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Two dimensional impulsive flow of a fluid is studied within the potential flow
theory. Initially the fluid is at rest and is held on one side of a vertical plate. The plate
is withdrawn suddenly and gravity driven flow of the fluid starts. Attention is paid
to the singular behaviour of the velocity field at the bottom point, where the vertical
free surface meets the rigid bottom. The linear problem is solved by the Fourier series
method. An inner region solution is found using Mellin Transformation at the bottom
point. The jet formation is observed at the bottom point. Also the discontinuity at
the upper corner point is dealt with Lagrangian variables. For the second order outer
problem, domain decomposition method is used. Comparison of the shapes of the free
surfaces near the upper corner point with leading and second order solutions show
that the second order outer solution outer makes a larger difference in the vertical
free surface than in the horizontal portion, compared with leading order solution.The
complete picture of the shapes of the free surfaces using Lagrangian description for
the upper part and Eulerian description for the bottom part at the second order is
obtained.

Keywords Dam-break flow - Free-surface flow - Matched asymptotic expansions -
Domain decomposition method <Abstract and keywords>

1. Introduction

The initial stages of the dam break flow, which is caused when a vertical dam at x′ = 0,
−H < y′ < 0, holding the liquid at the semi infinite strip, x′ > 0, −H < y′ < 0, suddenly
disappears, is investigated. At t′ = 0, the fluid is at rest above a rigid bed with depth
H. A cartesian coordinate system (x′, y′) with an origin at the free surface and positive
x′-axis directed along the free surface is chosen as shown in Figure 1. The resulting flow
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is gravity driven, two dimensional and potential. The liquid is assumed to be inviscid and
incompressible.

There are two free-surfaces of the flow region, which vary in time and have to be
determined as part of solution. The upper horizontal part of the free-surface is denoted as
y′ = η′(x′, t′), x′ > 0 and the vertical part as x′ = ξ′(y′, t′). The flow region is bounded by
these free-surfaces and by the rigid bottom y′ = −H.

Рис. 1. Flow region at the initial time instant t′ = 0

In this dam-break problem, we aim to construct a uniformly valid small-time solution
by using matched asymptotic expansions. The solution in time as power series should
be considered ’outer’ solution, which should be corrected with ’inner’ solution near the
intersection point, where there is a logarithmic singularity of the free surface shape and
the horizontal fluid velocity. The outer and inner asymptotic solutions have to be matched
in such a way to get a solution which is uniformly valid in the whole flow domain. The
matching is carried out using the matching principle of Van Dyke [1], that is, the limit
of the outer solution when approaching the corner point must be equal to the limit of the
inner solution when approaching infinity. In principle higher approximations are possible
by retaining further terms in the asymptotic expansions. But, in practice achieving higher
order approximations are difficult due to the amount of calculations involved. In this paper
we are satisfied by keeping the leading order terms of the inner and outer solutions.

There are various numerical and experimental studies on dam break flows. One of the
closely related study of this problem is the experimental study of Stansby et al. [2] which
observes the singularity and shows that horizontal jet occurs at the corner point for classical
dam break problem at small times. They also studied this problem for wet-bed case and
observed that the mushroom-like jet occurs at the triple point both experimentally and
numerically.

Numerical treatment of the dam break flow for small times is rather difficult due to
the logarithmic singularity at the bottom corner point. Stansby et al [2] had to artificially
remove the singularity by smoothing the corner before applying the numerical method. The
numerical treatment of the original dry bed dam break problem is only possible with the
help of an asymptotic analysis; near the corner point inner region problem should be solved
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and the size of the inner region should be provided.
Another related problem of impulsive acceleration of a wavemaker is thought to model

the initial stages of the motion of a dam under earthquake loading. The linearized theory
of this problem has been studied by Chwang [3]. He solves, to first order, the initial
value problem in a small-time expansion and shows the free-surface to be singular at the
intersection point. The remarkable point of these flow problems is the jet which occurs
at the intersection point with the jet strength being dependent on the angle between the
body surface and the free surface of the liquid and the direction of the body motion. This
problem is studied for vertical plate in [3]-[5] and for inclined plate [6].

Dam break flows due to gravity is also studied by Pohle [7] and Stoker [8] using the
Lagrangian description. However the Lagrangian variables are not suitable for the dam
break problems (see Korobkin & Yilmaz [9]). Recently, King & Needham [5], solved a
relevant problem of a uniformly accelerating plate into a block of fluid by using Eulerian
variables. They used the leading order outer solution to derive the size of the inner region
and then employed an integral transform to obtain the inner solution. Korobkin & Yilmaz
[9], used complex analytic function theory to solve the dam break flow problem. They
needed the second order outer solution to derive the inner region dimensions. In this paper,
we aim to use the Eulerian description and the Mellin Transformation to solve the dam-
break problem. Regarding the inner region solution, the free surface shape obtained in this
paper is almost the same as that of Korobkin & Yilmaz [9] but the method used is different.
The main idea of the paper is to compare the two methods in terms of methodology and
the numerical results. The present method uses the Mellin transform and does not require
the second order outer solution to derive the inner one, whereas the second order outer
solution is needed for the method by Korobkin and Yilmaz [9].

