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Abstract

A wide Aronszajn tree is a tree of size and height ω1 with no uncountable
branches. We prove that under MA(ω1) there is no wide Aronszajn tree which
is universal under weak embeddings. This solves an open question of Mekler and
Väänänen from 1994.

We also prove that under MA(ω1), every wide Aronszajn tree weakly embeds
in an Aronszajn tree, which combined with a result of Todorčević from 2007, gives
that under MA(ω1) every wide Aronszajn tree embeds into a Lipschitz tree or
a coherent tree. We also prove that under MA(ω1) there is no wide Aronszajn
tree which weakly embeds all Aronszajn trees, improving the result in the first
paragraph as well as a result of Todorčević from 2007 who proved that under
MA(ω1) there are no universal Aronszajn trees. 1

1 Introduction
We study the class T of trees of height and size ℵ1, but with no uncountable branch. We
call such trees wide Aronszajn trees. A particular instance of such a tree is a classical
Aronszajn tree, so the class A of Aronszajn trees satisfies A ⊆ T . Apart from their
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intrinsic interest in combinatorial set theory, these classes are also interesting from the
topological point of view, since they give rise to a natural generalisations of metric spaces,
ω1-metric spaces introduced by Sikorski in [9] and further studied in [7], [11] or [3], for
example. The ω1-distance function in trees is given by the ∆-function, which is defined
by ∆(x, y) = ht(x ∩T y) for x 6= y and ∆(x, x) = 0. Here x ∩T y represents the meet in
the tree (as our trees will be trees of sequences of ordinals, this notation is more natural
than ∧T ). Classes T and A can be quasi-ordered using the notion of weak embedding,
which is defined as follows:

Definition 1.1 For two trees T1, T2, we say that T1 is weakly embeddable in T2 and we
write T1 ≤ T2, if there is f : T1 → T2 such for all x, y ∈ T1

x <T1 y =⇒ f(x) <T2 f(y).

We are interested in the structure of (T ,≤) and (A,≤). In particular, we address
the question of the existence of a universal element in these classes. This is of special
interest since among the many interesting and correct results of the paper [7] from 1993
there is also a claim that MA(ω1) implies that there is a universal element in (T ,≤),
the argument for which was soon after found to be faulty. Ever since, the status of the
possible existence of a universal element in (T ,≤) under MA(ω1) has remained an open
question.

Our first result is Theorem 4.1, which proves that underMA(ω1) there is no universal
element in (A,≤). This gives an alternative proof to a result of Todorčević from [12],
whose Theorem 4.3.34 proves the same using the class of coherent trees. For more on
this see §2.

The second result is Theorem 5.1, which shows that underMA(ω1) every wide Aron-
szajn tree weakly embeds into an Aronszajn tree. Putting the two results together, we
obtain the main result of the paper, Theorem 6.1, which shows that under MA(ω1) the
class (T ,≤) has no universal element. This resolves the question raised by [7].

Combining our result with Lemma 4.3.32 from [12], we obtain that under MA(ω1)
every wide Aronszajn tree weakly embeds into a coherent tree, or equivalently under
MA(ω1), into a Lipschitz tree (Corollary 6.2(1)). We also obtain (Corollary 6.2(2))
a strengthening of Todorčević’s result about the non-existence of universal Aronszajn
trees under MA(ω1), namely we prove that under MA(ω1) not even the class of wide
Aronszajn trees suffices to weakly embed all Aronszajn (or all coherent) trees.

2 Some facts about (T ,≤) and (A,≤)
Note that if there is a weak embedding from a tree to another, then there is one which
preserves levels (see Observation 3.4), so we may restrict our attention to such embed-
dings.

An important idea of Ðuro Kurepa in [5] (see [6] for a complete edition) is that of a
functor now known as σ-functor. This functor associates to a tree T the tree σT of the
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increasing sequences of T , ordered by inclusion. The basic fact is that there cannot be a
weak embedding from σT to T . If T has no uncountable branch, neither does σT , but
even if the cardinality of T is ℵ1, the cardinality of σT is 2ℵ0 . However, when CH holds,
for any T ∈ T we have σT ∈ T and similarly for A. Therefore, under CH neither class
(T ,≤) nor (A,≤) have a universal element.

Todorčević studied level-preserving functions f between trees which satisfy the Lip-
schitz condition

∆T1(x, y) ≤ ∆T2(f(x), f(y)). (1)

We may think of Lipschitz embeddings as contractions. This notion led Todorčević to
introduce a subclass of A which consists of those Aronszajn trees on which every level-
preserving map from an uncountable subset of T into T , has an uncountable Lipschitz
restriction. These are called Lipschitz trees. After an initial 1996 preprint with many
properties of Lipschitz trees, including the shift operation T (1), the full paper by Todor-
čević on this topic appeared as [11]. In particular, by considering embeddings between
Aronszajn trees into Lipschitz ones, the paper proves that assuming BPFAℵ1 , there is
no universal element in (A,≤). Finally, in his book [12] Todorčević studies the class of
coherent trees, which are Aronszajn trees obtained from ordinal walks, and he proves
that under MA(ω1) all coherent trees are Lipschitz and that such a tree T embeds into
T (1) but not the other way around. Moreover, still under MA(ω1) every Aronszajn tree
embeds into a coherent tree. This leads to the conclusion, Theorem 4.3.44 in [12]:

Theorem 2.1 (Todorčević) ([11]) Assuming MA(ω1), there is no universal element
in (A,≤).

