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Abstract

Objectives

Value of information (\VOI) analyses can help policy-makers make informed decisions about whether to
conduct and how to design future studies. Historically, a computationally expensive method to compute
the Expected Value of Sample Information (EVSI) restricted the use of VOI to simple decision models
and study designs. Recently, four EVSI approximation methods have made such analyses more feasible
and accessible. We provide practical recommendations for analysts computing EVSI by evaluating these
novel methods.

Methods

Members of the Collaborative Network for Value of Information (ConVOI) compared the inputs, analyst’s
expertise and skills, and software required for four recently developed approximation methods.
Information was also collected on the strengths and limitations of each approximation method.

Results

All four EVSI methods require a decision-analytic model’s probabilistic sensitivity analysis (PSA) output.
One of the methods also requires the model to be re-run to obtain new PSA outputs for each EVSI
estimation. To compute EVSI, analysts must be familiar with at least one of the following skills: advanced
regression modeling, likelihood specification, and Bayesian modeling. All methods have different
strengths and limitations, e.g., some methods handle evaluation of study designs with more outcomes
more efficiently while others quantify uncertainty in EVSI estimates. All methods are programmed in the
statistical language R and two of the methods provide online applications.

Conclusion

Our paper helps to inform the choice between four efficient EVSI estimation methods, enabling analysts
to assess the methods’ strengths and limitations and select the most appropriate EVSI method given their

situation and skills.

Highlights
e The Expected Value of Sample Information (EVSI) can be used to prioritize research and design
future studies to reduce decision uncertainty for policy-makers. Four recently published methods
have overcome the computational issues associated with EVSI analysis but practical guidance on
using and distinguishing these methods is lacking.
o Because the four methods use different approaches to estimate EVSI, requiring different expertise

and skills, members of the Collaborative Network on Value of Information (ConVOI) reviewed
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these four EVSI computation methods to understand their required skills and inputs. They also
identified the strengths and limitations of these methods and provide step-by-step guides.

e By comparing these methods, ConVOI provides practical guidance for analysts looking to
compute EVSI and use it for study design. Analysts now have useful information to confidently
select the most appropriate EVSI estimation method for their application and expertise.

Introduction

Decisions on which research studies to fund are intrinsically economic in nature; that is, public, private
and third sector (research charity) funders have finite resources and their decisions bear an opportunity
cost. Therefore, it is important to prioritise research studies that are expected to yield the greatest benefit

for every dollar or euro spent.

Typically, research priorities are set through consultation with experts, decision- or policy-makers and
other key stakeholders (e.g., the James Lind Alliance [1]) [2]. Study outcomes are then selected for a
number of reasons, such as ensuring timely collection of data. Most research designs focus on clinical
outcomes and rarely consider economic implications. The sample size for most randomized controlled
trials (RCTs) is determined using power calculations which explicitly manage type I and Il errors for a
statistical test of the selected primary outcome. However, this approach fails to take into account the
opportunity cost of research: a large (and expensive) trial could be proposed while that knowledge could
have minimal value to society. In contrast, Value of Information analysis (VOI) values an RCT and other
types of research studies in terms of how much they reduce decision uncertainty (i.e., the probability of
making a sub-optimal decision) about the best treatment for use in a population of interest. If a sub-
optimal decision is made, then potential health improvements are foregone. The probability of making the
wrong decision is multiplied by the size of the loss incurred by that decision to generate the expected loss
associated with making a sub-optimal decision [3]. New data are expected to reduce decision uncertainty,
and so reduce the expected loss. The Expected Value of Sample Information (EVSI) measures the
“expected reduction in expected loss" from a given research study. Scaled up to the relevant population
this can be expressed in health terms of life years, or quality-adjusted life years (QALYS), or in monetary
units [4, 5]. The difference between the EVSI and the cost of the research is the Expected Net Benefit of
Sampling (ENBS).

An increasing number of authorities and Health Technology Assessment (HTA) agencies acknowledge the
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importance of VOI as part of a cost-effectiveness analysis and are recommending it [6-9]. Thus, EVSI
methods will soon be required from analysts who conduct cost-effectiveness analyses for HTA agencies.
Until recently, EVSI calculations were extremely computationally expensive, potentially taking weeks or
months [10], as they required nested simulation methods [11]. Hence, most VVOI analyses were restricted
to computing the Expected Value of Perfect Information (EVPI) or the Expected Value of Partial Perfect
Information (EVPPI). However, new algorithms and associated software [12-20] enable the efficient
computation of EVSI for realistic decision models.

While these methods have lowered the computational barriers to VOI analyses, they differ in their
approach, requiring different expertise and skills. However, there is no structured comparison of the
practical steps required to use them. Thus, it is challenging for analysts to determine which method is
appropriate for their situation and expertise. Additionally, each method has different strengths and
limitations that could make it more suitable for a given decision problem. The Collaborative Network for
Value of Information (ConVOI) [21] is an international group of researchers with interests in the
application and development of methods for VOI calculation. This manuscript provides practical guidance
and good practice recommendations for computing EVSI using four recently developed approximation
methods. For each method, we: 1) provide a step-by-step guide to its use, 2) compare the expertise and

skills required to implement it, and 3) highlight its strengths and limitations.

