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Abstract

The boundary layer equations for axi-symmetric laminar flow are trans-
formed in a manner which can be applied to rotating bodies in both still
and axial flow. Terms pertaining specifically to quiescent or axial flow are
clearly identified by the approach. The transformed equations are shown
to deliver the same velocity profiles as a number of case-specific formula-
tions presented in the literature, albeit with one or two exceptions, while
being substantially simpler in formulation.

1 Introduction

Three dimensional boundary layers on rotating axi-symmetric bodies have long
been the subject of much interest due to their similarity to the three dimensional
boundary layers generated by flow over a swept wing. The seminal work of von
Kármán (1921) looked at the boundary layer generated by a rotating disk in still
air. His work was continued by Cochran (1934), who provided the first numerical
results, and were later improved on by Benton (1966). A more general form of
a rotating body of revolution was investigated by Schlichting (1953). In this
he used a shape parameter K, analogous to the λ of the Pohlhausen method
of boundary layer approximation, to try to generate solutions for a general axi-
symmetric body. Schlichting’s method is limited to cases with an imposed axial
flow. Malik and Spall (1991) present the compressible boundary layer equations
for an axi-symmetric body in an imposed axial flow making use of the Mangler-
Levy-Lees transformation, in a similar fashion as in the present paper. However,
their formulation is also limited to cases with an axial flow and rotation is not
considered. Others have carried out analysis on well defined shapes using shape
specific formulations of the governing equations. For example, Wu (1959) and
Tien (1960) extended the case of a rotating disk to that of an axi-symmetric
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Figure 1: Sketch of the co-ordinate system for generalised body of revolution.

rotating cone in still air. The case of a rotating cone in an imposed axial flow was
worked on by Koh and Price (1967), who made use of the similarity transforms
of Mangler (1945). The boundary layer generated by a rotating sphere in still air
was first investigated theoretically by Howarth (1951), and then Banks (1965)
used a series solution method suggested by the former to generate boundary
layer profiles. Following this, Manohar (1967) and Banks (1976) used more
accurate finite difference techniques to resolve better the boundary layer of the
rotating sphere. For the case of a rotating sphere in an imposed axial flow,
El-Shaarawi et al. (1985) generated the first profiles based on the equations of
Schlichting (1953).Finally, the work by Howarth (1951) on a rotating sphere in
still air was extended by Fadnis (1954) to include prolate and oblate spheroids of
different eccentricities using a series solution. Samad and Garrett (2010, 2014)
then produced results from both series solution and finite difference techniques.

In more recent years interest has shifted towards the stability and transi-
tion of the boundary layers on rotating axi-symmetric bodies. The role of an
absolute instability in the transitional boundary layer has been investigated for
a rotating disk (Lingwood, 1995), a rotating cone in still air (Garrett, 2002;
Garrett et al., 2009), a rotating cone in an axial flow (Garrett, 2002; Garrett
and Peake, 2007; Garrett et al., 2010; Hussain, 2010), a rotating sphere in still
air (Garrett, 2002; Garrett and Peake, 2002), a rotating sphere in an axial flow
(Garrett, 2002; Garrett and Peake, 2004) and for prolate & oblate spheroids
(Samad and Garrett, 2014). Accurate boundary layer profiles are a prerequisite
for such stability analyses. Given the variety of manipulations to be found in the
literature, the present work looks to formulate a consolidated set of transforma-
tions for the boundary layer equations on a general rotating body of revolution
both in still air and in an axial flow, and to validate numerical solutions of these
equations for a range of shapes and flow conditions.
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2 Mathematical formulation

The governing equations (1a–c) were derived by Mangler (1945) for a rotation-
ally symmetric flow past a body of revolution in a spherical co-ordinate system.
u, v, w are velocity components in the directions of increasing s, θ and z as
shown in figure 1.

