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Abstract— At their core, many time series data mining algorithms reduce to reasoning 

about the shapes of time series subsequences. This requires an effective distance 

measure, and for last two decades most algorithms use Euclidean Distance or DTW as 

their core subroutine. We argue that these distance measures are not as robust as the 

community seems to believe. The undue faith in these measures perhaps derives from 

an overreliance on the benchmark datasets and self-selection bias. The community is 

simply reluctant to address more difficult domains, for which current distance measures 

are ill-suited. In this work, we introduce a novel distance measure MPdist. We show 

that our proposed distance measure is much more robust than current distance measures. 

For example, it can handle data with missing values or spurious regions.  Furthermore, 

it allows us to successfully mine datasets that would defeat any Euclidean or DTW 

distance-based algorithm. Additionally, we show that our distance measure can be 

computed so efficiently as to allow analytics on very fast arriving streams. 
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1 Introduction 

Time series data continues to be one of the most analyzed types of data. A recent 

KDnuggets poll found that 48% of analysts had analyzed time series data in the last 

year, second only to table data (relational data), and ahead of text, images, spatial and 

social network data [26]. While there is a plethora of time series data mining algorithms 

in the literature, including algorithms for clustering, similarity search, classification, 

rule-discovery and anomaly detection, at their core, many of these are algorithms that 

“reason” about the similarity of time series subsequences. Such reasoning requires an 

effective distance measure, and most algorithms use Euclidean Distance or DTW as 



  

their core subroutine [1][3]. We argue that these distance measures are not as robust as 

commonly believed. The unwarranted faith in these measures derives from: 

• Optimizing to benchmarks. The UCR Time Series Archive is doubtless a useful 

resource for the community [5]. However, as [8] and others have noted, the data in 

the archive has been contrived in several ways that often make the datasets poor 

proxies for real-world problems. Failure to be competitive of some of these 

datasets is an excellent way to screen unpromising ideas. However, being 

competitive on most datasets in the archive does not necessarily mean the proposed 

distance measure will be useful in real-world deployments. 

• Self-selection bias. The community remains reluctant to consider difficult 

domains, for which current distance measures are unsuited. Consider the snippets 

of data shown in Fig. 1, which shows eight examples of the same insect behavior. 

The reader can quickly generalize from these examples as to what constitutes the 

targeted behavior. We will show, both Euclidean Distance and DTW will fail here. 

In this work, we introduce a novel distance measure, MPdist (Matrix Profile distance). 

We show that MPdist is more robust than current distance measures and allows us to 

tackle datasets that would defeat any Euclidean or DTW distance-based algorithm. 

Note that while we critique the overreliance in the UCR archive benchmarks as an 

indicator of the progress in time series data mining, this disparagement is not born out 

of “sour grapes”. As we will show in Section 4, the MPdist produces highly competitive 

results on these benchmarks. However, beyond this, we show that our measure has 

properties that allow it to tackle much more complex datasets. Among the useful 

properties of the MPdist are: 

• It allows comparisons of time series of different lengths.  

• It is robust to spikes, dropouts, wandering baseline and missing values, issues that 

are common outside of benchmark datasets.  

• While it has the invariances to amplitude and offset offered by DTW and Euclidean 

distance [3], it offers additional invariances, including phase invariance, order 

invariance, liner trend invariance and stutter invariance.  

• It can be computed very efficiently, allowing great scalability. 



  

To preview just one of these desirable features, stutter invariance, consider Fig. 1 which 

shows several examples of the feeding behavior of an Asian citrus psyllid (Diaphorina 

citri) feasting on a flying dragon citrus leaf [30]. 

 

Fig. 1  Eight examples of the Phloem-Ingestion behavior of an Asian citrus psyllid, as measured by 
an electrical penetration graph (EPG) apparatus [30]. 

While this pattern is easy for a human to learn, “from a baseline, a sudden drop, 

followed by two to nine peaks, as the value returns to the baseline”, this type of behavior 

is very difficult to model with distance-based algorithms, using current distance 

measures. To illustrate this, in Fig. 2.left we clustered three examples of Phloem-

Ingestion behavior with three smoothed random walks. 

0 200 400



  

 

Fig. 2  Three examples of Phloem-Ingestion behavior complete-linkage clustered with three 
smoothed random walks (all of length 600), using (left) Euclidean distance, and (right) our proposed 
distance measure, the MPdist. 

The results for Euclidean distance are surprisingly poor, the clustering appears 

essentially random. Note the problem is not solved by using DTW or other measures. 

While DTW can “warp” out-of-alignment peaks, it cannot warp say, three peaks to five 

peaks. Thus, two peaks must be left “unexplained” and occur a high distance cost, 

swamping any similarity that exists. Similar remarks apply to K-shape [21] and other 

phase invariant measures. We note in passing that near identical issues has been noted 

for sign language recognition. For example, [21] notes “the number of [sub-shapes] 

contained in a sign can vary among signers due to personal signing preference”, and 

for manufacturing processes etc.  

While our proposed measure is completely distinct from DTW, it does share some 

similarities with it. In particular, like DTW, the proposed MPdist: 

• Subsumes Euclidean distance is a special case [22]. 

• On essentially all datasets, achieves accuracy greater than or equal to Euclidean 

distance [1]. This is an unsurprising consequence of the previous point.  

• Requires just a single, easy-to-learn parameter. 

• Is a measure but not a metric, this non-metricity is an unavoidable consequence of 

the invariances it supports. As we explain in Section 3.1, this non-metricity is highly 

desirable.  



  

• While a single comparison is expense (relative to Euclidean distance), the amortized 

cost of subsequence search is relatively cheap, essentially the same as Euclidean 

distance. 

The remainder of the paper is organized as follows. In Section 2 we introduce the 

necessary definitions and notations to understand our contributions. In Section 3, we 

introduce the MPdist, explain its properties and its relationship to other distance 

measures, and show how we can accelerate MPdist subsequence search. Section 4 

offers a detailed empirical evaluation of our ideas. Finally, in Section 5 we offer 

conclusions and directions for future work. 

2 BACKGROUND AND RELATED WORK  

2.1 Definitions 

Here the necessary definitions and fundamental concepts are introduced, beginning 

with the definition of a Time Series: 

Definition 1: A Time Series T = t1, t2, ..., tn is a sequence of n real values. 