Four EVSI approximation methods

This paper focuses on four recently developed estimation methods, developed by Strong, Oakley (13)
(regression-based method [RB]), Menzies (14) (importance sampling method [1S]), Jalal and Alarid-

Escudero (16) building on work from Jalal, Goldhaber-Fiebert (15) (Gaussian approximation method

[GA]), and Heath, Manolopoulou (17) (moment matching method [MM]). These calculation methods
were selected as they place limited restrictions on the complexity of the underlying decision-analytic

model and/or data collection exercise when calculating EVSI. The recommendations presented in this

paper were developed and reviewed by ConVOlI to aid analysts looking to compute EVSI.

Inputs Required for Efficient EVSI Calculation

The considered EVSI approximation methods have diverse requirements and make different assumptions.
However, all require a decision-analytic model on which a probabilistic sensitivity analysis is conducted.
The IS and MM methods also require calculation of the EVPPI for the parameter(s) to be evaluated and

updated in the proposed study. If studies informing different parameters or groups of parameters are
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considered, then EVPPI would need to be computed for each. The following section briefly outlines these

requirements and assumptions.

Decision-Analytic Model

VOI requires an objective function that should be optimized to determine the best course of action [22].
Economic evaluations in health care typically define this in terms of net health or monetary benefit for
each of T interventions [23], which uses a “willingness-to-pay” threshold to put the health consequences
on the same scale as the costs for the different interventions [23]. The function that computes this usually
takes the form of a decision-analytic model.

Decision-analytic models are mathematical models often used for cost-effectiveness analyses. They draw
on set of inputs that we denote 8. These inputs could include information on the prevalence of a disease,
the effectiveness of treatments, background mortality, health-related utility weights and costs. The model
can take a number of forms, foremost among them are decision trees, Markov models and microsimulation
models [24]. Conceptually, the decision-analytic model maps a set of inputs to the output, net benefit
(either in monetary or health units). Assuming risk neutrality, the intervention with the highest expected
net benefit should be implemented in the wider population.

Probabilistic Sensitivity Analysis

Probabilistic sensitivity analysis (PSA), sometimes known as probabilistic analysis or uncertainty analysis,
is performed to propagate input parameter uncertainty to the model output under each decision alternative

and thereby quantify decision uncertainty in a cost-effectiveness analysis [25]. PSA simultaneously varies
all parameters for which there is meaningful uncertainty. Uncertainty in the model inputs is characterized

using probability distributions, p(@) [26].

PSA is often conducted using Monte Carlo methods where S parameter sets are drawn from p(@), for the
whole set of model parameters @ = (6,4, ..., 8p). The decision-analytic model is evaluated at all O, s =
1, ..., S to estimate the costs and health outcomes of each of the T strategies. This produces a distribution
for the net monetary benefit for each strategy, which we denote NB? for t = 1,...,T. In non-linear
models, PSA is required to generate the expected net monetary benefit of each treatment strategy,
Eo[NB?]. PSA results can be presented in the form of a cost-effectiveness acceptability curve (CEAC),
cost-effectiveness acceptability frontier (CEAF), expected loss curves (ELCs), and cost-effectiveness
plane [3, 6]. Furthermore, PSA is key to determining the value of potential future research using VOI
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methods.

To compute EVSI, we require the PSA simulations of the model inputs 8 and the corresponding

simulations for the net monetary benefit Nst fors=1,..,5 and t = 1,...,T. These simulations should
be saved in a matrix or spreadsheet form, often called a PSA dataset,® where the columns contain first the
input parameters and then the outputs from a decision-analytic model. Each row then contains the
parameter sets drawn from their distributions, and their corresponding simulated results from a decision-

analytic model output. We have provided an example of the PSA simulations in Supplementary Materials.

While PSA results are necessary for all the four efficient EVSI calculation methods, two of the methods
(RB and GA) require the above mentioned PSA matrix from a traditional cost-effectiveness analysis while
the other two (IS and MM) require an augmented PSA simulation matrix that is presented in the following

section.

Expected Value of Partial Perfect Information

The EVPPI computes the value of eliminating all uncertainty about a subset of the model parameters [27-
29]. Specifically, the model parameters are split into two subsets 6 = (¢, y), where we propose to gather
further information about the model parameters ¢. Typically, a proposed study does not collect
information about all the underlying parameters in a decision-analytic model and therefore, i indicates
the parameters that will not be directly informed by the proposed data collection.

Mathematically, the EVPPI for the parameters ¢ is defined as
EVPPI = Eg [m;’;\x E¢|¢[NB{?]] — max E¢[NB?], (1

where the inner expectation in the first term of equation (1) calculates the net monetary benefit for each
intervention conditional on ¢. The second term calculates the value of the decision made with current

information, i.e., the expected net benefit of the treatment with the highest expected net benefit.

1The word “dataset” is not used in the traditional sense; here, the PSA dataset simply contains simulated values from distributions representing the

uncertainty in the parameter estimates.



The PSA outcomes are simulated using probability distributions for ¢ and the EVPPI is estimated by
computing the net monetary benefit for each intervention conditional ¢ = ¢ for s =1, ..., S. Several
approximation methods are available to estimate the conditional net monetary benefit for each value ¢
[27, 30-34] and have been formally assessed in [28] and [29]. Software is also available to perform these

calculations [35-37]. The MM and IS methods require a PSA simulation matrix with T additional
columns that contain Monte Carlo estimates of the expected net benefits E¢|¢[NB?], conditional on ¢

for s =1, ..., S, but averaged over the uncertain values of 1. We denote these simulations n;.