Many more results are known about (A,≤), one can consult surveys [10] for earlier
and [8] for more recent results.

Not that much is known about the full class (T ,≤). We cite the two results that we
are aware of. The first one is a consistency result obtained by Mekler and Väänänen.

Theorem 2.2 ([7]) Assume CH holds and κ is a regular cardinal satisfying ℵ2 ≤ κ and
κ ≤ 2ℵ1. Then there is a forcing notion that preserves cofinalities (hence cardinalities)
and the value of 2λ for all λ, and which forces the universality number of (T ,≤) and the
universality number of (A,≤) both to be κ.

The next result, obtained by Džamonja and Väänänen, is in the presence of club
guessing at ω1 and the failure of CH. It concerns weak embeddings called ∆-preserving
and defined by

∆T1(x, y) = ∆T2(f(x), f(y)). (2)

Theorem 2.3 (Džamonja and Väänänen) ([3]) Suppose that

(a) there is a ladder system C̄ = 〈cδ : δ < ω1〉 which guesses clubs, i.e. satisfies that
for any club E ⊆ ω1 there are stationarily many δ such that cδ ⊆ E,
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(b) ℵ1 < 2ℵ0.

Then no family of size < 2ℵ0 of trees of size ℵ1, even if we allow uncountable branches,
can ≤-embed all members of T in a way that preserves ∆.

Before this paper it was not known if (T ,≤) had a universal element under MA(ω1).
Our result 6.1 proves that it does not. It is not known if there is a model of set theory in
which (T ,≤) does have a universal element. Moreover, our results (see Corollary 6.2(2))
strengthen both this conclusion and Theorem 2.1 in that they imply that underMA(ω1)
there is no T in the larger class (T ,≤) which weakly embeds all elements of (A,≤). It
is not known if there is a model of set theory in which (A,≤) or (T ,≤) have a universal
element.

3 Specialising triples and their basic properties
Notation 3.1 (1) For an ordinal γ < ω1 we denote by ht(γ) the unique α such that
γ ∈ [ωα, ωα + ω).
(2) We can without loss of generality represent A as the set of all normal rooted ω1-trees
T with no uncountable branches whose α-th level is indexed by a subset of the ordinals
in [ωα, ωα + ω), for α < ω1. The root 〈〉 is considered of level −1.

(Recall that the requirement of being normal for a rooted tree means that if γ0 6= γ1
are of the same limit level, then there exists β with β <T γl for exactly one l < 2).
(3) If T ∈ A and s, t ∈ T , we denote by s∩T t the maximal ordinal γ such that γ <T s, t.
(Such an ordinal exists by the assumption in (2)).

If ht(x) = α > β, then by x � β we denote the unique ordinal y with ht(y) = β and
y <T x.
(4) For T1, T2 ∈ A and (x, y) ∈

⋃
α<ω1

levα(T1) × levα(T2), we let α(x, y) denote the α
such that x ∈ levα(T1) (and so y ∈ levα(T2)).

Definition 3.2 Let Asp
2 be the set of all triples (T1, T2, c) where T1, T2 ∈ A and c is a

function from
⋃
δ limit <ω1

levδ(T1)× levδ(T2) to ω such that

• if c(x1, y1) = c(x2, y2) and (x1, y1) 6= (x2, y2), then α(x1, y1) 6= α(x2, y2), x1⊥T1x2,
y1⊥T2y2 and

∆T1(x1, x2) > ∆T2(y1, y2).

Remark 3.3 By the definition of A, we have that for any T ∈ A and any γ ∈ T , ht(γ)
is the same as htT (γ). The defining condition of specialising triples could have therefore
been written in termes of heights, ht(x1 ∩ x2) > ht(y1 ∩ y2).

Also note that a weak embedding is not required to be injective, but is injective on
any branch of its domain. Finally, observe that every rooted Aronszajn tree is weakly
bi-embeddable with a rooted normal one and hence that concentrating on rooted normal
trees does not change anything from the point of view of universality results.
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The following is well known, see for example Claim 6.1 of [2].

Observation 3.4 If there exists a weak embedding from a tree T1 to a tree T2, then there
exists one which preserves levels, namely satisfying htT1(x) = htT2(f(x)) for all x ∈ T1.

Proof. Let f : T1 → T2 be a weak embedding. For t ∈ T1, we can define g(t) =
f(t) � ht(t), since f being a weak embedding implies that for every such t we have
htT1(t) ≤ htT2(f(t)). Now note that if s <T1 t, then ht(s) <T1 ht(t) and so g(s) <T2 g(t).
F3.4

Claim 3.5 (1) If (T1, T2, c) ∈ Asp
2 then both T1 and T2 are special Aronszajn trees.

(2) If (T1, T2, c) ∈ Asp
2 then T1 is not weakly embeddable in T2.