The second order outer solution is needed to correctly capture the behaviour of the
fluid flow near the top corner point and close to the singular corner point at the bottom.
Special care is required to calculate the form of the free surface near the top corner point
where horizontal and vertical free surfaces meet. In [9] it was shown theoretically that the
free surfaces at the top corner point meet up at the order of ϵ2 using the second order
outer solution where ϵ is a small parameter introduced to indicate the initial stages of the
flow. Immediately after the disappearance of the dam, a part of horizontal and vertical free
surfaces is expected to spill over to the region x

′
< 0 (See Figure 1). Hence to calculate

the free surface shape it is necessary to use the Lagrangian variables to follow the fluid
particles outside the initial fluid region x

′ ≥ 0, −H ≤ y
′ ≤ 0. The second order outer

solution could be found by the Fourier series method just as is done with the first order
solution. However the second order problem is far more complicated than the first order
problem and it is convenient to use the the domain decomposition method. The main
idea of this method is to divide the whole fluid domain into suitable sub domains where
solutions can be written as infinite series involving unknown coefficients, and then equate
the truncated series at collocation points in the intersection of sub domains to derive the
unknowns of the problem. To the authors best knowledge second order outer solution for
the whole fluid domain has not been obtained before for the classical dam break problem.
The domain decomposition method is used successfully by Needham et al [10] to find the
first order outer solution in the problem of an inclined plate accelerating into a body of
fluid.
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Domain Decomposition methods suggest a convenient way to solve the complicated two
and three dimensional nonlinear problems numerically by the concept of domain splitting
instead of using arduous finite element approximations for the whole domain [11]. As
an example Glowinski et al solved the numerical simulation of a transonic flow by the
Schwarz-alternating method with the overlapped regions. They showed the efficiency and
the stability of these methods by applying them to the several Poisson problems. Cai
[12] is also concentrated on one special group of these Domain Decomposition methods
using overlapping subdomains and using the software Diffpack. This study states that
the convergence of the solution on the internal boundaries ensures the convergence of the
solution in the entire solution domain.

A detailed analysis of the Domain Decomposition methods, and of the ’Schwarz method
for overlapping domains’ which is similar to the one adopted here, is given in Quarteroni
and Valli [13], where the mathematical foundations of the different approaches is provided.

In section 2 we formulate the dam break problem using dimensionless variables, and
derive the leading order solution. Next we derive the leading order asymptotics in section
3. Also, we deal with discontinuity at the upper corner point by using Lagrangian variables
in section 4. We derive the second order outer solution using the domain decomposition
method in section 5. Finally we draw some conclusions in section 6.

2. Formulation of the problem

The Euler equations of fluid motion are used in the fluid domain together with kinematic
and dynamic free-surface conditions at the free surfaces and the slip boundary condition
at the bottom to model the dynamics of this system. Dimensionless unprimed variables
are introduced as follows,

x′ = Hx , η′ = Hη ,

y′ = Hy , ξ′ = Hξ , (1)

t′ =

√
H

g
t , p′ = pρgH .

A mathematical statement of the problem can now be written in non-dimensional form
as

∂u

∂x
+

∂v

∂y
= 0 ,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
− 1 ,


−1 ≤ y ≤ η(x, t), ξ(y, t) ≤ x ≤ ∞ (2)

v =
∂η

∂t
+ u

∂η

∂x
, p = 0 on y = η(x, t), (3)

u =
∂ξ

∂t
+ v

∂ξ

∂y
, p = 0 on x = ξ(y, t), (4)

v(x,−1, t) = 0, (5)
η(x, 0) = ξ(y, 0) = 0, u(x, y, 0) = v(x, y, 0) = 0, (6)
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as x → ∞, u, v → 0 and p → −y, (7)

where equations (2) are Euler equations, (3) and (4) are kinematic and dynamic boundary
conditions at the horizontal and vertical free surfaces, (5) is the slip boundary condition
at the bottom, (6) is the initial conditions which state that the fluid is at rest initially and
(7) is the radiation condition at ∞.

A small-time solution to (2) - (7) may be sought by posing the power series expansions
of the unknown variables, horizontal and vertical components of velocity, horizontal and
vertical free surface shapes and pressure, in time,

u = u0(x, y) + tu1(x, y) +O(t2),

v = v0(x, y) + tv1(x, y) +O(t2),

η = η0(x) + tη1(x) + t2η2(x) +O(t3), (8)
ξ = ξ0(y) + tξ1(y) + t2ξ2(y) +O(t3),

p = p0(x, y) + tp1(x, y) +O(t2)

as t → 0 x = O(1), where x = (x, y). We find from the initial conditions that u0 = v0 = 0,
η0 = η1 = 0 and ξ0 = ξ1 = 0.

2.1. The Leading Order Solution

By substituting the expansions (8) in (2) - (7) and using the Taylor series expansions of
unknown functions about y = 0 for the vertical free surface and x = 0 for the horizontal
free surface in the boundary conditions, we fix the domain as the semi-infinite horizontal
strip, −1 ≤ y ≤ 0, 0 ≤ x < ∞ and find the following boundary value problem at the
leading order as

∂u1

∂x
+

∂v1
∂y

= 0,

u1 = −∂p0
∂x

, v1 = −∂p0
∂y

− 1,

− 1 ≤ y ≤ 0, 0 ≤ x < ∞ (9)

v1(x,−1) = 0 , η2 =
1

2
v1(x, 0) , ξ2 =

1

2
u1(0, y) , (10)

p0(x, 0) = 0 , p0(0, y) = 0 (11)
as x → ∞, u1, v1 → 0 and p0 → −y. (12)

Solution to the problem (9)-(12) is quite straightforward and found by the Fourier
Series method as

p0(x, y) = −y +
∞∑
n=0

8(−1)n

(2n+ 1)2π2
sin

(
(2n+ 1)

π

2
y

)
e−(2n+1)π

2
x , (13)

ξ2(y) =
2

π

∞∑
n=0

(−1)n sin

(
(2n+ 1)π

2
y

)
2n+ 1

. (14)
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2.2. Analysis of the Singularity Near the Bottom Point (0,-1)

The sum of the series in (14) is ξ2 = 1
π
log(tan π

4
(1 + y)) which exhibits a singularity in

the free-surface elevation as y → −1. It is seen that the infinite sum in (13) converges at
the corner point implying that the pressure is well behaved near the corner point, (0,−1)
and that the horizontal fluid velocity and the free surface shape are singular at the corner
point,

u1(0, y) =
2

π
log(tan

π

4
(1 + y)). (15)