EVSI Methods

EVSI for a proposed research strategy that collects additional data, denoted X, is defined as

EVSI = Ey

max Eg X[NB?]] — max Eg[NB?]. (2)

In this setup, X are observable, but not yet observed — and possibly never will be. At this stage, we
consider the possibility of collecting data in the future and we compute EVSI to determine whether we
should defer making a decision on the optimal intervention, among the T possible options, and instead

invest money and time collecting X.

In line with a full Bayesian approach (which underpins the ideas behind the Vol analysis), the distribution
of X is defined by p(X,0) = p(0)p(X|0) where p(0) is the marginal distribution of 8 and p(X|0) is
the sampling distribution of the data. In a full Bayesian setting, p(@) is a “prior” distribution — in the
sense that it represents the current level of uncertainty on the model parameters, before observing the new
data X. In reality, this distribution is defined by the PSA procedure and can represent the result of a

Bayesian update given observed data that is used to construct the current economic model.

We note that X will give information on the subset of model parameters ¢, where ¢ could be the whole
set 6. By definition, this means that iy and X are independent given ¢ and that p(X|0) = p(X|¢).

The second term of equation (2) can be estimated from the initial PSA. To obtain simulations for X, we
simulate potential study outcomes, X, s =1, ..., S, for each row of the PSA dataset, i.e., we generate a
single sample from p(X|0%) for s = 1, ..., S. Traditionally, EVSI has been computationally demanding
and methodologically challenging because a large number of simulations are needed to estimate the
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posterior mean of the net benefit for each X. This requires a Bayesian model for the distribution of the

data and the parameters, where the posterior mean is given by

1t (X5) = Egxs[NB?]. 3)

The EVSI approximation methods in this paper estimate u,(X) with a reduced computational burden. For
computational simplicity and stability, VOI calculations should be undertaken using incremental net
benefit defined, without loss of generality, as

INB? = NBY, — NBY,

for t = 2,...,T. We could also use the opportunity loss, defined as the incremental net benefit of all
treatments from the optimal strategy t*. By estimating the posterior mean of the incremental net benefit,

we only need to add T — 1 columns containing the posterior mean conditional on X to our PSA dataset.

Once these simulations, denoted u,(Xy), are available, the EVSI can be estimated by

: (4)

N S
1 1
Ez max{s; (Xs)} — max {EZ e (Xs)
s=1 s=1
where u;(X5) =0 forall s =1,...,S.

Expertise Required for EVSI Calculation

We have identified three skills that the analyst may require to compute EVSI using the approximation
methods reviewed in this manuscript. None of the methods require all three skills but each method
requires the mastery of at least one of the skills presented. Table 1 summarises the required skills and

inputs for each method.

Regression Methods

Regression methods that model the relationship between a set of predictors and an outcome of interest are
required for both the RB and GA methods. Both methods use regression metamodeling to model the
incremental net benefit as a function of model inputs or quantities related to model inputs. The two

methods differ as they require alternative covariates.



Both of these EVSI methods model relatively complex relationships using models that require little
information about the functional relationship between the independent and dependent variables. To
account for potential nonlinear relationships between these variables, flexible regression methods
characterized using Generalized Additive Models (GAMs) [38] are the predominant regression methods
for EVSI calculation. Standard software is available to fit GAMSs [39-41], but the EVSI estimate can be
affected by the structure of the GAM model and, thus, an understanding of these models is required.
Gaussian Processes [42] have also been suggested for more complex problems [13], so knowledge of
these methods may also be required.

If regression methods are used to estimate EVSI, it is important to assess whether the regression model
has correctly captured the relationship between the independent and dependent variables [13]. Regression
methods assume that the residual error is uncorrelated with the fitted values from the regression, has zero
mean and trivial covariance structure. These assumptions can be confirmed by observing no groups,

systematic features, or outliers in the plot of the residuals against the fitted values [43].

Specification of data generating distribution

EVSI computes the expected value of collecting information in a future research study. The future
research study would collect a potential data set, X, with N, different clinical, health or economic
outcomes from N participants. For example, a clinical trial would collect the primary and secondary

outcomes from each participant.

All EVSI computation methods require the simulation of potential data sets (the GA method requires
study data simulation to compute the effective sample sizes of the priors of the ¢ only if these cannot be
estimated directly, c.f. Bayesian Updating). As outlined above, this is achieved by specifying the assumed
data generating distribution p(X|¢). Thus, analysts must have knowledge of probability distributions.

For the RB method, the simulated data sets Xy for s = 1, ..., S must be summarized to reflect how the
data would be analyzed following the trial. This requires expertise in standard methods for the statistical
analysis of study results, for example, maximum likelihood procedures. A variation of the GA method can

be also be applied if a summary statistic is available.

For the IS method, the analytic likelihood for X must be specified and coded as a function. Likelihood is
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used in its proper statistical meaning and, therefore, this specification requires statistical expertise.
Typically, this likelihood specification will require an analyst who has knowledge of statistical theory,
function development and coding.

Bayesian Updating

Bayesian methods are a statistical paradigm in which conclusions are formally updated as evidence
accumulates [44]. A full Bayesian model consists of probability distributions specified for the model
inputs p(@), the prior distribution defined using the PSA distributions, and the sampling distribution for
the proposed data collection. Based on these distributions, Bayesian methods update the distribution of the
parameters conditional on the data X to produce a posterior distribution. In practice, this is undertaken
using specialized software such as BUGS [45], JAGS [46] or Stan [47]. The MM and, in some cases, GA
methods are explicitly based on Bayesian analysis, which requires expertise in these programs and in the
specification of Bayesian models. This is advantageous if the final trial analysis will be performed
according to Bayesian principles as the statistical analysis plan has been developed as part of the design

process.