Our proposed distance measure will quantify the distance between two time series 

based on local subsections called subsequences: 

Definition 2: A subsequence Ti,L is a contiguous subset of values with length L 

starting from position i in time series T; the subsequence Ti,L is in form Ti,L = ti, ti+1,…, 

ti+L-1, where 1 ≤ i ≤ (n – L + 1) and L is a user-defined subsequence length with value 

in range of 3 ≤ 𝐿 ≤ |𝐓|. 

We choose 3 as the shortest permissible value for L, because it is not meaningful to 

normalize time series that are shorter, and non-normalized time series are rarely used 

for measuring distances [22]. 

For our proposed algorithm, it is required to extract all subsequences. This is achieved 

using a sliding window: 

Definition 3: Sliding window: All possible subsequences of a given time series T can 

be extracted by sliding a window of size L across T. There are (n – L + 1) such 

subsequences, which we denote as SubseqNum. 

The time series similarity join, also known as all-pairs-similarity-search, is defined in 

[32]. Due to its importance in our proposed method we briefly review it here. 



  

Intuitively, the task of the similarity join is “Given a collection of data objects, retrieve 

the nearest neighbor for each object” [32]. The similarity join set is defined on a set of 

all possible subsequences of a time series, referred to as the All-Subsequences Set: 

Definition 4: An All-Subsequences Set A is a set of all possible subsequences of a 

time series T. The subsequences are obtained from sliding a window of length L across 

T. Thus, 

A = {T1, L, T2, L, …, Tn – L + 1, L}. 

At a high level, our proposed distance measure will compute the distance between two 

time series TA and TB, by aggregating the distances between their All-subsequences 

sets. For this purpose, we need to find the nearest neighbor for each subsequence in A 

within B (and vice versa). To determine if a member of set B is the nearest neighbor of 

a member in set A we use 1NN-Join Function: 

Definition 5: 1NN-Join Function is defined as the first nearest neighbor (1NN) 

between two subsequences A[i] and B[j]. The 1NN-join function 𝜃ଵ(𝑨[𝑖], 𝑩[𝑗]) 

returns “true”, if B[j] is the nearest neighbor of A[i]. 

The 1NN-join function is a similarity join operator, which is applied on two All-

subsequences sets; as a result, we can create AB similarity join set: 

Definition 6: AB Similarity Join JAB is a set containing pairs of each subsequence in 

A with its corresponding nearest neighbor in B. In which A and B are two sets of All-

subsequences. JAB is defined as: 

𝑱𝑨𝑩 = {〈𝑨[𝑖], 𝑩[𝑗]〉 |𝜃ଵ(𝑨[𝑖], 𝑩[𝑗])} 

The similarity join set contains tuples, with each subsequence in set A from time series 

TA, and its nearest neighbor in set B from time series TB. Note that some subsequences 

in TB may not be used as neighbors to any elements from TA, and some subsequences 

in TB may be used more than once. This is because in general JAB ≠ JBA. 

For our proposed distance measure, we need to obtain the distance between each pair 

in the similarity join set. After obtaining the nearest neighbor of each subsequence in a 

set, an array which stores the Euclidean distance of each pair is called Matrix Profile: 

Definition 7: Matrix Profile PAB is an array in which the Euclidean distance between 

each pair in JAB is stored. The length of PAB is (n – L + 1) or SubseqNum. 



  

Without loss of generality, we assume that the two time series TA and TB have the same 

length. Moreover, it rarely makes sense to measure the similarity of time series with 

significantly different lengths (not to be confused with subsequence search, which we 

show how to perform in Section 3.3). Note the matrix profile is slightly shorter than the 

time series that was used to create it. 

Fig. 3 shows the PAB of two time series TA and TB. As shown, since TA and TB have 

mostly common structure, their PAB has low values except for the region where sine-

waves change to triangular wave, in which case there is no “explanation” from TB in 

TA, Hence, there is a bump in PAB indicating a high value. 

 

Fig. 3 top) Two time series TA and TB, bottom) PAB of two time series TA and TB with L = 400. 
Because there is no corresponding section in TA from TB at the point of signal change, there is a bump 
in PAB.  

The time complexity to calculate PAB for two equal-length time series when L is much 

shorter than n is O(𝑛ଶ) [36]. If the length of L is a significant fraction of n, then the 

time complexity grows to  O((𝑛 − 𝐿 + 1) × 𝑛) . In the limit, when L = n, this 

degenerates to the special case of the Euclidean distance between the two time series, 

which takes O(𝑛). The following notation summarizes this: 

Time complexity 𝑃 =  ቐ
O(𝑛ଶ), 𝐿 ≪ 𝑛

𝑂((𝑛 − 𝐿 + 1) × 𝑛), 𝐿 < 𝑛
O(𝑛), 𝐿 = 𝑛

 

As L approaches n, the time complexity approaches linear time.  

To make our distance measure between TA and TB symmetric, we will need to compute 

both JAB and JBA; this operation we denote as the ABBA Similarity Join: 

Definition 8: ABBA Similarity Join JABBA is a set containing pairs of each subsequence 

in A with its nearest neighbor in B and vice versa. 

Note that if a subsequence in A (denoted as TA,i) is the nearest neighbor of a 

subsequence in B (denoted with TB,j) the reverse of that may not be true; that is, TB,j 
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may not be the nearest neighbor of TA,i. An array which stores all distances in ABBA 

similarity join set is Join Matrix Profile: 

Definition 9: Join Matrix Profile PABBA is an array containing the Euclidean distance 

for each pair in JABBA. The length of the PABBA is 2 × (n – L) + 2 which is twice the 

length of PAB. 

The join matrix profile has distances for both similarity joins JAB and JBA; thus, it is 

symmetric in terms of the order of time series. As a result, the distance calculated based 

on JABBA between TA and TB is also equal. Fig. 4 shows an illustration of the PABBA of 

two time series TA and TB with the same length. 

Fig. 4 top) The concatenation of two time series TA and TB, bottom) PABBA of two time series TA and 
TB with L = 400. The distance between each subsequence from TA and its nearest neighbor from TB 
is calculated in C and the reverse in D. There is a gap between C and D at the middle, because the 
length of remaining data in TA is less than the subsequence length; thus, the distance cannot be 
calculated. 

