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Abstract 30 

Large scale and long-term changes in fish abundance and distribution in response to 31 

climate change have been simulated using both statistical and process-based models. 32 

However, national and regional fisheries management requires also shorter term 33 

projections on smaller spatial scales, and these need to be validated against fisheries data. 34 

A 26-year time series of fish surveys with high spatial resolution in the North East Atlantic 35 

provides a unique opportunity to assess the ability of models to correctly simulate the 36 

changes in fish distribution and abundance that occurred in response to climate 37 

variability and change. We use a dynamic bioclimate envelope model forced by physical-38 

biogeochemical output from eight ocean models to simulate changes in fish abundance 39 

and distribution at scales down to a spatial resolution of 0.5°. When comparing with these 40 

simulations with annual fish survey data, we found the largest differences at the 0.5° 41 

scale. Differences between fishery model runs driven by different biogeochemical models 42 

decrease dramatically when results are aggregated to larger scales (e.g. the whole North 43 

Sea), to total catches rather than individual species or when the ensemble mean instead 44 

of individual simulations are used. Recent improvements in the fidelity of biogeochemical 45 

models translate into lower error rates in the fisheries simulations. However, predictions 46 

based on different biogeochemical models are often more similar to each other than they 47 

are to the survey data, except for some pelagic species. We conclude that model results 48 

can be used to guide fisheries management at larger spatial scales, but more caution is 49 

needed at smaller scales. 50 

  51 
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Introduction 52 

Anthropogenic greenhouse gas emissions and associated warming strongly changes 53 

ocean conditions, including temperature, salinity, ice cover, currents, oxygen, nutrients 54 

and seawater acidity. These physical-biogeochemical changes affect the distribution, 55 

abundance and productivity of phytoplankton, zooplankton and the fisheries that depend 56 

on them (Perry et al., 2005; Pörtner, 2010; Cheung et al., 2011; Simpson et al., 2011; 57 

Barange et al., 2014; Jennings and Collingridge, 2015; Fernandes et al., 2017; Maar et al., 58 

2018; Lotze et al., 2019). Such changes are expected to continue during the 21st century 59 

under further global warming (IPCC, 2019) and have large implications for communities 60 

and industries that depend on marine species for food and income (Roessig et al., 2004; 61 

Cheung et al. 2012; Lam et al. 2012; Merino et al. 2012). A range of modelling approaches 62 

has been developed to project future changes in marine ecosystems and fisheries (e.g. 63 

Stock et al. 2011; Cheung et al. 2016). These models range from considering only the 64 

ocean physical dynamics and low trophic levels (Dunne et al., 2010; Butenschön et al. 65 

2016; Yool et al. 2013) to high trophic levels of fisheries and conservation interest 66 

(Nielsen et al., 2018; Peck et al., 2018; Tittensor et al., 2018). 67 

Species process-based bioclimate envelope models are commonly applied to study 68 

biological responses to global warming (Cheung et al., 2011; Jones et al. 2012). For 69 

example, the Dynamic Bioclimate Envelope Model (DBEM) is a combined mechanistic-70 

statistical approach that has been applied to a large number of marine species globally. 71 

The DBEM projects changes in species distribution and abundance with explicit 72 

consideration of known mechanisms of population dynamics, dispersal (larval and adult) 73 

and ecophysiology, under changes in ocean temperature, salinity, oxygen, pH, upwelling, 74 

sea-ice extent and habitat type (Cheung et al. 2008; 2009, 2011). Simulations with the 75 

DBEM model show that high-latitude regions will experience high rates of species 76 

invasion while the tropics will have high rates of local extinction by the end of the 21st 77 

century under a high greenhouse gas emission scenario (Cheung et al., 2009; 2016). In 78 

addition, maximum catch potential is projected to decrease in the tropics while some high 79 

latitude regions may experience increases in potential catch because of changes in range 80 

and size of exploited marine species as well as changes in primary productivity under 81 

global warming (Cheung et al. 2010). Recently, the DBEM has been combined with a size-82 

spectrum model (Jennings et al., 2008) to evaluate the effects of inter-specific interactions 83 



4 

 

in projecting species distribution (Fernandes et al., 2013a). Size spectrum theory 84 

accounts for energy transfer from primary production to individuals of different body 85 

sizes to estimate abundance/biomass and their flows in marine ecosystems (Jennings et 86 

al. 2008). The resulting integrated SS-DBEM (size-spectrum and DBEM model) projected 87 

slower fish species shifts than in models that did not account for energy limitation. The 88 

SS-DBEM has also been applied to several conservation issues (Jones et al., 2013; Queiros 89 

et al., 2015) as well as socio-economic assessments in the North East Atlantic (Mullon et 90 

al., 2016; Fernandes et al., 2017; Queiros et al., 2016) and developing countries 91 

(Fernandes et al., 2016). However, projections of future species and fishery distributions 92 

at local scales are uncertain (Payne et al., 2016, Cheung et al. 2016, Frölicher et al. 2016).  93 

 94 

The model simulations are often not well constrained by observational data as the 95 

available observations are limited in time and space. However, the availability of an 96 

extensive compilation of data describing the distribution and abundance of North Sea 97 

fishes from 1982 to 2007 (Simpson et al., 2011) provide us the opportunity to evaluate 98 

the accuracy of projections of simulated fish abundance and distributions from the SS-99 

DBEM model. The data were collected by ICES co-ordinated bottom trawl surveys (ICES, 100 

2012). We compare the data with simulations of fish abundance and distribution 101 

conducted by linking multiple biogeochemical models and the SS-DBEM of commercial 102 

fish populations. Thereby, we assess the likely reliability of future projections of fish 103 

stocks under climate change and the impact of spread in ocean biogeochemistry 104 

simulations on the fisheries projections. In addition, the combination of observation 105 

based atmospheric boundary conditions and atmospheric boundary conditions from 106 

Earth system models allows for an indication as to how the projections of fish abundance 107 

and distribution are affected by the internal variability of these systems in contrast with 108 

the more realistic variability from the reanalysis datasets. This understanding can be 109 

applied when considering other ecological modelling approaches that occupy a similar 110 

niche to SS-DBEM, many of which are the focus of inter-comparison efforts within the 111 

international FISH-MIP initiative (Nielsen et al., 2018; Peck et al., 2018; Tittensor et al., 112 

2018; Heike et al., 2019).  113 

  114 
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Methods 115 

 116 

We use output from three different ocean biogeochemical models (Table 1) to generate 117 

the environmental and biological conditions (temperature, salinity, oxygen, pH, currents 118 

and primary production) that drive the fish community model (size-spectrum dynamic 119 

bioclimate envelope model; SS-DBEM; Fernandes et al., 2013a). The ocean 120 

biogeochemical models are either run in fully coupled mode (i.e. coupled to a freely 121 

evolving atmosphere, land, and sea-ice model) or run in hindcast mode (i.e. ocean-only 122 

and forced at the ocean’s surface with observed or model-derived atmospheric 123 

conditions). We use multiple versions with different horizontal resolution of the three 124 

ocean biogeochemical models to examine how an increase in spatial resolution and/or 125 

different ocean biogeochemical model output influences the SS-DBEM simulations (Table 126 