(3) Every rooted normal Aronszajn tree is isomorphic to a tree in A.

Proof. (1) Clearly, every tree in A is an ω1-tree, so T1 and T2 are ω1-trees. Let us first
show that T1 is special, so we shall define a function d : T1 → ω which witnesses that.

Notice that by the assumption that T2 is of height ω1, we can choose zδ of height
δ ∈ T2, for every limit δ. Let g : ω × ω × ω → ω be a bijection. Every x ∈ T1 is of the
form ωδ + ωm + n for some limit ordinal δ and natural numbers m and n. For such x,
define d(x) = g(c(x � δ, zδ),m, n).

Suppose that x = ωδ + ωm+ n, y = ωβ + ωk + l and that d(x) = d(y), while x 6= y.
Therefore g(c(x � δ, zδ),m, n) = g(c(y � β, zβ), k, l) and we obtain m = k and n = l while
c(x � δ, zδ) = c(y � β, zβ). Since x 6= y we must have β 6= δ and therefore x � δ 6= y � β.
By the properties of c we obtain x � δ⊥T1y � β and therefore x⊥T1y. In conclusion,
d−1({a}) is an antichain, for any a < ω, and therefore d witnesses that T1 is special. A
similar proof shows that T2 is special. As clearly every special ω1-tree is Aronszajn, the
claim is proved.
(2) Suppose for a contradiction that f is a weak embedding from T1 to T2. By Observation
3.4, we can assume that f preserves levels. For each α limit < ω1 choose xα on the α-th
level of T1. Note that by the level preservation of f , the value c(xα, f(xα)) is well-defined.
Consider {c(xα, f(xα)) : α limit < ω1}, which is necessarily a countable set since the
range of c is ω. Hence, there must be α < β such that c(xα, f(xα)) = c(xβ, f(xβ)). By
the defining property of c we have that xα⊥T1xβ.

Since f is strict-order preserving we have that f(xα ∩T1 xβ) <T2 f(xα), f(xβ) and
therefore f(xα∩T1 xβ) ≤T2 f(xα)∩T2 f(xβ). However, ht(f(xα∩T1 xβ)) = ht(xα∩T1 xβ) >
ht(f(xα) ∩T2 f(xβ)), a contradiction.
(3) Obvious. F3.5

4 Embeddings between Aronszajn trees and the non-
existence of a universal element under MA

This section is devoted to the proof of the following theorem.
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Theorem 4.1 For every tree T ∈ A, there is a ccc forcing Q = Q(T ) and a family
F = F(T ) of ℵ1-many dense sets in Q such that every F-generic filter adds a tree T ∗
in A and a function c such that (T ∗, T, c) form a specialising triple. In particular, T ∗ is
not weakly embeddable into T and, hence, under the assumption of MA(ω1) there is no
Aronszajn tree universal under weak embeddings.

The latter is a result of Todorčević, see Theorem 2.1, to which our method gives an
alternative proof. We shall break the proof of Theorem 4.1 into the definition of the
forcing and then several lemmas needed to make the desired conclusion.

Definition 4.2 Suppose that T ∈ A, we shall define a forcing notion Q = Q(T ) to
consist of all p = (up, vp, <p, c

p) such that:

1. up ⊆ ω1 ∪ {〈〉}, vp ⊆ T are finite and 〈〉 ∈ vp,

2. if α ∈ vp then there is β ∈ up with ht(α) = ht(β),

3. <p is a partial order on up such that α <p β implies ht(α) < ht(β) and which fixes
α∩<p β ∈ up for every two different elements α, β of up and fixes the root 〈〉 of up,

4. cp is a function from
⋃
δ limit <ω1

levδ(u
p) × levδ(v

p) to ω such that the analogue
of the requirement from Definition 3.2 holds, that is:

if c(x1, y1) = c(x2, y2) and (x1, y1) 6= (x2, y2), then α(x1, y1) 6= α(x2, y2), x1⊥T1x2,
y1⊥T2y2 and

ht(x1 ∩T1 x2) > ht(y1 ∩T2 y2).

The order p ≤ q on Q is given by inclusion up ⊆ uq, vp ⊆ vq, <p⊆<q, c
p ⊆ cq with the

requirement that if p ≤ q, then the intersection and the root given by <p are preserved
in <q.

Lemma 4.3 There is a family F of ℵ1-many dense subsets of Q such that for any G
which is F-generic, letting

T ∗ =
⋃
{<p: p ∈ G} and c =

⋃
{cp : p ∈ G}

gives (T ∗, T, c) ∈ Asp
2 .

Proof. Clearly, for any filter G we have that T ∗ is a partial order on ω1. For every
α < ω1 we have that levα(T ∗) ⊆ [ωα, ωα + ω), since the same is true for every <p for
p ∈ G. In particular, T ∗ is a tree. It is a rooted tree since every up for p ∈ G has the
same root. Let us observe that T ∗ is normal, using the following claim.