∂

∂s
(ru) +

∂

∂z
(rw) = 0, (1a)

u
∂u

∂s
+ w

∂u

∂z
− v2

r

∂r

∂s
= ue

∂ue
∂s

+ ν
∂2u

∂z2
, (1b)

u
∂v

∂s
+ w

∂v

∂z
+
uv

r

∂r

∂s
= ν

∂2v

∂z2
(1c)

In a fixed frame of reference these are subject to the boundary conditions

u = v − rΩ = w = 0 at z = 0 (2a){
u− ue = v = 0, u∞ 6= 0 as z →∞
u = v = 0, u∞ = 0

(2b)

We define a two-component stream function

u =
1

r

∂ψ

∂z
, v =

1

r

∂φ

∂z
, w = −1

r

∂ψ

∂s
, (3a−c)

which satisfies the continuity equation (1a) and which allows a consistent
treatment of the azimuthal velocity component v. We then define ψ and φ as
functions of dimensionless stream functions f and g,

ψ = ru∗Lξf(ξ, η), φ = r2ΩLξg(ξ, η), (4a,b)

whereLξ is a viscous length scale and u∗ is a switchable velocity scale of the
form

u∗ =

{
ue, u∞ 6= 0

rΩ, u∞ = 0.
(5)

Using a variation of the Mangler-Levy-Lees transformation, a right-handed
co-ordinate system is defined in which

η =
z

Lξ
, Lξ =

√
2ξ

u∗
, (6a, b)

ξ =

∫
ξsds, ξs = νu∗., (6c, d)
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Substituting these transformations into equations (3a–c) yields

u = u∗f ′, v = rΩg′, (7a, b)

w = − u
∗ν√
2ξ

[
(α+ 1)f − η(1− γ)f ′ + 2ξ

∂f

∂ξ

]
, (7c)

where a prime denotes differentiation with respect to η. Inserting (7a–c) in
to the governing equations (1a–c) ultimately yields

f ′′′ + (α+ 1)ff ′′ + αζg′2 − γf ′2 + β

= 2ξ

[
∂f ′

∂ξ
f ′ − ∂f

∂ξ
f ′′
]
,

(8a)

g′′′ + (α+ 1)fg′′ − 2αf ′g′

= 2ξ

[
∂g′

∂ξ
f ′ − ∂f

∂ξ
g′′
]
.

(8b)

where the coefficients are

α =
2ξ

r

∂r

∂ξ
, β =

2ξue
u∗2

∂ue
∂ξ

, (9a, b)

γ =
2ξ

u∗
∂u∗

∂ξ
, ζ =

(
rΩ

u∗

)2

. (9c, d)

The coefficient α relates to the shape of the body, β encompasses the stream-
wise slip velocity distribution (β = 0 in still air), while ζ is the square of the
ratio of rotational velocity to streamwise velocity (ζ = 1 in still air). Finally, γ
is the term that allows us to switch the equations between their still and axial
flow forms,

γ =

{
β, u∞ 6= 0

α, u∞ = 0.
(10)

Equations (8a,b) are subject to the following non-dimensional boundary con-
ditions

f = f ′ = g = g′ − 1 = 0 at η = 0 (11a){
f ′ − 1 = g′ = 0, u∞ 6= 0 as η →∞
f ′ = g′ = 0, u∞ = 0

(11b)
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3 Solution and verification of the general equa-
tions

Equations (8a,b) can be reduced to a system of partially-coupled linear ordi-
nary differential equations by employing a finite difference expression for the
ξ-derivatives. This system is parabolic in character so that upwind differencing
can be used, resulting in a system of local ordinary differential equations at
any given ξ. In the present work, these are solved using a 4th order compact-
difference scheme on a stretched η mesh, with near-wall ∆η = 0.02, a stretch
factor of 1.1 and a total of 29 points for 0 < η < 6. The coefficients defined by
equations (9a,b) are obtained by numerical differentiation of the relevant geom-
etry and the associated inviscid solution, here obtained using an axi-symmetric
vortex sheet method (which is not described in this paper) except for self-similar
cases.

In order to establish the validity of the proposed equations, results were
compared with published velocity profiles for a variety of shapes and flow con-
ditions.

3.1 Rotating disk in still air

The equations for the mean flow of a rotating disk in still air as derived by von
Kármán (1921) are

f ′′′ + 2ff ′′ + g′2 − f ′2 = 0, (12a)

g′′′ + 2fg′′ − 2f ′g′ = 0, (12b)

where in his formulation

u = rΩf ′(η), v = rΩg′(η), (13a, b)

w = −2
√
νΩf(η), η = z

√
Ω

ν
. (13c, d)

We have confirmed that equations (12a,b) can be obtained by manipulating
equations (8a,b) by switching to the η defined in equation (13d) above and
by substituting s = r in equations (3c) and (6c). Comparison of the velocity
profiles calculated by the present method with those generated by Benton (1966)
using von Kármán’s formulation, figure 2, also demonstrates that the present
numerical scheme resolves the velocity profiles in the η direction with acceptable
accuracy.