Additionally, the GA method is based on the prior effective sample size [48]. The prior effective sample
size, denoted ny, is the number of participants that would need to be studied to obtain the level of
information in the prior. In some Bayesian models, typically based on conjugate prior-likelihood pairs, the
prior effective sample size can be estimated directly from the parameters of the distributions [48]. If this is
not possible, then Jalal and Alarid-Escudero (16) present two algorithms to compute the prior effective
sample size (see the Supplementary Materials). The first of these is based on summary statistics and the

second on a full Bayesian analysis.

Table 1. The skills and inputs required to compute EVSI with the regression-based, importance sampling,

Gaussian approximation and moment matching methods

# Requirements RB IS GA MM
Inputs

1 Decision-analytic model v

2 Probabilistic sensitivity analysis 4 4 4 v

3 Simulations of the expected net benefit

conditional on ¢ (required to compute EVPPI)
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Skills

1 Regression methods v v
2 Specification of likelihoods v v *
3 Bayesian updating * v

GA, Gaussian approximation method; IS, importance sampling method; MM, moment matching method; RB,

regression-based method; v indicates that the skill/input is required; * indicates that the skill/input may be required.

Calculating EVSI
To highlight how these skills and inputs are used to compute EVSI, we have presented step-by-step guides

to each of the four methods considered. These algorithms are provided in Boxes 1-4.

Box 1. Step-by-step guide for regression-based method

Box 1: Regression-Based Method
1. Perform PSA simulation to obtain €, and INB?S, s=1,...,5.
2. Foreach s=1,...,85:

(a) Simulate a dataset X from p(X | ¢s).

(b) Summarise this dataset, producing the quantity or quantities that would be
estimated from it in a trial, such as the mean. We denote this summary of
the dataset W (X5).

3. Fit T'— 1 regression models with INB?*‘ as the outcome and W (X;) as the covari-
ates.

4. Extract the fitted values from these regressions to estimate p:(X5).

The downloadable R package and R codes for the regression-based method are available
at http://savi.shef.ac.uk/SAVI/.

INB, incremental net benefit; PSA, probabilitic sensitivity analysis; 0, set of inputs in a decision-analytic model;
p(0), probability distributions to characterize uncertainty in the model inputs; S, number of parameter sets that are
drawn from p(0) in PSA; T, number of considered interventions; 8=(¢,y), ¢ are model parameters for which we are
aiming to collect further information and v are parameters that will not be directly informed by the proposed data

collection; X, new data proposed to be collected; p, posterior mean; W(X), a summary measure for the data.
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Box 2. Step-by-step guide for importance sampling method

1.
2.

Box 2: Importance Sampling Method

Perform PSA simulation to obtain 6, and INB,?*‘, 8= 1y vy s

Estimate EVPPI to obtain simulations of 7;, the inner expectation in the first
term of equation:

EVPPI = E [maxEy)g [NBf| | - maxEq [NB] .

For each 8=1,. ..,5:

(a) Simulate a dataset X, from p(X | ¢s).

(b) Compute the likelihood of X conditional on all PSA simulations for 6, L,.,
r=l,....S.
Ly

(c) Compute [, = S5 SO [, sums to 1.
r=1 47

(d) Calculate the weighted sum of n;, Zle Leng

4. Each weighted sum estimates p;(X5).

INB, incremental net benefit; EVPPI, Expected Value of Partial Perfect Information; PSA, probabilitic sensitivity

analysis; 0, set of inputs in a decision-analytic model; p(0), probability distributions to characterize uncertainty in the

model inputs; S, number of parameter sets that are drawn from p(8) in PSA; T, number of considered interventions;

0=(¢,y) ¢ are model parameters for which we are aiming to collect further information and y are parameters that will

not be directly informed by the proposed data collection; X, new data proposed to be collected; u, posterior mean; 1,

PSA simulations used to compute EVPPI.
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Box 3. Step-by-step guide for Gaussian approximation method

Box 3: Gaussian Approximation Method

1. Perform PSA simulation to obtain 6, and INB?S, s=1,...,5.
2. Fit T'— 1 regression models with INB?S as outcomes and ¢4 as covariates.
3. For each p of the P elements in ¢:

(a) Determine the prior effective sample size nf. Methods to estimate the prior
effective sample size are presented in the supplementary material.

(b) For a proposed study with N participants, compute a weighted sum of ¢
and ¢ (the mean of the parameters) by rescaling the simulations for the pth

element of ¢ by multiplying by # and multiplying ¢ by (1 — _anp)_
0 0

4. Using the regression models from Step 2, predict the model outcomes for the

rescaled ¢ simulations.

5. The fitted values from Step 4 estimate p;(X5).

INB, incremental net benefit; PSA, probabilitic sensitivity analysis; 0, set of inputs in a decision-analytic model; S,
number of parameter sets that are drawn from p(0) in PSA; T, number of considered interventions; 0=(¢,y) ¢ are
model parameters for which we are aiming to collect further information and v are parameters that will not be

directly informed by the proposed data collection; X, new data proposed to be collected; u, posterior mean.
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Box 4. Step-by-step guide for moment matching method

Box 4: Moment Matching Method
1. Perform PSA simulation to obtain 8, and INBf os=1,....5.

