
Simple Primary Colour Editing for Consumer Product Images
Han Gong1, Luwen Yu2, and Stephen Westland2

1School of Computing Sciences, University of East Anglia, UK
2School of Design, University of Leeds, UK

Abstract
We present a simple primary colour editing method for con-

sumer product images. We show that by using colour correction
and colour blending, we can automate the pain-staking colour
editing task and save time for consumer colour preference re-
searchers. To improve the colour harmony between the primary
colour and its complementary colours, our algorithm also tunes
the other colours in the image. Preliminary experiment has shown
some promising results compared with a state-of-the-art method
and human editing.

Introduction
Research and data have been increasingly used to optimise

the design process [33]. Previous research shows that product-
colour appearance can affect consumers’ purchase decisions
while consumers’ product-colour preferences vary from category
to category [20, 34]. To understand consumer-product colour
preference, the standard marketing images have been manually
recoloured using software such as Adobe Photoshop [3] or
GIMP [1]. The recolouring process requires researchers (or
designers) to manually adjust colours by picking colours and
adopting non-binary per-layer masking. However, visible
artefacts and incompatible background colours often remain even
after very careful editing. We conclude four main requirements
from colour preference researchers:
Minimum machine processing time. Users would not prefer a
slow processing speed as usually colour modifications are applied
to multiple products for at least dozens of target colours.
Minimum user manipulation time. A high demand of user
interaction time would be undesirable. Methods that require
multiple user strokes or manual selection of multiple colours
would not be ideal. We need a method that only requires a single
primary colour specification and takes care of the rest of colour
processing automatically.
Artefact resiliency. Artefacts, such as JPEG blocks and
unnatural edges, are usually introduced after re-colouring. It is
expected to preserve all image details except for the primary
colour modification.
Colour harmony preservation. The chosen colour for change
may not fit the product’s existing complementary colours. In
some cases, tuning of complementary colours is desirable.

Our proposed method in this paper addresses these require-
ments by providing an alternative design tool which is fully auto-
matic. Existing studies suggested that colour manipulations offer
the potential for software to generate recoloured images (target
colour images). More promising applications of automatic colour
manipulations will lead the trend of generative design systems in

colour and design [28, 33]. There have been a number of meth-
ods for colour manipulations such as colour transfer [23, 26, 27],
colour hint propagation [4, 8–10, 19], or palette editing [7, 24, 35].
However, none of the previous methods is directly applicable
to the primary colour editing problem. Rapid digital workflows
in practice would also require automatic methods for evaluating
and/or comparing colours and designs [5].

In this paper, we propose a simple method which automates
primary colour editing at an optimised consumption of user and
machine processing time and it preserves colour harmony to some
extent. Our method is based on the assumption that simulating
colour change as a 2-D colour homography [13] (i.e. as a change
of light) usually avoids image processing artefacts [13, 16] such as
JPEG blocks, sharp edges, and colour combination conflicts. Our
colour editing pipeline is depicted in Figure 1 where the colour
editing task is reformulated as a 2-D colour homography colour
correction problem. Additionally, we may apply a gradient preser-
vation step to remove some residual artefacts. Compared with the
previous recolouring methods, ours requires minimum user input
and its design is relatively simple.

Related Work
Our work is relevant to the colour editing methods in three

categories: A) colour transfer; B) colour hint propagation; C)
palette-based colour editing.

Colour transfer
Colour transfer is an image editing process which adjusts

the colours of a picture to match a target picture’s colour theme.
This research was started by Reinhard et al. [27] and followed up
by the others [23, 25, 26] recently. Most of these methods align
the colour distributions in different colour spaces, which usually
involve statistics alignment [23, 25, 27] or iterative distribution
shifting [26].

Colour hint propagation
Some methods require user hints, e.g. strokes, to guide re-

colouring of object surfaces. This direction of research was
started by Levin et al. [19] where they colourise grey-scale images
based on user colour stroke and solves for a large and sparse sys-
tem of linear equations. Their key assumption is that the colours
of neighbouring pixels with similar luminance should have sim-
ilar chromaticities. More recent methods [4, 9, 10] make use of
masks, either soft or hard, to assist re-colourisation. Their colour
modification model is based on a diagonal colour correction ma-
trix used for white balance, e.g. [15] with limits on the range of
applicable colour changes. Some others, e.g. [8], have used sparse
coding/learning that the sparse set of colour samples provide an

Input Image

(B) 3x3 Matrix

Colour Correction

(RGB)