1). Furthermore, runs for the same model are used to compare different generations of 127 

the same model and spatial resolutions. Fish distribution and abundance as simulated 128 

between 1982 to 2007 are compared with 26 years of data from fish surveys by European 129 

marine laboratories with a comparable spatial resolution (Simpson et al., 2011).  130 

 131 

  132 
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Ocean biogeochemical models  133 

The choice of the biogeochemical model used to force the DBEM may have a significant 134 

effect on forecasts of fish species abundance and distribution, especially in shelf seas 135 

regions where predictions of the biogeochemical models can differ markedly. For this 136 

reason, we chose to force the SS-DBEM with a diverse suite of output from three different 137 

ocean biogeochemical models run under a range of different forcing modes in order to 138 

cover the impact of the major sources of uncertainty in the biogeochemical forcing on the 139 

fisheries mode. These forcing modes differ in the underlying model configuration used 140 

and, as a result, in their relationship with real-world patterns of temporal variability. The 141 

forcing modes used here are: 142 

1. “Ocean-only hindcast mode”, where an ocean-only model is driven by 143 

observationally-derived surface forcing at its air-sea interface. This mode 144 

necessarily includes real-world trends and patterns of variability. There are a 145 

number of methods available for creating the so-called reanalysis forcing used in 146 

this mode, and this study exploits model simulations using several different 147 

approaches. 148 

2. “Fully-coupled mode”, where the model configuration includes an atmospheric 149 

component that interacts dynamically with the ocean component. This mode 150 

includes temporally-varying factors such as radiatively-active gases, so should 151 

reproduce overall climate trends (e.g. global warming). But each fully coupled 152 

model will show variability between runs whereas the observed data represent a 153 

single realisation for each time point. For example, the real ocean experienced an 154 

El Niño in 1997-1998. The coupled simulations may have had a La Niña, El Niño 155 

or been neutral at this time. Only the averages and variances of this internal 156 

variability are consistent with the real world.    157 

3. “Coupled-forced ocean-only mode”, where an ocean-only model is driven by 158 

surface forcing derived from a fully-coupled model. This mode is similar to the 159 

first mode, but uses surface forcing output from a model running in the second 160 

mode rather than observationally-derived forcing. As such, it may reproduce 161 

observed long-term trends, but not specific temporal variability. This approach is 162 

typically used where projection simulations into the future with relatively high 163 

ocean model resolution or model downscaling are required (Yool et al., 2015).  164 
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Note that both ocean-only and coupled modes have limitations in the context of decadal-165 

scale simulations: the forced ocean-only mode excludes any feedbacks between ocean 166 

and atmosphere (and the associated uncertainties), while the fully-coupled mode and 167 

coupled-forced ocean-only mode generate less directly-comparable data with present 168 

day conditions (particularly when phasing of internal variability is relevant). The use of 169 

a coupled prediction system as used in the WCRP Decadal Climate Prediction Project 170 

could reduce these shortcoming, however, these systems currently focus on physical 171 

climate and exclude biogeochemical components. 172 

 173 

Table1 summarises the models from which output has been used to force the SS-DBEM 174 

model.  175 

Name of 
model run 

Horizontal  
ocean  

resolution 

Forcing mode (Forcing dataset) 

GFDL-hindcast 1° Hindcast (CORE2 reanalysis) 
GFDL-coupled 1° Fully coupled 
GFDL-coupled-esm2m 1° Fully coupled 
MEDUSA-coupled-forced 1° Coupled-forced (HadGEM2-ES) 
ERSEM-hindcast-lowres 0.25° Hindcast (DFS 4.1) 
ERSEM-hindcast-lowres2 0.25° Hindcast (DFS 5) 
ERSEM-hindcast-highres 0.125° Hindcast (ERA 40 & ECMWF) 

Table 1. Characteristics of the different ocean biogeochemical simulations used in this study.  176 

 177 

The models are:    178 

1) The National Oceanographic and Atmospheric Administration (NOAA) and 179 

Geophysical Fluid Dynamic Laboratory (GFDL) Earth System Model. GFDL is a 180 

global model where: 1) GFDL CM2.1 is using MOM4 for its physics (Delworth et al. 181 

2006) and TOPAZv0 for its biogeochemistry (Henson et al., 2010); and 2) GDFL 182 

ESM2M is using MOM4p1 for its physics and TOPAZv2 for its biogeochemistry 183 

(Dunne et al., 2010; 2012; 2013). TOPAZ simulates the cycling of carbon, nitrogen, 184 

phosphorus, silicon, iron, oxygen, alkalinity and lithogenic material, and includes 185 

three phytoplankton functional groups and one zooplankton. In this work the 186 

GFDL CM2.1 is run in both hindcast and fully-coupled modes, whereas GFDL 187 

ESM2M is run in fully coupled mode. The hindcast run here uses boundary 188 

conditions of bulk air properties, incoming fluxes of radiation and freshwater, and 189 
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surface wind stress as prescribed by the observationally-derived CORE-2 190 

reanalysis product (Large & Yeager, 2009).  191 

2) The European Regional Seas Ecosystem Model (ERSEM, Butenschön et al. 2016) 192 

coupled to the NEMO ocean model (low resolution; Madec, 2008) and the 193 

POLCOMS ocean model (high resolution; Holt et al., 2001). Hindcast mode 194 

simulations are used in this study both at different resolutions and under different 195 

observationally-derived atmospheric boundary forcing including DFS 4.1 196 

(Brodeau et al., 2010), ERA 40 & ECMWF (Uppala et al., 005) and DFS 5 (Brodeau 197 

et al., 2010). ERSEM is a biogeochemical model for the lower trophic levels of the 198 

pelagic and benthic ecosystem, and uses a functional-groups approach that 199 

incorporates four phytoplankton, three zooplankton and bacterioplankton to 200 

simulate decoupled carbon and nutrient dynamics (Blackford et al., 2004; 201 

Butenschön, 2016). All ERSEM models here are regional models where the highres 202 

simulation is a regional set-up for the North-West European Shelf with details on 203 

the configuration, initial conditions, boundary conditions and forcings are 204 

available in (Holt et al. 2012). The two ERSEM lowres simulations are from a 205 

NEMO-ERSEM configuration for the Atlantic Ocean at 0.25 degree (further details 206 

in Memery and Allen, 2011; Allen et al., 2014). The two different versions of this 207 

system reflect an update in model parametrisation and atmospheric forcing and 208 

forecasting performance differences between using higher and lower results. Both 209 

versions were included in the analysis in order to investigate how the resulting 210 

changes propagate to the higher trophic level model. 211 

3) The MEDUSA biogeochemical model (Yool et al., 2013a, 2013b) coupled to the 212 

NEMO ocean model. Output from a coupled-forced ocean-only mode simulation is 213 

used here, with the forcing derived from a CMIP5 simulation of the HadGEM2-ES 214 

ESM (Collins et al., 2011). MEDUSA is lower complexity model, with two 215 

phytoplankton, two zooplankton, three nutrients (N, Fe, Si) and slow-/fast-sinking 216 

detritus compartments (Yool et al. 2013a). 217 

In terms of biogeochemical complexity, MEDUSA is the simplest model considered here, 218 

ERSEM is the more complex, with GFDL intermediate. Note that different versions of the 219 