2. Estimate EVPPI to obtain simulations of 7;, the inner expectation in the first
term of equation:

EVPPI = Eg [max Eyg [NBf || - maxEq [NBY| .
3. Extract @, with 30 < @ < 50, sample quantiles from the simulations of ¢, denoted
¢4. Functions are available in the EVSI package in R to perform this step.
4. Forg=1,...,0Q:

(a) Simulate a future dataset from the sampling distribution p(X | ¢,).
(b) Use Bayesian methods to update the distribution of the model parameters.

(c) Rerun the probabilistic sensitivity analysis to update the distribution of the
net monetary benefit.

(d) Calculate the variance of the net monetary benefit, denoted ag.
2 _ 0 1R 2
5. Calculate o = Var [NB,5 ] — G 2q=1%g"
6. Rescale the simulations of 1 so their variance is equal to o?.

7. These rescaled simulations estimate p:(X5).

An extended version of the moment matching method estimates the EVSI for multiple
alternative sample sizes for the future data for a fixed additional computational cost.

INB, incremental net benefit; EVPPI, Expected Value of Partial Perfect Information; EVSI, Expected Value of
Sample Information; PSA, probabilitic sensitivity analysis; 0, set of inputs in a decision-analytic model; p(6),
probability distributions to characterize uncertainty in the model inputs; S, number of parameter sets that are drawn
from p(0) in PSA; T, number of considered interventions; 6=(¢,y) ¢ are model parameters for which we are aiming
to collect further information and y are parameters that will not be directly informed by the proposed data collection;
X, new data proposed to be collected; p, posterior mean; 1, PSA simulations used to compute EVPPI; Q, number of

times PSA is performed.
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Strengths and Limitations

As each method is different, the most suitable method for EVSI calculation will depend on the decision-
analytic model, the sampling distribution for the data, the expertise of the analyst and the amount of
computation time available. The following section highlights the strengths and limitations of these
methods to help analysts select the most appropriate method. A summary of these strengths and
limitations is presented in Table 2.

Regression-Based Method

Strengths

The decision-analytic model does not need to be rerun to produce EVSI estimates, so EVSI can be
computed by an analyst with access to the PSA results only. Standard statistical software includes
procedures to fit flexible regression models, particularly GAM regression, making this method relatively
simple to implement once the summary statistics W (X) are available. Furthermore, EVSI estimates
across different sample sizes for the future data are obtained at a constant computational cost. Finally, if
the model is judged to fit well, an estimate of the uncertainty in the EVSI estimate can be obtained using

an algorithm developed by Strong, Oakley (13).

An online application [36] was developed to compute the EVPPI, using the regression-based method [31].
This tool, called Sheffield Accelerated Value of Information (SAVI), fits a regression model between the

INBfS and the parameters of interest ¢. Due to the similarity between the EVPPI and EVSI calculation
methods, SAVI can be used to compute EVSI, once the future data sets have been summarized W (Xy),

s =1,...,S. This is achieved by augmenting the PSA matrix with (a) column(s) containing the data
summaries. This must be saved and uploaded into SAVI and EVSI is then equal to the “EVPPI” calculated

for the column(s) containing the data summary.

Limitations

For complex studies where the number of collected outcomes N, is greater than five or six, it can be
challenging to fit a sufficiently accurate regression model. The simulated study data must also be correctly
summarised using W (X) to obtain accurate EVSI estimates. This can be challenging and time-consuming
in more complex studies. The relationship between the incremental net benefit and W (X) must also be

well-approximated by the regression model to ensure accurate EVSI estimation.
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Importance Sampling Method

Strengths

This method only requires the PSA results to compute the EVSI (i.e., access to the original decision-
analytic model is not necessary). Furthermore, the IS method can be used irrespective of the number of
study outcomes N, with similar complexity, once the likelihood function for the potential data to be

collected has been defined.

Limitations

The accuracy of the EVSI estimation relies heavily on the appropriate specification of the analytic
likelihood and the accurate estimation of the EVPPI. Because the most efficient EVPPI estimation
methods are based on regression methods [29, 31], the analyst must be confident assessing the accuracy of
regression models before proceeding with EVSI estimation. Furthermore, the 1S method can have
computational issues for large sample sizes of the future data as the likelihood tends to 0 with increasing
sample size, leading to inaccurate EVSI estimation [10]. Finally, uncertainty in the EVSI estimation

procedure cannot be estimated using this method.

Gaussian Approximation Method

Strengths

Estimation of EVSI with this method does not require to rerun the decision-analytic model; thus, access to
PSA results is sufficient. This method estimates EVSI using flexible non-parametric (typically GAM)
linear regression models. Although GA method requires an estimate of the prior effective sample size n,
for the proposed data collection, n, can be estimated directly from previous studies. Furthermore, this
method estimates EVSI across different sample sizes of the proposed data collection exercise at minimal
computational cost, once the prior effective sample size has been estimated. Thus, the optimal sample size
for proposed data collection can be obtained cheaply. Finally, the method can estimate the uncertainty in

the EVSI estimation procedure using the same approach as in [13] based on [49].

