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ABSTRACT
The present study is concerned with possible mechanisms of air entrainment in a thin liquid layer caused by oblique impact of a deformable
body on the layer. The two-dimensional unsteady problem of oblique elastic plate impact is considered within the thin-layer approximation
for the first time. The plate deflection is described by the Euler beam equation. The plate edges are free of stresses and shear forces. The plate
deflections are comparable with the liquid layer thickness. It is revealed in this paper that, for a stiff plate, the initial impact by the trailing
edge makes the plate rotate with the leading plate edge entering water before the wetted part of the plate arrives at this edge. The air cavity
trapped in such cases can be as long as 40% of the plate length. For a flexible plate, the impact does not cause the plate rotation. However, the
dry part of the plate in front of the advancing wetted region is deflected toward the liquid layer also trapping the air. The numerical results are
presented for elastic and rigid motions of the plate, hydrodynamic pressure in the wetted part of the plate, position of this wetted part, and
the flow beneath the plate.
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I. INTRODUCTION

The unsteady two-dimensional and nonlinear problem of
oblique impact by an elastic plate onto a thin liquid layer is consid-
ered. The edges of the plate are free of bending stresses and shear
forces [see Fig. 1(a)]. This study is motivated by the experiments
on droplet deposition in annular gas–liquid flow and mass exchange
between the gas core and the liquid film (Cherdantsev et al., 2017).
Bubbles entrapped in the liquid film were observed for some con-
ditions of oblique droplet impacts onto the film. The bubbles were
created during the impacts. Then, some of the bubbles collapsed
behind the impacting droplet, but others survived inside the liquid
film. Both the number of bubbles entrapped in the film and their
total volume were found to be dependent on the diameter of the
impacting droplet. Typical conditions of droplet impacts, which led
to bubble entrainment in the thin liquid layer, were as follows: the
diameter of the droplet was of order of 1 mm, the liquid layer thick-
ness was of order of 0.2 mm, the horizontal speed of the droplets was
of order of 30 m/s, and the vertical speed was of order of 1 m/s. Bub-
ble entrainment was observed, for example, for a droplet of diameter
0.71 mm impacting a thin film at a horizontal speed of 20 m/s. The
rate of bubble entrainment was high and could not be explained

by the air-cushion effect, which is less significant for oblique liquid
impacts [see Hicks and Purvis (2010; 2011)].

The present study aims at identifying some possible mecha-
nisms of bubble entrainment in a thin liquid layer as a result of
oblique impact onto the layer by a deformable body, which mimics a
liquid droplet. The simplest configuration with free–free elastic thin
plate is considered. One may assume that the air can be trapped (a)
in front of the impacting body due to the body deformation toward
the liquid and jetting, (b) under the body because of the body vibra-
tion and possible cavitation caused by the impact, and (c) behind the
body because of complex and oscillatory behavior of the wake. These
potential mechanisms of air entrainment could be important also at
larger scale of high-speed boats and ditching aircraft.

We assume that (a) the penetration of the body into the liq-
uid layer is comparable with the thickness of the layer and (b) the
horizontal dimension of the problem, which is the projection of
the plate onto the layer, is much greater than the layer thickness.
These assumptions make it possible to describe the flow between
the impacting body and the bottom of the liquid layer within the
thin-layer approximation [see Korobkin (1995; 1999)] using certain
matching conditions at the edges of the wetted part of the body sur-
face. In the two-dimensional problem of oblique plate impact, the
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FIG. 1. Oblique impact by elastic plate.
(a) Initial position of the plate and nota-
tion. (b) Scheme of the flow and plate
deflection during the impact. The position
of the plate is described by the equation
y = yb(x, t).

matching condition at the leading edge of the wetted part of the
plate surface describes the jetting there [see Fig. 1(b)] and the match-
ing condition at the trailing edge of the wetted surface describes the
liquid separation from the plate surface. The liquid separation may
occur either from the left edge of the plate [see Fig. 1(b)] or from
the inner part of the smooth plate surface. In the latter case, the
position of the separation point is determined using the Brillouin–
Villat condition (Birkhoff and Zarantonello, 1957; Khabakhpasheva
and Korobkin, 2013a). The positions of both the leading and trail-
ing edges of the wetted part of the plate depend on both the plate
motions and elastic deflections.

The problem of oblique impact by an elastic plate with free–
free edges was studied by Reinhard et al. (2013) for deep water using
the Wagner theory of water impact with a wake behind the plate.
The presence of the wake changes the pressure distribution along
the wetted part of the plate, as well as the length and the position of
this wetted part. In contrast to the deep water impact problem, the
wake on shallow water behind the elastic plate does not affect in the
leading order the hydrodynamic pressure under the plate because
the horizontal speed of the plate and the speed of the generated flow
are much higher than the critical speed of the wave propagation in
the thin liquid layer. Reinhard (2013) studied both rigid and elastic
plate impacts with different conditions of the flow separation at the
trailing edge. Moradi et al. (2018) applied the analysis by Reinhard
(2013) to other edge conditions. A linear hydrodynamic model of a
rigid plate impact onto a thin liquid layer was studied by Liu (2017).
Such a linear model is applicable for small penetrations of the plate
into the liquid layer, the so-called skimming impact.

The shallow water model of water impact was developed by
Korobkin (1995; 1999) and generalized to elastic vertical impacts
by Khabakhpasheva (2009; 2015) for two-dimensional cylindrical
shells and spherical shells correspondingly and to oblique impacts
and three-dimensional impacts by smooth rigid bodies by Batyaev
and Khabakhpasheva (2013; 2016). Tkacheva (2008; 2013) investi-
gated vertical impacts by a structure with an elastic flat bottom on a
thin liquid layer without inclination of the bottom and with a small
inclination angle.

Two-dimensional oblique impact by a rigid body with a smooth
surface on a thin liquid layer was studied by Khabakhpasheva
and Korobkin (2013a; 2013b) within the non-linear shallow water
approximation. Calculations were performed for an elliptic cylin-
der with multiple impacts on the liquid layer. The penetration of
the cylinder into the liquid layer was comparable with the thickness
of the layer. The cylinder was “walking” on water with its rotation
being as important as the vertical motion of the cylinder. The hor-
izontal component of the hydrodynamic force acting on the body
was shown to be negligible within the thin-layer approximation. The
elliptic shape of a body (ellipsoid in 3D) is a preferable shape for

multiple skipping from the water surface. Belden et al. (2016) and
Hurd et al. (2019) discovered that soft spheres naturally take ellip-
soidal shapes during their oblique impacts on deep water. Hurd et al.
(2019) wrote “The behavior is characterized by the sphere moving
nearly parallel to the water surface with the major axis tips dipping
below the water surface with each rotation while the shorter sides
pass just above, giving the impression that the sphere is walking
across the water surface.”

We are unaware of experiments with elastic plates or other elas-
tic bodies impacting obliquely on a thin liquid layer. Experiments
with three-dimensional rectangular plate impacting deep water at
high horizontal speed were performed by Iafrati (2016). The plate
was rigid enough and elastic deflections of the plate were not stud-
ied. The conditions of his experiments represented those of air-
craft emergency landing on water. The experiments were concerned
with three-dimensional effects and the motion of the pressure peak
along the plate. The interpretation of the experimental results were
supported by fully nonlinear two-dimensional solution within the
potential flow model. More recently, Iafrati and Grizzi (2019) stud-
ied experimentally oblique impacts of double curvature panels on
deep water with the horizontal speed of the panels ranging from
21 m/s to 45 m/s. The authors wrote “Test data highlight different
cavitation and/or ventilation modalities which are strongly depen-
dent on the horizontal velocity, with substantial changes in the flow
features occurring with velocity variations of few meters per second.
For the specimen considered here, the inception of the cavitation is
found at about 30 m/s, confirming that scaled model tests performed
at small horizontal velocities are unable to capture the hydrody-
namics correctly. By analyzing pressure data, underwater movies,
and force measurements, it is shown that the transition from the
cavitation to ventilation condition has a significant effect on the lon-
gitudinal distribution of the loading which, together with inertia,
aerodynamic loads, and engine thrust, governs the aircraft dynam-
ics.” Elastic effects were not studied in these experiments as well.
However, the curvature of the rigid panels can be considered as
mimicking the complicated dynamics of elastic surfaces during their
impacts on water, which defines conditions of cavitation under the
panel.

Vertical impacts on deep and shallow waters have some similar-
ities but they are also different in several important aspects. Relations
between elastic body impacts on deep and shallow water were stud-
ied by Korobkin and Khabakhpasheva (2013). These authors investi-
gated elastic responses of wedges and shells during water impact and
concluded that “. . . the presence of the bottom increases stresses in
an elastic structure entering the water layer. The increase in stresses
caused by the bottom is significant only for very shallow layers.”
Dependencies of the impact pressures and conditions of cavitation
on the depth of water were not studied.
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A nonlinear model of oblique elastic impact on a thin liquid
layer is formulated and investigated in this paper for the first time.
The governing equations of the plate both rigid and elastic motions
and the liquid thin-layer flow beneath the plate are derived in Sec. II.
It is shown in Sec. II C how to couple the structural and hydrody-
namic equations when the elastic deflections of the plate are of the
order of the thickness of the liquid layer. The problem is reduced to a
system of non-linear ordinary differential equations in Sec. III. The
system is written with respect to the principal coordinates of both
rigid and elastic modes of the plate motions, the coordinate of the
leading edge of the wetted part of the plate, and the flow velocity at
this edge. The numerical algorithm of the problem is described in
Sec. IV. The initial conditions are derived for the coupled problem
where the contact region starts from a single point. It is explained
how the Brillouin–Villat condition is imposed at the trailing edge of
the contact region. A non-linear equation is derived for the coordi-
nate of the trailing edge together with the derivative of this equation
with respect to the unknown coordinate in order to apply Newton’s
method for solving this equation. The obtained numerical results are
presented in Sec. V for the motions of the plate, distributions of the
hydrodynamic pressure in the contact region, the positions of the
edges of the contact region and their elevations above the liquid bot-
tom, maximum strain and its position as functions of time, and the
flow speeds at the edges. The horizontal speed of the flow, the initial
inclination angle of the plate, and its rigidity were varied to inves-
tigate different scenarios of the impacts. The conclusions are drawn
and future work is discussed in Sec. VI.