Claim 4.4 Suppose that β0, β1 ∈ [ωδ, ωδ + ω) ∩ T ∗, where δ is a limit ordinal. Then
there is α ∈ T ∗ such α <∗ βl for exactly one l < 2.
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Proof. We can find p ∈ G such that β0, β1 ∈ up. Therefore <p fixes β = β0 ∩<p β1
and by the definition of the order in Q we must have β = β0 ∩<∗ β1. Any α <∗ β1 with
ht(α) > ht(β) satisfies the requirement. F4.4

We now show that with a judicious choice of F we have that T ∗ is of height ω1.

Claim 4.5 For every α < ω1, the set Dα of all p such that up has an element on level
α is dense.

Proof. Given α < ω1, if up has no elements on level α, we shall first choose a γ ∈
[ωα, ωα+ω) and extend the order <p to up ∪{γ} by letting γ be above the root 〈〉 of up
but such that β ∩<p γ = 〈〉 for all β ∈ up. Since up did not have any elements on level
α, neither does vp, so we do not have to worry about extending c to include pairs whose
first coordinate is γ. F4.5

We can conclude that T ∗ is a normal ω1-tree. The next density claim will show that
c is defined on all

⋃
δ limit <ω1

levδ(T
∗) × levδ(T ) to ω and will therefore by Claim 3.5

(1) imply that T ∗ ∈ A.

Claim 4.6 Suppose that δ is a limit ordinal < ω1 and that there is x of height δ in up.
If y ∈ T is of height δ, then p has an extension q such that y ∈ vq, in other words, the
set Ey = {q : y ∈ vq} is dense above p .

Proof. It suffices to let vq = vp ∪ {y} and to extend cp in a one-to-one way so that for
any x ∈ up of height δ, the value of cq(x, y) is different from any values taken by cp. F4.6

Let F consist of all sets Dα for α < ω1 and all sets Ey defined in and Claim 4.6.
To finish the proof of Lemma 4.3 we have that c is as required, since every p satisfies

the requirement from 4.2(4). F4.3

Lemma 4.7 The forcing Q(T ) is ccc.

Proof. Suppose that 〈pζ : ζ < ω1〉 is a given sequence of elements ofQ(T ). By extending
each pζ if necessary, we can assume that for each ζ there is an element of vpζ and hence
of upζ of height ζ. Let C = {ζ < ω1 : ωζ = ζ}, so a club of ω1.

For ζ ∈ C let us define qζ = pζ � ζ, by which we mean:

1. uqζ = upζ ∩ (ζ ∪ {〈〉}), vqζ = vpζ ∩ (ζ ∪ {〈〉}),

2. <qζ=<pζ� u
qζ and

3. cqζ = cpζ � (uqζ × vqζ).

There is a stationary set S ⊆ C, a condition q∗ and integers n∗,m∗ < ω such that for
every ζ ∈ S we have:
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1. qζ = q∗,

2. the size of upζ \ uq∗ is n∗ and the size of vpζ \ vq∗ is m∗. We enumerate them
increasingly as ordinals in the form 〈xζi : i < n∗〉 and 〈yζj : j < m∗〉,

3. the value of cpζ(xζi , y
ζ
j ) and the fact that it is defined or not depends only on i and

j and not on ζ, and

4. letting γ∗ = max(uq
∗ ∪ vq∗), we have min(upζ \ uq∗) > γ∗ + ω and similarly for

vpζ \ vq∗ .

By thinning further, we may assume that for every ε < ζ in S,

• upε ∪ vpε ⊆ ζ,

• the unique ordinal-order-preserving functions fε,ζ from upε to upζ and gε,ζ from vpε

to vpζ give rise to an isomorphism between pε to pζ which fixes q∗. In particular,
it maps <pε to <pζ fixing uq∗ and similarly for <T � vpε and <T � vpζ .

• for every α ∈ vpζ \ vpε we have that α �T (γ∗ + ω) = g−1ε,ζ (α) �T (γ∗ + ω).

Let us now consider what could render two conditions pε and pζ for ε and ζ in S,
incompatible. The minimum requirement on a condition q with q ≥ pε, pζ would be that
uq ⊇ upε ∪ upζ and vq ⊇ vpε ∪ vpζ . It may happen that there are i < n∗ and j < m∗ such
that xεi ∈ upε \ ε and yεj ∈ vpε \ ε, so x

ζ
i ∈ upζ \ ζ and yζj ∈ vpζ \ ζ, such that c(xεi , yεj )

is defined, and hence c(xζi , y
ζ
j ) is defined and c(xζi , y

ζ
j ) = c(xεi , y

ε
j ). However, for all we

know, yεj and y
ζ
j might be compatible in T and therefore we run into a problem with the

requirement (4) of Definition 4.2 of the forcing. We shall solve this difficulty by invoking
the following lemma, essentially due to Baumgartner, Malitz and Reindhardt [1], here
taken from Jech’s book [4], where one can find a proof. In fact, although the book states
the Claim in terms of Aronszajn trees, the same proof works for any tree of height and
cardinality ω1, as long as the tree does not have an uncountable branch. We shall use
that fact in §5, so we state the claim in these terms.

Claim 4.8 ([4], Lemma 16.18) If T is tree of height and cardinality ω1 with no un-
countable branches and W is an uncountable collection of finite pairwise disjoint subsets
of T, then there exist s, s′ ∈ W such that any x ∈ s is incomparable with any y ∈ s′.