As we will show in the next section, this data structure PABBA contains all the 

information we need to compute the MPdist. 

3 The MPdist 

Intuitively, our proposed distance measure considers two time series to be similar if 

they share many similar subsequences, regardless of the order of matching 

subsequences. As the reader will readily appreciate, all such information is available in 

PABBA (Definition 9), the question then becomes is how to best exploit it. 

If we based the distance on the largest value in PABBA, the measure would be brittle to 

a single noisy spike or dropout that appeared in either time series. At the other extreme, 

if we based the distance on the smallest value in PABBA, there would be little 

discrimination between most time series. This would be like a distance measure for 

English sentences that only looked at a single word in common. Since most English 

sentences contain ‘the’ or ‘a’, almost all sentences would be equidistant. 

Note that |PABBA| = 2 × (n – L + 1)
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Instead of these two extremes, we propose to consider the value of the kth smallest 

number as the reported distance. Concretely, we set the value of k to be equal to 5 

percent of 2 × 𝑛  which is the length of concatenation of TA and TB. While we defer a 

discussion of this exact value to Section 4.12, the choice of small value helps us to 

reduce the effect of noise and distorted values in our distance measure algorithm. 

In the case when the length of subsequence is close to the length of full time series, then 

the length of PABBA is less than 5 percent of length of two time series. In such cases, we 

used the maximum value of sorted array PABBA as the distance. The following formula 

illustrates this: 

𝑀𝑃𝑑𝑖𝑠𝑡 = ൜
𝑘௧  value of sorted 𝑷𝑨𝑩𝑩𝑨,            |𝑷𝑨𝑩𝑩𝑨| > 𝑘

max(𝑷𝑨𝑩𝑩𝑨),                                      |𝑷𝑨𝑩𝑩𝑨| ≤  𝑘
 

Note that this implies that when the length of subsequence is equal to the length of full 

time series, the MPdist degenerates to the classic Euclidean distance. This is because 

for that setting, the PABBA has exactly two equal values, each of which is the Euclidean 

distance between the entire lengths of A and B. Thus, the max(PABBA) is just the 

Euclidean distance. 

Where appropriate, to denote the particular value of the L parameter used in given 

experiment, we write MPdistL, for example in Fig. 2 we used MPdist20 (although any 

value under 60 works well). 

In the following sections, we explain the MPdist properties and its relationship with the 

other distance measures. Then we show how we can significantly accelerate query-by-

content (similarity search) under the MPdist. 

3.1 On the Lack of Metric Properties for MPdist 

Our MPdist distance is a measure, not a metric. In particular, it does not obey the 

triangular inequality. The lack of the triangular inequality property is potentially 

worrisome for two reasons: 

• Many speedup techniques for query-by-content, clustering, anomaly detection etc., 

implicitly or explicitly exploit the triangular inequality to prune the search space; 

which becomes tenable for large datasets [3]. 



  

• Without the triangular inequality property, one can produce distance evaluations 

that defy human intuitions. For example, claiming that A and B are similar, and A 

and C are similar; but, B and C are very dissimilar. 

To some extent, we may be comforted by noting that Dynamic Time Warping (DTW) 

is also not a metric; yet, it can be speeded up by many other techniques [22]. 

Furthermore, it has been empirically confirmed as a highly competitive measure for 

most time series problems in several large-scale comparisons [5].  

It might be argued that DTW is almost a metric. This is especially true if we have a 

narrow warping window, which is strongly advocated due to other reasons [22]. 

However, we believe that there are situations/datasets that require a distance measure 

which can strongly violate the triangular inequality. To see this in practice, let us first 

consider an analogous problem in string matching. Consider the following common 

American girl names: 

Lisabeth, Beth, Lisa, Maryanne, Anne, Mary 

If asked to cluster these names into two groups, we would surely expect [{Lisabeth, 

Lisa, Beth}, {Maryanne, Mary, Anne}]. However, any distance measure that insists 

on the triangular inequality would have a hard time placing “Beth” and “Lisa” in the 

same group; since they do not share a single character with each other. Yet, both share 

one character with “Anne”. 

As  Fig. 5 shows, we can create perfect analogues of such data in the time series domain.  

To create a time series from the words, volunteer writers used Livescribe Echo 

Smartpens to transcribe the words on special dotted pattern paper. When a writer writes, 

an infrared camera at the tip of the smartpen detects dot-matrix pattern on the paper [6]. 

The dot-matrix pattern provides information about which page and where on the page 

the writing is occurring. This information is stored as a series of data points containing 

Cartesian XY coordinates and timestamp. The tip of the smartpen is equipped with a 

switch that is sensitive to pressure. This switch records the timestamps at which the 

smartpen is writing (i.e pen up and pen down). This data is utilized to split collected 

data points into separate pen strokes. Finally, these pen strokes are transformed into 

time series. Since the X cartesian location of pen is not discriminative between the 

words we just used the Y cartesian location of time series of names for clustering.  



  

Clearly the Euclidean distance will find it near impossible to find any similarly between  

Maryanne and Anne, if we try either of the classic ideas of truncation or reinterpolation 

to make them the same length. Thus, as shown in as Fig. 5.left our collection of names 

cannot be correctly clustered by the Euclidean distance. However, as Fig. 5.right also 

shows, the MPdist can correctly cluster the data here. The property that causes the 

MPdist distance to violate the triangular inequality is an important one. The MPdist 

measure is able to ignore some of the data. In contrast, Euclidean distance and DTW 

must explain all the data in the sequences being compared. 

 

Fig. 5 A visual explanation as to why violating the triangular inequality can be useful. top) We created 
time series versions of the girl’s names examples (see main body text), by capturing the Y-axis of 
cursive handwritten versions of the names. bottom) The (equalized length variant) of Euclidean 
distance fails to cluster such data correctly, but the Mpdist30 has no difficulties. 

As noted above, the other cited reason is for the desirability for scalability. As we will 

show in Section 3.3, this is not an issue for us. In fact, we can compute the MPdist at 

least three orders of magnitude faster than real time data arrival rate in realistic settings. 