Рис. 2. New coordinate axes ξ, η and the inner region

The singularity at the point (0,−1) suggests that the expansions (8) are outer expansions
to this problem. An inner solution is required in the neighbourhood of the point (0,−1), as
t → 0. First, the behaviour of p0 is investigated as (x2+y2)

1
2 → 0. The origin is translated

to the bottom point by the transformation ξ = x and η = y + 1 and then the standard
polar coordinates (ρ, θ) are introduced by ξ = ρ cos θ and η = ρ sin θ (see Fig. 2). Using
(13) and (14), as ρ → 0, we have the limiting values of the outer solution

p0 = ρ log ρ

(
− 2

π
cos θ

)
+ ρ

(
− sin θ +

2

π
(1− log(

π

4
)) +

2

π
θ sin θ

)
+ o(ρ),

(16)

ξ2 =
1

π
log

π

4
+

1

π
log η +O(η2) as η = ρ → 0.

This indicates that p0 is analytic and ξ2 is singular at the corner point; p0 = O(ρ log ρ)
and ξ2 = O(log ρ) as ρ → 0. The fluid velocities in the corner region are calculated by
the equations u1 = −∂p0

∂ξ
and v1 = −∂p0

∂η
− 1, from (9). Then we find that the horizontal
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velocity has logarithmic singularity at the corner point, u1 = O(log ρ) and v1 = O(1) as
ρ → 0. In the next section, an inner region solution is developed near the singular point.

3. Leading Order Asymptotic (Inner) Solution Near the Bottom
Point (0,−1)

The method of this section follows closely that of King & Needham [5]. In order to formulate
an inner solution to this problem when ξ, η = o(1) as t → 0, the magnitude of terms in
the velocity components in equations (2) are examined. The local analysis at the end of
section 2 shows that as ρ = (ξ2 + η2)

1
2 → 0;

u = O(t log ρ), v = O(t), (17)
p = O(ρ log ρ), ξ = O(t2 log ρ). (18)

Thus a typical term kept in (2) is vt = O(1) whereas a typical neglected term, which
represents fluid inertia, is uvx = O((t2 log ρ)/ρ). These two terms are of equal magnitude
when t2 log ρ = O(ρ). If this is solved iteratively, we find that ρ = O(−t2 log t). In this
region inertial terms are important and v = O(t), u = O(t log t), p = O(t2 log2 t) and
ξ = O(t2 log t). These estimates suggest the following inner variables,

ξ̄ = − ξ

t2 log t
, η̄ = − η

t2 log t
, ū = u, v̄ = v, p̄ = p. (19)

which gives the boundary value problem in the inner region,

∂ū

∂ξ̄
+

∂v̄

∂η̄
= 0,

∂ū

∂t
− η̄

(
2

t
+

1

t log t

)
∂ū

∂ξ̄
− η̄

(
2

t
+

1

t log t

)
∂ū

∂η̄
− 1

t2 log t
ū
∂ū

∂ξ̄

− 1

t2 log t
v̄
∂ū

∂η̄
=

1

t2 log t

∂p̄

∂ξ̄
,

∂v̄

∂t
− ξ̄

(
2

t
+

1

t log t

)
∂v̄

∂ξ̄
− η̄

(
2

t
+

1

t log t

)
∂v̄

∂η̄
− 1

t2 log t
ū
∂v̄

∂ξ̄

− 1

t2 log t
v̄
∂v̄

∂η̄
=

1

t2 log t

∂p̄

∂η̄
− 1,



(20)

in the domain 0 ≤ η̄ < ∞, ξ̄ ≥ ξ(η̄, t)/(−t2 log t) and subject to free-surface conditions on
ξ̄ = ξ(η̄, t)/(−t2 log t),

ū =
∂ξ

∂t
− η̄

(
2

t
+

1

t log t

)
∂ξ

∂η̄
−
(
− 1

t2 log t

)
v̄
∂ξ

∂η̄
and p̄ = 0. (21)

Matching conditions (16) are also written in terms of the inner variables and are applied
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as ρ̄ = (ξ̄2 + η̄2)
1
2 → ∞. So we get the limiting behaviour of the inner solution as ρ̄ → ∞,

which suggest the following inner region form of the expansions

p̄ = t2(log t)2p̄1 + t2 log tp̄2 + o(t2 log t), ξ = t2 log tξ1 + t2ξ2 + o(t2), (22)

ū = t log tū1 + tū2 + o(t), v̄ = t log tv̄1 + tv̄2 + o(t), (23)

as t → 0 with ξ̄, η̄ = O(1). If the expansions (22) and (23) are substituted into the inner
region problem (20)-(21) and by using the Taylor series expansions of unknowns at the
free surface, ξ̄ = ξ(η̄, t)/(−t2 log t), at the leading order we obtain

∂ū1

∂ξ̄
+

∂v̄1
∂η̄

= 0,

ū1 − 2ξ̄
∂ū1

∂ξ̄
− 2η̄

∂ū1

∂η̄
− ū1

∂ū1

∂ξ̄
− v̄1

∂ū1

∂η̄
=

∂p̄1
∂ξ̄

,

v̄1 − 2ξ̄
∂v̄1
∂ξ̄

− 2η̄
∂v̄1
∂η̄

− ū1
∂v̄1
∂ξ̄

− v̄1
∂ū1

∂η̄
=

∂p̄1
∂η̄

,


(24)

in the domain 0 ≤ η̄ < ∞, ξ̄ > −ξ1, subject to the free-surface conditions on ξ̄ = −ξ1,

ū1 = 2ξ1 − 2η̄
∂ξ1
∂η̄

− v̄1
∂ξ1
∂η̄

and p̄1 = 0. (25)

From the limiting behaviour of the inner region solution as ρ̄ → ∞, at the leading order,
we have,

p̄1 ∼
4

π
ξ̄ , ξ1 ∼

2

π
, ū1 ∼

4

π
, v̄1 ∼ 0 as (ξ̄2 + η̄2)

1
2 → ∞. (26)

These matching conditions must be the solution or a part of the solution of the leading
order problem. By this fact, the exact solution to this problem is

ū1 ≡
4

π
, v̄1 ≡ 0 , p̄1 ≡

4

π

(
ξ̄ +

2

π

)
, ξ1 ≡

2

π
, (27)

which represents a mass of fluid moving to the left at the bottom, similar to the findings
of [4] where a block of fluid is rising.