II. FORMULATION OF THE PROBLEM
The two-dimensional unsteady problem of an elastic plate

impact on a thin layer of inviscid and incompressible liquid is con-
sidered. The plate motions and the liquid flow are described in the
Cartesian coordinate system (x, y) [see Fig. 1(a)]. The line y = −H
corresponds to the flat horizontal bottom of the liquid layer, and the
line y = 0 corresponds to the initial horizontal free surface of the liq-
uid [see Fig. 1(a)]. Initially, t = 0, the liquid is at rest, and the plate
touches its free surface at a single point, which is taken as the origin
of the Cartesian coordinate system. The plate is flat and corresponds
to the interval x = s cos α0, y = s sin α0, where 0 ≤ s ≤ L, L is the plate
length, α0 is the angle of the plate initial inclination to the horizontal
surface of the liquid [see Fig. 1(a)], and α0 is positive and small in the
present study. The distance s of a plate element from the left edge
of the plate is taken as the Lagrangian coordinate of this element.
Initially, the plate elements have the velocity −V0 in the vertical y-
direction and the velocity U0 in the horizontal x-direction, where
both V0 and U0 are positive.

In this study, the layer thickness H is much smaller than the
plate length L, with ε = H/L being a small parameter of the problem.
The conditions of the impact are such that α0 = εα̃0 and U0 = λV0/ε,
where α̃0 = O(1) and λ = O(1) as ε→ 0. The penetration of the plate
into the liquid layer is assumed comparable with the layer thickness,
and the angle α(t) of the rigid rotation of the plate is of order of
the initial angle α0 for any time. Coupled and strongly nonlinear
motions of the liquid and the plate are of concern.

In order to justify the inviscid liquid model of impact on a
thin liquid layer, we shall estimate the orders of the terms in the

Navier–Stokes equations and in the boundary conditions governing
the flow. The velocity of the flow u⃗(x⃗, t) is of the order of O(V0/ε).
The viscous term ν∇2u⃗ in the Navier–Stokes equation, where ν is the
kinematic viscosity of the liquid, can be neglected compared with the
inertia term u⃗t ,

∣ν∇2u⃗∣
∣u⃗t ∣

= O( νT
H2 ),

when νT/H2 ≪ 1. Here, T = H/V0 is the characteristic time of the
impact. For the conditions of the present calculations with the thick-
ness of the water layer of 2 cm and vertical component of the impact
velocity of order of 5 m/s, we have T = 4 ms, ν = 1.004 × 10−6 m2/s,
and νT/H2 = ν/V0H = 10−5. This estimate justifies that the viscous
effects can be neglected during impact events of short duration even
for thin liquid layer.

In the present study, the horizontal speed of the plate is much
higher than the critical speed

√
gH of a signal propagation along

the liquid layer. Then, the free boundary of the liquid is signifi-
cantly deformed only near the advancing plate in the jet region [see
Korobkin (1995)]. In this region, the free boundary of the liquid has
a large curvature, which implies that the surface tension effects can
be important there. The surface tension pressure in the jet region is
estimated as σ/H, where σ is the coefficient of surface tension of the
liquid. For water at 20○, σ = 0.072 N/m. However, the dynamic pres-
sure is also very high in the jet region. The dynamic pressure in the
jet region is of the order of ρU2

0 . Therefore, the ratio of the surface
tension pressure to the dynamic pressure is estimated as

σ/H
ρU2

0
.

For the water layer of thickness 2 cm and the horizontal speed of the
plate U0 = 25 m/s, we find that the surface tension pressure is about
5.8 × 10−6 smaller than the dynamic pressure and it can be safely
neglected.

In the wake behind the plate, the flow is governed, in gen-
eral, by inertia of the liquid, its viscosity, and surface tension, with
the gravity playing important role [see Alekseenko et al. (1994)
and Chang and Demekhin (2002)]. The flow in the wake and a
possible air entrainment in the wake depend on the plate motion
and its elastic vibrations caused by the impact. However, the effect
of the wake on the motion of the plate and the flow under the
plate is minor because of high-speed motion of the plate along the
layer.

In the present study, we are concerned with the liquid flow
caused by the oblique impact of the elastic plate, mechanisms of the
air entrainment under the plate, and the plate motions. The flow in
the wake will be investigated in another follow-on paper.

A. Structural part of the problem
Let a plate element at a distance s from the left edge of the plate

have the coordinates x = xp(s, t) and y = yp(s, t) at time t. Here,
xp(s, 0) = s cos α0 and yp(s, 0) = s sin α0. The motion of the element is
described by the radius-vector, r⃗ = r⃗p(s, t) = (xp(s, t), yp(s, t)), and
is governed by the initial conditions,

r⃗p(s, 0) = s(cos α0, sin α0),
∂ r⃗p
∂t
(s, 0) = (U0,−V0),
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and external forces acting on this element. The external forces
include [see Korobkin and Khabakhpasheva (2006)] (a) the hydro-
dynamic pressure in the wetted part of the plate, p(x, y, t)n⃗, which
is calculated at the current position of the element, x = xp(s, t) and
y = yp(s, t), and is acting in the normal direction to the element,
where n⃗(s, t) is the unit normal vector to the plate element directed
from the fluid, (b) the force caused by bending stresses in the plate,
−EJ(∂4w/∂s4)n⃗, where J = h3

p/12, hp is the thickness of the plate, E
is the Young modulus of the plate material, m = hpρp is the mass of
the plate per unit length, ρp is the density of the plate material, and
w(s, t) is the normal elastic deflection of the plate, and (c) the gravity
force, mg⃗, where g⃗ = (0,−g), acting in the vertical direction down-
wards with g being the gravity acceleration. Then, Newton’s second
law provides

m
∂2 r⃗p
∂t2 = p(xp(s, t), yp(s, t), t) n⃗(s, t) − EJ

∂4w

∂s4 n⃗(s, t) + mg⃗, (1)

where 0 ≤ s ≤ L and t > 0. Note that the elastic force in (1) is linearized
in contrast to all other forces, which are in their original form. Equa-
tion (1) describes large rigid-body motions of the plate and its small
elastic deflection. The elastic deflection w(s, t) is considered here
with respect to the rigid motions. Within this approximation, the
normal n⃗ is calculated without accounting for the elastic deflection
of the plate, n⃗ = (− sin α(t), cos α(t)), where α(t) is the inclination
of the rigid plate at time t, α(0) = α0. Then,

xp(s, t) = x0(t) + s cos α −w(s, t) sin α, (2)

yp(s, t) = y0(t) + s sin α + w(s, t) cos α, (3)

where x0(0) = 0, y0(0) = 0, w(s, 0) = 0, and wt(s, 0) = 0. Projec-
tions of Eq. (1) onto the normal direction n⃗ to the plate and onto the
tangential direction τ⃗ = (cos α, sin α) yield

m
∂2 r⃗p
∂t2 n⃗ + EJ

∂4w

∂s4 = p(xp(s, t), yp(s, t), t) −mg cos α, (4)

m
∂2 r⃗p
∂t2 τ⃗ = −mg sin α. (5)

Equations (4) and (5) provide the following equations for the func-
tions xp(s, t) and yp(s, t):

m
∂2yp
∂t2 + EJ

∂4w

∂s4 cos α = p(xp(s, t), yp(s, t), t) cos α −mg, (6)

∂2xp
∂t2 = −(g +

∂2yp
∂t2 ) tan α. (7)

Note that ∂4w/∂s4 = (∂4yp/∂s4)/cos α [see Eq. (3)]. Therefore, (6)
serves to determine the vertical coordinate yp(s, t) of the plate ele-
ments and (7) to determine the horizontal motion of the elements.
Equation (6), written with respect to yp(s, t),

m
∂2yp
∂t2 + EJ

∂4yp
∂s4 = p(xp(s, t), yp(s, t), t) cos α −mg,

(0 < s < L, t > 0),
(8)

should be solved subject to the edge conditions,

∂2yp
∂s2 = 0,

∂3yp
∂s3 = 0 (s = 0, s = L), (9)

and the initial conditions,

yp(s, 0) = s sin α0,
∂yp
∂t
(s, 0) = −V0 (t = 0). (10)

The edge conditions (9) imply that the plate edges are free of bending
stresses and shear forces correspondingly. Equation (7) is integrated
in time subject to the initial conditions,

xp(s, 0) = s cos α0,
∂xp
∂t
(s, 0) = U0 (t = 0). (11)

Note that the functions yp(s, t) and xp(s, t) describe both rigid-body
motions and elastic deflections together. Rigid-body rotation of the
plate is described by the angle α(t), which appears in the right-hand
sides of Eqs. (8) and (7). This angle can be determined at each step
of the time integration by separating rigid and elastic motions.

We are concerned with such conditions of oblique impact of an
elastic plate onto a thin liquid layer that both vertical rigid displace-
ment of the plate and its elastic deflection are of the order of the layer
depth H,

yp = Hỹp(s̃, t̃), x = Lx̃, s = Ls̃, t = Ht̃/V0, ε = H/L,
α0 = εα̃0, α = εα̃(t̃),

(12)

where the dimensionless variables are denoted by tilde and ε is a
small parameter of the problem. Then, cos α(t) = 1 + O(ε2) in (8)
and tanα(t) = εα̃(t̃)[1 + O(ε2)] in (7) in the leading order as ε→ 0.
Therefore, one does not need to separate rigid and elastic motions to
integrate equation (8). Indeed, in the leading order as ε→ 0, Eq. (7)
provides ∂2xp/∂t2 = O(V2

0 /L), where the scales (12) were used and
we assumed that gH/V2

0 = O(1), which gives

xp(s, t) = s + U0t + O(V2
0 t

2/L), (13)

with account for the initial conditions (11). The first two terms in
(13) are of the same order O(L) as ε → 0 if the horizontal speed of
the body U0 is much greater than the vertical speed V0, U0 = λV0ε−1,
where

λ = U0

V0

H
L
= O(1).