An online repository is available for the GA method (https://zenodo.org/record/3263876), which contains
a function that estimates the fitted values u;(X) from a GAM regression model [38] and estimates of ng
for p =1, ..., P. Thus, implementation for this method can be automated if estimates for the effective
sample size are available for each parameter and if a GAM regression model accurately captures the

relationship between the incremental net benefit and the parameters of interest.
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Limitations

This estimation method can lead to inaccurate EVSI estimation if the prior effective sample size is small.
Relatively intensive simulation methods may also be required to estimate the prior effective sample size if
it cannot be obtained directly. The GA method also relies on a regression model, which may perform
poorly if the regression model does not capture the relationship between the net monetary benefit and the
parameters ¢. Moreover, if the number of collected outcomes N, is over five or six, flexible GAM
regression methods become challenging [31]. Although the analyst can use linear regression model
instead, this model may not be sufficiently capture the relationship, leading to inaccurate EVSI estimates.

Moment Matching Method

Strengths

This method uses the same nested simulation structure as the gold standard nested Monte Carlo methods.
This means that if an analyst has already developed the nested Monte Carlo method for EVSI estimation,
it can be easily adapted for this method. Furthermore, this method has been extended [19] to estimate
EVSI for multiple alternative sample sizes with a fixed additional computational cost. This extended
method also provides a measure of uncertainty around the final EVSI estimate. The MM method can

estimate EVSI irrespective of N, the number of outcomes considered.

The EVSI package in R has been developed to implement the MM method based on a Bayesian
decision-analytic model. The manual is available [50] and the EVSI package can be installed in R using
the command: devtools::install_github(*"annaheath/EVSI")

Limitations

The MM method requires simulated study data and relies on performing a PSA Q times, with 30 < Q <
50. Thus, the decision-analytic model must be rerun a significant number of times. Therefore, in
computationally expensive decision-analytic models, such as microsimulation models, this method

requires significant computational power. Next, if the original PSA simulation size is small, this method is

inaccurate as it is based on an estimate of the variance of Nst, which must be sufficiently accurate. The
MM method can also lead to inaccurate EVSI estimates when the sample size of the proposed study is less
than 10. Finally, this method requires an accurate estimate of EVPPI and is more accurate for studies that
will have significant impact on the underlying uncertainty in the decision-analytic model, i.e., the EVPPI
of ¢ needs to be high compared to the value of reducing all model uncertainty (i.e., EVPI), ideally greater

than 40%.
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Table 2. Selected strengths and limitations of the four EVSI approximation methods

# Characteristics RB IS GA MM
Strengths

1  Estimates EVSI for complex studies collecting L, S,
a large number of outcomes

2 Only requires the PSA results v v v

3 Uses non-parametric (typically GAM) regression v v

4  Estimates EVSI for different study sizes with same L, L,
computational cost

5 Quantifies uncertainty in estimate v 4 v
Limitations

1 Requires simulated study data v v * v

2  Requires accurate EVPPI estimation v v

3 Can be computationally challenging to estimate EVSI L,
for proposed studies with a large sample size

4 Requires simulated study data to be summarized in L,
a low dimensional statistic

5  Struggles if proposed study has more than 5 outcomes v v

6 May estimate inaccurate EVSI if the proposed study ,
has small prior effective sample size

7 May estimate inaccurate EVSI if the proposed study S,

has small sample size

GA, Gaussian approximation method, 1S, importance sampling method, MM, moment matching method; RB,
regression-based method; v* indicates that the characteristic is required for the given method; * indicates that the

characteristic may be required for the given method.

Real-World Examples

To aid the implementation of the reviewed EVSI methods, we have created a comprehensive GitHub
repository that presents the code used to compute EVSI in the original publications, available at
https://github.com/convoigroup. This repository also contains a suite of practical examples of EVSI
computation that demonstrate EVSI calculations across several real-world examples using common
decision-analytic model structures, such as Markov models. We provide both an example that was

previously published in the literature [51] and hypothetical examples. These examples are all developed in
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the statistical computing language R. Thus, our GitHub repository demonstrates how the reviewed

methods can be used in practice and will help analysts to implement VOI methods in their own work.

Presenting EVSI results

Once EVSI results are available, the EVSI package in R contains several graphical displays to present
EVSI and related quantities to practitioners and stakeholders. Results of an EVSI analysis can be loaded
into the EVSI package, irrespective of the computation method used. These graphics can then be displayed
in R directly or explored using a dynamic graphical display launched from within R. For analysts
unfamiliar with R, EVSI results can be loaded into an online interface and these graphics can be explored
online at https://egon.stats.ucl.ac.uk/projects/EVSI/Test/. The optimal sample size estimated using VOI
methods can also be presented in form of a curve of optimal sample size (COSS) [52].

Conclusion

VOI analysis has the potential to guide policy-makers in the prioritization and design of future research
studies, thereby improving decision-making. Increasingly, HTA agencies are acknowledging this potential
and are recommending VOI analyses to determine whether/what potential future research is needed. In
this study, members of ConVVOI have provided a practical guide and good practice recommendations to
facilitate the implementation of these methods. Our recommendations outline the inputs, analyst skills,
and software required to use each of the EVSI approximation methods. We have also highlighted the
strengths and limitations of each method. These recommendations are supported by a recent review that
compared properties of these four recently developed, efficient computation methods across three

decision-analytic models [10].

An accompanying GitHub repository includes R code demonstrating all four EVSI methods in real-world
examples. Thus, this guide helps analysts choose the method that is the most suitable for their application
and skills, and our code repository provides practical support to aid the implementation of these methods.
This increases the feasibility and accessibility of the EVSI methods as they become an important and

required tool.
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1 PSA Matrix

We provide an example of a PSA dataset in Table S1 and an example of an augmented dataset in Table S2.