Similarly, using the next order terms in the perturbation process, the second order problem
is obtained,

∂ū2

∂ξ̄
+

∂v̄2
∂η̄

= 0,

4

π
+ ū2 − 2ξ̄

∂ū2

∂ξ̄
− 2η̄

∂ū2

∂η̄
− 4

π

∂ū2

∂ξ̄
=

∂p̄2
∂ξ̄

,

v̄2 − 2ξ̄
∂v̄2
∂ξ̄

− 2η̄
∂v̄2
∂η̄

− 4

π

∂v̄2
∂ξ̄

=
∂p̄2
∂η̄

− 1,


(28)
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to be solved in the fixed domain 0 ≤ η̄ < ∞, ξ̄ > − 2
π
. The free-surface conditions on

ξ̄ = − 2
π

are

p̄2 =
4

π
ξ2 , ū2 =

2

π
+ 2ξ2 − 2η̄

∂ξ2
∂η̄

(29)

and the matching conditions, which are obtained from (16), at the second order are,

p̄2 ∼
2

π

{
(µ− 1)ξ̄ + ξ̄ log ρ̄+ (

π

2
− θ)η̄

}
, ξ2 ∼

1

π
(µ+ log η̄), (30)

ū2 ∼
2

π
µ− 1 + log ρ̄ , v̄2 ∼ − 2

π
θ, (31)

as (ξ̄2 + η̄2)
1
2 → ∞, where µ = log(− log t) + log(π

4
). Here (ρ̄, θ) are the usual polar

coordinates with respect to the Cartesian coordinates (ξ̄, η̄).
Since horizontal velocity ū2 and pressure are unbounded as ρ̄ → ∞, the boundary value

problem (28)-(31) is not easy to solve. This problem is solved in the next subsection.

3.1. Reformulation and the Mellin Transform of the boundary value problem
(28)

It would be more convenient at this stage to continue with velocity potential φ. Since
the flow is irrotational at the begining, by the Cauchy-Lagrange theorem, the flow is
irrotational at all times. Thus a velocity potential φ is introduced by ū2+

4
π
= ∂φ

∂x
, v̄2 = ∂φ

∂y

and the coordinates are shifted by x1 = ξ̄+ 2
π

and y1 = η̄. By using this velocity potential,
the quarter plane problem (28)-(31) becomes

∆φ = 0 in 0 ≤ y1 < ∞, x1 > 0,

p0 + 3φ− 2y1
∂φ

∂y1
=

4

π
ξ − y1 on x1 = 0,

∂φ

∂x1

=
6

π
+ 2ξ − 2y1

∂ξ

∂y1
on x1 = 0,

∂φ

∂y1
= 0 on y1 = 0,

ϕ ∼ 2

π

{
x1 log(x

2
1 + y21)

1
2 − y1 tan

−1(
y1
x1

) + (µ+ 1)x1

}
+ o((x2

1 + y21)
1
2 ),

ξ ∼ 1

π
(log y1 + µ) + o(1), as r1 = (x2

1 + y21)
1
2 → ∞,



(32)

An integral transform can not be applied to (32) for ϕ is unbounded as r1 → ∞. The
standard polar coordinates (r1, θ1) relating to the cartesian coordinates (x1, y1) are used
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and the terms that becomes unbounded as r1 → ∞ are subtracted from φ and ξ,

φ = φ̃+
2

π

{
r1 cos θ1 log r1 − θ1r1 sin θ1 + (µ+ 1)r1 cos θ1

}
,

ξ = ξ̃ +
1

π
(log r1 + µ),

 (33)

so that φ̃ is harmonic with ∂φ̃
∂θ1

(r1, 0) = 0 and the free-surface conditions on θ1 =
π
2

can be
written from (32) by using (33) as

p0 + 3φ̃− 2r1
∂φ̃

∂r1
=

4

π

{
ξ +

1

π
(log r1 + µ)

}
, (34)

1

r1

∂φ̃

∂θ1
= −2ξ̃ + 2r1

∂ξ̃

∂r1
. (35)

It is easily seen that ξ̃ = o(1) and ϕ̃ = o(r1) as r1 → ∞. The improper integral of
the transform may still be divergent since the behaviour of φ̃ at ∞ is o(r1). Thus a
coordinate expansion of the form φ̃ = A log r1 + B + O(1/r1) for large r1 is suggested,
where A = 4/(3π2), B = 4

3π2µ + 8
9π2 − p0

3
and ξ̃ = O(1/r21). Now using the coordinate

expansion, the potential is redefined as

φ̃ = ϕ+
4

6π2
log(1 + r21)−B, ξ̃ = ζ. (36)

Thus we get ϕ = O(1/r1) as r1 → ∞ and the following boundary value problem,

∆ϕ = − 4

6π2
∆ log(1 + r21) in 0 ≤ r1 < ∞, 0 ≤ θ1 ≤

π

2
,

∂ϕ

∂θ1
= 0 on θ1 = 0,

3ϕ− 2r1
∂ϕ

∂r1
=

4

π
ζ + f ∗(r1) on θ1 =

π

2
,

1

r1

∂ϕ

∂θ1
= −2ζ + 2r1

∂ζ

∂r1
on θ1 =

π

2
,



(37)

where
f ∗(r1) =

4

3π2

{
3 log r1 −

3

2
log(1 + r21) +

2r21
1 + r21

− 2

}
.