By realistic settings, we mean the typical sampling rates of heartbeat monitors, or 

accelerometers in smartphone, smartwatches etc.   

What of the other possible properties of distance measures? The MPdist obeys the non-

negativity or separation axiom, as MPdist(A,B) ≥ 0. This follows from the fact that the 

kth largest number in a sorted list of non-negative numbers must be non-negative. It also 

obeys symmetry, MPdist(A,B) = MPdist(B,A), as it takes its values from PABBA, which 

itself is symmetric [32][36]. However, the MPdist does not obey the identity of 

indiscernibles. In general MPdist(A,B) = 0, does not imply that A = B. To see this, 
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assume A = B, and now concatenate some number to the end of B, as in B ← [B 3.14]. 

Clearly now A ≠ B, yet it is still the case that MPdist(A,B) = 0. 

3.2  The Relationship to other Distance Measures 

Having seen the MPdist, it may be useful to place it in the context of the other major 

distance measures, which are: 

• Euclidean Distance: Two time series are considered similar if one is a noisy 

version of the other [1][3][31] [36]. 

• Dynamic Time Warping: Two time series considered are similar if, after non-

linear adjusting the time axis, they can be made similar under Euclidean Distance 

[22]. 

• LCSS Distance: Two time series are considered similar if, after deleting some 

small sections from one of them, they can be made similar under the DTW 

Distance1[1]. 

• K-Shape: Two time series are considered similar if, after some circular shift of the 

time axis, they can be made similar under Euclidean Distance2 [21]. 

• MPdist: Two time series are considered similar, if they share many similar 

subsequences under Euclidean Distance. 

This list is by no means exhaustive. Dozens of alterative measures have been introduced 

in the last decade [1]. However, in several rigorous comparisons the initial enthusiasm 

for them has cooled [1]. Many of them are perhaps best seen as variants of DTW. 

The MPdist may remind the reader of Time Series Shapelets [31]. Both exploit the fact 

that while attempting to explain all the data can sometimes be futile, considering only 

local information may be more fruitful. Recall however that Shapelets are just data 

fragments augmented with a distance threshold. They are not a distance measure. 

3.3 Speeding Up MPdist Search 

As noted above, the time complexity of MPdist is O(𝑛ଶ) in the worst case. This lethargy 

would be a serious problem if we wish to perform MPdist similarity search (i.e. query-

                                                                    
1 There are several variants of LCSS proposed (under this, and other names). This is the more general explanation of such methods.  
2 This idea is simply the cross correlation, K-Shape is an algorithm that uses cross correlation [21]. However, we abuse terminology 

a little here to be consistent with the emerging literature.  



  

by-content) in large datasets. By analogy, DTW was introduced to the data mining 

community in Berndt and Clifford’s famous 1994 paper [4]. However, it had almost no 

impact on practical applications until lower bounding search brought its amortized time 

complexity down from O(𝑛ଶ) to just O(𝑛) [22].  In this section we will show that the 

MPdist is amenable to a similar acceleration for query-by-content: 

Problem Statement: Given a query Q of length n and a much longer time series T 

of length m, we wish to create a distance vector MPdistvect, that contains the MPdist 

between Q and Ti:i+n, for all i in the range 1 to m-n+1. 

The MPdistvect is shown in red in Fig. 6. The MPdistvect is minimized at the location of 

the nearest neighbor of Q. More generally, this distance vector is all we need to find 

the k-nearest neighbors, or to answer arbitrary range queries etc. 

The brute algorithm to compute MPdistvect is O(𝑚𝑛ଶ), which is clearly untenable. 

However, as we shall now show, we can compute it in just O(𝑚 × 𝑆𝑢𝑏𝑠𝑒𝑞𝑁𝑢𝑚) time. 

We begin by obtaining the All-subsequences set of Q (Definition 4), and then 

calculating the distance between each individual subsequence in the set to every 

subsequence in T. The MASS algorithm allows us to do this very efficiently  [19]. As 

Fig. 6 shows, this gives us SubseqNum Euclidean distance profiles, the jth of which we 

denote as dj. 

Fig. 6 A query Q with a long time series T to search. We begin by creating SubseqNum Euclidean distance 
profiles. 

Fig. 6 highlights an arbitrary region of T beginning at Ti with a length of n and the 

corresponding region of the distance profiles, each with the length of SubseqNum. For 

notational clarity, we envision this SubseqNum × SubseqNum region as a matrix that 

we call D. 
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Perhaps surprisingly, D contains all the information needed to compute 

MPdist(Q,Ti:i+n).  The key observation is that using just D we can calculate both PAB 

and PBA; therefore, obtaining PABBA. 

The steps to calculate PAB and PBA are as follows: 

• PAB: The row-wise minimum of D corresponds to PAB.  Recall that the first value 

in PAB is the minimum distance between the first subsequence in TA compared to 

all the subsequences in TB, which is the minimum of the first row of D. In the same 

manner, the remaining values of PAB can be obtained as the minimum of all the 

other rows in D. 

• PBA: The column-wise minimum of D corresponds to PBA. PBA is simply the 

minimum distance between the subsequences in TB compared to all the 

subsequences in TA; which is just the column-wise minimum of D. 

Thus, by concatenating PAB and PBA we can obtain PABBA and therefore the MPdist.  

Fig. 7 illustrates this. 

 

Fig. 7 Exploiting D to produce the PABBA. See also Fig. 6. 

The time complexity for calculating a single Euclidean distance profile is O(𝑚log𝑚) 

[18]; so, the time complexity for calculating the distance profile for all subsequences is 

O(𝑆𝑢𝑏𝑠𝑒𝑞𝑁𝑢𝑚 × 𝑚log𝑚). 

At first blush, this method of computing MPdist seems to have gained us nothing. The 

time complexity for recreating PABBA in the region D is O(𝑆𝑢𝑏𝑠𝑒𝑞𝑁𝑢𝑚ଶ) ; so to 

compute this for all sliding D’s in T would be O(𝑆𝑢𝑏𝑠𝑒𝑞𝑁𝑢𝑚 × 𝑚log𝑚 +
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𝑚 × 𝑆𝑢𝑏𝑠𝑒𝑞𝑁𝑢𝑚ଶ). However, we can optimize the algorithm to have an amortized 

time complexity of just O(𝑆𝑢𝑏𝑠𝑒𝑞𝑁𝑢𝑚 × 𝑚). 