GDFL and ERSEM models were used here as well as different simulation configurations. 220 
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These differences relate to model evolution and improvement, including parameter 221 

updates and the use of different spatial resolutions.  222 

 223 

Fish model 224 

 225 

The size-spectrum dynamic bioclimate envelope model (SS-DBEM) described in 226 

Fernandes et al. (2013a) is used to simulate changes in abundance and distribution of fish 227 

species. The SS-DBEM projects changes in species distribution and abundance with 228 

explicit consideration of known mechanisms (Table 2) of population dynamics, dispersal 229 

(larval and adult) and ecophysiology, under changes in ocean temperature, salinity, 230 

upwelling, sea-ice extent and habitats (Cheung et al. 2011), and species interactions 231 

based on size-spectrum theory and habitat suitability (Fernandes et al., 2013a). In SS-232 

DBEM, current distributions of the studied species are first estimated based on habitat 233 

suitability (Close et al. 2006). This is done based on a global dataset of observed 234 

abundance data from Cheung et al. (2008; available at fishbase.org which redirects to 235 

maps hosted at aquamaps.com) overlaid with environmental data (temperature, salinity, 236 

oxygen and pH at sea surface for pelagic species and at sea bottom for demersal species 237 

as well as depth and distance to ice) from biogeochemical models described above. It is 238 

assumed that the carrying capacity of each species in each area is partly dependent on 239 

the inferred preference profiles which depend on the projected biogeochemical 240 

conditions (e.g. temperature, salinity, pH and currents) but limited by primary 241 

production. Simultaneously, the model considers each species' physiological preferences 242 

and tolerances to temperature, and sensitivity of key parameters determining the 243 

species' mechanisms (mortality, growth and length-weight relationship). Natural 244 

mortality rate is estimated from an empirical equation (Pauly, 1980) which considers 245 

weight, growth and temperature. The model growth algorithm (Cheung et al., 2011) is 246 

derived from the von Bertalanffy growth function (VBGF; von Bertalanffy, 1951). Therein, 247 

growth is viewed as the difference between anabolic and catabolic processes. The 248 

temporal and spatial patterns of pelagic larval dispersal (Cheung et al., 2008) are 249 

modelled by a two-dimensional advection-diffusion equation (Sibert et al. 1999; Gaylord 250 

& Gaines 2000; Hundsdorfer & Verwer, 2003). Adult dispersal is calculated from the 251 

dispersal or movement rate using an algorithm employed in an Eulerian spatial 252 

ecosystem simulation model (Walters et al. 1999). 253 
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Table 2. Table summarizing main equations and parameters to consider the species 254 

mechanisms in SS-DBEM. Further details are given in the associated references. 255 

Mechanism Equation Parameters 

Growth = anabolism – 

catabolism 

(Pauly 2010; Cheung et al., 

2011) 

G = HWa – kW  

H = g[O2] * e-j1/T 

k = h[H+] * e-j2/T 

 

H = anabolism coefficient 

k = catabolism coefficient 

W = body weight 

a = anabolism exponent (0.5 to 0.95) 

W∞ = asymptotic weight 

The coefficients g and h were derived from the 
average W1, K, and environmental temperature (T) of 
the species reported in the literature. 

Length-Weight W = a * Lb W = weight 

L = length 

Size-spectrum 

production 

(Jennings et al., 2008; 

Fernandes et al., 2013) 

P = exp (25.22 – E/kT) * 

W0.76 

E = activation energy of metabolism 

k = Boltzmann's constant 

T = temperature in Kelvin (°C+273) 

Intrinsic population 

growth rate (Hilborn & 

Walters,1992) 

G=r * A * (1 – (A/KC)) r = intrinsic rate of population increase 

A = the relative abundance  

KC = population carrying capacity  

Larval dispersal 

(Hundsdorfer & Verwer 

2003; 

Cheung et al., 2008) 

 D = diffusion parameter 

(u, v) = velocity parameters 

LAV = larvae recruitment 

Adult movement Cm * h-1 Cm = centimetre 

h = hour 

Natural mortality M = -0.4851 – 0.0824 * 

log(Winf) + 0.6757 * log (K)  

+ 0.4687 * log(T) 

Winf = asymptotic weight 

K = von Bertalanffy growth parameter  

T = average water temperature in the animal’s 

range. 

 256 

The SS component of the model addresses resource competition between different 257 

species co-occurring in any given cell by comparing the biomass that can be supported in 258 

the cell, as determined from primary production and the size-spectrum model, with the 259 

energy demanded by the abundance of the species predicted to inhabit this cell. This 260 

allocation is based on habitat suitability considerations and a generic group (other 261 

species) that can also compete for energy particularly if there is a surplus is available 262 

(Fernandes et al 2013a). If the energy demanded by all species in the cell exceeds the 263 

energy available, then the model allocates available energy to each species in proportion 264 
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to its energy demands. If the energy demanded by all the species is lower than the energy 265 

available, the surplus energy is allocated according to the proportional energy demand of 266 

the species present. The rate at which this energy can be assimilated is limited by 267 

constraints on species’ growth rates as described in Fernandes et al (2013a).  268 

 269 

The model can consider fishing pressure in relation to maximum sustainable yield 270 

(MSY). MSY is defined as the highest average theoretical equilibrium catch that can be 271 

continuously taken from a stock under average environmental conditions (Hilborn & 272 

Walters, 1992). Based on a simple logistic population growth function and under 273 

equilibrium conditions, MSY can be defined as: 274 

 275 

MSY = B∞ * intR /4 276 

 277 

where intR is the intrinsic rate of population increase and B∞ is the biomass at carrying 278 

capacity (Schaefer, 1954; Sparre and Venema, 1992). In our application, the intR values 279 

are calculated based on natural mortality (Pauly 1980; Cheung et al., 2008). This is an 280 

approximation and not as reliable as estimates of biomass using survey-based methods 281 

(McAllister et al. 2001; Pauly et al., 2013). However, these estimates have proven to be 282 

significantly correlated with those from aggregated stock assessments (Froese et al., 283 

2012; Fernandes et al., 2013). This fishing mortality is applied uniformly across all the 284 

cells according to scenarios of fishing (e.g. 0.8 or 1.2 times MSY) and do not aims to 285 

reproduce exact past fisheries effort distribution. Therefore, in this work no fishing 286 

mortality scenario was activated in the model projections. Future work based on catch 287 

and fishing effort reconstructions (Watson et al., 2017; Taconet et al., 2019) may allow 288 

estimates of historical non-uniform fishing mortality to be included in models.   289 



12 

 

Fisheries survey data  290 

Eleven standardised and long-term fisheries surveys from 1982 to 2007 covering all year 291 

seasons (Simpson et al., 2011) were used to validate the model (Fig. 1). These surveys 292 

(AFBI Iris Sea Q3, AFBI Irish Sea Q1, CEFAS Celtic Sea, CEFAS Eastern Channel, CEFAS 293 

Irish Sea, CEFAS North Sea, CEFAS Western Channel, FRS NW Scotland Q1, FRS NW 294 

Scotland Q4, ICES IBTS North Sea Q1, MBA Western Channel) were collated by Simpson 295 

et al. (2011) and now available at ICES DATRAS online database (www.ices.dk/marine-296 

data/data-portals/Pages/DATRAS.aspx). To control for the differing effort between 297 

surveys, the swept area for each haul (over 22 000 hauls with six different gears) was 298 

calculated using estimates of wing-spread for Grande Ouverture Verticale trawls from 299 