Now the Mellin transform,

Φ(s, θ1) =

∫ ∞

0

rs−1
1 ϕ(r1, θ1)dr1, (38)

Z(s) =

∫ ∞

0

rs−1
1 ζ(r1)dr1, (39)
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can be applied to the boundary value problem (37). Since ϕ = O(1), ζ = O(log r1) as
r1 → 0 and ϕ = O(1/r1), ζ = O(1/r21) as r1 → ∞ we expect Φ to exist and be analytic
in the strip 0 < Re(s) < 1 of the complex s-plane and Z will similarly be analytic in
0 < Re(s) < 2.

Taking the Mellin transform of the first equation in (37), we have{
∂2

∂θ21
+ s2

}
Φ(s, θ1) = − 2s

3π sin(π
2
s)

. (40)

The general solution to this ordinary differential equation is

Φ(s, θ1) = a(s) sin(sθ1) + b(s) cos(sθ1)−
2

3πs sin(π
2
s)

. (41)

Similarly taking the Mellin transform of the boundary condition ∂ϕ
∂θ1

= 0 on θ1 = 0 gives
the transformed boundary condition ∂Φ

∂θ1
= 0 on θ1 = 0. Application of this boundary

condition to the general solution (41) gives a(s) = 0. By transforming the free-surface
conditions on θ1 =

π
2
, we obtain b(s) as a solution of a difference equation,

b(s) =
b̄(s)(−1)sΓ(s)

πsΓ(s+ 5
2
)Γ(s+ 2)

, (42)

where b̄(s) is a solution of b̄(s)/b̄(s − 1) = 1. This gives the Mellin transform of the
free-surface elevation by the Mellin transformed free-surface condition (third equation in
(37)),

Z(s) = −
b̄(s)(−1)s−1 cos(π

2
s)

2s(s+ 1)πs−1Γ(s+ 3
2
)
. (43)

In order to ensure the convergence of the inversion integral, we require ν = Im(s) > −3
and b̄(s) must have the following behaviour,

b̄(ν + iσ) =

{
O(1), σ → +∞

O(e2πσ), σ → −∞.
(44)

where s = ν + iσ. A function of period 1 which has this property is

b̄(s) =
c

(−1)s sinπs
(45)

where c is an arbitrary constant. With this choice of b(p) and by using the following Mellin
inversion formulas of Z(p) and Φ(p, θ1),

ζ(r1) =
1

2πi

∫ τ+i∞

τ−i∞
r−s
1 Z(s)ds ,

ϕ(r1, θ1) =
1

2πi

∫ τ+i∞

τ−i∞
r−sΦ(s, θ1)ds,
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we have,

ζ(r1) =
cπ

4

1

2πi

∫ τ+i∞

τ−i∞

(1/πr1)
s

s(1 + s)sin(π
2
s)Γ(s+ 3

2
)
ds (46)

for (0 < τ < 2) , and
(47)

ϕ(r1, θ1) =
1

2πi

∫ λ+i∞

λ−i∞

{
c cos sθ1

πs sin(πs)s(1 + s)Γ(s+ 5
2
)
− 2

3π sin(π
2
s)

}
r−s
1 ds

for (0 < λ < 1) .

3.2. Shape of the Free Surface and the Evaluation of the Line Integral (46)

Of particular interest now is the form of free-surface that this integral solution represents.
The line integral (46) may be turned into a contour integral in Re(s) > 0 by noting that
the integrand decays on the semicircle s = ρ̄eiθ, −π

2
< θ < π

2
and a simple application of

residue theorem gives

ζ(r1) = − c

2

∞∑
n=1

(−1)n(1/πr1)
2n

2n(2n+ 1)Γ(2n+ 3
2
)
. (48)

The ratio test reveals that this series is convergent for all r1 ̸= 0. In fact for large r1 the
series is asymptotic and ζ = O(1/r21) from (48). However at r1 = 0 the series in (48)
diverges and a rather different approach to the evaluation of ζ is needed for small r1.
Since the line integral can not be made into a contour integral by addition of a semicircle
in the left-s-plane (due to the growth in the gamma function) we consider a rectangular
contour surrounding only the poles at s = −1, 0 of the integral (46). Using that rectangular
contour, we obtain,

ζ(r1) =
cπ

4

{
2

πΓ(3
2
)

(
log(

1

πr1
)− 1−

Γ′(3
2
)

Γ(3
2
)
+

π2r1
4

)}
+ o(r1), (49)

as r1 → 0.
Recalling that the physical free-surface elevation is ξ2 = ζ + (1/π)(log r1 + µ), the

logarithmic term can be eliminated by choosing c as 1/
√
π. Thus the form of free surface

ζ(r1) for small r1 in (49) is obtained

ξ2 =
1

π

{
log(− log t) + log(

1

4
)− 1−

Γ′(3
2
)

Γ(3
2
)
+

π2r1
4

}
+ o(r1), (50)

and the form of free surface ζ(r1) for large r1 is

ξ2 =
1

π

{
log r1 + log(− log t) + log(

π

4
)

}
− 1

2
√
π

∞∑
n=1

(−1)n(1/πr1)
2n

2n(2n+ 1)Γ(2n+ 3
2
)
. (51)
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Now, we will show that the outer and inner solutions match satisfactorily using numerical
calculations. The correction to the leading order free-surface elevation, ξ2(η̄) can be written
as

ξ2(η̄) =
1

π
(log η̄ + µ) +

√
π

4

1

2πi

∫ τ+i∞

τ−i∞

(1/πη̄)s

s(1 + s)sin(π
2
s)Γ(s+ 3

2
)
ds (52)

with 0 < τ < 2. The integral appearing in (52) is of O(1/η̄2) as η̄ → ∞ so that ξ2(η̄)
matches the outer solution as η̄ → ∞ satisfactorily with a relative error of 10−4 as y varies
between −0.9 and −0.995 as we see from the Table 1. The series in (51) are calculated for
N = 70, which gives a maximum relative error of 10−9.

