating that the carbon in the sample inhibited the crystal growth of 

NFS [28,29]. 

In order to further analyze the composition and structure of carbon layers，Raman spectra of the 

NFS/HN-HCNS-3 are shown in Fig.2b. It can be clearly seen that the two characteristic bands 

located at 1308 cm-1 and 1585 cm-1 are D-band (disordered carbon) and G-band (graphitized carbon), 

respectively. The two broad peaks of the NFS/HN-HCNS-3 can be deconvoluted into four peaks 

(Peak 1, Peak 2, Peak 3, and Peak 4) using Gaussion numerical simulation, which are attributed to 

four vibration modes of the coated carbon [27,30]. The bands near 1178 cm-1 (peak 1) and 1446 cm-1 

(peak 2) are related to sp3 type carbon (amorphous carbon and the defects), while 1308 cm-1 (peak 3) 

and 1585 cm-1 (peak 4) is sp2 type carbon (graphitized carbon). According to the peak area, the peak 

intensity ratio (ID/IG) of the D-band and G-band for NFS/HN-HCNS-3 is 1.19, indicating that the 

fraction of graphitized carbon is not high, and the residual carbon in NFS/HN-HCNS-3 is mainly 

hard carbon [26]. The presence of hard carbon not only inhibits the growth and aggregation of NFS 

nanoparticles during synthesis process, but also improves the electronic conductivity of the hybrid 

electrode and ensures the fast transport of sodium ions [31].  

To examine the mesoporous structure, Fig 2c shows the N2 adsorption/desorption isotherm of 

NFS/HN-HCNS-3 sample. According to the International Union of Pure and Applied Chemistry 

(IUPAC) regulation [32], the NFS/HN-HCNS-3 sample has a typical type IV isotherm and H3-type 

hysteresis loop caused by non-uniform wormlike pores, indicating typical mesoporous characteristics 

[33,34]. Its BJH pore-size-distribution shows a wide pore size distribution of 2−48 nm (Fig. 2d), 

which was also observed with HRTEM image (Fig. 4f). The NFS/HN-HCNS-3 has higher specific 
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surface areas of 143 m2
 g

-1 and larger pore volume of 0.45 cc/g, increasing the contact area between 

the cathode and the electrolyte. These mesopores are mainly contributed from the interstices among 

the assembled nanoparticles and generated by the decomposition of ferrous gluconate in the 

calcination process. Due to the presence of mesopores, NFS/HN-HCNS-3 can significantly increase 

the permeability of the electrolyte, which makes Na ions in electrolyte easily react with NFS 

nanosheets. 

 
Fig. 3. (a) SEM image of NFS/HN-HCNS-3. (b) SEM-EDS spectrum and (c) element contents in NFS/HN-HCNS-3. (d) 

typical SEM image of NFS/HN-HCNS-3 sample and the corresponding elemental mappings of sodium (e), iron (f), 

silicon (g), carbon (h), nitrogen(i). 

 

To further characterize the components of NFS/HN-HCNS-3 sample, scanning electron 

microscopy (SEM) and X-ray energy dispersive spectrometry (EDS) quantitative analysis have been 

performed (Fig. 3). Fig. 3a shows a SEM image of NFS/HN-HCNS-3 in the larger sweep area and 
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Fig. 3b is a SEM-EDS spectrum in the corresponding sweep area, displaying the EDS spectra of 

different elements in Fig. 3a and indicating that the NFS/HN-HCNS-3 contains Na, O, Fe, Si , N and 

C elements. The computed contents of different elements in the micrometer range are showed in Fig. 

3c. The results show that the carbon content (14.58 wt%) and nitrogen content (2.68 wt%) of 

NFS/HN-HCNS-3 are higher than these determined by using Vario EL IIICHN elemental analyzer 

(Table S3) because the HN-HCNS was coated on the surface of NFS nanosheets. Fig. 3d is a SEM 

image of NFS/HN-HCNS-3 sample in the smaller sweep area and Fig. 3e–i show the elemental 

mapping images of Fe, Na, Si, C and N in the NFS/HN-HCNS-3 sample, which confirm further the 

existence and uniform distribution of elements, the carbon-coating and nitrogen-doping. 

The morphology and fine microstructure of NFS/HN-HCNS-3 are characterized by FESEM and 

HRTEM (Fig. 4). SEM images of different electrodes are shown in Fig. S2. It can be clearly see that 

the different samples have different particle size and morphologies, which shows that the ferrous 

gluconate template can effectively control the formation of NFS/HN-HCNS. The NFS/HN-HCNS-3 

sample has a more uniform particle size distribution and has a higher electrical conductivity 

compared to other samples. The SEM image in Fig. 4a shows a large carbon decorated sheet that it is 

composed of 200-500nm primary particles (Fig. 4d) aggregated together to form secondary particle. 