Table S1. An example of a PSA dataset from a traditional cost-effectiveness analysis

Simulation Input parameters 6=(6,,...6,) Model outcomes
sim p.dr.tl hr.dr.t2 .. hr.dr.T p.tox.tl p.tox.t2 .. p.tox.T u.ndr u.dr u.d.tox c.dr ctox .. 6,[qaly.tl qaly.t2 .. qaly.T costtl  cost.t2 cost.T
1 0.259 0.611 0.580 0.346 0.241 0.057 0.846 0.721 -0.031 88155.000 23426.000 8.596 8.815 9.046 37407.287 38421.603  31748.150)
2l 0.268 0.557 0.553 0.392 0.202 0.063 0.766 0.718 -0.032 127608.000 27283.000 7.893 8.146 8.317 37340.764 38763.773  31856.518]
31 0279 0.530 0.533 0367 0.210 0.059 0.789 0.691 -0.030 70841.000 21433.000 8.063 8.362 8.574 37755.966 39365.557  31297.161]
4 0285 0.625 0.559 0.406 0.224 0.058 0.897 0.683 -0.024 69346.000 36290.000 9.164 9.352 9.637 37824.883 38591.263  32562.561
5 0.272 0.568 0.588 0.421 0.223 0.056 0.912 0.681 -0.014 127813.000 41895.000 9.304 9.490 9.764 38169.000 39025.428  32089.763
6 0.295 0.569 0.538 0.358 0.186 0.058 0.767 0.669 -0.022 80210.000 37017.000 7.830 8.098 8.106 37015.991 38314.785  32258.373
71 0.270 0.510 0.615 0.365 0.239 0.056 0.875 0.678 -0.026 112770.000 28003.000 8.858 9.123 9.377 37661.349 38690.152  31649.673
8 0.294 0.623 0.532 0.376 0.201 0.060 0.692 0.672 -0.032 67454.000 48947.000 7.270 7.442 7.631 38617.847 39671.819  33022.915)
9 0.238 0.638 0.532 0.364 0.266 0.062 0.880 0.709 -0.029 60469.000 43479.000 8.908 9.196 9.445 37911.386 39127.860  34232.103]
10 0.240 0.646 0.563 0.406 0.236 0.057 0.904 0.714 -0.016 105465.000 28510.000 9.199 9.453 9.658 37604.479 38785.650  33186.151]
11/ 0.283 0.586 0.516 0.383 0.184 0.054 0.895 0.735 -0.026 148110.000 41794.000 9.036 9.403 9.650 38162.548 39909.570  32429.058]
12| 0.258 0.587 0.558 0.420 0.214 0.058 0.868 0.744 -0.018 111303.000 21353.000 8.894 9.076 9.270 38152.053 39013.707  32842.565)
13| 0.279 0.561 0.543 0.416 0.233 0.062 0.871 0.686 -0.033 140005.000 25705.000 9.010 9.134 9.393 37420.385 37995.135  32401.545)
14 0.277 0.565 0.574 0.361 0.213 0.060 0.902 0.694 -0.012 104599.000 47773.000 9.144 9.432 9.680 37598.085 39008.810  32006.206
15/ 0.268 0.583 0.564 0.383 0.263 0.063 0.931 0.689 -0.019 143150.000 33170.000 9.417 9.672 9.860 38176.451 39434.117  34439.495
16| 0.246 0.624 0.583 0374 0.229 0.065 0.787 0.672 -0.020 55317.000 34668.000 8.063 8.304 8.471 37877.865 39144.156  32905.542
17| 0.274 0.561 0.577 0.429 0.202 0.060 0.810 0.668 -0.027 136863.000 35512.000 8.280 8.573 8.727 37919.837 39625.260  32432.658]
18] 0.266 0.617 0.557 0.382  0.200 0.066 0.754 0.690 -0.021 60116.000 20616.000 7.694 7.995 8.205 37624.118 39293.243  31603.192
19 0.242 0574 0.561 0.376 0.202 0.061 0.856 0.676 -0.032 93546.000 31603.000 8.578 8.957 9.193 37514.271 39384.790  31344.471]
200 0.271 0.547 0.574 0393 0.247 0.058 0.805 0.700 -0.026 50136.000 43776.000 8.242 8.494 8.795 37655.252 38972.651  32556.914|
S 0.279 0.609 0.528 0379 0.187 0.065 0.774 0.674 -0.030 143124.000 29488.000 7.922 8.203 8.426 37161.192 38835.434  32120.867,

QALY, quality-adjusted life years; 0, set of inputs in a decision-analytic model; S, number of parameter sets that are drawn from p(0) in PSA; T, number of
considered interventions; 6=(¢,y), ¢ are model parameters for which we are aiming to collect further information and y are parameters that will not be directly
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informed by the proposed data collection; p.dr.t, input parameter probability of distant recurrence for strategy t=1,...,T; hr.dr.t, input parameter hazard ratio of
distant recurrence for strategy t=1,...,T; p.tox.t, input parameter probability of treatment toxicity for strategy t=1,...,T; u.ndr, input parameter utility weigth for
non distant recurrence health state; u.dr, input parameter utility weigth for distant recurrence health state; u.d.tox, input parameter utility weight decrement due to
treatment toxicity; c.dr, input parameter cost of distant recurrence health state; c.tox, input parameter cost of treatment toxicity; galy.t, model outcome QALY for
strategy t=1,...,T; cost.t, model outcome costs for strategy t=1,...,T.