Then, xp = Lx̃p(s̃, t̃) and

x̃p(s̃, t̃) = s̃ + λt̃ + O(ε2), (14)

where 0 ≤ s̃ ≤ 1 and t̃ = O(1). Equation (8) describes the vertical
motions of the elastic plate, yp(s, t), once the hydrodynamic pressure
is known.

B. Hydrodynamic part of the problem
The position of the elastic plate in the global coordinate system

is described by the equation

y = Hỹb(x̃, t̃) (15)

in the dimensionless variables. In the leading order as ε→ 0, the flow
is one-dimensional within the thin-layer approximation with the
horizontal velocity of the flow beneath the plate, V0ε−1ũ(x̃, t̃), and
the hydrodynamic pressure, ρV2

0 ε−2p̃(x̃, t̃) − ρgHỹb(x̃, t̃), satisfying
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the following equations of thin layer dynamics [see Khabakhpasheva
and Korobkin (2013a; 2013b)]:

∂ỹb
∂ t̃

+
∂

∂x̃
(ũ(x̃, t̃)[1 + ỹb(x̃, t̃)]) = 0,

∂ũ
∂ t̃

+ ũ
∂ũ
∂x̃
= −∂p̃

∂x̃
. (16)

Note that the horizontal speed of the flow under the plate is of the
same order as the horizontal speed of the plate.

Equation (16) should be solved in the region x̃L(t̃) < x̃ < x̃R(t̃),
where x̃ = x̃L(t̃) corresponds to the left edge of the wetted part of the
plate and x = x̃R(t̃) is the coordinate of the leading edge of the wetted
plate surface. We assume that the leading edge, xR(t̃), propagates to
the right at speed ε−1V0x′R(t̃) greater than the critical speed of the
thin liquid layer,

√
gH. In this case, the liquid in front of the moving

plate is not disturbed. The rest state, p̃ = 0, ũ = 0, in x̃ > x̃R(t̃),
is matched to the unsteady one-dimensional flow under the plate,
which is described by Eq. (16) by a two-dimensional quasi-steady
jet solution (Khabakhpasheva and Korobkin, 2013a). The matching
leads to the following conditions for the speed of the leading edge:

dx̃R
dt̃
= ũ(x̃R, t̃)

2(1 − 1/
√

1 + ỹb(x̃R, t̃))
, (17)

and the pressure there,

p̃(x̃R, t̃) = ũ2(x̃R, t̃)
2(
√

1 + ỹb(x̃R, t̃) − 1)
. (18)

At the trailing edge, x̃ = x̃L(t̃), where the flow separates from
the plate, the pressure is equal to the ambient pressure,

p̃(x̃L(t̃), t̃) = 0. (19)

The trailing edge, x̃ = x̃L(t̃), is initially at the left edge of the plate,
x̃L(t̃) = λt̃, with the pressure being positive (above the ambient pres-
sure) in front of this edge, ∂p̃/∂x̃(λt̃, t̃) > 0. Note that the hydrody-
namic pressure, p̃(x̃, t̃), can be below the ambient pressure but above
the vapor pressure inside the contact region, x̃L(t̃) < x̃ < x̃R(t̃), but
not near its edges. The scheme of the flow with the jet at the lead-
ing edge predicts positive pressure there [see condition (18)]. The
inequality ∂p̃/∂x̃(λt̃, t̃) > 0 guarantees that the hydrodynamic pres-
sure in front of the trailing edge is greater than the ambient pressure.
It is possible that later ∂p̃/∂x̃(λt̃, t̃) approaches zero and becomes
negative. Then, ventilation starts and the separation point, x̃ = x̃L(t̃),
moves from the plate edge. In this case, the position of the separation
point is determined using the Brillouin–Villat condition (Birkhoff
and Zarantonello, 1957),

∂p̃
∂x̃
(x̃L(t̃), t̃) = 0. (20)

This condition was used in the previous studies of oblique water
impact to determine the position of the separation point on a smooth
rigid surface (Vanden-Broeck, 1984; Tuck and Dixon, 1989; Faltin-
sen and Semenov, 2008; Khabakhpasheva and Korobkin, 2013a; and
2013b).

There is an important difference of the present problem of
oblique plate impact from the problems of oblique impact of smooth
surfaces studied in Khabakhpasheva and Korobkin (2013a; 2013b).
For smooth surfaces, there is jetting at both edges of the contact
region, at the leading and trailing edges, during an early stage. A low

pressure zone appears first inside the contact region and expands
with time reaching finally the trailing edge. At that instant, the liq-
uid suddenly separates from the body surface with the trailing edge
jumping to a new position defined by the condition (20). The motion
of the trailing edge is not continuous when separation starts. In con-
trast to this scenario, the motion of the trailing edge is continuous
for a body with a sharp edge as the plate of the present study. There-
fore, we shall control the sign of the derivative (∂p̃/∂x̃)(λt̃, t̃) at the
initial stage and allow the separation point to move to the right from
the plate left edge when this derivative becomes negative.

The plate vertical position in the moving coordinates, ỹp(s̃, t̃),
and the plate position in the global coordinates, ỹb(x̃, t̃), are related
in the leading order as ε→ 0 by [see Eqs. (12), (14), and (15)]

ỹb(x̃, t̃) = ỹp(x̃ − λt̃, t̃). (21)

Equations (16)–(21) and (8)–(10) describe a coupled problem of
hydroelasticity of oblique impact of an elastic plate onto a thin liquid
layer.

C. Coupled problem of hydroelasticity
There are no parameters in the dimensionless equations of the

hydrodynamic part of the problem [(16)–(19)]. Only the structural
part of the problem (8)–(10) depends on the parameters of the plate
and conditions of the impact. In the leading order as ε→ 0, Eqs. (8)–
(10) in the dimensionless variables read

M
∂2ỹp
∂ t̃2 +

V2
∗

V2
0

∂4ỹp
∂ s̃4 = p̃(s̃ + λt̃, ỹp(s̃, t̃), t̃) − Fr−2(ε2ỹp −M)

(0 < s̃ < 1, t̃ > 0),
(22)

∂2ỹp
∂ s̃2 = 0,

∂3ỹp
∂ s̃3 = 0 (s̃ = 0, 1), (23)

ỹp = s̃α̃(0),
∂ỹp
∂ t̃
= −1 (t̃ = 0). (24)

Here, M = mε2/(ρH) is the parameter of the plate inertia, Fr
= V0/

√
gH is the Froude number, and V2

∗ = EJHε2/(ρL4) is a char-
acteristic speed, which depends on elastic properties of the plate. For
an aluminum plate with density ρp = 2700 kg/m3, the Young mod-
ulus E = 68.3 ⋅ 109 N/m2, length L = 10 cm, and thickness 2 mm
and a water layer of thickness 1 cm, we find V∗ = 0.2134 m/s. The
interaction of such an elastic plate with the water layer is strong
for the vertical speed of impact V0 being of order V∗. For the
selected values of the impact parameters, we find M = 0.0054 and
Fr∗ = V∗/

√
gH ≈ 0.68. We conclude that for the selected parame-

ters, the hydrodynamic pressure is balanced by the elastic forces with
the plate inertia and gravity being negligibly small. In the following,
we keep all terms in (22) and assume that μ = (V∗/V0)2 = O(1).

It is convenient to integrate the hydrodynamic equations (16)
with the boundary conditions (17)–(19) in the moving coordinate
system using (21) and similar functions for the speed of the flow and
the hydrodynamic pressure,

ũ(x̃, t̃) = λ + U(s̃, t̃), p̃(x̃, t̃) = P(s̃, t̃), x̃ = s̃ + λt̃,
x̃R(t̃) = λt̃ + c̃R(t̃), x̃L(t̃) = λt̃ + c̃L(t̃).

(25)
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Here, c̃L(t̃) = 0 during the initial stage when (∂p̃/∂x̃)(λt̃, t̃)
= ∂P/∂ s̃(0, t̃) > 0. Tilde is dropped below.

Equation (16) keep their forms in the moving coordinates,

∂Y
∂t

+
∂

∂s
(U(s, t)Y(s, t)) = 0, (26)

∂U
∂t

+ U
∂U
∂s
= −∂P

∂s
, (27)

where Y(s, t) = 1 + yp(s, t). The parameter of the horizontal motion
λ does not appear in the equations of flow (26) and (27) and the
equations of the plate deflection (22). It appears only in the matching
conditions (17) and (18), which now read

dcR
dt
=
√
YR(t) (UR(t) − λ) + 2λ

2 (
√
YR(t) − 1)

, (28)

PR(t) =
(λ + UR(t))2

2(
√
YR(t) − 1)

, (29)

where PR(t) = P(cR(t), t), UR(t) = U(cR(t), t), and YR(t) = 1
+ yp(cR(t), t). Initially YR(0) = 1 and the speed of the leading contact
point, dcR/dt, is finite only if UR(0) = −λ [see (28)].

Integrating (26) in s from s to cR(t), we obtain

U(s, t) = YR(t)
Y(s, t)UR(t) +

1
Y(s, t)

cR(t)

∫
s

yp,t(s0, t) ds0. (30)

The first derivatives of U(s, t) are calculated using (26) and (30),

Us(s, t) = −
yp,t(s, t)
Y(s, t) −U(s, t)

yp,s(s, t)
Y(s, t) , (31)

Ut(s, t) =
YR(t)
Y(s, t)

dUR

dt
+

1
Y(s, t)

cR(t)

∫
s

yp,tt(s0, t) ds0 + U(T)(s, t),

(32)

U(T)(s, t) = − yp,t(s, t)
Y(s, t) U(s, t)+

Y ′R(t)UR(t) + yp,t(cR, t)c′R(t)
Y(s, t) . (33)

The derivative dUR/dt in (32) is related to the acceleration of the
plate, yp ,tt(s, t), by Eqs. (27) and (32) [see Sec. III]. Then, the deriva-
tive U t(s, t) is linearly dependent on the plate acceleration yp ,tt(s, t)
and nonlinearly dependent on both the shape of the plate, yp(s, t),
and its speed, yp ,t(s, t). Therefore, the pressure P(s, t) given by (27) is
also linearly dependent on the plate acceleration. By using the hydro-
dynamic pressure P(s, t) and the plate Eq. (22), we determine the
plate acceleration, yp ,tt(s, t), and then can integrate it in time subject
to the initial conditions (24). The edge conditions (23) are included
in the integration with the help of the normal mode method.