Fraser et al. (2007):  300 

 301 

Area swept = (((6.85 * (log10(depth))) + 5.89) * distance) / 106 302 

 303 

Where area swept is in km2, and depth and distance are in meters. A tow speed of 4 knots 304 

(7.4 km h-1) was assumed for the duration of the haul, except for data from the Celtic sea 305 

collected by Agri-Food and Biosciences Institute, Belfast, UK, where the data were 306 

originally provided as number of individuals per 3 nautical miles (~5.6 km). The 106 307 

scaling converts from m2 to km2. 308 

 309 

Catchability estimates (Table 3) were used to provide more robust estimates of 310 

abundance for each species by sizes (Sparholt 1990; Fraser et al., 2007). An average 311 

catchability estimate was applied to similar species, where individual species values were 312 

not available. 313 

 314 

Corrected abundance = uncorrected abundance*(1/catchability)  315 

  316 

http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
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Table 3. Table summarizing catchability correction values by species and sizes (based on 317 

Simpson et al., 2011). 318 

Species Size (cm) Catchability correction  
Chelidonichthys 
lucerna 

1-20, 21-22, 23-25, 26-30, 31-33, 34, 25-
80 

0.21, 0.18, 0.17, 0.16, 0.14, 0.13, 0.11 

Clupea harengus 1-100 0.1 
Gadus morhua 1-31, 32-36, 37-39, 40-42, 43-45, 46-47, 

48-49, 50-51, 52-53, 54-55, 56, 57-58, 
59, 60-61, 62, 63-64, 65, 66, 67, 68, 69-
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 
92, 93, 94, 95, 96, 97-200 

0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 
0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 
0.32, 0.33, 0.34, 0.35, 0.36,  0.37, 0.38, 
0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 
0.47, 0.48, 0.49, 0.5, 0.52, 0.53, 0.54, 0.55, 
0.56, 0.58, 0.59, 0.6, 0.61, 0.63, 0.64, 0.65, 
0.67 

Glyptocephalus 
cynoglossus 

1-20, 21, 22-23, 24, 25, 26-27, 28-31, 32-
34, 35-38, 39-60 

0.11, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 
0.03, 0.04, 0.05 

Hippoglossoides 
platessoides 

1-5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16-19, 
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30-
60 

0.11, 0.16, 0.2, 0.23, 0.26, 0.29, 0.32, 0.34, 
0.36, 0.37, 0.38, 0.39, 0.38, 0.37, 0.35, 
0.33, 0.31, 0.29, 0.26, 0.22, 0.19, 0.15, 0.1 

Lepidorhombus 
whiffiagonis 

1-60 0.06 

Melanogrammus 
aeglefinus 

1-11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 26-27, 28-33, 34-35, 36-
37, 38, 39, 40, 41, 42, 43, 44, 45, 46-80 

0.01, 0.04, 0.06, 0.09, 0.11, 0.13, 0.15, 
0.17, 0.19, 0.2, 0.21, 0.23, 0.24, 0.25, 0.26, 
0.27, 0.28. 0.27, 0.26, 0.25, 0.24, 0.22, 
0.21, 0.2, 0.18, 0.16, 0.14, 0.12 

Molva molva 1-11, 12-200 0.05, 0.1 
Raja montagui 1-200 0.15 
Sardina pilchardus 1-100 0.1 
Scomber scombrus 1-100 0.19 
Scophthalmus maximus 1-21, 22-24, 25-28, 29-31, 32-34, 35-38, 

39-41, 42-200 
0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12 

Scyliorhinus canicula 1-200 0.22 
Solea solea 1-22, 23-60 0.04, 0.05 
Sprattus sprattus 1-100 0.1 
Trachurus trachurus 1-100 0.19 
Trisopterus esmarkii 1-100 0.19 
Trisopterus luscus 1-11, 12-60 0.05, 0.1 

 319 

  320 
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Model validation 321 

All survey data were aggregated into a 0.5º × 0.5º cell grid to match the SS-DBEM grid. To 322 

compare simulated changes with observations from surveys, time-series at different 323 

aggregation scales (e.g. aggregating all the cells, or all the species in a cell) were extracted 324 

and projected biomass was scaled to lie between 0 and 1. Since multiple species at 325 

multiple cells are considered, we ensured that results were comparable by omitting time-326 

series of survey data with more than 3 years of missing data. Then, time-series output 327 

from the SS-DBEM models were extracted for the remaining years, species and cells 328 

where there were data from the surveys at the 0.5º × 0.5º grid and yearly resolution. This 329 

restricted the data that could be analysed to the time period 1982 to 2007 (26 years) and 330 

to 18 species, including 5 pelagic species: Atlantic herring (Clupea harengus), Atlantic 331 

mackerel (Scomber scombrus), Atlantic horse mackerel (Trachurus trachurus), European 332 

pilchard/sardine (Sardina pilchardus), sprat (Sprattus sprattus); and 13 demersal 333 

species: haddock (Melanogrammus aeglefinus), plaice (Hippoglossoides platessoides), 334 

witch (Glyptocephalus cynoglossus), megrim (Lepidorhombus whiffiagonis), cod (Gadus 335 

morhua), common sole (Solea solea), lesser spotted dogfish (Scyliorhinus canicula), 336 

Norway pout (Trisopterus esmarkii), turbot (Scophthalmus maximus), tub gurnard 337 

(Chelidonichthys lucerna), pouting/bib (Trisopterus luscus), ling (Molva molva) and 338 

spotted/cuckoo ray (Raja montagui). We chose these species as they are both 339 

commercially important for local fisheries and include some species with distributions 340 

centred on the North Sea, Celtic Sea and Irish Sea alongside those with more northerly 341 

(high latitude) and southerly (low latitude) centres of distribution. 342 

 343 

We compared model projections with data at different scales, spanning those used in 344 

previously published projections of climate-driven changes in fish distribution and/or 345 

abundance (e.g. Fernandes et al., 2016; Fernandes et al., 2017; Jones et al., 2013; Mullon 346 

et al., 2016; Queiros et al., 2015; Queiros et al., 2016; Coccoli et al., 2018). We consider 347 

the following (Fig. 1): (1) all the cells are considered for all the species (325 cells and 18 348 

species) named “Species by cells” in a first spatial validation; (2) time series for individual 349 

species aggregated over all cells (“All species” or individual species) in a first temporal 350 

validation; and, (3) time series for each of the 325 cells where all the species are 351 

aggregated (“All cells” or individual cells) in a spatial and temporal validation, and, (4) a 352 

time series for each species aggregating all the cells for which survey information was 353 
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available (species cells sum). A species could be present in between 75 (turbot) and 325 354 

(Herring) cells.  355 

 356 

 357 

Figure 1. Example of survey data for cod (one of the species with more coverage) in Celtic Sea, Irish Sea and 358 
North Sea (left side). Scheme of spatial and temporal validation resolutions in the right side. 359 
 360 

The time-series 1-3 were generated for both the survey data and the model projections 361 

and comparisons between data and projections were reported as absolute error (AE): 362 

 363 

AEj = |pj-xj|                                                                                                                           (1) 364 