3.2 Rotating cone

3.2.1 Still air

The equations for the mean flow of a rotating cone of half-angle ψ in still air
were derived by Wu (1959) and Tien (1960). Their formulation maintains the
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Figure 2: Comparison of the velocity profiles on a rotating disk, obtained using
the present approach, with those reported by Benton (1966) (·); η as defined in
equation (13d).

6



same form of the boundary layer equations as for a rotating disk, while including
the cone half-angle ψ within the wall-normal co-ordinate η. This is achieved in
the present method through the inclusion of the local radius r in the velocity
scale u∗ which is present in our transformed wall-normal co-ordinate, equations
(5) and (9a–d). Garrett (2002), in an effort to match more readily experimental
Reynolds numbers, includes ψ direction in the boundary-layer equations (14a,b)
rather than including it in the wall-normal co-ordinate, thereby maintaining the
same η scaling and as in the case of the rotating disk, equation (13d),

f ′′′ +
(
2ff ′′ + g′2 − f ′2

)
sinψ = 0, (14a)

g′′′ + (2fg′′ − 2f ′g′) sinψ = 0, (14b)

Other definitions are as in equations (13a,b) above, noting that the wall-
normal velocity component for the cone is given by

w = −2 sinψ
√
νΩf(η) (15)

Equations (8a,b) can be manipulated as for the disk case, but using r =
s sin ψ to obtain equations (14a,b). Comparison of the velocity profiles cal-
culated by the present method with those generated by Garrett (2002) for the
rotating cone in still air, figure 3, validates our more general formulation of the
boundary layer equations.

3.2.2 Imposed axial flow

Koh and Price (1967) derived the mean flow equations for a rotating cone in
an axial flow. In this case there exists no similarity transformation to reduce
the mean flow equations from partial differential equations to a set of ordinary
differential equations. Koh’s approach assumes a power law for the boundary
layer edge velocity, ue, and incorporates this in the transformations, causing the
boundary layer equations to take on a more complex form,

f ′′′ + ff ′′ +
2m

m+ 3
(1− f ′2)

+
2ξ

m+ 3

[
g′2 + 2(1−m)

(
∂f

∂ξ
f ′′ − ∂f ′

∂ξ
f ′
)]

= 0,

(16a)

g′′′ + fg′′ − 4

m+ 3
f ′g′

+
4(1−m)ξ

m+ 3

(
∂f

∂ξ
g′′ − ∂g′

∂ξ
f ′
)

= 0.

(16b)

m depends only on the angle ψ. The non-dimensional velocity components
are given by
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Figure 3: Comparison of the velocity profiles on a rotating cone (in still air)
of half-angle ψ = 20◦ → 80◦ in 10◦ increments (right to left), obtained using
the present approach, with those reported by Garrett (2002) (·); η as defined in
equation (13d).
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u = ūef
′(ξ, η), v = ωx̄1/3 g′(ξ, η), (17a, b)

w = −
(

6

m+ 3
νx̄ūe

)1/2 [(
1

2x̄
+

1

2ūe

)
f(ξ, η) +

∂ξ

∂x̄

∂f

∂ξ
+
∂η

∂x̄
f ′
]
, (17c)

where

ξ =

(
v̄w
ūe

)2

=
(ω
b̄
x̄(1−m)/3

)2
, η = z̄

(
m+ 3

6

ūe
νx̄

)1/2

, (18a, b)

ω = Ω
(
3l2sinψ

)1/3
. (18c)

and where l is an arbitrary length scale, b is a flow constant and the trans-
formed length scales and edge velocity are

x̄ =
1

l2

∫ s

0

r2ds, z̄ =
r

l
z, ūe = bx̄m/3. (19a−c)