III. NORMAL MODE METHOD
In this method (Kvålsvold, 1994; Korobkin, 1998; Korobkin

and Khabakhpasheva, 1998; and 2006), the shape function, yp(s, t),
is sought in the form

yp(s, t) =
∞

∑
n=1

an(t)ψn(s), (34)

where ψn(s) are the normal modes of the dry elastic plate and an(t)
are the coefficients to be determined. The normal modes are non-
zero solutions of the eigen-value problem,

d4ψn

ds4 = λ
4
nψn (0 < s < 1),

d2ψn

ds2 = 0,
d3ψn

ds3 = 0 (s = 0, 1),
(35)

where λn is a spectral parameter, n ≥ 1. There are two modes, n = 1
and n = 2, with λ1 = λ2 = 0, which correspond to rigid motions of the
plate,

ψ1(s) = 1, ψ2(s) = 2
√

3(s − 1
2
). (36)

The modes starting from n = 3 correspond to elastic deflections of
the plate,

ψn(s) = cos λns + cosh λns + Bn(sin λns + sinh λns),

Bn = −
cos λn − cosh λn
sin λn − sinh λn

,
(37)

where λn are roots of the equation

cosh λn cos λn = 1 (n ≥ 3). (38)

The modes (36) and (37) are orthonormal,

1

∫
0

ψn(s)ψm(s) ds = δnm, (39)

where δnn = 1 and δnm = 0 for n ≠m and n, m ≥ 1. The shape function
(34) satisfies the edge conditions (23) because each term of the series
(34) satisfies these conditions [see (35)].

Substituting (34) in the plate equation (22), multiplying both
parts of the equation by ψk(s), k ≥ 1, and integrating the result in s
from s = 0 to s = 1 using (39) provides

Mäk + μakλ
4
k =

cR(t)

∫
cL(t)

P(s, t)ψk(s) ds

− ε2 Fr−2
cR(t)

∫
cL(t)

yp(s, t)ψk(s) ds + M Fr−2δk1. (40)

Note that the hydrodynamic pressure and the hydrostatic pressure,
−Fr−2ε2yp(s, t), in the right-hand side of (22) are acting only in the
wetted part of the plate, where cL(t) < s < cR(t). Initial conditions for
the system of ordinary differential equations (40) follow from (24),

a1(0) =
1
2
α0, a2(0) =

α0

2
√

3
, an(0) = 0 (n ≥ 3),

ȧ1(0) = −1, ȧn(0) = 0 (n ≥ 2).
(41)

The contribution of the hydrostatic pressure to the plate deflec-
tion is proportional to the second integral in (40). This integral is
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evaluated by using (34),

cR(t)

∫
cL(t)

yp(s, t)ψk(s) ds =
∞

∑
n=1

an(t)Rnk(t), Rnk(t) =
cR(t)

∫
cL(t)

ψn(s)ψk(s) ds,

Rnk(t) = (ψkψ
′′′
n − ψ′kψ′′n + ψ′′k ψ

′
n − ψ′′′k ψn)

cR
cL

(n ≠ m).

(42)

The contribution of the hydrodynamic pressure to the plate deflec-
tion is described by the first integral in (40). This integral is calcu-
lated in the Appendix. In (A3), we set x = s, α(x) = ψk(s), p(x, t)
= P(s, t), yb(x, t) = Y(s, t), and ρ = 1. The following functions are
introduced,

ψ̄k(cL, s) =
s

∫
cL

ψk(s0) ds0, νk(t) =
cR

∫
cL

ψ̄k(cL, s) ds
Y(s, t) ,

ν0(t) =
cR

∫
cL

ds
Y(s, t) ,

(43)

where νk(t) stands for D(cL, cR) [see (A11)] and ν0(t) stands for R(cL,
cR) [see (A15)]. Next, we insert (34) in (A20), which gives

cR

∫
cL

P(s, t)ψk(s)ds =
∞

∑
m=1

äm(t)Bmk(t) + (PL + U2
L)
νk
ν0

+ (PR + U2
R)(R1k −

νk
ν0
)

+
cR

∫
cL

U2(s, t){Ys(s, t)
Y(s, t) [ψ̄k(cL, s) − νk

ν0
]

−ψk(s)} ds, (44)

Bmk =
νmνk
ν0
−

cR

∫
cL

ψ̄m(cL, s)ψ̄k(cL, s)
Y(s, t) ds. (45)

In (44), PL = 0 and UL(t) are given by (30) with s = cL(t). Equa-
tions (40) and (44) provide the second derivatives äk(t), k ≥ 1, as
functions of the first derivatives ȧm(t), the flow speed at the leading
edge, UR(t), and the coordinates of the ends of the contact region,
cL(t) and cR(t).

The flow velocity UR(t) at the leading edge, which appears in
(28)–(30), satisfies the differential equation

dUR

dt
= (PL + U2

L) − (PR + U2
R)

ν0YR
− Ys(cR, t)c′RUR + Yt(cR, t)[UR + c′R]

YR

− 1
ν0YR

cR

∫
cL

U2(s, t)Ys(s, t)
Y(s, t) ds

− 1
YR

∞

∑
n=1

än(t)[ψ̄n(cL, cR) −
νn
ν0
], (46)

which follows from (A8) and (A16). The system of differential equa-
tions (28), (40), (44), and (46) can be written in the following
symbolic form:

dcR
dt
= G(cR,UR, a⃗),

dUR

dt
= K(cR, cL,UR, a⃗, b⃗ ), (47)

da⃗
dt
= b⃗,

db⃗
dt
= B⃗(cR, cL,UR, a⃗, b⃗ ),

where a⃗ = (a1(t), a2(t), . . .) and b⃗ = (a′1(t), a′2(t), . . .).
The system of ordinary differential equations (47) is truncated

retaining a finite number of modes in (34) and integrated numer-
ically in time subject to the initial conditions (41) and cR(0) = 0
and UR(0) = −λ. The system is integrated with PL(t) = 0 and cL(t)
= 0 during the early stage with separation of the liquid from the
left edge of the plate if ∂P/∂s(0, t) > 0 at this edge. At each step of
the integration, we compute ∂P/∂s(0, t) from (27) using (30)–(33)
and (46). Once ∂P/∂s(0, t) becomes negative, we solve the equa-
tion ∂P/∂s(cL(t), t) = 0 with respect to cL. Details of the numerical
analysis are given in Sec. IV.

IV. NUMERICAL ALGORITHM
In this section, several issues related to both the integration

of the coupled equations of elastic plate impact in time and the
presentation of the obtained results are covered.

A. Initial asymptotic solution
Initial asymptotic behavior of the flow is needed to start the

numerical integration of the system (47). At t = 0, both the denom-
inators and numerators in (28) and (29) are equal to zero. In (46),
ν0(0) = 0, which does not allow us to calculate dUR/dt(0) and to start
numerical integrations.

During the very early stage, t → 0, we neglect elastic deforma-
tions of the plate and the hydrodynamic loads acting on the plate.
Then, the plate equation in the dimensionless variables (12) and (15)
reads

yb(x, t) ∼ α0(x − λt) − t, (48)

where λt < x < At, A = x′R(0). Note that tilde, which denotes dimen-
sionless variables, has been dropped after Eq. (25). The penetration
yb(x, t) = O(t) and u(x, t) = O(t) as t → 0. Equations of the flow (16)
can be linearized. Then, at the leading order as t → 0,

∂u
∂x
∼ −∂yb

∂t
= 1 + α0λ,

giving

u(x, t) ∼ (1 + α0λ)(x − At) + uR(t), (49)

where

uR(t) = u(xR(t), t) ∼ Bt as t → 0. (50)

The constants A and B are to be determined. The second equation in
(16) after linearization and using (49) and (50) gives

∂p
∂x
∼ −∂u

∂t
= A(1 + α0λ) − B (λt < x < At). (51)
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Equation (51) is integrated in x subject to the end condition,
p(λt, t) = 0,

p(x, t) = [A(1 + α0λ) − B](x − λt). (52)

The conditions at the leading edge (17) and (18) together with (48),
(50), and (52) provide as t → 0

A = lim
t→0
{ uR(t)

2yb(xR, t)
√

1 + yb(xR, t)[1 +
√

1 + yb(xR, t)]}

= lim
t→0
{ uR(t)
yb(xR, t)}

and

A = B
α0(A − λ) − 1

,

p(xR, t) ∼ [A(1 + α0λ) − B](A − λ)t ∼
B2t2

yb(xR, t) ∼
B2t

α0(A − λ) − 1
(53)

and

[A(1 + α0λ) − B](A − λ) =
B2

α0(A − λ) − 1
. (54)

The solution of the system (53) and (54) is

A = λ +
3

4α0
+

1
4α0

√
9 + 8α0λ,

B = 1
4
λ +

3
8α0

+
1 + 2α0λ

8α0

√
9 + 8α0λ,

(55)

where it was used that yb(xL(t), t) > 0 at this early stage.
Therefore, the initial conditions for the system (47) are

cR(0) = 0, UR(0) = −λ, a1(0) =
1
2
α0, a2(0) =

α0

2
√

3
,

an(0) = 0 (n ≥ 3), b1(0) = −1, bn(0) = 0 (n ≥ 2),
(56)

and the right-hand sides of the system (47) are set at the very
beginning of integration to

G(0,−λ, 0) = A − λ, K(0, 0,−λ, 0, 0) = B,

B1(0, 0,−λ, 0, 0) = Fr−2, Bn(0, 0,−λ, 0, 0) = 0 (n ≥ 2),
(57)

where A and B are given by Eq. (55).