The enlarged SEM image (Fig. 4b) indicates the existence of many white HN-HC nanospheres with 

the size of 10–20 nm on the surface of this sheet, which is consistent with the result of HRTEM 

image in Fig. 4e, showing the disordered nanostructure of HN-HC nanospheres.  

TEM image in Fig. 4c shows a primary particle with mesoporous carbon-coated structure, 

which is composed of HN-HC nanospheres and NFS nanosheets (Fig.4d). HRTEM image in Fig. 4e 

shows that the HN-HC-coated layer is consist of the disordered nanospheres of different sizes and  
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Fig. 4. (a, b) SEM images of NFS/HN-HCNS-3 sample. (c, d) TEM images of NFS/HN-HCNS-3 electrode with 

N-HC layer. (e-g) HRTEM images of NFS/HN-HCNS-3 sample. (h) Lattice fringe image of NFS/HN-HCNS-3 

sample. (i) Electron diffraction image of NFS/HN-HCNS-3 sample.  
 

Fig. 4f shows the mesoporous network structure in HN-HC coating,  The HN-HC-coated layer on 

the surface of NFS is converted from ferrous glucose and connects the NFS nanosheets to form 

NFS/HN-HCNSs nanocomposites. Fig. 4gh clearly display a ultrathin NFS nanosheet and its lattice 

fringes of 0.42 nm corresponding to (111) crystal plane of the space group Fm-3m, respectively. The 

electron diffraction image (Fig. 4i) of NFS/HN-HCNS-3 sample shows the electron diffraction 

concentric rings of different crystal planes, which indicates that NFS is also composed of 
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nanocrystalline particles. The results of SEM and HRTEM further proved that the synthesis 

mechanism proposed in Fig. 1 is reasonable. 

In order to optimize the synthesis, Na ion half-cells were assembled with the different 

NFS/HN-HCNS hybrid electrodes with the average load of about 1.0 mg/cm-2 as cathodes, Na metal 

as the counter electrode, and 1 M solution of NaClO4 in EC: PC (1:1) +5% FEC as the electrolyte. 

The electrochemical properties of the different electrodes were evaluated in the voltage range of 

1.5-4.6 V versus Na/Na+. Fig. 5 and Fig. S3 show that the electrochemical performances of the 

different NFS/HN-HCNS hybrid electrodes synthesized under the different preparation conditions, 

respectively. The results indicate that the NFS/HN-HCNS-3 hybrid electrode synthesized at 650 °C 

for 8 h has a initial discapacity of 146.1 mAh g-1 (Fig. S3a) at a current density of 0.1 C (1 C = 276 

mAh g-1), the best rate performance (Fig. 5ad), the smallest charge transfer resistance (Rct=144.24 Ω) 

(Fig. 5be and Tables S4 and S5), the fastest sodium ion diffusion coefficient (D Na
+=1.81×10-14 cm2 

s-1) (Fig. 5cf and Tables S4 and S5), and the best energy/power performance(331.99 W h kg-1/50.45 

W kg-1 and 68.49 W h kg-1/2431.87 W kg-1) (Fig. S3cf and Table S7). 

The NFS/HN-HCNS-3 hybrid electrode not only exhibits and the stable charge/discharge 

capacity profiles for different cycles at 0.2 C (Fig. S5a) and the stable cyclic voltammetry (CV) 

curves for different cycles at the sweep rate of 2.5 mV s−1 (Fig. S5b), but also delivers a ultra-long 

cycling ability (initial capacity of 65.6 mAh g-1 and the capacity retention rate of 73.8% after 3300 

cycles) at 1 C (Fig. 5g), which is the longest cycling ability among all reported NFS cathodes 

previously (Table S1). During the cycle, its discharge capacity increases first and then decreases 

because the internal active material in the NFS/HN-HCNS-3 hybrid electrode is gradually activated 

with an increase in the number of charge and discharge times, resulting in an increase in capacity.  
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Fig. 5. (a) Rate performances, (b) EIS curves and (c) the relationship between the slope of the plot of Zre and the 

reciprocal root square of frequency (ω
-1/2) at low frequencies in (b) for the different electrodes synthesized at different 

annealing temperatures for 8 h, EIS curves were tested in the frequency range of 0.01-105 Hz at the completely 

uncharged/undischarged state. (d) Rate performances, (e) EIS curves and (f) the relationship between Zre and ω-1/2 at low 

frequencies in (e) for the different electrodes synthesized at 650 °C for different holding time. (g) Long-term cycling 

stability of NFS/HN-HCNS-3 electrode synthesized at 650 °C for 8 h for 3300 cycles at 1C in the voltage range of 

1.5-4.6 V.  
 