Target

Colour

Thumbnail

(A) Intensity Distribution Clustering And Altering in Lab Space

(C) Irrelevant Colour Change

Suppression

(D) Gradient

Preservation

(optional)

Cluste
r C

entre
 RGB Corre

sp
ondences

Figure 1: Primary colour editing pipeline. Given an input image, our method amends the product’s primary colour according to a target
colour in 3-4 steps: A) Colour intensities clusters in CIE L*a*b* colour space [29] are computed (left: original distributions; right:
primary colour altered distributions); B) Cluster RGB correspondences are used for estimating a colour correction matrix. Note that the
L* channel intensities are also used for clustering but are not illustrated on the exemplar graphs; C) An alpha-blending process is applied
to remove colour changes, which are less relevant to the primary colour change, from the colour corrected image; D) Some residual colour
artefacts can be optionally removed using a gradient preservation method ’regrain’ [26] (see the latter section for visualisation). The a*b*
chromaticity gamut images are taken from Wikipedia [2].

intrinsic basis for an input image and the coding coefficients cap-
ture the linear relationship between all pixels and the samples.
This branch of methods require heavy user inputs and therefore
not immediately useful for our problem.

Palette-based colour editing
Some methods adopt colour intensity clustering, e.g. k-

means++ algorithm [6], to initially generate a colour palette of
the input image. After palette adjustments, different approaches
were applied for manipulating colour changes. Zhang et al. [35]
decompose the colours of the image into a linear combination of
basis colours before reconstructing a new image using the lin-
ear coding coefficients. Chang et al. [7] adopt a monotonic lu-
minance mapping and radial basis functions (RBFs) for interpo-
lating/mapping chromaticities. This branch of methods are most
close to our solution however none of them is optimised for the
particular task of rapid primary colour editing for consumer prod-
uct images.

Colour homography
Our solution is based on the colour homography colour

change model. The colour homography theorem [11–13, 16]
presents that chromaticities across a change in capture conditions
(light color, shading and imaging device) are a homography apart.
Suppose that we map an RGB r to a corresponding RGI (red-

green-intensity) c using a 3�3 full-rank matrix C:

r|C = c|

24 R
G
B

35|24 1 0 1
0 1 1
0 0 1

35=

24 R
G

R + G + B

35| (1)

The r and g chromaticity coordinates are written as
r = R=(R + G + B) ; g = G=(R + G + B). We treat the right-
hand-side of Equation 1 as a homogeneous coordinate and we
have c µ

�
r g 1

�|. When the shading is fixed, it is known
that across a change in illumination or a change in device, the
corresponding RGBs are approximately related by a 3� 3 linear
transform M that r|M = r 0| where r 0 is the corresponding RGBs
under a second light or captured by a different camera [21, 22].
We have H = C�1MC which maps colours in RGI form between
illuminants. Due to different shading, the RGI triple under a
second light is written as c0| = ac|H, where a denotes the
unknown scaling. Without loss of generality we regard c as
a homogeneous coordinate i.e. assume its third component is
1. Then, [r0 g0]| = H([r g]|) (rg chromaticity coordinates are
a homography H() apart). In this paper, we will model the
major colour change initially as a colour homography change
but without considering the individual scale differences between

each RGB correspondences, i.e. a 3�3 linear transform of colour
change is applied.

Simple Primary Colour Editing
Our algorithm starts with the simple observation that a sim-

ple 2-D colour homography model allows for a wider range
of colour changes (as opposed to a diagonal colour correction
matrix) and usually produces fewer colour combination con-
flicts [13, 16]. In Figure 1, we overview the colour processing
pipeline which consists of three major steps and one optional step:
A) Clustering: The CIE L*a*b* [29] intensities of an input RGB
image are clustered using MeanShift [14]. The primary colour
cluster is altered to match the target colour (see the red line) that
the cluster centres form the before-and-after sparse colour inten-
sities correspondences; B) Colour correction: The L*a*b* colour
correspondences are converted to RGB space before being used
to estimate a 2-D colour homography matrix (without consider-
ing scale differences); C) Irrelevant colour change suppression:
a soft alpha-blending mask is computed to suppress aggressive
colour changes irrelevant to the primary colour change; D) Gradi-
ent preservation (optional): a gradient preservation step can be
applied to remove more residual artefacts. We also note that
the computational cost can be reduced by using down-sampled
thumbnail images for model parameter estimation. We provide
the algorithm details in the following sub-sections.