B. Brillouin–Villat condition
To determine the position of the trailing edge of the wetted part

of the plate, s = cL(t), the derivative ∂P/∂s(cL(t), t) is needed. Ini-
tially, cL(t) = 0 and ∂P/∂s(0, t) > 0 with separation of the liquid at
the left edge of the plate. Setting s = cL(t) in (27) and using (30)–(33),
we find

ν0YL(t)
∂P
∂s
(cL(t), t)

= PR + U2
R + 2ν0ULYt(cL, t) + U2

L(ν0Ys(cL, t) − 1)

+
cR

∫
cL

U2(s, t)Ys(s, t)
Y(s, t) ds −

∞

∑
n=1

än(t)νn. (58)

The integral and the series in (58) have been calculated for the
right-hand side of (46). Therefore, calculation of the pressure deriva-
tive at the trailing edge (58) at each step of time integration does not
require significant extra computations.

If at a certain time instant t∗, the formula (58) for the first time
gives ∂P/∂s(0, t∗) < 0, then we introduce cL > 0 and solve the equa-
tion ∂P/∂s(cL, t∗) = 0 by Newton’s iterative method. Actually, we
solve equation F(cL, t∗) = 0, where F(cL, t∗) is the right-hand side of
(58).

The derivative (∂F/∂cL)(cL, t) required by Newton’s method is
calculated by differentiation of (58) in cL with setting an, ȧn, än, cR,
UR, and pR to be independent of cL,

∂F
∂cL
(cL, t) =

∞

∑
n=1

än(t)νn + U2
L ν0 [Yss(cL, t) − 2

[Ys(cL, t)]2
Y(cL, t) ]

+ ULν0[2Yst(cL, t) − 4
Yt(cL, t)Ys(cL, t)

Y(cL, t) ]

− 2ν0
[Yt(cL, t)]2
Y(cL, t) . (59)

For t > t∗, the coordinate cL of the trailing edge is considered
as a parameter of the system (47), which is determined by the equa-
tion ∂P/∂s(cL, t) = 0, using Newton’s iterative method at each time
step. In the present cases, the left end of the wetted part of the plate,
s = cL(t), always moves to the right along the plate toward the lead-
ing edge. It is possible that the trailing edge s = cL(t) changes the
direction of its motion and moves toward the left edge of the plate.
Such cases were detected in Reinhard et al. (2013) and treated by
including a jet region at s = cL(t). A similar treatment is possible in
the present problem with shallow water as well, where the matching
conditions (17) and (18) are imposed in this case also at the trailing
edge.

The pressure distribution in the wetted part of the elastic plate
is calculated by the formula

P(s, t) = [Y(cL, t)∂P
∂s
(cL, t) − 2UL(t)Yt(cL, t) + U2

L(t)Ys(cL, t)]

×
s

∫
cL

ds0

Y(s0, t) + U2
L(t) −U2(s, t) −

s

∫
cL

U2(s0, t)Ys(s0, t)
Y(s0, t) ds0

+
∞

∑
n=1

än(t)
s

∫
cL

ψ̄n(cL, s0)
Y(s0, t) ds0, (60)

where ∂P/∂s(cL, t) = ∂P/∂s(0, t) is given by (58) for t < t∗ and
∂P/∂s(cL, t) = 0 for t ≥ t∗. Note that the derivative ∂P/∂s(cL, t) is
calculated at each step of time integration of the system (47) but the
pressure distribution P(s, t), where cL(t) < s < cR(t), is calculated only
for some time steps selected in advance.

C. Numerical integration
The shape and position of the plate (34) are presented by the

two terms, n = 1 and n = 2, of rigid motions and Ne terms, 3 ≤ n
≤ 2 + Ne, of elastic motions of the plate. Ne = 0 corresponds to the
problem of a rigid plate impact on a thin liquid layer. The effect of
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the number Ne of the retained modes on the deflection of the plate
and the strains in the plate is investigated by comparing solutions
with different numbers of the modes.

Correspondingly, the system (47) is approximated by a finite
truncated system involving 2(2 + Ne) + 2 unknowns and equations.
The finite system of ordinary differential equations is integrated by
the explicit Euler method with time step△t = 2 × 10−4. All integrals
in s, which appear in (30), (42)–(46), (58), and (60) are evaluated by
the trapezoidal rule with the step△s = 10−3/(Ne + 2), starting from
s = cL. The last panels of the integrals with length smaller than △s
are treated separately. Equation F(cL, t) = 0 is solved by Newton’s
method with iterations

c(n+1)
L = c(n)L −

F(c(n)L , t)

∂F/∂cL(c(n)L , t)
(61)

using (58) and (59), where n is the number of the iteration step and
c(0)L = cL(t −△t). The iterations are terminated when ∣c(n+1)

L − c(n)L ∣
< 10−10. Note that the calculations are performed in the dimension-
less variables.

V. NUMERICAL RESULTS
Calculations are performed for an aluminum plate with density

ρp = 2670 kg/m3 and the Young modulus Eal = 68 ⋅ 109 N/m2 and of
length L = 10 cm and thickness 2 mm and the water layer of thickness
H = 2 cm. The water density is 1000 kg/m3. For these conditions, we
find V∗ ≈ 0.6 m/s, ε = 0.2, and M = 0.106. The vertical initial speed
of the plate is V0 = 5 m/s in all calculations. Then, the pressure scale,
ρV2

0 ε−2, is 625 kPa, the scale of the flow speed, V0ε−1, is 25 m/s and
the time scale, H/V0, is 4 ms.

To investigate the elastic effects and convergence of the solution
in terms of the number of retained elastic modes Ne, calculations
are performed with Ne = 3, 5, 7 and for the rigid plate with Ne = 0.
The Young modulus E of the plate material is artificially reduced by
100 and 1000 times in some calculations without changes of other
parameters of the plate. The horizontal velocity of the plate is U0
= 5 m/s, 15 m/s, and 25 m/s, which gives λ = 0.2, 0.6, and 1 corre-
spondingly. The initial angle of the plate inclination α0 is 3○, 6○, and
10○. The pressure distributions and plate positions are plotted with
the dimensionless time step 0.08 for inclination angles of 6○ and 10○

and with the time step 0.04 for the angle of 3○, where the duration of
impact is relatively short.

The strain ε(s, t) of the upper surface of the plate is calculated
by the formula

ε(s, t) = −εsc
∂2yp
∂s2 (s, t), (62)

where yp(s, t) is given by series (34) with Ne + 2 terms and the strain
scale is εsc = hpH/L2 = 0.002. The strains are presented in micros-
trains (μs), where 1 μs corresponds to the stress level of 68 kPa for
aluminum. Only the strain magnitude, |ε(s, t)|, is shown below.

The results of the calculations are presented in Figs. 2–10. The
values of the parameters that vary in the calculations and their
correspondence to the figures are given in Table I.

TABLE I. Parameters of calculations for Figs. 2–10.

U0 (m/s) A0 (deg) E/Eal Figures

25 3 1 2 and 3
25 3, 6, 10 1 4 and 5
5, 15, 25 10 1 6 and 7
25 10 1, 10−2, 10−3 8 and 9
5, 15, 25 10 10−3 10

The results presented in Figs. 2 and 3 are for the aluminum plate
with U0 = 25 m/s, α0 = 3○, and Ne = 7. This is the reference case. The
positions and shapes of the plate and pressure and strain distribu-
tions are shown in Fig. 2 in the dimensionless variables at six time

FIG. 2. Oblique impact by the aluminum plate: (a) positions of the plate in
the dimensionless variables, (b) pressure distributions along the wetted part of
the plate in the dimensionless variables, and (c) strains (in microstrains) along the
plate. Lines 1–6 correspond to the dimensionless time instants 0, 0.04, 0.08, 0.12,
0.16, and 0.2. The time scale is 4 ms.
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FIG. 3. Time evolutions of (a) the coor-
dinates of the left, cL(t), and the right,
cR(t), contact points of the wetted area
and the point, smax (t), where the maxi-
mum of strains is achieved. (b) Vertical
elevations of the left contact point, YL(t),
the right contact point, YR(t), and the left
edge of the plate, Y0(t) = Y (0, t), above
the liquid bottom. (c) Maximum strain,
εmax (t), (in microstrains) along the plate
(solid line), the difference of εmax (t) cal-
culated with Ne = 7 and with Ne = 3
multiplied by 10 (dashed line), and the
difference of εmax (t) with Ne = 7 and with
Ne = 5 multiplied by 10 (dotted line). (d)
Dimensionless velocities of the flow at
the left contact point, UL(t) + λ, and at
the right contact point, UR(t) + λ.

instants including the initial one. The calculations stop at t = 0.2
when the leading edge of the plate touches the water surface trap-
ping an air cavity under the plate [see Fig. 2(a)]. Elastic deflections
of the plate are well visible. The pressure is always maximum at the
leading edge of the wetted area, s = cR(t), where initially, it is linear in
time [see (53) and Fig. 2(b)]. Note that the pressure along the wetted
area [see Fig. 2(b)] and the strains [see Fig. 2(c)] are shown in the
global dimensionless coordinate x. The tensile yield strength of the
aluminum is 276 MPa, which corresponds to about 4000 micros-
trains. Figure 2(c) shows that the strains increase in time but stay
well below the yield strain value.

More detailed information about this reference impact case
is presented in Fig. 3. The positions of the left, s = cL(t), and
right, s = cR(t), ends of the wetted part of the plate are shown
in Fig. 3(a) by thick solid lines. One can see that the liquid sep-
aration from the plate occurs at the plate edge up to t = 0.07.
The length of the wetted part of the plate is always smaller than
0.4, which is 4 cm in the dimensional variables. The length of the
air cavity trapped under the plate at t = 0.2 is 40% of the plate
length.