Later, as the number of cycles increased, the deactivation of some active substances deteriorated, 

resulting in a gradual decline in capacity. Besides, the electrolyte decomposition at a relatively high 

potential (4.5 V) might also responsible for the capacity fading on subsequent cycles [35,36]. The 

capacity retention rate of the NFS/HN-HCNS-3 hybrid electrode after 700 cycles was maintained at 

600 °C and 700 °C for 8 h (Fig. S5d), only 12.9% and 9.2% at 1 C. 

Fig. 6, Fig. S4 and S6 show the electrochemical performances of the different electrodes 
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synthesized with different molar ratio of Fe(NO3)3·9H2O and C12H22FeO14·2H2O at 650 °C for 8 h. 

The results indicate that the NFS/HN-HCNS-3 hybrid electrode synthesized with the molar ratio of 

2:8 at 650 °C for 8 h has higher discharge capacity of 138.1 mAh g-1 for second cycle at 0.1 C (Fig. 

6a), the best rate performance (Fig. 6b and Fig. S4c), the smallest charge transfer resistance 

(Rct=144.24 Ω) (Fig. 6e and Tables S6), the fastest sodium ion diffusion coefficient (DNa+=1.81×10-14 

cm2 s-1) (Fig. 6f and Tables S6), and the best energy/power performance (331.99 W h kg-1/50.45 W 

kg-1 and 68.49 W h kg-1/2431.87 W kg-1) (Fig. 6c and Table S7). The morphology of CV curves of 

the different electrodes synthesized with different molar ratio in Fig. 6d has little change as the 

increase of molar ratio of Fe(NO3)3·9H2O and C12H22FeO14·2H2O, showing that the carbon content 

only affected the electrical conductivity of electrodes and did not influenced the redox reaction of 

Na2FeSiO4. Fig. S6a presents the typical charge/discharge profiles of of the different electrodes at 0.1 

C. Apparently, two charge/discharge voltage plateaus are observed at around 4.65 V/1.65 V during 

the initial charge process for NFS/HN-HCNS-3 (Fig. S6b), which could be assigned to the single 

electron electrochemical reaction corresponding to the Fe2+/Fe3+ and Fe3+/Fe4+ redox reaction [12,14]. 

Compared to other electrodes, NFS/HN-HCNS-3 shows a better reversibility and a initial capacity of 

146.1 mAh g-1 corresponding to 1.05 mol of Na ion in the structure of NFS/HN-HCNS-3. Moreover, 

the second charge and discharge capacity (Fig. S6b) is lower than the initial charge and discharge 

capacity (Fig. S6a). The reasons of capacity fading may be the irreversible reduction of electrode 

caused by structural rearrangement [27,29] and the  
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Fig. 6. Electrochemical performances of different electrodes synthesized with different molar ratio of Fe(NO3)3·9H2O 

and C12H22FeO14·2H2O at 650 °C for 8 h, NFS/HN-HCNS-1 (4:6), NFS/HN-HCNS-2 (3:7), NFS/HN-HCNS-3 (2:8) and 

NFS/HN-HCNS-4 (1:9). (a) The second charge and discharge profiles at 0.1C; (b) Rate performance at various current 

densities; (c) A comparison of the energy and power performance; (d) CV curves at 0.5 mV s-1 vs Na/Na+ in the voltage 

range of 1.4-4.6 V; (e) EIS curves based on the fitted equivalent circuit; (f) the relationship between Zre and ω-1/2 at low 

frequencies; (g) Long-term cycling stability of the NFS/HN-HCNS-3 electrode at 5C in the voltage range of 1.5-4.6 V. 

 

formation of SEI layer on the surface of electrode [37,38]. The SEI layer can prevent structural 

collapse and increase the cycle life of the electrode material, but it consumes a part of sodium ions 

and generates the irreversible capacity during the formation process. This demonstrates the 

possibility for developing high energy and power densities as well as long cycling life cathodes by 

single electron electrochemical reaction in the unique structure. Additionally, Fig S7 shows the 

electrochemical data of NFS/HN-HCNS-3 electrode in the voltage range of 1.2−4.6 V. Among them, 
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the first discharge and charge specific capacities of the initial cycle are 218.4 mAh g-1 and 165.0 

mAh g-1 at 0.1 C (Fig S7a), respectively. Compared with the specific capacity (146.1 mAh g-1) in the 

voltage range of 1.5−4.6 V (Fig S5a), the first discharge capacity of NFS/HN-HCNS-3 electrode has 

increased by 72.3 mAh g-1 and is 82% of theoretical capacity, which is caused by HN-HC. 