Equations (8a,b) can be manipulated using r = s sin ψ, defining the velocity
scale u∗ = ue = b sm and adopting η as in equation (18b) to obtain equations
(16a,b). Comparison of the profiles obtained from the present finite-difference
method with those generated by Koh and Price (1967) for the rotating cone in an
axial flow, figure 4, confirms that the velocity derivatives are correctly captured
in our approach. Differences in v are attributed to a reduced resolution in the
source image from which results were digitised. However the agreement with
the velocity profiles published by Garrett et al. (2010), figure 5, is not good,
particularly in the u-component near η = 1. The approach adopted by Garrett
et al. (2010), an adaptation of the method of Koh and Price (1967), aimed to
address limitations in the results presented in Garrett (2002), from which we
also differ. A key point is the non-monotonic development of the u-velocity peak
in the streamwise direction, highlighted by Hussain (2010, p28) but not present
in our results, nor indeed in Garrett’s analysis of the rotating sphere problem,
Garrett (2002).

3.3 Rotating sphere

3.3.1 Still air

The equations for the boundary layer of a rotating sphere in still air, first inves-
tigated by Howarth (1951), are shown here as formulated by Manohar (1967),

f ′′′ +
(
ff ′′ + g′2

)
cot θ =

[
f ′
∂f ′

∂θ
− f ′′ ∂f

∂θ

]
(20a)

g′′′ + (fg′′ + f ′g′) cot θ =

[
f ′
∂g′

∂θ
− g′′ ∂f

∂θ

]
, (20b)
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Figure 4: Comparison of the velocity profiles on a rotating cone (in an axial
flow) of half-angle ψ = 53.5◦ and ξ = 10, obtained using the present approach,
with those reported by Koh and Price (1967) (·); η as defined in equation (18b).
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Figure 5: Comparison of the velocity profiles on a rotating cone (in an axial
flow) of half-angle ψ = 70◦ and ξ = 1, 2, 3, 4, 5, 10, 25, 400 and ∞ (right to
left), obtained using the present approach, with those reported by Garrett et al.
(2010) and Hussain (2010) (·); η as defined in equation (13d).
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where θ is the angle of latitude measured from the axis of rotation, the
wall-normal co-ordinate η is as defined in equation (13d) and non-dimensional
velocity components are given by

u = r0Ωf ′(η, θ), v = r0Ωg′(η, θ), (21a, b)

w = −
√
νΩ

(
cot θf(η, θ) +

∂f

∂θ

)
. (21c)

where r0 is the radius of the sphere. Equations (20a,b) can be obtained
from (8a,b) by using r = r0 sin θ, s = rθ and adopting η as defined in equation
(13d). Figure 6 presents a comparison of the velocity profiles computed using
the present approach with those generated by Garrett (2002), Garrett and Peake
(2002) and Segalini and Garrett (2017), who made use of the above formulation.

3.3.2 Imposed axial flow

The equations for the boundary layer of a rotating sphere in an axial flow were
originally derived by El-Shaarawi et al. (1985) and are shown here as presented
by Garrett (2002)

f ′′′ +
(
ff ′′ + g′2

)
cot θ + T 2

s u0
∂u0
∂θ

=

[
f ′
∂f ′

∂θ
− f ′′

∂f

∂θ

] (22a)

g′′′ + (fg′′ + f ′g′) cot θ

=

[
f ′
∂g′

∂θ
− g′′

∂f

∂θ

]
(22b)

where θ is the angle of latitude measured from the axis of rotation, Ts is
the ratio of free-stream axial flow velocity to rotational velocity, Ts = u∞/r0Ω,
and u0 is a non-dimensionalised slip velocity, u0 = ue/u∞. The wall-normal
co-ordinate η and stream function definitions maintain the same scaling as in
the case of the rotating sphere in still air, equations (21a–c) and (13d). The
transformation of equations (8a,b) to equations (22a,b) follows a similar ap-
proach to that described in section 3.3.1. The comparison of the results from
present method with those generated by Garrett (2002) in figure 7, for θ = 10◦

and figure 8, for θ = 70◦ are again very good.