The thicknesses of the liquid layer at three locations: the lead-
ing, YR(t), and trailing, YL(t), edges of the contact region and at
the left edge of the plate, Y0(t), are shown in Fig. 3(b) as func-
tions of the dimensionless time t. It is seen that the penetration
depth of the plate is rather small, less than 1 mm, and there-
fore, the denominator Y(s, t) can be approximated by 1 in (30)–
(33), (43)–(46), and (58)–(60). Then, the corresponding formu-
lae and equations become simpler but keep their structure. The
approximation of small penetration depth is not used in the present
study.

The maximum strain, εmax(t) = max0<s<1|ε(s, t)|, is shown
in Fig. 3(c) by the solid line. The strains are sensitive to the
number of the retained elastic modes Ne. The difference between
εmax(t) calculated with Ne = 7 and Ne = 3 and multiplied by
10 is shown in Fig. 3(c) by the dashed line, and a similar

difference for Ne = 7 and Ne = 5 is shown by the dotted line. These
curves demonstrate convergence of the strains with the number of
modes Ne.

All calculations shown below are performed with Ne = 7.
The distance of the point, where the maximum strain is achieved,
s = smax(t), measured from the left edge of the plate is plotted in
Fig. 3(a), εmax(t) = |ε(smax(t), t)|. The strains are maximum near the
leading edge of the contact region, where the pressures are maxi-
mum [see Fig. 2(b)] and the plate curvature is highest [see Fig. 2(a)].
The dimensionless velocities of the global flow at the leading, UR(t)
+ λ, and the trailing, UL(t) + λ, edges are shown in Fig. 3(d). The
scale of the flow velocity, V0ε−1 = 25 m/s, is the same in all calcu-
lations. Note that the penetration depth is small in this reference
case, which explains relatively small flow velocities compared with
the horizontal speed of the plate. The flow under the leading edge
of the contact region is accelerated to maximum speed of about
3 m/s and then decays. At the trailing edge, the flow is accelerated
in the direction opposite to the plate motion up to 2 m/s, which
occurs before the trailing edge leaves the plate edge [see Fig. 3(a)].
Then, the flow velocity there decays and becomes positive in the
direction of the plate motion at the final stage of the calculations.
Starting from approximately t = 0.12, the liquid under the plate
moves in the direction of the plate motion but with a much smaller
velocity.

Figures 4 and 5 compare impacts for different initial inclina-
tion angles: (a) reference case with α0 = 3○, (b) α0 = 6○, and (c) α0
= 10○. All others parameters are the same as in the reference case. It
is seen that the impact duration is longer and the plate penetration
is deeper for larger angles α0. The plate flexibility is less pronounced
for α0 = 6○ and 10○ with rigid-plate calculations, Ne = 0, providing
very close results except for the strains. The calculations are termi-
nated for α0 = 3○ and 6○ because the right edge of the plate enters
the liquid trapping an air cavity. Note that the length of the cavity
is 50% of the plate length for α0 = 6○ and about 40% for α0 = 3○.
The contact region disappears at the end of calculations, t = 0.57, for
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FIG. 4. Positions of the plate in the global dimensionless variables, the edges of the contact region, cL(t) and cR(t), together with the coordinate of the maximum strain,
smax (t), and the elevations of the moving points cL(t), cR(t), and s = 0 above the liquid bottom as functions of time for the initial inclination angle (a) α0 = 3○, (b) α0 = 6○, and
(c) α0 = 10○.

FIG. 5. (a) The pressure, PR(t), at the leading edge of the contact region and (b)
the maximum strain, εmax (t), as functions of the dimensionless time for the initial
inclination angles of α0 = 3○ (line 1), α0 = 6○ (line 2), and α0 = 10○ (line 3).

α0 = 10○, and then, the plate continues to move above the liquid
layer until next impact. The inclination angle of the plate at the end
of the impact is negative in this case. Therefore, it is expected that
the plate will enter the liquid surface next time by its leading edge.
This type of impact is not covered by the present model. The wetted
part of the plate is short, less than 40% of the plate length, in all three
cases. The trailing edge, s = cL(t), leaves the plate left edge during the
impact. The left edge of the plate, s = 0, is always the closest point of
the plate to the liquid bottom. The free-surface elevation under the
plate, where 0 < s < cL(t), is not studied here. Secondary impacts on
the liquid are possible in this region.

Figure 5(a) presents the pressure, PR(t), at the leading edge of
the contact region for the three initial angles of the plate inclina-
tion. This is the maximum pressure along the plate at each time
instant [see Fig. 2(b)]. The pressure PR(t) initially quickly increases
to its maximum value, which occurs well before the separation point,
s = cL(t), starts to move from the left edge of the plate and then
decays. The smaller the angle α0, the higher the maximum of PR(t).

The maximum strain, εmax(t), is shown in Fig. 5(b) for the three
initial angles of the plate inclination. It is seen that the first peak of
εmax(t) is not necessary the highest one. The smaller the angle α0, the
higher strains in the plate. The coordinates of the maximum strains,
smax(t), are shown in Fig. 4 together with the positions of the edges
of the contact region. It is seen that the strains peak either in front of
or near the leading edge, s = cR(t). The strains are much smaller than
the yield strain value for aluminum.
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FIG. 6. Positions of the plate in the global dimensionless variables, the edges of the contact region, cL(t) and cR(t), together with the coordinate of the maximum strain,
smax (t), and the elevations of the moving points cL(t), cR(t), and s = 0 above the liquid bottom as functions of time for the horizontal speed of the plate. (a) U0 = 5 m/s, (b) U0
= 15 m/s, and (c) U0 = 25 m/s.

Figures 4 and 5 demonstrate that the interaction between the
plate and the liquid layer is longer for larger inclination angles α0. In
the following, only impacts with α0 = 10○ are considered.

Results of calculations for three different horizontal speeds of
the plate, U0 = 5 m/s, 15 m/s, 25 m/s, and the initial inclination
angle α0 = 10○ are shown in Figs. 6 and 7. Other parameters of
impacts are the same as in the reference case. Note that Figs. 4(c)
and 6(c) are identical, and lines 3 in Fig. 5 are the same as lines 1 in
Fig. 7. Figures 6 and 7 show that the larger the horizontal speed,
the shorter the interaction time, 0.83 for 5 m/s, 0.67 for 15 m/s,
and 0.57 for 25 m/s, and the smaller the penetration depth, which
is up to 17% of the liquid depth for 5 m/s, 13% for 15 m/s, and 10%
for 25 m/s.

The calculations are terminated for 5 m/s, when the lead-
ing edge of the contact region arrives at the leading edge of the
plate. The plate is almost parallel to the water surface at that
time. Maximum length of the contact region does not exceed 40%
of the plate length for this value of the horizontal speed. For
U0 = 15 m/s, the calculations are terminated when the plate becomes
inclined toward the liquid and the leading edge of the plate enters
liquid trapping the air cavity. The cavity is long, about 50% of
the plate length. For U0 = 25 m/s, the contact region shrinks at
the end of calculation, and the plate losses its contact with the
liquid and continues to move above the liquid layer until next
impact. The separation point leaves the trailing edge of the plate
at around t = 0.22 for all values of the horizontal velocity U0.

FIG. 7. (a) The pressure, PR(t), at the leading edge of the contact region and (b) the
maximum strain, εmax (t), as functions of the dimensionless time for the horizontal
speed of the plate U0 = 25 m/s (line 1), U0 = 15 m/s (line 2), and U0 = 5 m/s
(line 3).

Phys. Fluids 32, 062101 (2020); doi: 10.1063/5.0007121 32, 062101-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 8. Positions of the plate in the global dimensionless variables, pressure distributions along the contact region at the same time instants, the edges of the contact region,
cL(t) and cR(t), together with the coordinate of the maximum strain, smax (t), and the elevations of the moving points cL(t), cR(t), and s = 0 above the liquid bottom as functions
of time for the Young modulus. (a) E = Eal , (b) E/Eal = 10−2, and (c) E/Eal = 10−3.

The dry part of the plate above the wake behind the plate is long for
small U0.

The coordinates of the maximum strain, smax(t), are shown in
Fig. 6 with respect to the coordinates of the edges of the contact
region. The strains peak in the contact region for speed 5 m/s near
the leading edge s = cR(t) for U0 = 15 m/s and in front of the leading
edge for U0 = 25 m/s.

The pressure at the leading edge of the contact region, PR(t),
and the maximum strain, εmax(t), are depicted in Fig. 7. The pres-
sure PR(t) is smaller for smaller speeds U0 but lasts longer and decay
slower. The strains are larger for larger U0 but after their first peaks,
their magnitude is weakly dependent on the horizontal speed of the
plate.

Figures 8 and 9 demonstrate the effect of plate rigidity on the
impact. Calculations are performed for the horizontal speed of the
plate U0 = 25 m/s, initial inclination angle of the plate α0 = 10○,
and the plate rigidities Eal = 68 ⋅ 109 N/m2, E = 68 ⋅ 107 N/m2, and
E = 68 ⋅ 106 N/m2. The longest time of interaction is observed for the
most rigid plate [see Fig. 8(a)] where the plate bounces from the liq-
uid at t = 0.57. The plate also bounces from the liquid if the plate
rigidity is reduced 100 times [see Fig. 8(b)], but the plate motion
in this case is very different from the motion of the aluminum
plate. The rear part of the plate moves upwards at the end of the

FIG. 9. (a) The pressure, PR(t), at the leading edge of the contact region. (b) The
maximum stress in GPa (109 Pa), σmax (t), as functions of the dimensionless time
for the Young modulus E = Eal (line 1), E/Eal = 10−2 (line 2), and E/Eal = 10−3

(line 3).
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interaction stage, but the front part of the plate continues to move
downwards. Figure 8(b) shows that another contact region, approx-
imately at x = 0.9, appears at the time or shortly after the original
contact region disappears. The present model cannot describe two
and more contact regions with air cavities trapped between them at
the same time.