 365 

where, p is the scaled biomass predicted in a SS-DBEM model in a particular year for a 366 

species, and x is the scaled biomass from the survey. The use of scaled values enables 367 

direct comparison of data and SS-DBEM projections across species and levels of 368 

aggregation.  369 

 370 

  371 



16 

 

Results 372 

 373 

The main environmental drivers of SS-DBEM and other fisheries models are temperature 374 

and net primary production, which are obtained from the ocean biogeochemical models. 375 

Most forcing models show an increasing trend in temperature over the 1982-2007 period 376 

for which we have fish survey data (Fig 2). There is spread in the absolute temperature 377 

with some models simulating temperatures of 10.5 to 11.5 °C in cells included in the fish 378 

surveys, while others projecting temperatures of 9.5 to 10.5°C (Fig. 1). Trends in primary 379 

production are more uncertain than those in temperature, with some models showing no 380 

trends, while others project decreases of 10-15% over the 1982-2007 period.  381 

 382 
Figure 2. Simulated annual sea surface temperature and net primary production changes from 1982 to 383 
2007 of different biogeochemical models. The reported values are the average across cells where fish 384 
survey data is considered. The time-series has been smoothed with a five-year moving average. Solid lines 385 
indicate reanalysis projections and dashed lines fully coupled projections. 386 
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There are multiple examples where there is a good fit between SS-DBEM projections and 387 

survey data with high correlation (Pearson) among projections and survey data (Fig. 3): 388 

herring between 0.73 (GFDL-hindcast) and 0.96 (GFDL-coupled), Cod 0.76 (MEDUSA-389 

coupled-forced), haddock between 0.92 (ERSEM-hindcast-lowres2) and 0.95 (GFDL-390 

coupled), sprat between 0.88 (GFDL-hindcast) and 0.96 (ERSEM-hindcast-lowres), sole 391 

between 0.81 (ERSEM-hindcast-highres) and 0.91 (GFDL-coupled),392 

 393 

Figure 3. Scaled biomass projections (5 years moving average) for 5 pelagic and 13 demersal species with 394 
different biogeochemical model forcings in cells where fish survey abundance data were also available. 395 
Note that Cod projections failed with several inputs from biogeochemical models. 396 
 397 



18 

 

pouting between 0.65 (GFDL-coupled-esm2m) and 0.78 (ERSEM-hindcast-highres), 398 

horse mackerel between 0.69 (ERSEM-hindcast-lowres) and 0.76 (MEDUSA-coupled-399 

forced), plaice between 0.49 (MEDUSA-coupled-forced) and 0.87 (ERSEM-hindcast-400 

highres), or cuckoo ray between 0.79 (GFDL-coupled-esm2m) and 0.99 (GFDL-coupled). 401 

Witch is another species where most models seem to perform well with correlations 402 

between 0.59 (ERSEM-hindcast-lowres2) and 0.75 (GFDL-coupled), but where one model 403 

performs very bad showing high negative correlation of -0.74 (ERSEM-hindcast-lowres). 404 

Model runs for mackerel and megrim do not perform so well, but still show competitive 405 

correlations between 0.58 (GFDL-hindcast) and 0.66 (ERSEM-hindcast-lowres) for 406 

mackerel, and between 0.45 (ERSEM-hindcast-highres) and 0.54 (GFDL-coupled) for 407 

Megrim. Model runs for dogfish and tub can achieve high correlations of 0.74 (GFDL-408 

coupled) and 0.87 (GFDL-coupled) respectively, however some of the models show also 409 

very low performances of 0.36 (ERSEM-hindcast-lowres2) and 0.3 (MEDUSA-coupled-410 

forced) respectively. Finally, a few species show very low correlations for all model runs 411 

(Ling between 0.01 and 0.28) or even negative correlations: turbot between -0.17 and 412 

0.44, pout -0.41 and -0.47, and pilchard between -0.14 and -0.54.  413 

These results suggest that an increase in spatial resolution does not necessarily mean a 414 

higher performance in species biomass trends. The highest resolution model (ERSEM-415 

hindcast-highres) sometimes shows higher correlation with survey data for some 416 

demersal species (pouting and plaice) than the lowest resolution models. However, for 417 

other pelagic and demersal species often the lowest resolution model runs (GFDL) are 418 

the ones showing the highest correlations (e.g. herring, haddock, sprat, sole). In other 419 

cases, although the higher resolution model runs may show superior correlations these 420 

may be very close to lower resolution model correlations and not be statistically 421 

significant different from them (paired t-test). 422 

Fits tend to improve in later years in the time series for several species, perhaps reflecting 423 

the reduction in fishing mortality (Simpson et al., 2011) and its effect on survey data 424 

distributions in later years (Fig. 3). However, this could also be the result of a more 425 

representative area being covered by the surveys since their geographical extend has 426 

increased over time (Baudron et al., 2020). 427 

 428 
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The different biogeochemical models generate rather similar error, with more variation 429 

between models for the pelagic fish species and for sharks and rays (Fig. 4). In “Species 430 

by cells” comparisons (1) median error is 0.42-0.44, with similar results between runs. 431 

At the “All species” or individual species level (2), the median of the error is 0.27-0.31. 432 

This means that when looking at the species aggregated biomass, the SS-DBEM is more 433 

reliable and that there is rather little impact of the biogeochemical chosen for 434 

environmental conditions projection. The lowest error values correspond to the 435 

reanalysis run (GFDL) and the latest runs (ascending order in Table 1) showing that 436 

improvements in the forcing models (e.g. new data or reparameterization) are translating 437 

into more reliable projections from the SS-DBEM. However, the performance differences 438 

are small in most species and levels of aggregations which highlight the higher role of the 439 

model uncertainty in the fisheries model. With “All cells” (3) the error range is 0.16-0.18 440 

which shows the ability of the forcing and SS-DBEM model to forecast variations in total 441 

biomass at 0.5° resolution. Ensemble model results are within those error ranges and do 442 

not improve performance when working with “All cells” (Fig. 2i). 443 

In general, errors are smaller for “All species” (2) than for the species in each cell 444 

(“Species by cells”, 1). The mean and standard deviation for the former are 0.25±0.11 and 445 

0.40±0.14 for the latter (Fig. 4). This confirms higher model performance for total 446 

biomass than for species biomass in each cell. The results by species can help to identify 447 

where the SS-DBEM needs improvement. In general, widely distributed pelagic species 448 

(e.g. Herring, Horse mackerel, mackerel, sprat) have among the highest errors at the 449 

“Species by cells” (1) level, but a better performance when the total species biomass in 450 

each cell is considered (“All species”, 2). This indicates that there is something 451 

systematically wrong with the way that the SS-DBEM handles those species, even though 452 

the general allocation of biomass to pelagics is reasonable. Note, however, that the 453 

bottom trawl surveys are not designed to sample pelagic species (ICES, 2016) and 454 

relatively short tows with limited time in the water column can provide a misleading 455 

picture of abundance and distribution for predominantly shoaling species (Battaglia et al. 456 

2006). At the “Species by cells” (1) level the species for which the models perform best 457 

are pout, haddock, plaice and lesser-spotted dogfish, all bottom-dwelling species that are 458 

effectively sampled by the survey gear (Fraser et al 2007; Walker et al. 2017). 459 
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 460 