Apparently, two voltage plateaus are observed at around 2.0 and 4.3 V during the second and third 

charge processes (Fig S7a), which could be assigned to the multi-step electrochemical reaction 

during this voltage range. Around 1.58 Na+ per formula unit can be reversibly extracted/inserted in 

the NFS/HN-HCNS-3 electrode. So the total reaction equations of NFS/HN-HCNS-3 electrode are as 

follows: 

Na�FeSiO	 →Na�.	�FeSiO	 + 1.58Na
� + 1.58e�   (1.2−4.6 V)                          (1) 

Na�FeSiO	 →Na�.��FeSiO	 + 1.05Na
� + 1.05e�   (1.5−4.6 V)                          (2) 

Furthermore, Fig S6a shows that the different electrodes all have lower energy efficiency due to 

the polarization over recharge, the lower intrinsic conductivity of NFS and the formation of the SEI 

layer. Keeping the charging potential at 4.65 V would likely cause many side reactions, such as 

structural rearrangement, electrolyte penetration, decomposition of electrolyte and oxidation of Fe 

ions [16]. The large fraction of the 'charging plateau' at 4.65 V would actually be due to the surface 

adsorption-desorption reactions in the mesoporous structure of HN-HC coating (Fig 1i), showing 

large capacitive contribution to the electrical energy storage (Fig 7). The polarization of all 

electrodes is significantly reduced and the capacity fading is smaller in the second cycle (Fig S6 b). 

In spite of a small fading in the second cycle caused by some side reactions, the discharge capacities 

of NFS/HN-HCNS-3 electrode perform a tendency toward stabilization in the following cycles (Fig 

S5ab). For NFS/HN-HCNS-3 electrode, 1.12 mol of Na+ was deintercalation during charging and 
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1.05 mol of Na+ was intercalated during discharging. So the formation of the SEI layer consumed 

0.07 mol of Na+. 

Fig S7b shows rate performance of the NFS/HN-HCNS-3 hybrid electrode. The capacity 

attenuation is large between different rates. And the corresponding CV is shown in Fig S7c. Fig. 6g 

shows the long cycle stability performance of the NFS/HN-HCNS-3 hybrid electrode at 5 C, 

exhibiting a capacity of about 20.70 mAh g-1 after 750 cycles and corresponding to capacity retention 

of 56.8%. The Coulomb efficiency of the NFS/HN-HCNS-3 cathode is close to 100% during cycling, 

which means that the Na-ion insertion/extraction process is highly reversible. The cycle stability 

performance of the NFS/HN-HCNS-2 electrode at 5 C is shown in Fig. S5c. After 750 cycles, the 

capacity retention rate is only 26.6%. Obviously, the NFS/HN-HCNS-3 electrode has a higher 

capacity retention ratio than the NFS/HN-HCNS-2 electrode, which is mainly due to its unique 

carbon-coated framework structure, uniform nanoparticle size and excellent mesoporous structure. 

In order to further study the electrochemical kinetics of Na+ insertion and the energy storage 

mechanism, the CV curves of NFS/HN-HCNS-3 hybrid electrode at different scan rates in a voltage 

range of 1.5–4.6 V were tested, and the contribution ratios of capacitive at various sweep rates were 

calculated. Fig. 7a shows the nearly rectangular CV curves without distinct redox peaks, which is 

similar electrochemical behavior of electric double layer (EDL) capacitors and the characteristic of a 

surface-confined charge transfer process, verifying that NFS/HN-HCNS-3 also possessed EDL 

mechanism of surface-controlled processes [39,40]. The area of rectangular CV curves increases as 

increasing the scanning rate from 0.5 to 2.5 mV s−1. Moreover, we calculate adjustable parameter b 

value from the logarithmic plot of the peak current versus sweep rate (Fig. 7b). The logarithmic 

relationship between peak current (i) and sweep rate (v) can be described by equation (1) [41]: 
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� � a��                                                                       (1) 

b=0.5 represents the larger contribution from diffusion-controlled intercalation process of 

battery-type materials and b=1.0 means that the surface-controled behavior of pseudocapacitive 

materials is the main one. The range of b values from 0.5 to 1.0 indicates a “transition” area between 

the surface control process of pseudocapacitive materials and the diffusion control process of 

battery-type materials, and the capacitive contribution increases with increasing b value [42]. The 

b-values of the cathodic and anodic peaks are 0.64 and 0.79 for the NFS/HN-HCNS-3 electrode, 

respectively (Fig. 7b), which indicates that the NFS/HN-HCNS-3 electrode has the higher capacitive 

contribution. The contribution ratio of surface-controlled behavior and diffusion controlled behavior 

can be calculated according to equation (2) [43]. 