Table S2. An example of an augmented PSA dataset

Simulation Net Monetary Benefit NMB?S EVPPI

sim nmb.tl nmb.t2 nmb.t3 nmb.T evppi.tl evppi.t2 evppitd .. evppiT
11837379.2024 844093.4111 839956.8991 872811.4284 17869394 17869395 17869396 17869398
2] 772156.026 777257.5094 774127.9884 799852.4296|11904043 13520849 15341966 17638804
3794212.5081 798408.4714 795838.8635  826061.4942|15825190 11897424 13640558 17828821
A 887204.7727 897373.6603 891338.8589  931131.855825542950 26722330 25498593 25257633
5902637.5524 910823.0158 905776.2968 944293.661 |24996041 27301229 25909340 22441169
6 768072.3318 772776.5576 769836.6696 778373.3856|15226170 16250735 15544873 15939131
71864748.9975 874621.0878 868637.0989 906095.0606 27089461 26779586 24764875 18314127
8 708984.7723 705628.3338 707717.4533 730085.6291 (14554043 13713229 12237636 17502532
9867043.0172 881687.0493 872713.9937  910279.6656|24317725 23296525 20718406 22275512
10/ 895840.5652 907690.7155 900492.9759 932648.821 119922874 25692721 19283669 25507408
11{899460.1624 902122.2035 900489.0025 932585.6119|27335340 21925089 19021609 19924847
12(868201.8478 869490.9773 868685.1929  894150.6201 (24746060 24521569 19951257 18238040
13(864847.2778 875970.4598 869322.0842  906931.871224289546 22274054 20124633 23213854
14f904399.3702 905629.8556 904879.6573  936043.5577 (18754670 22322519 26505429 26484267
15(912275.4667 929050.7264 918752.9752 951513.1796|19337510 26245599 26164331 27418776
16(787142.5029 792503.1899 789222.9017 814214.0454|12775933 17029562 17557082 12420810
17| 816896.277 819413.2747 817919.572 840310.9478 (12977702 12211846 16403519 12321185
18761366.6911 761833.7553 761549.6891  788945.9899(12273772 15049874 14523964 16973338
19 854949.0707 858167.5316 856167.4658 887943.4643 123996038 18734306 18861141 23795211
20| 805175.773 811744.4666 807750.2668 846916.9499|15165927 15216389 16261859 13213453
782384.6787 783123.99 782674.7414 810480.3205|15147702 14028967 12660209 13664229

0, set of inputs in a decision-analytic model; S, number of parameter sets that are drawn from p(0) in PSA; T, number of considered interventions; 0=(¢,y), ¢ are
model parameters for which we are aiming to collect further information and y are parameters that will not be directly informed by the proposed data collection;
nmb.t, net monetary benefit for strategy t=1,...,T ; evppi.t, expected value of partial perfect information for strategy t=1,...,T.
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2 Prior Effective Sample Size Algorithms

This section proposes three alternative methods for calculating the prior effective sample size. The
effective sample size n, is the number of patients that would have to provide data to generate the

“amount” of information in the prior.
2.1 Direct Estimation

In some settings, no can be found from the parameters prior distribution. For example, n, for a beta prior
Beta(a, b) coupled with a binomial likelihood x ~ Bin(n,p) isequal to a + b. This comes from
conjugacy as the posterior distribution is Beta(a + x, b + (n — x)). This is the case for specific

conjugate pairs listed in Table S3.

Table S3. Identifying n, from parameters’ prior distribution

Prior Likelihood Effective Sample Size
Beta(a, b) Binomial a+b

Gamma(a, b) Exponential a
. 1
Gamma(a, b) Poisson 7
. . . a?
Normal(a, b) Mean in Normal with known variance o2 -
InverseGamma(a, b) Variance in Normal with known mean a

2.2 Calculating a Summary Statistic

This method uses a Gaussian approximation to compute n, based on a summary statistic W (Xy).
Specifically, the data must be simulated and summarised following the method described in the
Specification of data generating distribution section. We can assume that this summary statistic is
approximately Gaussian and that the prior for the parameter of interest is also approximately Gaussian. In
this setting,

2 2
Var (W(Xy)) = =+,

no

. . var (X
where ¢ is an unknown variance. However, we know that Var (¢) = %()

S0 we can solve for ny;

Var W(Xs)) 1)

Mo = n( Var (¢)
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where Var (W (X;)) and Var (¢) are the variances of the summary statistic and the prior, respectively.
Therefore, if we have calculated the summary statistic by summarising a dataset of size n, we can
compute the n, using this formula.

However, in these cases, we need to compute a Summary statistic that is “on the same scale” as
the parameter. For example, the prior in a beta-binomial is typically a probability between zero and 1,
while the binomial likelihood is generally the distribution of the number of successes. Therefore, the
summary statistic must convert the data into the proportion of successes, which can be easily achieved by
dividing the number of successes by the total sample. In some setting this may be non-trivial. For these

settings, we propose an indirect Markov chain Monte Carlo (MCMC) approach.
2.3 Using MCMC

In this case, we calculate the posterior mean for the parameter of interest ¢ for each simulated

value of X, denoted pg. The prior effective sample size can then be estimated from the variance of 1y,

using the following formula:

~ Var (¢)
o= n(Var () 1)'

More information about calculating n, can be found in [1] alongside code to estimate n, within R.

3 Supplementary References
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