The key observation to allow this dramatic speed up is to realize that as we slide our 

query from location Ti to Ti+1 to produce a new D, we do not need to recalculate 

everything from scratch, but just update a handful of values. As we slide our query one 

step, some points will ingress into D at the right and some points will egress from D at 

the left. 

Concretely, for each step to the right, we have SubseqNum new points in distance 

profiles added to the D and the same number removed from the D. Let us consider how 

these incremental updates change PABBA, and how we can address them: 

• Ingress: For PBA we can find the column-wise minimum of last column of D for 

new arrival point in O(𝑆𝑢𝑏𝑠𝑒𝑐𝑁𝑢𝑚). In addition, for PAB, recall that we must find 

the minimum of each row in D. This problem is equivalent to finding the classic 

sliding window minimum [25] which can be solved in O(1) for a single row, and 

in O(𝑆𝑢𝑏𝑠𝑒𝑐𝑁𝑢𝑚) for all rows. 

• Egress: We can easily remove the first point from PAB and PBA in time complexity 

O(1). 

Thus, the amortized time complexity of obtaining matrix profile for new arrival point 

is O(𝑆𝑢𝑏𝑠𝑒𝑐𝑁𝑢𝑚) . As a result, the amortized time complexity for calculating 

MPdistvect between T and Q is O(𝑆𝑢𝑏𝑠𝑒𝑐𝑁𝑢𝑚 × 𝑚). 

It may appear that we have a space overhead of O(𝑚 × 𝑆𝑢𝑏𝑠𝑒𝑞𝑁𝑢𝑚). However, for a 

long time series of length say one billion, we can simply perform the above in a 

piecewise fashion, with pieces of length say 10,000. Thus, the space overhead is O(1). 

Finally, while we believe that both MPdist and its subsequence search acceleration are 

simple enough to not warrant the space required for pseudocode. However, we have 

placed detailed pseudocode (and actual code) at [17]. 

3.4 Generalizing to Multi-Dimensional Time Series 

In multidimensional time series classification, many dimensions may be irrelevant or 

noisy. These irrelevant or noisy dimensions confuse classification algorithms: as a 

result, the algorithm gets lower accuracy. In previous attempts to mitigate this issue 



  

relevant dimension selection has been employed to improve classification accuracy in 

the face of spurious data [1]. Most of these methods tries to find the most relevant 

dimensions in preprocessing process. However, it may be the case that the set of 

relevant dimensions changes a query time is ways that are hard to predict in advance. 

For example, to detect gait, we can normally exploit information from both 

accelerometers in a smartwatch and accelerometers in smartshoes. However, suppose 

at query time the user happens to be holding a heavy suitcase. This will reduce the 

utility of smartwatch data, perhaps to zero.  

What is needed, is a system that can dynamically choose the relevant dimensions at 

query time. Essentially, we want to “tell” the algorithm to use any dimensions that have 

high similarity to the matching dimensions in one of the training exemplars, otherwise 

ignore that dimension. This is the idea behind a recent work [14]. However, that 

proposal requires a lot of training data to build the model that allows the real-time 

choice of which dimensions to trust. Can we do something similar, with no model 

building? We believe that the MPdist can offer such a possibility. Our idea is simple. 

We can concatenate all dimensions into a single dimension, with NaNs in-between to 

mark the transitions between dimensions. We then simply compute the MPdist between 

these long meta time series. The intuition is that if a dimension has become irrelevant 

(for example, because a sensor failed, or its position/orientation changed unexpectedly), 

then its shape will be so dissimilar that the MPdist will not match any sections of it, 

instead, it will map more sections of the dimensions that are similar.  

Our proposed method is robust to present of noisy or irrelevant dimensions and it avoids 

the need for explicit preprocessing to removing them. In the proposed algorithm we 

calculate the join matrix profile (PABBA) of each corresponding dimension between two 

samples. Then we concatenate PABBA of all the dimensions and sort them, by 

considering only the maximum of the lowest 5% of the values we report distance 

between two multidimensional samples. This distance removes internally all the noisy 

and irrelevant data since the noisy and irrelevant data will not show up among the 

smallest values of PABBA’s.  

To show demonstrate our idea we created some synthetic data and perform an 

experiment. We create a two-dimensional dataset which includes two classes. The 

sample data for classes is shown in Fig. 8. left. We add some random noise and warping 



  

[8][8] to the data to create a train data with the size of forty and test data with the size 

of ten. To see how robust the proposed method to spurious data, we used random walk 

as an additional dimensions to the original data. We add zero to eight irrelevant 

dimensions and compare classification accuracy with DTW and ED. Since dimensions 

are created by random data, we repeat the process five times and report the average of 

accuracy. The result in Fig. 8. right shows as we increase the number of spurious 

dimensions, both DTW and ED will decrease in accuracy, but in contrast MPdist result 

almost constant. 

 

Fig. 8 left) Some exemplars from dataset, the original dataset has two dimensions and two classes. 
We show also one irrelevant dimension which we add it to the dataset. right) The accuracy of DTW, 
ED and MPdist by adding zero to eight noisy dimensions to the dataset.  

To be clear, we regard this experiment as merely a proof of concept. It is clear that we 

could at least contrive datasets for which it would not be so robust. However, we present 

this result as being suggestive of the flexibility of MPdist in supporting novel research 

directions.  

4 Experimental Evaluation 

To ensure that our experiments are reproducible, we have built a website which contains 

all data/code/raw spreadsheets for the results [17]. This commitment to reproducibility 

extends to all the examples the previous sections. All experiments were run on a Dell 

XPS 8900, with Intel Corei7 CPU and 32Gb of RAM. 

We begin by considering the utility of our approach for classification. When we first 

developed the MPdist, there were only 85 datasets in the UCR archive [5]. Since then, 

the archive has expanded to 128 datasets [7], including many datasets that are claimed 
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to be more reflective of the real world. We will present our results on both versions of 

the archive independently. In the 85-dataset case, it will allow direct comparisons to 

hundreds of previously published papers. In the 128-dataset case, it will allow direct 

comparisons to many future papers that will inevitably be published using this resource. 