Outer Solution I.S. for Large r I.S. for Small r
y = −0.4 −0.00034340 −0.00038318 0.14248134
y = −0.6 −0.00057253 −0.00058969 0.09368181
y = −0.8 −0.00093849 −0.00094270 0.04488228
y = −0.9 −0.00129467 −0.00129571 0.020482515
y = −0.92 −0.00140869 −0.00140936 0.01560256
y = −0.94 −0.00155550 −0.00155586 0.01072260
y = −0.96 −0.00176222 −0.00176234 0.00584265
y = −0.98 −0.00211536 −0.00211525 0.00096270
y = −0.99 −0.00246841 −0.00246781 −0.00147727
y = −0.995 −0.00282143 −0.00281901 −0.00269726
y = −0.999 −0.00364111 −0.00358329 −0.00367325
y = −0.9992 −0.00375476 −0.00366690 −0.00372205
y = −0.9994 −0.00390127 −0.00375409 −0.00377085
y = −0.9996 −0.00410778 −0.00382576 −0.00381965
y = −0.9998 −0.00446079 −0.00386599 −0.00386845
y = −0.9999 −0.00481381 −0.00389300 −0.00389285
y = −0.99992 −0.00492746 −0.00389740 −0.00389773
y = −0.99994 −0.00507397 −0.00390249 −0.00390261
y = −0.99996 −0.00528047 −0.00385408 −0.00390749
y = −0.99998 −0.00563349 −2.8631× 1017 −0.00391237
y = −0.99999 −0.00598651 −∞ −0.00391481

Т а б л и ц а 1. Comparison of the inner solutions (I.S.) of ξ(y, t) near intersection point for
t = 0.04.
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The light gray region in Table 1 shows the matching between the outer solution and
the inner solution for large r and the dark gray region shows the matching between the
two forms of the inner solutions.

To compare the expressions for free surface functions (50) with that of Korobkin &
Yilmaz [9], it is convenient to rewrite the expression (50) in dimensional variables as,

x
′

=
gt

′2

π
log

gt
′2

H
+

gt
′2

π
log

π

4
− gt

′2

π

(
1 +

Γ
′
(3/2)

Γ(3/2)

)
+

+
gt

′2

π
log
(
− log(t

′√
g/H)

)
− π

4

y
′
+H

log(t′
√
g/H)

. (53)

The corresponding expression of Korobkin & Yilmaz [9] is

x
′

=
gt

′2

π
log

gt
′2

H
+

gt
′2

π
log

π

4
− gt

′2

π

(
1

3
− log

a

ϵ

)
+

+
gt

′2

2π
log

(
(y

′
+H)2

t′4
ϵ2

a2g2
+

1

9π2

)
+

+ (y
′
+H)

ϵ

a
arctan

(
1

3π

gt
′2

y′ +H

a

ϵ

)
− π

2
gt

′2
S

(
ϵ

ag

y
′
+H

t′2

)
, (54)

where
S(u) =

8

9π2

∫ ∞

0

(
(3− τ 2)e−τ2/6 − 3 cos τ

)
cos
(
uτ 2/π

) dτ
τ 3

,

a = −ϵ log a, ϵ = gT 2/H,

and T is a suitable time scale. The first two terms in the expression (53) match exactly
with those of (54) and the third term of (53) is almost the same as that of (54). However
it is difficult to compare the last two terms.

The tangent of the angle between the free surface and the bed is calculated by differentiating
the equations (53) and (54). In the leading order both equations (53) and (54) provide the
same formula,

dy
′

dx′ = − 2

π
log

(
gt

′2

H

)
, (55)

at the intersection point. Next we compare the expressions numerically and visually in a
graph.

In Figure 3 the shape of the free surface in the inner region is plotted with the
dimensional variables using the present method and the method of Korobkin & Yilmaz
[9]. Note that the present method which is based on the Mellin transform, is different
from that of Korobkin & Yilmaz [9] which makes use of complex analytic function theory.
The shapes of free surfaces in Figure 3 are quite close to each other. Maximum relative
discrepancy between the results is about 0.01.

One can observe from the shape of the physical free surface in dimensional variables,
shown in Figure 3, that a jet is formed near the intersection point. Note that very close to
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Рис. 3. The comparison of the shape of the free surface using the two methods for dimensional
variables t

′
= 0.0143s,H = 1m, g = 9.81m/s2.
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the bottom the free surface shape becomes almost perpendicular to the x− axis. In Figure
3 the angle between the free surface and the bottom is about 75 deg and it decreases as
time increases (see equation (55)). There is also the problem of discontinuity at the point
where the horizontal free surface meets the vertical free surface, (0, 0), which we address
in the next section.

4. The Shape of the Free Surfaces at the Upper Corner Point

To describe the shape of the free surface at the upper corner point (0,0), Lagrangian
variables should be used, for we should be able to follow the fluid particles outside the
domain, x > 0. The velocities of the fluid can be written by differentiating the leading
order pressure (13),

u =
dx

dt
= −t

∞∑
n=0

8(−1)n

(2n+ 1)2π2

(
− (2n+ 1)

π

2

)
sin

(
(2n+ 1)

π

2
y

)
e−(2n+1)π

2
x, t > 0, (56)

v =
dy

dt
= −t

∞∑
n=0

8(−1)n

(2n+ 1)2π2

(
(2n+ 1)

π

2

)
cos

(
(2n+ 1)

π

2
y

)
e−(2n+1)π

2
x, t > 0.