We can now apply Claim 4.8 to find ε < ζ both in S such that any yεj is incomparable
with any yζj′ . Now we claim that pε and pζ are compatible. Let us start by defining
v = vpε ∪ vpζ and u′ = upε ∪ upζ . In order to get a condition we shall have to extend
u′ and also define <, but note already that if α ∈ v, then there is an element of height
ht(α) in u′, since the analogue is true about upε and upζ . So conditions 1. and 2. of
Definition 4.2 are easy to fulfil and it is condition 4. that is difficult. Once we fulfil it,
that Condition 3. will follow from the proof.

8



Our choices so far imply that c = cpε ∪ cpζ is a well defined function. In order to
use it to fulfil condition 4. of Definition 4.2, we have to check through all the pairs
(x1, y1) 6= (x2, y2) in

⋃
δ limit <ω1

levδ(u
′) × levδ(v) such that c(x1, y1) = c(x2, y2). If

(x1, y1), (x2, y2) are both in dom(cpε) or both are in dom(cpζ), then the condition 4. is
satisfied for them, so the interesting case is when they are not.

Therefore α(x1, y1) 6= α(x2, y2), and let us suppose, without loss of generality, that
α(x1, y1) < α(x2, y2). Then necessarily (x1, y1) ∈ dom(cpε) \ dom(cpζ) and (x2, y2) ∈
dom(cpζ) \ dom(cpε). We have assured that this implies that y1 and y2 are incompatible
in T . Let γ = ht(y1 ∩T y2), so γ < α(x1, y1). So far we know nothing about x1 ∩ x2
since neither <pε nor <pζ have the pair (x1, x2) in its domain. Knowing that α(x1, y1) is
a limit ordinal, we are going to choose a successor ordinal βx1,x2 above max(γ, γ∗) and
below α(x1, y1) and an ordinal wx1,x2 of height βx1,x2 which is not <pε above any element
of upε . We shall add wx1,x2 to u′ and declare wx1,x2 = x1 ∩< x2. We do this for all pairs
relevant to condition 4., by induction on the number of such pairs, each time avoiding
all interaction with what we have already chosen. At the end let u be the union of u′
and the set of all such wx1,x2 . Since the new elements are all of successor height, this
will not bring us in danger of creating new instances of condition 4. Finally, to fulfil
condition 3. we need to extend <pε ∪ <pζ to a partial order < on u which will respect
the commitments on ∩< which we have just made, which is possible by the way we chose
βx1,x2 .

Then the condition q = (u, v,<, c) is a common extension of pε, pζ .F4.7

Proof. (of Theorem 4.1) To finish the proof, we suppose that we are in a model of
MA(ω1) and that T is an Aronszajn tree. Without generality, passing to a weakly bi-
embeddable copy and adding a root if necessary, we can assume that T is rooted and
normal.Then by forcing by the ccc forcing Q(T ) (Lemma 4.7) and intersecting ℵ1 many
dense sets Dα for α < ω1 (Claim 4.5) and Ey for y ∈ T (Claim 4.6), we obtain that the
generic Aronszajn tree T ∗ does not weakly embed into T (Lemma 4.3 and Claim 3.5(2)).
Therefore, T is not universal, and since T is arbitrary, the theorem is proved. F4.1

Remark 4.9 Theorem 4.1 gives another proof of the main result of [1], which is that
under MA(ω1) all Aronszajn trees are special and another proof of Theorem 2.1.

5 Embedding wide Aronszajn trees into Aronszajn trees
This section is devoted to the proof of the following theorem:

Theorem 5.1 For every tree T ∈ T , there is a ccc forcing P = P(T ) and a family
H = H(T ) of ℵ1 many dense sets in P, such that every H-generic filter adds a tree in A
into which T weakly embeds. In particular, under the assumption of MA(ω1), the class
A is cofinal in the class (T ,≤).
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Following the pattern from Section §4, we shall break the proof into the definition of
the forcing and then several lemmas needed to make the desired conclusion. The forcing
is dual to the one in §4, in the sense that we now start with a tree T in T and generically
add an Aronszajn tree that T weakly embeds to. We use the control function c to make
sure that the generic tree does not have an uncountable branch.

For the definition of the forcing, we represent every T ∈ T by an isomorphic copy
which is a subtree of ω1>ω1.

Definition 5.2 Suppose that T ⊆ ω1>ω1 is a tree of size ℵ1 and with no uncountable
branches, we define a forcing notion P = P(T ) to consist of all p = (up, vp, <p, f

p, cp)
such that:

1. up ⊆ T , vp ⊆ ω1 are finite and 〈〉 ∈ up,

2. up is closed under intersections,

3. <p is a partial order on vp,

4. fp is a surjective weak embedding from (up,⊂) onto (vp, <p),

5. for every η ∈ up, we have ht(fp(η)) = lg(η) (notice that lg(η) = htT (η), since η is
a sequence of ordinals),

6. cp is a function from vp into ω such that

α <p β =⇒ cp(α) 6= cp(β).

The order p ≤ q on P is given by inclusion: up ⊆ uq, vp ⊆ vq, <p⊆<q and cp ⊆ cq.