4.1 Classification Accuracy: The Eighty-Five Dataset Case 

We consider all 85 datasets in the UCR archive 2015 [5], the most used benchmark in 

time series data mining. As we noted above, the archive has recently been criticized for 

being unrepresentative of real-world problems [8]. Nevertheless, we can still regard 

performing well on these datasets as a necessary, if not sufficient condition for 

introducing a new distance measure. 

We learn MPdist’s sole parameter on the training data, and then use the training data 

with this hardcoded parameter to classify the testing set. We use the original train/test 

splits suggested in the archive. The complete results are archived at [17]. Below we 

visually summarize the results with a Texas Sharpshooter plot. This is emerging as a 

standard way to compare time series distance measures over many datasets. Such plots 

help guard against the following fallacy, which appears common in the literature. 

Suppose a proposed algorithm produces slightly better results on say one-third of the 

datasets tested. The proposer could claim that the new algorithm had merit, at least for 

those datasets. However, it may be that for a different shuffle of the data into train/test 

partitions, the proposed algorithm might have been better on a different one-third of the 

datasets! A better interpretation of such a proposed algorithm would be that it is, on 

average, quite similar to, but a little weaker than the strawman it is being compare to. 

However, random fluctuations in the different folds mean it will win sometimes, but 

not in a way that can be predicted in advance, and therefore exploited for real 

applications. 

To create the Sharpshooter plot, we compute two versions of gain: 

𝑔𝑎𝑖𝑛 =  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑀𝑃𝑑𝑖𝑠𝑡

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐸𝑢𝑐𝑙𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

In particular, we compute both the expected gain based on the training data and the 

actual gain based on the testing data. We plot a point on a scatterplot for each dataset 

using the expected gain as the x-axis value and actual gain as the y-axis value (note that 

the “gain” can be negative). 



  

The resulting plot is essentially a real-valued version of a contingency table, and we 

have labeled the four regions with the four familiar labels. Ideally, we would like to 

have many points in the TP region. Such points represent cases where we predicted we 

could do better after seeing only the training data, and we did do better. Only points in 

FP are problematic for us. They represent datasets in which we believed we could do 

better but actually did worse. Fig. 9 shows the results. 

Note that both MPdist and Euclidean Distance are using identical train/test splits, 

identical classification algorithms (1-NN), and evaluated in the same way (leave-one-

out). Thus, all differences can be attributed to just the utility of the proposed distance 

measure. 

These results strongly support the claimed utility of MPdist. Out of the 85 datasets, 63 

of them fall into the TP region. Many of them are deep into the TP region, denoting 

large improvements. 

A handful of points fall into the FP region. In every case, it is because the training set 

is too small to allow us to robustly learn the single parameter L. However, this is easy 

to mitigate with a little effort. To see this, consider the worst offender in Fig. 9, the 

BeetleFly dataset. Here, our simple algorithm to learn the single parameter L gave us L 

= 185. It had an expected accuracy gain of 1.81, but an actual “gain” of 0.93. If we learn 

parameter using the slightly more computationally expensive resampling approach of 

[8], we instead learn parameter L = 72. It has an expected accuracy gain of 1, and an 

actual “gain” of 1, a significantly better meta-prediction, thus is BeetleFly no longer a 

FP case. 



  

 

Fig. 9 Expected accuracy gain for MPdist over Euclidean Distance calculated on training data versus actual 
accuracy gain on testing data, over all 85 datasets in the UCR archive 2015. 

We did not repeat this better way to learn MPdist’s parameter for the other datasets. 

The reason being, we wanted to have a deterministically reproducible lower bound for 

our algorithm’s performance. 

4.2 Classification Accuracy: The One Hundred and Twenty-Eight Dataset Case 

We also considered all 128 datasets in the new 2018 UCR archive [7]. As we noted 

above, the original archive has recently been criticized for being unrepresentative of 

real-world problems [8], this new version has crowdsourced the community to provide 

data that more closely reflects real word problem.  

In Fig. 10 we show a Texas Sharpshooter plot for all 128 datasets.  Because a handful 

of datasets had such a dramatic gain and changed the scale, in Fig. 11 we also show a 

Texas Sharpshooter plot but with the actual gains axis set to [0 2] and the expected gain 

axis set to [-1 to 3], making this plot visually comparable to Fig. 9. 
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Fig. 10 Expected accuracy gain for MPdist over Euclidean Distance calculated on training data versus actual 
accuracy gain on testing data, over all 128 datasets in the UCR archive 2018. 

 

The three datapoints in Fig. 10 that are far from the others belong to pigCVP, 

pigArtPressure and pigAirwayPressure datasets. To better show the scatter of data we 

removed these datasets and replot the result for remaining dataset in Fig. 11. 
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Fig. 11 Expected accuracy gain for MPdist over Euclidean Distance calculated on training data versus actual 
accuracy gain on testing data, over all 125 datasets in the UCR archive 2018 after removing pigCVP, 
pigArtPressure and pigAirwayPressure to have clearer figure. 

 

Once again, these results strongly support the claimed utility of MPdist. Of the 128 

datasets, 88 of them fall into the TP region. Of the 34 that fall in into FP, most of them 

are very close to the origin. Many of MPdist’s wins are deep into the TP region, 

denoting large improvements. For example, for BirdChicken, ECGFiveDays, CBF, 

FaceFour, FacesUCR, Fish, FreezerSmallTrain, GesturePebbleZ1, GunPointAgeSpan, 

InsectEPGRegularTrain, PigArtPressure, PigCVP, Plane, ShakeGestureWiimoteZ, 

ToeSegmentation1, Trace, TwoLeadECG and PigAirwayPressure the holdout error-

rate is at least halved.  

Finally, we also compare with cDTW (instead of ED) as the benchmark for the Texas 

plot. We show that in Fig. 15, out of the 128 datasets, 37 of them fall into the TP region 
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and 17 of them into FP, again with most of the latter close to the origin. Similar to ED 

plot, due to large improvement by a handful of datasets, that obscure the results, we 

have removed the “pig” datasets and plot the remaining results for comparison of 

MPdist over cDTW on the Fig. 12. 