The sum of the infinite series in (56) is found as

dx

dt
= −2t

π
log

√
(1− e−πx)2 + (2 cos π

2 ye
−πx/2)2

(1 + e−πx + 2 sin π
2 ye

−πx/2)2
t > 0, (57)

dy

dt
= −2t

π
arctan

(
2 cos π

2 ye
−πx/2

1− e−πx

)
t > 0.

The solution to the coupled nonlinear differential equations (57) is carried out by adaptive step
size Runge-Kutta numerical routine with an initial condition imposed at t = 0. The shape of the
free surfaces near the upper corner point (0,0) is seen in Figure 4, for different times, with dotted
lines denoting the initial shape at t = 0.

5. Second-Order Outer Solution

In order to derive the second-order solution, the domain decomposition method is used ([11]-
[13]). In this method, the flow domain is divided into a number of overlapping sub-domains.
General solutions of the original problem are obtained with some undetermined coefficients in
each of the sub-domains. Then the solutions are matched using some collocation points along
the boundaries of the sub domains to determine the unknown coefficients. The sizes of the sub
domains, the number of the collocation points on the boundaries and the number of terms retained
in the solutions of the problem in each sub-domain are the important parameters of the domain
decomposition method.

We shall first solve the leading order problem of the dam-break flow by the domain decomposition
method and compare the obtained results with the solution (13) by the Fourier series method to
determine the optimum parameters for the method. In this method, we divide the flow domain
into three regions: Region 1 is the quarter disk of radius r1 about the upper corner point, Region
2 is the quarter disk of radius r2 about the bottom corner point and Region 3 is the semi-infinite
strip x > x3 (see Figure 5). The idea is to find general solutions of the boundary problem (9)-(12)
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Рис. 4. The shapes of the free surfaces in dimensionless variables at the leading order for times
t = 0.2, t = 0.4 and t = 0.6

Рис. 5. Sketch of the decomposition adopted.
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in these three regions. Note that each of the regions include only two of the three boundaries
of the total region. Then the solutions are matched on the boundaries of sub regions and the
corresponding coefficients of the expansions in each region are determined.

Let r and θ be the polar coordinates about the origin, x = 0, y = 0, and r̃ and θ̃ be the
polar coordinates centred at x = 0, y = −1. It is convenient to introduce the shifted coordinates
denoted by tilde, x̃ = x, ỹ = y + 1.

A general solution of (9),(11) in Region 1 (R1) is

p0 =
∞∑
n=1

CI
nr

2n sin(2nθ), (−π

2
≤ θ ≤ 0, r < r1). (58)

A general solution of (9)-(11) in Region 2 (R2)reads,

p0 = −ỹ +
2

π

[
(1− log(

π

4
))x̃− x̃logr̃ + θ̃ỹ

]
+

∞∑
n=1

CII
n r̃2n−1 cos((2n− 1)θ̃), (0 ≤ θ̃ ≤ π

2
, r̃ < r2),

(59)
and, a general solution in Region 3 (R3), which satisfies (9)-(12) except the condition at x = 0, is

p0 = (1− ỹ) +
∞∑
n=1

CIII
n cos

(π
2
(2n− 1)ỹ

)
exp

(
−(

π

2
(2n− 1)x̃

)
, (x̃ > x3). (60)

The decomposition is applied with r2 = r1, x3 = r1/2 and r1 > 1/2. The coefficients in the
expansions are obtained by a collocation method on a number of points which is larger than the
number of the unknown coefficients. So that an over-determined system of equations is obtained
and solved by the method of Singular Value Decomposition.

Let Ni denote the number of terms in the expansion considered for region Ri, i = 1, 2, 3.
The number of collocation points on the boundary of the regions Ri and Rj is chosen to be
NcNi +NcNj where Nc is an integer larger than unity. Due to the peculiarity of the solution in
region 2, the number of terms for this region is chosen to be two times larger than the other two
regions. So, there are three parameters to be selected: the number of terms in the expansions Ni,
the free parameter Nc and the radius r1. We get the best solution for the leading order using the
parameters N1 = N3 = 8, N2 = 16, Nc = 8 and r1 = 0.8. In order to validate the procedure, the
domain decomposition solution is compared with the analytical solution (Table 2).

In Table 2 the pressure at the line segment x = 0.4,−0.98 < y < −0.1 are compared and
it is found that the maximum relative error is 2.036 × 10−6. In Table 3, we aim to investigate
the effect of the free parameter Nc on the coefficients. It is seen that increasing Nc from 8 to 10
or 12, which has the effect of increasing the number of collocation points, does not change the
coefficients significantly.
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x = 0.4 A.S. D.D.S. Rel. Err.
y = −0.1 0.03772292 0.03772284 2.036× 10−6

y = −0.2 0.07618666 0.07618652 1.838× 10−6

y = −0.3 0.11619080 0.11619080 2.012× 10−8

y = −0.4 0.15865982 0.15866034 3.285× 10−7

y = −0.5 0.2047235 0.20472455 5.050× 10−8

y = −0.6 0.25581418 0.25581716 1.167× 10−7

y = −0.7 0.31376662 0.31376923 8.324× 10−8

y = −0.8 0.38085756 0.38085983 5.978× 10−8

y = −0.9 0.45962375 0.45962585 4.558× 10−8

y = −0.92 0.47698906 0.47698698 4.348× 10−8

y = −0.94 0.49492189 0.49492395 4.160× 10−8

y = −0.96 0.51343904 0.51344109 3.988× 10−8

y = −0.98 0.53254616 0.53254820 3.832× 10−8

Т а б л и ц а 2. Comparison of the leading order pressure p0(0.4, y) at the distance 0.4 from the
vertical free surface given by the analytical solution (13) (second column, A.S.) with the solution
by the domain decomposition method (third column, D.D.S.).
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Nc = 8 Nc = 10 Nc = 12
CI