3.4 Rotating prolate spheroid in still air

The equations for the boundary layer of a rotating prolate spheroid in still air,
first investigated by Fadnis (1954), are shown here as formulated by Samad and
Garrett (2010),
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Figure 6: Comparison of the velocity profiles on a rotating sphere (in still air)
at θ = 10◦ → 80◦ in 10◦ increments (left to right), obtained using the present
approach, with those reported by Garrett (2002), Garrett and Peake (2002) and
Segalini and Garrett (2017) (·); η as defined in equation (13d).
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Figure 7: Comparison of the velocity profiles on a rotating sphere (in an axial
flow) at θ = 10◦ and Ts = 0, 0.05, 0.1, 0.15, 0.2 and 0.25 (left to right), obtained
using the present approach, with those reported by Garrett (2002) (·); η as
defined in equation (13d).
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Figure 8: Comparison of the velocity profiles on a rotating sphere (in an axial
flow) at θ = 70◦ and Ts = 0, 0.05, 0.1, 0.15, 0.2 and 0.25 (left to right), obtained
using the present approach, with those reported by Garrett (2002) (·); η as
defined in equation (13d).
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f ′′′
√

1− e2
1− e2cos2θ

+ g′2cot θ

+

(
e2cos θsin θ

1− e2cos2 θ
+ cot θ

)
ff ′′ =

[
f ′
∂f ′

∂θ
− f ′′

∂f

∂θ

] (23a)

g′′′
√

1− e2
1− e2cos2θ

− f ′g′cot θ

+

(
e2cos θsin θ

1− e2cos2 θ
+ cot θ

)
fg′′ =

[
f ′
∂g′

∂θ
− g′′

∂f

∂θ

] (23b)

where θ is the angle of latitude measured from the axis of rotation in an
elliptical co-ordinate system and e is the eccentricity of the ellipsoid. The wall-
normal co-ordinate is defined as η = (Ω∗/ν∗)1/2(η∗ − η∗0), where ∗ denotes
dimensional quantities in his formulation and η∗ and η∗0 are the total wall-normal
distance from the axis of revolution and wall-normal distance from the axis of
revolution to the surface of the spheroid, respectively. This should be analogous
to η as defined in equation (13d). The non-dimensional velocity components u,
v are defined as for the sphere in equation (21a,b) but w is given by

w = −
√
νΩ

[(
e2cos θsin θ

1− e2cos2 θ
+ cot θ

)
f(η, θ) +

∂f

∂θ

]
(24)

where here for a prolate spheroid r0 is the maximum radial thickness, the
length of the semi-minor axis. Due to the complex relation between r and s
for a spheroid we have not verified that equations (8a,b) can be transformed
to (23a,b). Nevertheless, velocity profiles calculated by the present method
compare well with those generated by Samad and Garrett (2010) in figure 9
for e = 0.3; however, for the higher eccentricity case of e = 0.7, figure 10, the
agreement, while good initially, is poor at increased latitude θ. The discrepancy
appears to be connected with the different mapping of the η co-ordinates used
by Samad and Garrett (2010, 2014) and in the present work, as the magnitudes
of the peak velocities agree closely. There is some ambiguity in the definition
of η∗0 between Samad and Garrett (2010) and Samad and Garrett (2014) which
may explain the discrepancies at higher θ for large eccentricities. In former η∗0
is defined as the wall-normal distance to the surface from the axis of revolution
while in the latter it is defined as the length of the semi-major axis. From this
it would follow that differences would be greatest at higher eccentricities and
latitudes. Unfortunately we were still unable to obtain a better match under
these assumptions.

4 Conclusions

A generalised formulation of the boundary layer equations for an arbitrary ro-
tating body of revolution has been presented. The use of a switchable velocity
scale u∗, as well as the local radius r, within the transformations enables any
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Figure 9: Comparison of the velocity profiles on a rotating prolate spheroid (in
still air) with eccentricity 0.3 at θ = 10◦ → 80◦ in 10◦ increments (left to right),
obtained using the present approach, with those reported by Samad and Garrett
(2010) (·); η as defined in equation (13d).
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Figure 10: Comparison of the velocity profiles on a rotating prolate spheroid
(in still air) with eccentricity 0.7 at θ = 10◦ → 80◦ in 10◦ increments (left to
right), obtained using the present approach, with those reported by Samad and
Garrett (2010) (·); η as defined in equation (13d).
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rotating axi-symmetric body to be analysed, both with and without an axial
flow. Comparisons with other published shape-specific formulations appear to
confirm the validity of both the mathematical formulation and the numerical
scheme employed, but there are some isolated discrepancies which remain to be
resolved.
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