 

Fig. 12 Expected accuracy gain for MPdist over DTW calculated on training data versus actual accuracy gain 
on testing data, over all 125 datasets after removing pigCVP, pigArtPressure and pigAirwayPressure to better 
show the scatter of results in the UCR archive 2018. 

 

4.3 Statistical Comparison to Benchmarks 

The previous section showed an initiative and visual comparison of MPdist with the 

Euclidean distance measure. Here we consider more rival methods and consider 

statistical measures of difference. 

Traditionally, 1-NN classifiers with Euclidean Distance (ED) and full window Dynamic 

Time Warping (DTW) have been used as benchmarks for Time series classification 

(TSC). Experimental evidence [1] has shown that the rotation forest classifier [24] and 
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1-NN dynamic time warping with warping window set through cross validation [1] [8] 

are much stronger benchmarks. For comparing multiple classifiers on multiple data sets, 

we follow the recommendation of Demsar [9] and compare classifiers based on average 

ranks rather than errors. This nonparametric approach removes the possible excessive 

influence of outliers on overall performance. For each dataset, the algorithm with 

lowest error gets rank 1, the algorithm with next lowest gets rank 2 etc. In case of tie, 

the average rank is used (e.g. if two algorithms have equal lowest error, they are 

assigned a rank of 1.5). To compare whether there is a significant difference in overall 

rank we use the Friedmann test. If this indicates there is some difference, we perform a 

post-hoc pairwise Nemenyi test to discover where the differences lie. Fig. 13 shows the 

average ranks of the four benchmarks and MPdist in a critical difference diagram. The 

average rank of each classifier is presented on the horizontal axis. Thus, Rotation 

Fortest (RotF) has the lowest (best) average rank and 1-NN Euclidean distance the 

highest (worst). The Friedmann test indicates there is an overall significant difference 

between the five classifiers. The horizontal solid bars represent cliques, i.e. groups of 

classifiers within which there is no significant difference as determined by the pairwise 

Nemenyi test. 

 

Fig. 13 Critical difference for MPdist against four benchmark classifiers: 1-NN with Euclidean Distance (ED); 
1-NN with full window DTW (DTW); 1-NN with DTW window set through cross-validation DTW (CVDTW); 
and rotation forest with 50 trees (RotF). 

There are three distinct cliques: ED and full window DTW; DTW and MPDist; and 

MPDist, DTWCV and RotF.  Hence, we conclude that MPDist is significantly better 

than ED and not significantly worse than the other three benchmarks. 
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While these results bode well for our approach, they are pessimistic, and understate the 

utility of MPdist. As we noted in the previous section, these results reflect only the 

simple naïve method for setting MPdist parameter. Using the slightly more 

computationally expensive resampling approach of [8], would have further improved 

our results on the datasets with a small training split. More importantly, as we note 

above, and echoing comments in [13], the datasets UCR archive are poor proxies for 

real-world deployments of time series classification. We demonstrate this with the 

following two case studies. 

4.4 A Case Study in EPG data 

“Leafhopper” is the informal name for any species of insect from the family 

Cicadellidae [16]. They are plant feeders that suck sap from plants. This feeding 

behavior means that they can transmit plant pathogens, such as viruses, phytoplasmas 

and bacteria. The cost of leafhopper damage to agriculture worldwide is estimated to 

be in the tens of billions per annum, and this number is projected to increase because 

of climate change [2]. Given the economic impact of these insects, there is a large 

community that studies them. This is a difficult task. The 20,000 members of 

Cicadellidae range in size from 20 to just 1mm. In order to effectively study them at 

“big data” scales, entomologists use an Electrical Penetration Graph (EPG) apparatus 

to obtain time series data of their behavior. This can be done in parallel, for example 

Dr. Kerry Mauck of UCR’s Entomology Department typically records eight insects at a 

time, almost every day of the year [18]. 

For reasons hinted at in Fig. 1 and Fig. 2, we believe that the MPdist can be particularly 

effective for working with such time series. One basic tool we are building to support 

research in this area is a query-by-example tool. It allows a researcher to ask, “does this 

pattern occur in my data?”. We demonstrate this with the following example. In Fig. 

14.left we show an example of phloem sap ingestion behavior of tea green leafhopper 

(Empoasca vitis) a leafhopper that specializes in grapevine and kiwi fruit [16]. 



  

 

Fig. 14 left) A screen grab from [16] (figure 3.B in original) of an example of phloem sap ingestion behavior of 
tea green leafhopper and (right) our extracted version of it. We brushed a light copy (red) of our extracted pattern 
onto the original. 

Note that our tracing of the original screen capture is not perfect. We are relying on the 

robustness of our distance measure. Does this behavior also occur in Asian Psyllids 

(Diaphorina citri), insects that are vectors of citrus greening disease? There is a large 

public archive of such data, consisting of about 50 hours of data at 100 Hz [30]. We 

used the extracted template from Fig. 14.right to search this archive under both the 

Euclidean distance and MPdist. Fig. 15 shows the results. 

 

Fig. 15 top) The nearest neighbors to the tea green leafhopper template retrieved by Euclidean distance and 
MPdist. bottom) selected subsequences from the query brushed onto the best match suggest why this was the 
MPdist 1NN. 

We can confirm that the 1NN under MPdist is a region of a phloem sap ingestion 

behavior of the Psyllids [5]. In contrast, the best match under ED is merely sensor noise 

from a transition phase, with no obvious semantic meaning. It might be imagined that 

ED could be made to work here. For example, by carefully editing the query to remove 

the long constant region at its beginning. However, this would require lots of human 

effort, whereas MPdist simply works, even given a query with spurious regions. 
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It might be argued that this simple anecdote was the results of luck. To more forcefully 

demonstrate the utility of MPdist in this domain, in collaboration with the UCR 

entomologist Dr. Kerry Mauck we created a new dataset for the UCR archive [5]. The 

dataset, InsectEPG1 is a three-class problem with 311 instances with a 65/246 train/test 

split. Using the same protocol as in Section 4.1, ED can achieve and error-rate of 28.0%. 

DTW can improve that significantly to 14.2%, but MPdist achieves just 7.7%. 