The motions of the softest plate [see Fig. 8(c)] are more com-
plicated than for the rigid plate. The plate deflections occur mainly
in the wetted part of the plate. The dry part of the plate keeps its ini-
tial motion. An important feature of this case is a negative pressure
zone near the leading edge of the contact region. The pressure in this
zone is 30 kPa below the atmospheric pressure, which is 101.3 kPa.
Therefore, the pressure in this zone is well above the vapor pressure
and cavitation in this zone is not expected. The maximum pressure
at the leading edge [see Fig. 9(a)] is approximately 0.3 in the dimen-
sionless variables, which gives double atmospheric pressure in the
dimensional variables. The dimensional (in GPa) bending stresses
in the plate, σmax(t) = Eεmax(t), are reduced with the decrease in the
plate rigidity [see Fig. 9(b)]. In all three cases [see Fig. 8], less than a
half of the plate is wetted at the end of the calculations. The calcula-
tions are terminated for E = Eal/1000 [see Fig. 8(c)] when the plate
touches the liquid surface in front of the leading edge of the contact

region. The softest plate penetrates deeper into the liquid layer than
more rigid plates.

The oblique impacts by the softest plate, E = Eal/1000, at α0
= 10○ with the horizontal speeds of 5 m/s, 15 m/s, and 25 m/s are
depicted in Fig. 10. Note that Fig. 10(a) is the same as Fig. 8(c).
The trailing edge of the plate contact region separates from the left
edge of the plate quite late, which is because of the high flexibility
of the plate. For U0 = 5 m/s, the calculations are terminated when
the leading edge of the contact region arrives at the right edge of
the plate [see Fig. 10(a)]. For U0 = 15 m/s and 25 m/s, the calcu-
lations are terminated because the plate touches the liquid surface
in front of the leading edge. The plate penetrates deeper for the
lowest speed [see Fig. 10(a)] with low hydrodynamic pressure in
the contact region. The trailing edge of the plate penetrates 25%
of the layer thickness for U0 = 5 m/s. At this speed, the separa-
tion point, s = cL(t), moves from the left edge of the plate late at t
= 0.65, and calculations are terminated at t = 0.8, when the wetted
region arrives at the right edge of the plate. The pressure in the con-
tact region is low and is negative in some places. Deflections of the
plate are well visible. The maximum strain is achieved inside the con-
tact region for all speeds, except that of the very initial stage of the
impact.

FIG. 10. Positions of the plate in the global dimensionless variables, pressure distributions along the contact region at the same time instants, the edges of the contact region,
cL(t) and cR(t), together with the coordinate of the maximum strain, smax (t), and the elevations of the moving points cL(t), cR(t), and s = 0 above the liquid bottom as functions
of time for the plate with the Young modulus E/Eal = 10−3 and the horizontal speed (a) 5 m/s, (b) 15 m/s, (c) 25 m/s.
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VI. CONCLUSION
A model of oblique impact of an elastic plate on a thin liquid

layer was presented. The problem was treated as coupled: the liq-
uid flow beneath the plate, the plate elastic deflections, and rigid
motions were determined at the sometime together with the posi-
tion of the wetted part of the plate. At the leading edge of the wetted
plate region, the one-dimension unsteady flow under the plate was
matched to the two-dimensional and quasi-stationary jet flow. The
position of the moving separation point (trailing edge of the con-
tact region) was determined using the Brillouin–Villat condition of
continuity of the pressure at this point together with its tangential
derivative. The problem was reduced to a system of ordinary differ-
ential equations for the magnitudes of the rigid and elastic motions
of the plate, the position of the leading edge of the contact region,
and the flow speed at this point. The position of the trailing edge of
the contact region was determined by iterations at each step of the
time integration.

The obtained results demonstrate importance of elastic charac-
teristics of the plate, as well as parameters of oblique impact such as
velocity components and the inclination angle, on the plate motions
and conditions of both cavitation and ventilation during the impact,
which is in agreement with the experimental results by Iafrati and
Grizzi (2019).

The results of the calculations showed that the interaction
between the plate and the liquid layer is short for small angles of the
initial plate inclination and/or large horizontal speeds of the plate.
Elastic deflections of the plate are stronger pronounced for more
flexible plates, impacting the liquid layer with low horizontal speeds
and moderate inclination angles.

It was confirmed that air cavities can be trapped in front of
the propagating contact region because of plate rotation and/or its
elastic deflection. Negative pressures zones may occur in the contact
region for flexible plates with low rigidities. The air is not trapped
only if the plate bounces from the liquid surface before the leading
edge of the plate enters the layer.

Another mechanism of the air entrainment by oblique elastic
impacts can be due to the jet formed at the leading edge of the wetted
region. Figure 3(d) shows that the flow speed in the jet region is not
monotonic and can oscillate, which may cause significant increase
in the jet thickness with closing an air cavity in front of the mov-
ing plate. A similar but not identical increase in the thickness of the
liquid layer may occur in the wake behind the plate because the vol-
ume flux at the trailing edge of the wetted region is not constant and
oscillate [see Figs. 3(b) and 3(d)]. Note that the flow in the wake is
affected by gravity, surface tension, and viscosity of the liquid [see
Alekseenko et al. (1994) and Chang and Demekhin (2002)] in con-
trast to the flow under the plate where the inertia effects dominate.
These other mechanisms of air entrainment in a thin liquid layer
by an impacting deformable body will be investigated further and
published in a separate paper.
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APPENDIX: INTEGRALS OF THE PRESSURE
IN THE PROBLEMS OF THIN-LAYER FLOWS

A flow in a narrow gap between the rigid flat bottom, y = 0, and
a moving solid surface, y = yb(x, t), is described within the thin-layer
approximation by the following equations:

∂yb
∂t

+
∂

∂x
[yb(x, t)u(x, t)] = 0, (A1)

∂u
∂t

+ u
∂u
∂x
= −1

ρ
∂p
∂x

, (A2)

where ρ is the density of the liquid and u(x, t) and p(x, t) are the hor-
izontal speed of the flow and the hydrodynamic pressure in the gap,
0 < y < yb(x, t), cL(t) < x < cR(t). In this Appendix, the functions yb(x,
t), cL(t), and cR(t) assumed are given. For convenience, the origin
of the coordinate system in this section is taken at the bottom but
not on the upper surface of the liquid at equilibrium as in the main
body of the paper. This difference is minor and can be easily taken
into account in using the results of this section in the main text. We
also assume that u(x, t) and p(x, t) are given at the ends, x = cL and
x = cR, of the flow interval as uL(t), uR(t), pL(t), and pR(t), where L
stands for the left end and R for the right end. We shall evaluate the
integral

L(t) = 1
ρ

cR

∫
cL

p(x, t) α(x) dx (A3)

for any function α(x), which is not necessarily smooth.
To this aim, we introduce the function

ᾱ(cL, x) =
x

∫
cL

α(x0) dx0

and integrate (A3) by parts using (A2),

L(t) = 1
ρ

cR

∫
cL

p(x, t) d[ᾱ(cL, x)] = 1
ρ
pR(t)ᾱ(cL, cR)

+
cR

∫
cL

(ut + uux)ᾱ(cL, x) dx

= (1
ρ
pR +

1
2
u2
R)ᾱ(cL, cR) −

1
2

cR

∫
cL

u2(x, t)α(x) dx

+
cR

∫
cL

ut(x, t)ᾱ(cL, x) dx. (A4)

To evaluate the integrals in (A4), we need the function u(x, t) and its
derivative ut(x, t). Integrating (A1) in x from x to cR, we obtain

yb(cR(t), t)uR(t) − yb(x, t)u(x, t) = −
cR

∫
x

yb,t(x0, t) dx0. (A5)
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Now we differentiate (A5) in time t,

[yb,x(cR, t)c′R(t) + yb,t(cR, t)]uR + yb(cR, t)duR
dt

− yb,t(x, t)u(x, t) − yb(x, t)∂u
∂t
(x, t)

= −
cR

∫
x

yb,tt(x0, t) dx0 − yb,t(cR, t)c′R(t). (A6)

Prime stands for derivative in time. The derivative yb ,t = −yb ,xu
− ybux from (A1) is substituted in (A6), which gives

B(t) + yb,xu
2 + ybuux − ybut = −

cR

∫
x

yb,tt(x0, t) dx0, (A7)

where

B(t) = [yb,x(cR, t)c′R + yb,t(cR, t)]uR + yb(cR, t)u′R(t)
+ yb,t(cR, t)c′R(t). (A8)

The derivative ut(x, t) is obtained from (A7),

ut(x, t) = uux +
1
yb

cR

∫
x

yb,tt(x0, t) dx0 +
ybx
yb

u2 +
B(t)

yb(x, t) . (A9)

Equation (A9) is used to evaluate the second integral in (A4),
cR

∫
cL

ut(x, t)ᾱ(cL, x) dx

=
cR

∫
cL

ᾱ(cL, x) d(u
2

2
) +

cR

∫
cL

ᾱ(cL, x)
yb(x, t)

cR

∫
x

yb,tt(x0, t) dx0dx

+
cR

∫
cL

yb,x

yb
u2ᾱ(cL, x) dx + B(t)

cR

∫
cL

ᾱ(cL, x) dx
yb(x, t)

= 1
2
u2
Rᾱ(cL, cR) −

1
2

cR

∫
cL

u2α(x) dx

+
cR

∫
cL

yb,tt(x0, t)
x0

∫
cL

ᾱ(cL, x) dx
yb(x, t) dx0

+
cR

∫
cL

yb,x

yb
u2ᾱ(cL, x) dx + B(t)D(cL, cR), (A10)

where

D(cL, x) =
x

∫
cL

ᾱ(cL, x0) dx0

yb(x0, t) . (A11)

Substituting (A10) in (A4) and collecting similar terms, we find

L(t) = (1
ρ
pR + u2

R)ᾱ(cL, cR) +
cR

∫
cL

u2(x, t){ yb,x

yb
ᾱ(cL, x) − α(x)} dx

+ B(t)D(cL, cR) +
cR

∫
cL

yb,tt(x0, t)D(cL, x0) dx0. (A12)