Lemma 5.3 There is a family H of ℵ1-many dense subsets of P such that for any G
which is H-generic, letting

T ∗ =
⋃
{<p: p ∈ G}, f =

⋃
{fp : p ∈ G}, and c =

⋃
{cp : p ∈ G},

we have that T ∗ is an Aronszajn tree, f is a level-preserving weak embedding of T into
T ∗, c : T ∗ → ω and α <T ∗ β =⇒ c(α) 6= c(β) .

Proof. Clearly, for any filter G the set T ∗ is a partial order on a subset of ω1, c is a well
defined function into ω and f is a function from a subset of T into T ∗ which is a weak
embedding of its domain into its range. In addition, f is level-preserving in the sense that
for all η ∈ dom(f) we have ht(f(η)) = lg(η) and c satisfies α <T ∗ β =⇒ c(α) 6= c(β).
To finish the proof of the Lemma, we prove the following three claims.

Claim 5.4 (Density Claim) There is a set H of ℵ1 many dense subsets of P such that
if G is H-generic, then domain of f ∗ is T .
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Proof. Let ρ ∈ T , we shall show that Eρ = {p ∈ P : ρ ∈ dom(fp)} is dense. Suppose
that p ∈ P is given and suppose that p 6∈ Eρ. We shall define an extension q of p which
is in Eρ. Let us define uq0 = up ∪ {ρ}. Let α = lg(ρ). We shall first extend fp to uq0. For
the ease of reading, we divide the proof into steps.
(1) The first case is that either there is no τ ∈ up with ρ ⊂ τ , or that there are such τ
but there is no τ ′, ρ′ ∈ up such that lg(ρ′) = α, ρ′ ⊂ τ ′ and fp(τ ′) = fp(τ). In this case
choose γ ∈ [ωα, ωα + ω) \ vp and define vq0 = vp ∪ {γ}, f q(ρ) = γ. Let γ >q β for any
β = fp(σ) for some σ ⊂ ρ and γ <q δ for any δ = fp(τ) for ρ ⊂ τ and τ ∈ up. Then the
relation <q is a partial order. We let cq(γ) be any value in ω not taken by cp.
(2) This step is the main point. It is that there is τ ∈ up with ρ ⊂ τ and τ ′, ρ′ ∈ up such
that lg(ρ′) = α, ρ′ ⊂ τ ′ and fp(τ ′) = fp(τ). In this case we shall have vq0 = vp, <0

q=<p

and cq = cp, so let us show how to extend fp to f q. Let τ be of the least length among
all τs as in the assumption of this case. We are then obliged to let f q(ρ) = fp(ρ′), since
fp(τ) can have only one restriction to the level α and fp(ρ′) is already such a restriction.
Note that for any τ ′′, ρ′′ ∈ up such that lg(ρ′′) = α, ρ′′ ⊂ τ ′′, fp(τ ′′) = fp(τ), we must
have fp(ρ′′) = fp(ρ′) since fp is a weak embedding. However, there is a possible problem:
there could be σ, σ′ and ρ′′ such that lg(ρ′′) = α, ρ ⊂ σ, ρ′′ ⊂ σ′, fp(σ) = fp(σ′),
which would force us to have fp(ρ) = fp(ρ′′), but maybe fp(ρ′′) 6= fp(ρ′). Luckily, this
cannot happen since up is closed under intersections, so for any such σ we would have
ρ = σ∩ τ ∈ up, which is not the case. In fact, any σ ∈ up with ρ ⊂ σ must satisfy τ ⊆ σ.

Main point

levα(T )
• • •

• • • •

ρ′ ρ ρ′′

τ ′ σ τ σ′

(3) Now we know what f q(ρ) is and we have to discuss the closure under intersections.
If there is τ ∈ up with ρ ⊂ τ , then taking such τ of minimal length, we have that for
every σ ∈ up, ρ ∩ σ = τ ∩ σ, by the minimality of the length of τ and the fact that up is
closed under intersections. In this case we let uq = uq0 and vq = vq0 and we are done. So
suppose that there is no such τ . Let σ ∈ up be the longest initial segment of ρ which is
in up, which exists since up is finite and it contains 〈〉. Then, if there are intersections
of the elements of uq0 which are not already be in uq0, they must be of the form τ ∩ ρ
for some τ ∈ up with σ ⊂ τ . Moreover, by the closure of up under intersections and the
choice of σ, there is a single τ ∈ up of least length which satisfies τ ⊆ τ ′ for any other
such τ ′. We then add τ ∩ ρ to uq0 to form uq and we note that this set is now closed
under intersections. If uq = uq0, then we are done. Otherwise, uq \ uq0 is a singleton and
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let β be such that the unique element of uq \ uq0 of length β. We then choose an ordinal
γβ ∈ [ω, ωβ+ω)\ran(fp) and we let fp(σ) <q γβ <q f

q(ρ). We extend <q by transitivity.
Finally we choose an element cβ ∈ ω \ ran(cq0) and let cq(γβ) = cβ.

To finish the proof of the claim, let H consist of all Eρ for ρ ∈ T . F5.4

Claim 5.5 For every α < ω1 we have that levα(T ∗) ⊆ [ωα, ωα+ω) and T ∗ has size ℵ1.