Figure 4. Median of the absolute error at different scales of analysis for species and overall (bold) where (1) all the 461 
cells are considered for all species (325 cells and 18 species) named “Species by cells”; (2) time series for each species 462 
where all the cells are considered aggregated (“All species”); (3) time series for each of the 325 cells where all the 463 
species are aggregated (“All cells” (species sums)); and, (4) a time series is produced for each species aggregating all 464 
the cells with survey information (species cells sum). See text for additional explanation.  465 
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Discussion 466 

 467 

While there was generally good agreement among biogeochemical models on the sign 468 

and extent of the temperature increase, the trends in primary production were less 469 

consistent. These differences can be attributed to a variety of factors such as model 470 

uncertainty and internal model variability (Hawkins and Sutton, 2009; Naujokaitis‐Lewis 471 

et al., 2013; Payne et al., 2015, Cheung et al. 2016, Frölicher et al. 2016). Especially on 472 

local-to-regional scale (i.e. North-East Atlantic), model uncertainty and internal 473 

variability may play a dominant role in differences across model runs (Hawkins and 474 

Sutton, 2009; Chust et al. 2014; Frölicher et al. 2016). Here it seems that model 475 

uncertainty/resolution may play a bigger role than internal variability given that 476 

uncertainty in NPP trends is as large or larger for models forced in the same way 477 

(reanalysis) than for models that are forced differently (i.e. coupled or forced), but share 478 

the same biogeochemical model. For example, Laufkötter et al. (2015) have identified 479 

how uncertainty in the representation of underlying physiological processes influences 480 

the trends in net primary production. Here, we can observe in the multiple runs of 481 

historical and forced GFDL the uncertainty due to internal variability seems to be smaller 482 

than model uncertainty in marine biogeochemical models. Detailed comparisons of six 483 

different biogeochemical models (including MEDUSA and ERSEM used here) in 484 

physically-identical model simulations have shown the importance of the underlying 485 

modelled biogeochemistry on biogeochemical indicators including primary production 486 

(Kwiatkowski et al.,  2014). However, the main characteristics of the trends of the two 487 

sets of environmental variables from the biogeochemical models used in this study to 488 

drive the fisheries simulations are in line with the results from global model data sets 489 

(Steinacher et al. 2010, Laufkötter et al. 2015, Frölicher et al. 2016). 490 

 491 

Existing studies have made projections of fish distribution and abundance at scales 492 

ranging from higher resolution (Cheung et al., 2011; Burrows et al., 2014; Molinos et al., 493 

2015) to higher level of aggregation (Mullom et al., 2016; Fernandes et al., 2016). Many 494 

studies, including those for fisheries management, only need information at relatively low 495 

level of aggregation such as LMEs, FAO areas, seas, ICES areas, EEZs or subregions 496 

(Blanchard et al., 2012; Fernandes et al., 2016; Mullon et al., 2016; Queiros et al., 2015; 497 

Queiros et al., 2018). Applications not dependent on high resolution data are often used 498 
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for management and economic research, linked with long term scenarios (Mullon et al. 499 

2016; Queiros et al., 2018) or ecological studies looking at overall impacts on specific 500 

species or habitats (Queiros et al., 2015).  However, other studies and management 501 

research aims for or requires a higher level of detail such as cells of 0.5° x 0.5° or smaller 502 

as in the case of ICES rectangles or even 1x1 km2 for local marine spatial planning or 503 

studies of shifts of species abundance centroids (Jones et al., 2013; Queiros et al., 2016; 504 

Fernandes et al., 2017; Coccoli et al., 2018). Some applications requiring higher resolution 505 

are marine spatial planning (Queiros et al., 2016, Coccoli et al., 2018) or studies about 506 

shifts of species abundance centroid (Jones et al., 2013).  507 

 508 

The widely reported regime shift in the late 1980’s in the North Sea (Reid and Edwards 509 

2001, Beaugrand 2004, Weijerman, Lindeboom et al. 2005) suggested to have affected 510 

several species in this analysis (Fig. 4) providing evidence of biogeochemical drivers for 511 

the shifts. The reported shifts are sparse such as the increase in horse mackerel, sprat and 512 

reduction of cod in abundance (Reid, Borges et al. 2001, Alheit, Mollmann et al. 2005) 513 

despite other species shifts might have occur.  However, a recent publication shows 514 

species distribution shifts for 17 main widely distributed species in the North East 515 

Atlantic (Baudron et al., 2020).  The comparison of the performance of the models at 516 

different resolutions shows, in general, that outputs are more reliable when aggregated 517 

at larger time- and space- scales. As such, these would be favoured for reporting. 518 

However, users of projections will often seek projections for individual species of 519 

conservation or fisheries significance and small areas that reflect those accessible to, or 520 

used by, a defined fishing fleet. For example projections at small space and time scales 521 

may be requested to assess the abundance of “choke” species under climate change, given 522 

their potential effects on the capacity of a fishery to access available quota (Baudron and 523 

Fernandes, 2015). 524 

 525 

Predicted latitudinal shifts of species are difficult to compare with empirical data since 526 

data collection is often focused in areas where species have been distributed in the past 527 

(ICES, 2016). This is the case of our survey data (Simpson et al., 2011) where sampling 528 

centres on the Celtic Sea, Irish Sea and North Sea (up to ICES area IVa) or sprat surveys 529 

that are focused in the Baltic Sea. Sparse data are available for ICES area IVa (ICES, 2016) 530 
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and North of the Faroe Islands. However, species latitudinal shifts have been observed in 531 

the global catch data (Cheung et al., 2013). There is limited knowledge North of ICES area 532 

IVa due to limited international cooperation to share survey data and even South of ICES 533 

area IVa the surveys mostly target higher value demersal species (ICES, 2016). However, 534 

the aim of models such as SS-DBEM is not to predict accurately (Planque et al., 2016; 535 

Dickey-Collas et al., 2014) where the species are present or will be present, but to 536 

highlight the species and areas where changes are more likely to happen, and generate 537 

uncertainty estimates (Planque et al., 2016; Payne et al., 2016). There is a trade-off 538 

between goodness-of-fit and generalization power (Fernandes et al., 2015). Models that 539 

very precisely represent the present have a performance that deteriorates faster as 540 

projections are made further into the future (Rutterford et al., 2015).  541 

 542 

At the highest output resolution we considered (0.5 × 0.5 degrees by year and species) 543 

error was relatively high.  Rutterford et al. (2015) also compared observed data with 544 

predicted values using a GAM to project changes in distribution and abundance of 545 

demersal species, obtaining correlations >0.5 for a 10 year forecast, but decreasing to 546 

≤0.5 at 10 year or longer-term forecasts.  Statistical methods based on observations may 547 

have limited value in long-term forecasting of systems that are expected to depart 548 

markedly from their past state due to the long-term impacts of climate change (Barnsley 549 

et al., 2007; Queiros et al., 2015; Payne et al., 2016). In addition, statistical models that 550 

consider interactions between species are rare (Fernandes et al., 2013b), whereas this is 551 

more common in mechanistic models (Blanchard et al. 2012; Fernandes et al., 2013a; 552 

Thorpe et al., 2015). The survey data used in statistical models are relatively costly to 553 

obtain and in many regions such observations are sparse or non-existent (e.g. 554 