1 −0.589675 −0.585556 −0.584781
CI

2 0.161116 0.161908 0.161601
CI

3 0.044510 0.044659 0.044744
CI

4 0.100245 0.100737 0.101034
CI

5 0.074988 0.075511 0.075808
CI

6 0.136470 0.138244 0.139307
CI

7 0.158118 0.160940 0.162633
CI

8 0.200447 0.200983 0.201161
CII

1 0.17168 0.170632 0.169947
CII

2 0.152807 0.153092 0.153275
CII

3 0.061146 0.061409 0.061579
CII

4 0.042178 0.042119 0.042081
CII

5 0.033989 0.034421 0.034701
CII

6 0.049782 0.049885 0.049947
CII

7 0.049615 0.049748 0.049828
CII

8 0.023350 0.025080 0.026204
CII

9 0.064207 0.064415 0.064544
CII

10 0.105125 0.105555 0.105819
CII

11 0.049159 0.054885 0.058603
CII

12 0.148866 0.148929 0.148907
CII

13 0.181092 0.184229 0.186180
CII

14 −0.052022 −0.030383 −0.016215
CII

15 0.508789 0.504884 0.502257
CII

16 0.718653 0.732841 0.741539
CIII

1 −0.414390 −0.415800 −0.416708
CIII

2 1.525835 1.527664 1.528866
CIII

3 −1.864034 −1.865337 1.866100
CIII

4 6.345436 6.356601 6.363730
CIII

5 −13.89871 −13.92205 −13.93554
CIII

6 49.18452 49.38880 49.51692
CIII

7 −105.4966 −105.5670 −105.5876
CIII

8 425.9344 427.5115 428.4633

Т а б л и ц а 3. Effect of the free parameter Nc on the coefficients
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It is seen from Tables 2 and 3 that the domain decomposition method works well for the leading
order problem. Now this method is applied to the second-order problem. The second-order problem
is derived from the boundary value problem (2) - (7),

△p2 = −2(u21,x + u21,y) − 1 ≤ y ≤ 0, 0 ≤ x < ∞ (61)

p2(x, 0) = 2η22(x) + η2(x) , p2(0, y) = 2ξ22(y)

p2,y(x,−1) = 0, p2 → 0 as x → ∞,

where η2(x) and ξ2(y) are the leading order terms of the horizontal and vertical free surfaces
respectively, as given in (10). General solution in Region 1 is written in the form:

p2 =
1

2
v1+(v21−u21)(

4

π
θ+

1

2
)+

8

π
u1 log(r) (v1+1)+

8

π
θv1+

4

π
θ+

∞∑
n=1

CI
nr

2n sin(2nθ)−u21, −π

2
≤ θ ≤ 0,

in Region 2,

p2 =
3

2
(u21 − v21 + 1) +

∞∑
n=1

CII
n r̃2n−1 cos((2n− 1)θ̃)− u21, 0 ≤ θ̃ ≤ π

2
, (62)

in Region 3,

p2 =
1

2
(v1 + v21 − u21 + u1x+ v1y) +

∞∑
n=1

CIII
n cos

(π
2
(2n− 1)ỹ

)
exp

(π
2
(2n− 1)x̃

)
− u21, x̃ > x3.

(63)
The velocities of the fluid at the second order can be written by using these second order solutions
as

u =
dx

dt
= tu1 −

t3

3
(u1u1,x + v1u1,y + p2,x), t > 0,

v =
dy

dt
= tv1 −

t3

3
(u1v1,x + v1v1,y + p2,y), t > 0.

As with the first order solution, the solution to the second order problem is carried out by
adaptive step size Runge-Kutta numerical routine with an initial condition imposed at t = 0. The
second order solution is obtained using the domain decomposition method described above and
the comparison of the shapes of the free surfaces near the upper corner point using leading and
second order solutions with Lagrangian variables is given in Fig.6. It is seen that the second order
solution makes a larger difference in the vertical free surface than in the horizontal free surface. In
figure 7, the shapes of the free surfaces near the upper corner point is plotted using both leading
and second order solutions for different times. Finally the complete picture of the shapes of the
free surfaces using Lagrangian description for the upper part and Eulerian description for the
bottom part at the second order can be seen in Figure 8.

6. Conclusions and remarks

The linear leading-order outer problem of the two-dimensional dam break flow has been solved
by the Fourier series method and the Domain decomposition method. Comparison of the leading
order solutions of both methods show good agreement. By the analytical solution, it is observed
that the flow is log singular at the bottom point which appears as a jet formation starting from this
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times.



24

Рис. 8. The shapes of the free surfaces at the second order for t = 0.2.
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point. The leading-order inner region solution and the correction to the leading order is obtained
by using an integral transform method (Mellin transform). From the free surface shape in the
inner region it is found that a jet is formed. The comparison of the free surface shapes by the
present method and the method of Korobkin & Yilmaz [9] shows that the two methods give quite
close results. However due to the particularity of the present method an artificial discontinuity of
the free surface appears at a point very close to the bed. The angle between the free surface and
the bed predicted by both methods is the same at the leading order.

The second order outer solution is calculated to determine the shape of the free surface at the
upper corner point (0,0). Lagrangian variables is needed to follow the fluid particles outside the
fluid domain instead of Eulerian variables. Comparison of the shapes of the free surfaces near the
upper corner point with leading and second order solutions showed that the second order solution
outer makes a larger difference in the vertical free surface than in the horizontal free surface,
compared with leading order solution.

The complete picture of the shapes of the free surfaces using Lagrangian description for the
upper part and Eulerian description for the bottom part at the second order is obtained.
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