���� � ��	� + ���
� �⁄                                                            (2) 

 

Fig. 7. (a) CV curves of NFS/HN-HCNS-3 hybrid electrode at various sweep rates. (b) Plots of log (sweep rate) versus 

log (peak current). (c) Contribution ratio of capacitive at various sweep rates. (d) Quantitative analysis of capacitive 

contribution at the sweep rate of 2.5 mV s−1 in the CV curve. 
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Where k1v is a capacitive contribution, and k2v
1/2 is a contribution of the diffusion controlled 

process. The results show that the contribution ratio of the capacitive charge increases as the scan 

rate increases from 47.56% to 81.76% (Fig. 7c), indicating that its energy storage mechanism is a 

hybrid energy storage mechanism composited of the surface control process of supercapacitors and 

the diffusion control process of batteries. The contribution ratio of the capacitive charge is only 47.56% 

at the sweep rate of 0.5 mV s−1, indicating that the contribution ratio of the capacitive reaction is low 

at lower sweep rates and the larger contribution is from the redox reactions of NFS. As shown in Fig. 

7d, the contribution ratio of the capacitive charge is as high as 81.76% at the scan rate of 2.5 mV s-1, 

indicating that the larger contribution is from the surface control process of mesoporous HN-HCNS 

coating. Hence, in the high sweep rate electrochemical test, the oxidation-reduction reactions of NFS 

are still in progress, but its contribution ratio is low. 

Based on electrochemical analysis, we proposed a hybrid energy storage mechanism for the 

NFS/HN-HCNS-3 hybrid electrode. The interfaces between NFS layer and HN-HCNS layer not only 

generated extrinsic faradaic reactions by surface control process, but also provided a large accessible 

surface area for fast charge transfer and a shorter diffusion path for Na+ insertion/extraction, thus 

significantly improving the power density. More importantly, NFS ultrathin sheet between two 

HN-HCNS layers can provide high Na ion storage interface and efficient electron/ion transport 

pathway for fast ion intercalation by diffusion control process and redox reactions, which also played 

an important role in enhancing the energy density and cycle life. Due to the collective and synergetic 

effect of different energy storage control processes, the NFS/HN-HCNS-3 with mesoporous 

carbon-coated structure utilizes the hybrid energy storage mechanisms and exhibits a high energy 

density and an excellent power density as well as high cycling stability. 
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Conclusion 

In summary, with the purpose of low cost sodium-ion supercapacitors with high energy/power 

densities, high rate performance and long cycling stability, we have successfully synthesized a novel 

Na2FeSiO4 (NFS)/H-N-doped hard carbon nanosphere (HN-HCNS) hybrid electrode with 

mesoporous carbon-coated structure via a sol-gel method using ferrous gluconate as a template and 

carbon source. The several main synthesis conditions were optimized by using a multichannel battery 

testing system and EIS tests. The formation mechanism and hybrid energy storage mechanism of 

NFS/HN-HCNS hybrid electrode were investigated by using structural characterization techniques 

and cyclic voltammetry tests. The unique mesoporous carbon-coated structure provides high 

electrical conductivity, short ionic diffusion paths, large specific surface area and robust structural 

stability for NFS/HN-HCNS hybrid electrode. Due to the collective and synergetic effect of different 

energy storage control processes, the NFS/HN-HCNS-3 hybrid electrode with 7.98 wt% carbon 

exhibits a hybrid energy storage mechanism with high energy/power densities (68.49 W h kg−1/2432 

W kg−1), excellent rate capability (the capacity retention rate of 56.8% at 5 C after the 750 cycles) 

and long cycling life (the capacity retention rate of 73.8% at 1 C after the 3300 cycles). This work 

can demonstrate that energy/power densities can be largely improved via the design of hybrid 

electrodes with a unique structure. 
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Highlights 
 

► Na2FeSiO4/H-N-doped mesoporous hard carbon nanosphere hybrid cathodes was 

synthesized. 

► Ferrous gluconate template controlled the formation of mesoporous carbon-coated 

structure.  

► This structure gives a remarkable synergic effect of Na-ion battery-supercapacitor.   

► This hybrid electrode delivers high energy and power densities.  
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