Intensity clustering and altering
To estimate a reliable colour change model, the first step is

to extract the predominant colours which best capture the input
image’s colour theme. We adopt MeanShift [14] clustering to ex-
tract at most 5 predominant colours (i.e. cluster centres) from the
input image. The intention of not collecting too many colours is
to avoid noise and reduce computational cost. The cluster num-
ber of 5 is only an empirical value, e.g. 6 also works. Clearly,
a fixed set of MeanShift parameters never guarantee a maximum
number of 5 colour clusters. We thus propose a simple adaptive
MeanShift clustering procedure which gradually increases the ini-
tial small kernel bandwidth value as shown in Algorithm 1 where

Algorithm 1: Adaptive MeanShift clustering

1 w = 0:1, b = 1:5;
2 repeat
3 C = MeanShift(w;Alab);
4 n = len(C);
5 w = bw;
6 until n > 5;

MeanShift is the MeanShift function with a flat kernel and band-
width w, C is a n� 3 matrix of cluster centres (each row is a
L*a*b* intensity vector), len counts the number of cluster cen-
tres n, b is a factor controlling the kernel width growth rate in
each iteration.

Given the obtained predominant colours, we construct the
sparse colour correspondences to be supplied for colour change
model estimation. Since we aim to only change the one primary
colour if possible, the remaining of target predominant colours
are kept the same as the original predominant colours except that
the only primary colour is modified as the target primary colour.

Through this, we construct a target predominant colour set de-
noted as D (see also Figure 1 (A) for illustration).

Colour Homography colour change
Given the source and target colour sets C and D, we make

use of a simple 2-D colour homography matrix to achieve pri-
mary colour change while minimising colour artefacts. A full
colour homography change is an optimised chromaticity mapping
in RGB space. However, since the brightness of colour matters in
this application, we omit the shading factor a and only estimate a
3�3 linear matrix transform (which is still a homography matrix)
using weighted least-squares as the follows:

M = (C|WC + kI3�3)�1 C|WD (2)

where k = 10�3 is a regularisation term, W is a diagonal matrix
whose diagonal elements are the associated normalised weights
of all the predominant colours (i.e. cluster centre sizes), I3�3 is
a 3�3 identity matrix. Denoting the ’flatten’ RGB intensities of
the input image as a N� 3 matrix A (N is the number of pixels),
we can compute its primary-colour-changed RGB intensities as
B = AM. An intermediate processed example can be found in
Figure 1 (B).

Irrelevant colour change suppression
Some of the colour changes after the 3� 3 linear transform

may look aggressive, e.g. the pink ring of the ’Tide’ logo in Fig-
ure 1 (B). We adopt an alpha-blending procedure to address this
as the follows:

B0 = (1�diag(d))B + diag(d)A (3)

where B0 is the modified RGB colour output, d is an N-vector de-
noting per-pixel scaling factors (in the range of [0;1]) and diag()
places an N-vector along the diagonal of an N�N diagonal ma-
trix. Our intuition is to smoothly reduce the impact of the colour
changes that are irrelevant to the primary colour and control this
by d. We measure the irrelevance by the a*b* chromaticity differ-
ence DE between each colour (row) in B0 and the target primary
colour:

DE =
p

Da�2 +Db�2 (4)

where Da� and Db� are the errors in a*b* channels. A higher
DE indicates a higher degree of irrelevance but this value can be
sometimes too big. Thus, we further cap and normalise DE as
DE 0:

DE 0 =
�

1 DE > DEmax
DE=DEmax Otherwise

(5)

where DEmax is an upper threshold value. The individual DE 0

is assigned as the corresponding element of d. The processing
result can be sensitive to DEmax and thus DEmax must be carefully
chosen. An exemplar visualisation of d in its image grid form
is shown in Figure 2 (A). Aiming at obtaining a blending result
which preserves the edge details of the original image, we look
for the optimum DEmax which minimises Equation 6.

min
DEmax

Sc2fa�;b�gentropy(jedge(IB0;c)� edge(IA;c)j) (6)

where jj is the operator to output per element absolute value of
a matrix, c indicates an intensity channel of a* or b*, IB0;� and
IA;� indicate the grid images of the ’unflatten’ intensity matrix B0

and A respectively, edge is a binary edge detector using the So-
bel approximation [32] to the derivative (without edge-thinning),
entropy is a function which measures the amount of information
– entropy [31] – as defined in Equation 7.

entropy(p) =�å
i

pi log pi (7)

where p is a normalised input vector (summed up to 1) which, in
our case, is a ’flattened’ error-of-edge image (e.g. Figure 2 (C)),
i is an element index. When the entropy of the error of two edge
images is low, it indicates a higher similarity of edge features be-
tween two intensity images. However, we do not have a closed-
form solution for its global minima. In practice, a suitable local
minima in a reasonable range usually serves the purpose. We thus
propose a brutal search for a local minima solution of DEmax in
the range of [10;210] with an interval precision of 20. A visu-
alised example of d and its plot of DEmax search are shown in
Figure 2.