Bangladesh; Fernandes et al., 2016).  555 

 556 

Variation between biogeochemical models is limiting predictions for several pelagic 557 

species, whereas for most of the remaining species the choice of the biogeochemical 558 

model makes little difference. Therefore, for most of the species the validation performed 559 

here can guide improvement in fisheries models. Another alternative is the use of model 560 

ensembles as a means of increase the reliability of projections (Araújo & New, 2007; Jones 561 

et al., 2012; McKenna et al., 2013; Scales et al., 2015). In this study, the ensemble of 562 

forcing-model runs did not affect performance of the SS-DBEM on average, but reduced 563 
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the probability of extreme errors, which would be an important consideration for some 564 

applications. Outcomes from any given ensemble are highly dependent on the diversity 565 

of constituent models, so it is unlikely our result can be generalised. Recent research is 566 

moving towards ensembles of biological models which could benefit from similar 567 

validation exercises (Lotze et al., 2019; Hermann et al., 2019) and collaborative protocols 568 

for integration and comparison of multiple fisheries models (Tittensor, et al. 2018). 569 

 570 

 571 

 572 
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28 

 

Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, 742 
N. Weyer (eds.)]. In press. 743 

Jennings, S., & Beverton, R. J. H. (1991). Intraspecific variation in the life history tactics of Atlantic herring 744 
(Clupea harengus L.) stocks. ICES Journal of Marine Science: Journal du Conseil, 48(1), 117-125. 745 

Jennings, S., Mélin, F., Blanchard, J. L., Forster, R. M., Dulvy, N. K., & Wilson, R. W. (2008). Global-scale 746 
predictions of community and ecosystem properties from simple ecological theory. Proceedings 747 
of the Royal Society B: Biological Sciences, 275(1641), 1375-1383. 748 

Jennings, S., & Collingridge, K. (2015). Predicting consumer biomass, size-structure, production, catch 749 
potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. 750 
PloS one, 10(7). 751 

Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R., & Cheung, W. W. (2012). Modelling commercial fish 752 
distributions: Prediction and assessment using different approaches. Ecological Modelling, 225, 753 
133-145.  754 

Jones, M. C., Dye, S. R., Fernandes, J. A., Frölicher, T. L., Pinnegar, J. K., Warren, R., & Cheung, W. W. (2013). 755 
Predicting the Impact of Climate Change on Threatened Species in UK Waters. PloS one, 8(1), 756 
e54216. 757 

Kwiatkowski, L., Yool, A., Allen, J. I., Anderson, T. R., Barciela, R., Buitenhuis, E. T., ... & De Mora, L. (2014). 758 
iMarNet: an ocean biogeochemistry model intercomparison project within a common physical 759 
ocean modelling framework. Biogeosciences, 11, 7291-7304. 760 

Kwiatkowski, L., Bopp, L., Aumont, O., Ciais, P., Cox, P. M., Laufkötter, C., ... & Séférian, R. (2017). Emergent 761 
constraints on projections of declining primary production in the tropical oceans. Nature Climate 762 
Change, 7(5), 355. 763 

Lam, V. W., Cheung, W. W., Swartz, W., & Sumaila, U. R. (2012). Climate change impacts on fisheries in 764 
West Africa: implications for economic, food and nutritional security. African Journal of Marine 765 
Science, 34(1), 103-117. 766 

Large, W., & Yeager, S. G. (2009). The global climatology of an interannually varying air–sea flux data set. 767 
Climate dynamics, 33(2-3), 341-364.   768 

Lotze, H. K., Tittensor, D. P., Bryndum-Buchholz, A., Eddy, T. D., Cheung, W. W., Galbraith, E. D., ... & Bopp, 769 
L. (2019). Global ensemble projections reveal trophic amplification of ocean biomass declines 770 
with climate change. Proceedings of the National Academy of Sciences, 116(26), 12907-12912.  771 

Maar, M., Butenschön, M., Daewel, U., Eggert, A., Fan, W., Hjøllo, S. S., ... & Peck, M. A. (2018). Responses of 772 
summer phytoplankton biomass to changes in top-down forcing: Insights from comparative 773 
modelling. Ecological modelling, 376, 54-67. 774 

McAllister, M. K., Pikitch, E. K., & Babcock, E. A. (2001). Using demographic methods to construct Bayesian 775 
priors for the intrinsic rate of increase in the Schaefer model and implications for stock 776 
rebuilding. Canadian Journal of Fisheries and Aquatic Sciences, 58(9), 1871-1890. 777 

Madec, G. (2008). NEMO Ocean Engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace 778 
(IPSL), France, No 28. 779 

McKenna, J. E., Carlson, D. M., & Payne‐Wynne, M. L. (2013). Predicting locations of rare aquatic species' 780 
habitat with a combination of species‐specific and assemblage‐based models. Diversity and 781 
Distributions, 19(5-6), 503-517. 782 

Memery, L., & Allen, J.I. (2011). Deliverable 6.1 Initial conditions, boundary conditions and forcing 783 
functions (No. D6.1). European Union Basin-scale Analysis, Synthesis and Integration (EURO-784 
BASIN), European Comission FP7 Grant Agreement No. 264933. 785 

Merino, G., Barange, M., Blanchard, J. L., Harle, J., Holmes, R., Allen, I., ... & Jennings, S. (2012). Can marine 786 
fisheries and aquaculture meet fish demand from a growing human population in a changing 787 
climate?. Global Environmental Change, 22(4), 795-806.  788 

Molinos, J. G., Halpern, B. S., Schoeman, D. S., Brown, C. J., Kiessling, W., Moore, P. J., ... & Burrows, M. T. 789 
(2016). Climate velocity and the future global redistribution of marine biodiversity. Nature 790 
Climate Change, 6(1), 83-88. 791 



29 

 

Mullon, C., Steinmetz, F., Merino, G., Fernandes, J. A., Cheung, W. W. L., Butenschön, M., & Barange, M. 792 
(2016). Quantitative pathways for Northeast Atlantic fisheries based on climate, ecological–793 
economic and governance modelling scenarios. Ecological Modelling, 320, 273-291. 794 

Naujokaitis‐Lewis, I. R., Curtis, J. M., Tischendorf, L., Badzinski, D., Lindsay, K., & Fortin, M. J. (2013). 795 
Uncertainties in coupled species distribution–metapopulation dynamics models for risk 796 
assessments under climate change. Diversity and Distributions, 19(5-6), 541-554. 797 

Nielsen, J. R., Thunberg, E., Holland, D. S., Schmidt, J. O., Fulton, E. A., Bastardie, F., ... & Bethke, E. (2018). 798 
Integrated ecological–economic fisheries models—Evaluation, review and challenges for 799 
implementation. Fish and Fisheries, 19(1), 1-29. 800 

Pauly, D. (1980). On the interrelationships between natural mortality, growth parameters, and mean 801 
environmental temperature in 175 fish stocks. ICES journal of Marine Science, 39(2), 175-192. 802 

Pauly, D., Hilborn, R., & Branch, T. A. (2013). Fisheries: does catch reflect abundance?. Nature, 494(7437), 803 
303. 804 