Proof. It follows from the definition of the forcing that ran(fp � (levα(T )) ⊆ [ωα, ωα+ω)
for every p ∈ P. That every levα(T ) is non-empty follows from Claim 5.4. F5.5

We can conclude that T ∗ is an ω1-tree. By genericity we have that the domain of c
is T ∗ and that c : T ∗ → ω satisfies α <p β =⇒ cp(α) 6= cp(β).

Claim 5.6 T ∗ has no uncountable branch.

Proof. This is an easy consequence of the properties of c, namely c is 1-1 on any branch,
and its range is a subset of ω. F5.6

Therefore T ∗ is an Aronszajn tree. To finish the proof of the lemma, it remains to
verify that f : T → T ∗ is a weak embedding, which follows from the genericity. F5.3

Lemma 5.7 The forcing P(T ) is ccc.

Proof. Recalling that the elements ρ of T are functions from a countable ordinal to ω1,
we shall use the notation ρ � α to denote the restriction of ρ to lg(ρ)∩α = max{lg(ρ), α}
and ρ(β) for the value of ρ at β ∈ lg(ρ). Also observe that lg(ρ) = dom(ρ).

Suppose that 〈pζ : ζ < ω1〉 is a given sequence of elements of P(T ). By extending
each pζ if necessary, using the density of the sets Eρ from Claim 5.4, we can assume that
for each ζ < ω1:

(a) there is an element of upζ and hence of vpζ of height ζ, and that

(b) for every ρ ∈ upζ and every β < lg(ρ) such that there is an element of upζ of height
β, the point ρ � β is in upζ .

Let

C =
{
ζ < ω1 : ωζ = ζ and (∀ε < ζ) max{lg(ρ), ρ(α) : ρ ∈ upε , α < lg(ρ)} < ζ

}
,

so C is a club of ω1 consisting of limit ordinals. By extending again if necessary, we shall
require that for every ζ ∈ C, there is an element in upζ of height in (0, ζ). For ζ ∈ C let
us define qζ = pζ � ζ, by which we mean:

1. uqζ = upζ ∩ <ζω1, vqζ = vpζ ∩ ζ,

12



2. <qζ=<pζ� v
qζ and

3. f qζ = fp
ζ
� uqζ , cqζ = cpζ � vqζ .

Applying the Fodor Lemma and the Delta-System Lemma, we obtain a stationary set
S ⊆ C such that:

1. for every ζ ∈ S we have: vqζ = v∗, <qζ=<
∗, cqζ = c∗ are fixed,

2. the sets uqζ form a ∆-system with root u∗,

3. for every ε < ζ ∈ S there is a level-preserving order isomorphism ϕε,ζ from uqε to
uqζ which is identity on u∗,2

4. for every ε < ζ ∈ S, f qε = f qζ ◦ ϕε,ζ ,

5. for every ε < ζ ∈ S, there is an order preserving isomorphism ψε,ζ from (upε ,⊆) to
(upζ ,⊆) which extends ϕε,ζ and such that fpε = fpζ ◦ ψε,ζ ,

6. for every ε < ζ ∈ S, there is an order preserving isomorphism iε,ζ from (vpε , <pε)
to (vpζ , <qζ) which is identity on v∗.

By the fact that there is an element of height ζ in upζ , we have that each upζ \uqζ 6= ∅.
Since 〈〉 ∈ uqζ we have that uqζ 6= ∅ for all ζ, but even more so, uqζ has an element of
height in (0, ζ). Let α1 = max{lg(ρ) : ρ ∈ uqζ} and α0 = min{lg(ρ) : ρ 6= 〈〉 ∈ uqζ}.
Since ζ is an element of C, it is a limit ordinal. The set uqζ is finite set and for every
ρ ∈ uqζ the length lg(rho) < ζ, so we have that α1 < ζ. By the choice of ϕε,ζ , the choice
of α0 and α1 does not depend on ζ. Finally let δ = min(C) \ α1.

Our requirements and the fact that T does not have an uncountable branch imply
that we can use Claim 4.8 to find ε < ζ ∈ S \ δ such that for every ρ ∈ upε \ u∗ and
σ ∈ upζ \ u∗, ρ and σ are incomparable. We shall find a common extension of pε and pζ .

We first define u0 = upε ∪ upζ . We also define f0 = fpε ∪ fpζ , which is well defined
by the assumptions of the ∆-system, and, similarly, c0 = cpε ∪ cpζ . We also simply let
<0=<pε ∪ <pζ , which still gives a partial order by the choice of ε and ζ. Specifically,
<0 makes any element of vpε incomparable to any element of and vpζ , which conforms
to the fact that any element of upε \ u∗ is incomparable to any element of upζ \ u∗.

The only problem is that u0 is not necessarily closed under intersections. Let us
analyse what type of intersection can occur and what we need to add to make u0 closed
under intersections.

Let ρ, τ ∈ u0. If ρ, τ ∈ upε or ρ, τ ∈ upζ then ρ∩ τ ∈ u∗. Let us now suppose that we
are dealing with some ρ ∈ upε \ upζ and τ ∈ upζ \ upε , the other case is symmetric.
Case 1. lg(ρ ∩ τ) < α0. We handle all instances of such ρ and τ simultaneously.