The function B(t), which is defined by (A8) and appears in (A9), can
be obtained in another form by integrating (A2) from cL to cR,

cR

∫
cL

ut(x, t) dt +
1
2
(u2

R − u2
L) = −

1
ρ
(pR − pL), (A13)

and using (A9) to evaluate the integral in (A13),

cR

∫
cL

ut(x, t) dx = B(t)R(cL, cR) +
cR

∫
cL

u2 ybx
yb

dx +
1
2
(u2

R − u2
L)

+
cR

∫
cL

yb,tt(x, t)R(cL, x) dx, (A14)

where

R(cL, x) =
x

∫
cL

dx0

yb(x0, t) . (A15)

Equations (A13) and (A14) give the formula for B(t),

B(t)R(cL, cR) = −
cR

∫
cL

u2 yb,x

yb
dx −

cR

∫
cL

yb,ttR(cL, x) dx + (1
ρ
pL + u2

L)

− (1
ρ
pR + u2

R). (A16)

Finally, we substitute (A16) into (A12) and collect similar terms,

L(t) = (1
ρ
pR + u2

R)ᾱ(cL, cR) +
D(cL, cR)
R(cL, cR)

[(1
ρ
pL + u2

L) − (
1
ρ
pR + u2

R)]

+
cR

∫
cL

u2(x, t){ yb,x

yb
[ᾱ(cL, x) − D(cL, cR)

R(cL, cR)
] − α(x)} dx

+
cR

∫
cL

yb,tt(x, t){D(cL, x) −D(cL, cR)
R(cL, x)
R(cL, cR)

} dx. (A17)

Formula (A17) can be presented in a symmetric form using a new
function,

S(x, t) = 1
yb(x, t)[ᾱ(cL, x) − D(cL, cR)

R(cL, cR)
]. (A18)

The function S(x, t) is such that

x

∫
cL

S(x0, t) dx0 = D(cL, x) − D(cL, cR)
R(cL, cR)

R(cL, x),

cR

∫
cL

S(x0, t) dx0 = 0, S(cL, t) = − 1
yLb

D(cL, cR)
R(cL, cR)

.

(A19)

Phys. Fluids 32, 062101 (2020); doi: 10.1063/5.0007121 32, 062101-16

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Finally,

L(t) = (1
ρ
pR + u2

R) yRb S(cR, t) − (1
ρ
pL + u2

L) yLb S(cL, t)

+
cR

∫
cL

u2(x, t)[ybx S(x, t) − α(x)] dx

−
cR

∫
cL

S(x, t)
⎛
⎜
⎝

x

∫
cL

yb,tt(x0, t) dx0

⎞
⎟
⎠
dx. (A20)

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES
Alekseenko, S. V., Nakoriakov, V. E., Pokusaev, B. G., and Fukano, T., Wave Flow

of Liquid Films (Begell House, New York, 1994).
Batyaev, E. A. and Khabakhpasheva, T. I., “Initial stage of the inclined impact of a

smooth body on a thin fluid layer,” Fluid Dyn. 48(2), 211–222 (2013).
Batyaev, E. A. and Khabakhpasheva, T. I., “Oblique impact of an elongated three-

dimensional body on a thin liquid layer,” J. Appl. Mech. Tech. Phys. 57(1),
163–172 (2016).

Belden, J., Hurd, R. C., Jandron, M. A., Bower, A. F., and Truscott, T. T., “Elastic
spheres can walk on water,” Nat. Commun. 7(1), 1–10 (2016).

Birkhoff, G. and Zarantonello, E., Jets, Wakes and Cavities (Academic Press, New
York, 1957).

Chang, H. H. and Demekhin, E. A., Complex Wave Dynamics on Thin Films
(Elsevier, 2002).

Cherdantsev, A. V., Hann, D. B., Hewakandamby, B. N., and Azzopardi, B. J.,
“Study of the impacts of droplets deposited from the gas core onto a gas-
sheared liquid film,” Int. J. Multiphase Flow 88, 69–86 (2017).

Faltinsen, O. M. and Semenov, Y. A., “The effect of gravity and cavitation on a
hydrofoil near the free surface,” J. Fluid Mech. 597, 371–394 (2008).

Hicks, P. D. and Purvis, R., “Air cushioning and bubble entrapment in three-
dimensional droplet impacts,” J. Fluid Mech. 649, 135–163 (2010).

Hicks, P. D. and Purvis, R., “Air cushioning in droplet impacts with liquid layers
and other droplets,” Phys. Fluids 23(6), 062104 (2011).

Hurd, R. C., Belden, J., Bower, A. F., Holekamp, S., Jandron, M. A., and Truscott,
T. T., “Water walking as a new mode of free surface skipping,” Sci. Rep. 9(1),
1–9 (2019).

Iafrati, A., “Experimental investigation of the water entry of a rectangular plate at
high horizontal velocity,” J. Fluid Mech. 799, 637–672 (2016).

Iafrati, A. and Grizzi, S., “Cavitation and ventilation modalities during ditching,”
Phys. Fluids 31(5), 052101 (2019).

Khabakhpasheva, T. I., “Fluid-structure interaction during the impact of a cylin-
drical shell on a thin layer of water,” J. Fluids Struct. 25(3), 431–444
(2009).

Khabakhpasheva, T. I., “Impact of an elastic spherical shell on a thin fluid layer,”
Fluid Dyn. 50(2), 250–262 (2015).

Khabakhpasheva, T. I. and Korobkin, A. A., “Oblique impact of a smooth body on
a thin layer of inviscid liquid,” Proc. R. Soc. A 469(2151), 20120615 (2013a).

Khabakhpasheva, T. I. and Korobkin, A. A., “Multiple oblique impacts on thin
liquid layer with restoring forces,” in Proceeding 28th International Workshop
onWaterWaves and Floating Bodies (L’Isle sur la Sourgue, France, 2013b), pp.
101–104, http://www.iwwwfb.org/Abstracts/iwwwfb28/iwwwfb28_26.pdf.

Korobkin, A., “Impact of two bodies one of which is covered by a thin layer of
liquid,” J. Fluid Mech. 300, 43–58 (1995).

Korobkin, A., “Shallow-water impact problems,” J. Eng. Math. 35(1-2), 233–250
(1999).

Korobkin, A. A., “Wave impact on the center of an Euler beam,” J. Appl. Mech.
Tech. Phys. 39(5), 770–781 (1998).

Korobkin, A. A. and Khabakhpasheva, T. I., “Plane problem of asymmetrical wave
impact on an elastic plate,” J. Appl. Mech. Tech. Phys. 39(5), 782–791 (1998).

Korobkin, A. A. and Khabakhpasheva, T. I., “Regular wave impact onto an elastic
plate,” J. Eng. Math. 55, 127–150 (2006).

Korobkin, A. A. and Khabakhpasheva, T. I., “Impact of elastic body on the
deep and shallow water,” in ASME 2013, 32nd International Conference on
Ocean, Offshore and Arctic Engineering, 2013, Paper No. OMAE2013-11373,
V009T12A052.

Kvålsvold, J., “Slamming loads on wetdecks of multihull vessels,” in Proceed-
ings of the International Conference on Hydroelasticity in Marine Technology,
Trondheim, Norway (Balkema, Rotterdam, The Netherlands, 1994), Paper No.
P1994-9, ISBN: 90 5410 387 6.

Liu, J., “Shallow-water skimming, skipping and rebound problems,” Ph.D. thesis,
UCL (University College London), UK, 2017.

Moradi, H., Rahbar Ranji, A., and Haddadpour, H., “Hydroelastic criterion for
an inclined flat plate in vertical and oblique impacts,” Appl. Ocean Res. 79,
173–183 (2018).

Reinhard, M., “Free elastic plate impact into water,” Ph.D. thesis, UEA (University
of East Anglia), UK, 2013.

Reinhard, M., Korobkin, A. A., and Cooker, M. J., “Water entry of a flat elastic
plate at high horizontal speed,” J. Fluid Mech. 724, 123–153 (2013).

Tkacheva, L. A., “Impact of a box with an elastic bottom on a thin liquid layer,”
J. Appl. Mech. Tech. Phys. 72(4), 427–436 (2008).

Tkacheva, L. A., “Impact of a body with a plane bottom on a thin liquid layer at a
small angle,” Fluid Dyn. 48(3), 352–365 (2013).

Tuck, E. O. and Dixon, A., “Surf-skimmer planing hydrodynamics,” J. Fluid Mech.
205, 581–592 (1989).

Vanden-Broeck, J.-M., “Numerical solutions for cavitating flow of a fluid with
surface tension past a curved obstacle,” Phys. Fluids 27(11), 2601–2603 (1984).

Phys. Fluids 32, 062101 (2020); doi: 10.1063/5.0007121 32, 062101-17

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1134/S0015462813020087
https://doi.org/10.1134/S0021894416010181
https://doi.org/10.1038/ncomms10551
https://doi.org/10.1016/j.ijmultiphaseflow.2016.09.015
https://doi.org/10.1017/S0022112007009822
https://doi.org/10.1017/S0022112009994009
https://doi.org/10.1063/1.3602505
https://doi.org/10.1038/s41598-019-42453-x
https://doi.org/10.1017/jfm.2016.374
https://doi.org/10.1063/1.5092559
https://doi.org/10.1016/j.jfluidstructs.2008.09.004
https://doi.org/10.1134/S001546281502009X
https://doi.org/10.1098/rspa.2012.0615
http://www.iwwwfb.org/Abstracts/iwwwfb28/iwwwfb28_26.pdf
https://doi.org/10.1017/S0022112095003594
https://doi.org/10.1023/A:1004382117949
https://doi.org/10.1007/BF02468049
https://doi.org/10.1007/BF02468049
https://doi.org/10.1007/BF02468050
https://doi.org/10.1007/s10665-005-0191-8
https://doi.org/10.1016/j.apor.2018.08.002
https://doi.org/10.1017/jfm.2013.155
https://doi.org/10.1007/s10808-008-0105-410.1016/j.jappmathmech.2008.08.011
https://doi.org/10.1134/S0015462813030095
https://doi.org/10.1017/S0022112089002168
https://doi.org/10.1063/1.864559