Payne, M. R., Barange, M., Cheung, W. W., MacKenzie, B. R., Batchelder, H. P., Cormon, X., ... & Link, J. S. 805 
(2016). Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of 806 
Marine Science, 73(5), 1272-1282.  807 

Peck, M. A., Arvanitidis, C., Butenschön, M., Canu, D. M., Chatzinikolaou, E., Cucco, A., ... & Hufnagl, M. 808 
(2018). Projecting changes in the distribution and productivity of living marine resources: a 809 
critical review of the suite of modelling approaches used in the large European project VECTORS. 810 
Estuarine, Coastal and Shelf Science, 201, 40-55. 811 

Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change and distribution shifts in marine 812 
fishes. science, 308(5730), 1912-1915. 813 

Planque, B. (2016). Projecting the future state of marine ecosystems,“la grande illusion”?. ICES Journal of 814 
Marine Science, 73(2), 204-208. 815 

Pörtner, H. O. (2010). Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating 816 
climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 213(6), 817 
881-893. 818 

Queirós, A. M., Fernandes, J. A., Faulwetter, S., Nunes, J., Rastrick, S. P., Mieszkowska, N., ... & Findlay, H. S. 819 
(2015). Scaling up experimental ocean acidification and warming research: from individuals to 820 
the ecosystem. Global change biology, 21(1), 130-143. 821 

Queirós, A. M., Huebert, K. B., Keyl, F., Fernandes, J. A., Stolte, W., Maar, M., ... & Vermard, Y. (2016). 822 
Solutions for ecosystem‐level protection of ocean systems under climate change. Global change 823 
biology, 22(12), 3927-3936. 824 

Queirós, A. M., Fernandes, J., Genevier, L., & Lynam, C. P. (2018). Climate change alters fish community 825 
size‐structure, requiring adaptive policy targets. Fish and Fisheries, 19(4), 613-621. 826 

Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., ... & Kaplan, A. 827 
(2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature 828 
since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14).. 829 

Reid, P. C., & Edwards, M. (2001). Long-term changes in the pelagos, benthos and fisheries of the North 830 
Sea. Senckenbergiana maritima, 31(2), 107. 831 

Reid, P. C., de Fatima Borges, M., & Svendsen, E. (2001). A regime shift in the North Sea circa 1988 linked 832 
to changes in the North Sea horse mackerel fishery. Fisheries Research, 50(1-2), 163-171. 833 

Roessig, J. M., Woodley, C. M., Cech, J. J., & Hansen, L. J. (2004). Effects of global climate change on marine 834 
and estuarine fishes and fisheries. Reviews in fish biology and fisheries, 14(2), 251-275.  835 

Rutterford, L. A., Simpson, S. D., Jennings, S., Johnson, M. P., Blanchard, J. L., Schön, P. J., ... & Genner, M. J. 836 
(2015). Future fish distributions constrained by depth in warming seas. Nature Climate Change, 837 
5(6), 569. 838 

Scales, K. L., Miller, P. I., Ingram, S. N., Hazen, E. L., Bograd, S. J., & Phillips, R. A. (2016). Identifying 839 
predictable foraging habitats for a wide‐ranging marine predator using ensemble ecological 840 
niche models. Diversity and Distributions, 22, 212-224. 841 



30 

 

Schaefer, M. B. (1954). Some aspects of the dynamics of populations important to the management of the 842 
commercial marine fisheries. Inter-American Tropical Tuna Commission Bulletin, 1(2), 23-56. 843 

Sibert, J. R., Hampton, J., Fournier, D. A., & Bills, P. J. (1999). An advection–diffusion–reaction model for the 844 
estimation of fish movement parameters from tagging data, with application to skipjack tuna 845 
(Katsuwonus pelamis). Canadian journal of fisheries and aquatic sciences, 56(6), 925-938. 846 

Simpson, S. D., Jennings, S., Johnson, M. P., Blanchard, J. L., Schön, P. J., Sims, D. W., & Genner, M. J. (2011). 847 
Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Current 848 
Biology, 21(18), 1565-1570. 849 

Spare, P., & Venema, S. C. (1992). Introduction to tropical fish stock assessment. Part I. Manual. FAO 850 
Fisheries Technical Paper, 306. 851 

Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., ... & Schneider, B. (2010). Projected 852 
21st century decrease in marine productivity: a multi-model analysis. Biogeosciences, 7(3), 979-853 
1005.  854 

Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., ... & Hauck, J. (2015). Drivers 855 
and uncertainties of future global marine primary production in marine ecosystem models. 856 
Biogeosciences, 12(23), 6955-6984.  857 

Stock, C. A., Alexander, M. A., Bond, N. A., Brander, K. M., Cheung, W. W., Curchitser, E. N., ... & Hare, J. A. 858 
(2011). On the use of IPCC-class models to assess the impact of climate on living marine 859 
resources. Progress in Oceanography, 88(1-4), 1-27. 860 

Taconet, M., Kroodsma, D., Fernandes, J. A. (2019). Global Atlas of AIS-based fishing activity - Challenges 861 
and opportunities. Rome, FAO. ISBN: 978-92-5-131964-2 862 

Tittensor, D. P., Eddy, T. D., Lotze, H. K., Galbraith, E. D., Cheung, W., Barange, M., ... & Bulman, C. (2018). A 863 
protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1. 0. 864 
Geoscientific Model Development, 11(4), 1421-1442. 865 

Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., ... & Li, X. (2005). The 866 
ERA‐40 re‐analysis. Quarterly Journal of the royal meteorological society, 131(612), 2961-3012. 867 

Von Bertalanffy, L. (1951). General system theory; a new approach to unity of science. 1. Problems of 868 
general system theory. Human Biology, 23(4), 302-312. 869 

Walters, C., Pauly, D., & Christensen, V. (1999). Ecospace: prediction of mesoscale spatial patterns in 870 
trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected 871 
areas. Ecosystems, 2(6), 539-554. 872 

Walker, N. D., Maxwell, D. L., Le Quesne, W. J., & Jennings, S. (2017). Estimating efficiency of survey and 873 
commercial trawl gears from comparisons of catch-ratios. ICES Journal of Marine Science, 74(5), 874 
1448-1457. 875 

Watson, R. A. (2017). A database of global marine commercial, small-scale, illegal and unreported 876 
fisheries catch 1950–2014. Scientific data, 4, 170039. 877 

Weijerman, M., Lindeboom, H., & Zuur, A. F. (2005). Regime shifts in marine ecosystems of the North Sea 878 
and Wadden Sea. Marine Ecology Progress Series, 298, 21-39. 879 

Yool, A., Popova, E. E., Coward, A. C., Bernie, D.,  & Anderson, T. R. (2013a). Climate change and ocean 880 
acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean. 881 
Biogeosciences, 10, 5831-5854. 882 

Yool, A., Popova, E. E., & Anderson, T. R. (2013b). MEDUSA-2.0: an intermediate complexity 883 
biogeochemical model of the marine carbon cycle for climate change and ocean acidification 884 
studies. Geoscientific Model Development, 6(5), 1767-1811. 885 

Yool, A., Popova, E. E., & Coward, A. C. (2015). Future change in ocean productivity: Is the Arctic the new 886 
Atlantic?. Journal of Geophysical Research: Oceans, 120(12), 7771-7790. 887 

 888 

 889 