Using that ρ � α0 ∈ upε and τ � α0 ∈ upζ , it suffices to consider the case lg(ρ) =
lg(τ) = α0.

2Since upε and upζ are closed under intersections, ϕε,ζ necessarily preserves intersections.

13



Let σ0, . . . , σn be all σ = ρ ∩ τ obtained in this way. We choose for each i < n + 1
distinct f(σi) with ht(f(σi)) = lg(σi) (note that necessarily f(σi) ∈ ω1 \ ran(f0)) and
distinct ci in ω \ ran(c0). Extend u0 by adding all σ0, . . . , σn and v0 by adding all f(σi).
Extend <0 to a transitive order on v0 which satisfies f(σi) <0 f(η) when σi ⊂ η for some
ρ ∈ upε∪upζ . This is possible because there are no elements of u0 of length < α0. Extend
c0 to include the values ci = c(f(σi)) as above. Call the resulting tuple (u1, v1, <1, f1, c1).
Case 2. lg(ρ ∩ τ) ∈ [α0, α1). We handle all instances of such ρ and τ simultaneously.

Let σ = ρ∩τ . By our assumption (b) we can assume that ρ ∈ uqε \u∗ and τ ∈ uqζ \u∗
are of the least possible length with the intersection σ. By the fact that ϕε,ζ preserves
both order and height, another application of (b) lets us assume that ht(ρ) = ht(τ).
The possible dangerous configuration is that there are ρ′ ∈ uqε \ u∗, τ ′ ∈ uqζ \ u∗ of
length lg(ρ) and σ′ ∈ uqε \u∗, σ′′ ∈ uqζ \u∗ of length lg(σ) such that σ′ ⊂ ρ′ and σ′′ ⊂ τ ′,
fpε(ρ′) = fpε(ρ) = fpζ(τ) = fpζ(τ ′), yet fpε(σ′) 6= fpζ(σ′′).

Dangerous configuration
α0

α1

• • •

• • • •

σ′ σ σ′′

ρ′ ρ τ τ ′

fpε(σ′) 6= fpζ (σ′′)

fpε(ρ′) = fpε(ρ)

= fpζ (τ) = fpζ (τ ′)

If there were such points we would not be able to extend f1 to σ and keep it a weak
embedding. Luckily, this cannot happen since if there were to be any elements η of uqε
of length lg(σ), then by the fact that upε satisfies the assumption (b), σ = ρ � lg(η)
would already be upε , so in uqε .

This analysis shows that we can proceed as in Case 1 to extend (u1, v1, <1, f1, c1)
to (u2, v2, <2, f2, c2) which is closed under all intersections of Case 2 and satisfies other
requirements of being a condition. Note that (u2, v2, <2, f2, c2) remains closed under the
intersections of length < α0.
Case 3. lg(ρ ∩ τ) = α1.

Let σ = ρ ∩ τ . We have that σ = ρ � α1 ∈ upε and σ = τ � α1 ∈ upζ and hence
σ ∈ u∗, a contradiction.
Case 4. lg(ρ ∩ τ) > α1.

Let σ = ρ ∩ τ . By the choice of S, we have that upζ does not have any elements of
length lg(σ) and by the fact that upε is closed under restrictions, since σ = ρ � lg(σ), we
have that there are no elements of upε of length lg(σ) either. Hence we can proceed like
in Case 1. Once we are done closing under intersections of this type, we finally obtain a
common extension of pε, pζ . F5.7

Proof. (of Theorem 5.1) The proof follows by putting the lemmas together. F5.1
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6 Conclusion
Putting the results of Section §4 and Section §5 together, we obtain our main theorem,
as follows.

Theorem 6.1 Under MA(ω1), there is no wide Aronszajn tree universal under weak
embeddings.

Proof. Assume MA(ω1) and suppose for a contradiction that T is a universal element
in (T ,≤). By Theorem 5.1, there is an Aronszajn tree T ′ such that T ≤ T ′, so T ′ is
universal in (T ,≤) and so in (A,≤). However, by Theorem 4.1 (A,≤) does not have a
universal element, a contradiction. F6.1

We also remark that putting our results together with the results of Todorčević
mentioned in §4.9, gives the first part of the following Corollary 6.2. The second part of
the corollary improves Todorčević ’s theorem 2.1 and our Main Theorem 6.1.

Corollary 6.2 Assume MA(ω1). Then:
(1) The class L of Lipschitz trees and the class of coherent trees are cofinal in the class
(T ,≤).
(2) There is no element of (T ,≤) which suffices to weakly embed all Aronszajn trees

Proof. (1) Our Main Theorem 6.1 shows that under MA(ω1), the class or Aronszajn
trees is cofinal in the class of wide Aronszajn trees. On the other hand, Todorčević in §4
of [12] has shown that under the same assumptions, the class of coherent trees is cofinal
in the class of all Aronszajn trees and that every coherent tree is Lipschitz.
(2) This is a direct consequence of Theorem 5.1. F6.2
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