Input Image

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

1 2 3 4 5 6 7 8 9 10

0.58

0.6

0.62

0.64

(A) Colour Change Irrelevance Map

(B) Entropy plot

(C) Edge Differences of a* (thumbnail)

10 30 50 70 90 110 130 150 170 190

0.64

0.62

0.60

0.58

70 50

Figure 2: Visualisations of the alpha blending. A) Visualised
alpha blending mask used in the irrelevant colour change sup-
pression step. B) The associated entropy plot (horizontal ticks:
DEmax). C) Visualisation of binary edge difference in channel a*
when DEmax = 70 or DEmax = 50 (more different). The bottom-
right number indicates the value of DEmax. See also Figure 1 (A)
for the input image and the target primary colour.

Artefact cleansing
As the previous alpha blending step has attempted the min-

imisation of edge artefacts, mostly users can get an artefact-free
output image. However, for some rare cases, we also adopt an op-
tional artefact cleansing step called ’regrain’ which was first pro-
posed in [26]. It provides strong gradient preservation but also has
side effects which may cause minor undesired blurs along edges.
Please refer to the cited paper for the algorithm details. Figure 3
shows an example where this optional step improves the result by
removing some JPEG block artefacts.

Acceleration
Our colour manipulation pipeline requires the solution of

10 key model parameters, namely M and DEmax. Using full-
resolution images is not necessary and we therefore adopt thumb-
nail images (32�32) for solving for M and DEmax and apply the

Input Image

Input Image

70 50

Output w/o Regrain Output with Regrain

Target

Colour

Figure 3: Example of the ’regrain’ [26] artefact cleansing.

estimated parameters to a full-resolution input image to get a full-
resolution output.

Evaluation
In this section, we present the result comparison and some

useful discussions about our method’s practical use-cases.

Results
We compare our method with a state-of-the-art palette-based

re-colouring method [7] and the manually edited results produced
by a professional colour preference researcher. Figure 4 shows
some visual result comparisons. We found that our outputs are
mostly comparable to the manually edited results which take 2-5
minutes’ labour time per image. Most of the human labour time is
spent on masking the image (for primary colour pixels). Once the
mask is completed, the remaining recolouring time takes about
1 minute. All the results in Figure 4 have been produced with-
out the ’regrain’ step enabled. Our method also has some failure
cases as shown in Figure 5. These failures were caused by the
initial step of colour clustering. When the input image only has
one colour, the MeanShift clustering algorithm can mishandle the
primary colour extraction. Lowering the maximum cluster num-
ber (i.e. 5 in Algorithm 1) can resolve this issue. That said, we
could provide this as an optional parameter for users.

Our method provides practical editing efficiency without
user interventions. Using the thumbnail acceleration trick, our
unoptimised MATLAB implementation (without the regrain step)
takes about 1s to process an 1.2 mega-pixel image on a MacBook
Pro 2015 laptop (2.5 GHz Quad-Core Intel Core i7 CPU).

Discussions
’Work to forecast’ has suggested the use of colour to fore-

cast consumer demand or resource-saving levels [30]. Colour has
also been suggested as one of the most powerful visual elements
in packaging. Thus, choosing an appropriate colour for the de-
sign of packaging or product can significantly affect consumer
decision-making [18]. This work could be applied as a product-
colour predictor for studying product-packaging-colour in con-
sumer purchase behaviour. Or, as an image generation tool, it
helps designers/researchers preview the multi-colour options of a
product image.

We also acknowledge that more rigorous user experiments in
controlled lighting/display conditions could still be possibly car-
ried out after the UK Covid-19 lockdown [17]. We, therefore,
commit to providing our source code to the research community
in the hope that its evaluation and more potential use-cases can be
further driven by the other cross-discipline communities.

Input Chang 2015 [7] Ours Human

Figure 4: Result visual comparison. The target colours are shown at the top right of the input images. The label ’Human’ refers to the
column of results manually generated by a professional colour preference researcher.