4.5 A Case Study in Power Demand Data 

One of the areas in which time series data mining has been applied the most in recent 

years is in mining electrical power demand time series. In the absence of a benchmark 

dataset in this domain, we created one. While examining the REFIT dataset [23], we 

noticed that House 1 has two freezers that were individually metered. For each freezer, 

we extract 1,500 40-minute snippets, carefully aligning them (for the benefit of rival 

methods, MPdist is phase invariant), such that the increase in power demand happened 

at the third minute.  Fig. 16 shows some examples, clustered by both the Euclidean 

Distance and by the MPdist. 

 

Fig. 16 left) Ten examples from the Freezer dataset clustered with Euclidean distance and MPdist40. 

The clustering results suggest that ED has great difficulties here. This is also true for 

classification of this data. With a 152/2848 train/test split, ED has 35% error-rate. Yet 

MPdist learns a parameter of 40 on the training data, and then MPdist40 achieves a 

significantly better error-rate of just 5%. What explains such a drastic difference? In 

Fig. 17, we hint at the answer. 
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Fig. 17 For a just small sub-region of each class of the Freezer dataset, the shapes of the data is class conserved. 

The ability of MPdist to focus on the relatively small amount of class conserved 

behavior and ignore everything else is critical in this domain, regardless of the 

analytical task. To see this, let us consider a new task, that of outlier/anomaly/novelty 

detection.  While there are dozens of general algorithms for this problem in general, for 

time series it has been shown that distance-based anomaly detection is often particularly 

effective [32]. Of course, this begs the question of which distance measure to use. In 

Fig. 18 we show a random sample of the Freezer dataset imbedded into 2D space using 

multidimensional scaling (MDS). 

 

Fig. 18 A 10% subset of the freezer data projected into two-dimensional space using Euclidean distance (left) and 

MPdist40 (right). Note that the MPdist projection is almost perfectly linearly separable.  

In Fig. 19 we repeated the experiment with a minor change. This time we added one 

addition example for the Freezer dataset, which we first flipped left-right. As the reader 

will appreciate, this transformation does not change the mean, standard deviation, 

autocorrelation most other statistical properties of the data object. 
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Fig. 19 A 10% subset of the freezer data, augmented by a single synthetic anomaly, projected into two-dimensional 

space using Euclidean distance (left) and MPdist40 (center). The synthetic anomaly (right) is a natural data object 

from this domain that was flipped left-right.  

In the Euclidean projection, the existence of an anomaly is debatable. The point 

representing the anomaly is not much further from the main grouping than several 

natural exemplars. In contrast, in the MPdist projection, the anomaly is startlingly 

obvious.  

 

4.6 Anecdotal Comparison to State-of-the-Art 

As we noted above, head-to-head comparisons of classifiers on the UCR benchmarks 

may say little about the utility of methods on real-world problems. Nevertheless, it is 

instructive to compare directly with a method that is seen to be among the state-of-the-

art. 

The BOSS method is claimed to be state-of-the-art [26][29] and independently shown 

to indeed be very competitive [1]. It is somewhat indirect (working in an abstract 

quantized Fourier space) and complicated, requiring four parameters to be carefully set. 

In contrast, MPdist intuitively operates directly on the original data, and requires only 

one free parameter to be set. In spite of its simplicity, as Fig. 20 shows, MPdist can 

perform as well on a simple problem designed to showcase BOSS. 
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Fig. 20 Hierarchical clustering of CBF data with three distance measures, (adapted from [26]), with the clustering 
obtained by MPdist50. As Schäfer points out, both Euclidean distance and DTW struggle here, and his proposed 
BOSS algorithm just manages to correctly cluster the data. MPdist also correctly clusters the data, with greater 
separation. 

Beyond the number of parameters to tweak, there is the issue of scalability. The BOSS 

reports 0.36 seconds to compare two time series of length 1024 [29], and does not come 

with any indexing or speedup measure for subsequence search. Suppose we had just 

one minute of ECGs sampled at 1,024 (a typical sampling rate for a hospital quality 

machine), and we want to search it with a one second long query. This requires 60,417 

= 61440 – 1024 + 1 distance comparisons, and would take six hours to finish, or about 

360 times slower than real-time. In contrast, we did this experiment on similar hardware 

and finished in 0.8 seconds, 73 times faster than real-time. Thus, we are ~26,000 times 

faster than BOSS for query-by-content. For this reason alone, we dismissed BOSS from 

our case studies above. 

 

4.7 Robustness Tests 

While the previous section offers evidence on MPdist’s utility for time series 

classification, as we had previously noted, the UCR archive datasets may be to “clean” 

and contrived to really highlight MPdist’s robustness. To demonstrate this robustness, 

we consider one of the UCR datasets FOWL, and measure the relative performance of 

Euclidean Distance and MPdist as we add in ever increasing amounts of “distortion”. 

In particular, the distortions are: 

• Linear Trend: To each instance, we randomly add a linear trend in the range from 

0 to ± 0.4. 

• Spurious Data: To each instance, we randomly prepend a random walk of length 

0 to 40 datapoints. 



  

• Phase Shift: To each instance, randomly perform a circular shift of 0 to ± 40 

datapoints. 

Fig. 21 shows examples of these distortions. 

Fig. 21 Some before and after examples of various distortions added to exemplars from the FacesUCR data. 

For MPdist, we use the parameter learned in Section 4.1 above. Fig. 22 shows the 

results. 

Fig. 22 left-to-right) The robustness of MPdist (red) and Euclidean Distance (blue) in the face of increasing 
corrupted data for three types of distortion. 

We note that some of these distortions can be addressed in other ways. One way is by 

preprocessing each subsequence before comparison, another way might be by using a 

specialized distance measure. For example, K-Shape would have no problem with 

phase shift. However, to our knowledge, the MPdist is the only measure that can 

natively handle all these issues. 

4.8 Alignment Insensitivity Revisited  

In the previous section we performed an experiment to show that the MPdist is 

relatively insensitive to alignment or phase. However, because of the contrived nature 

of the UCR Archive datasets we had to resort to perturbing an existing dataset with 

random circular shifts. Here we revisit the experiment with natural data, leveraging an 

interesting dataset donated to the community by [11]. 

Undetected internal bleeding after surgical procedures or trauma is a major medical 

issue. Therefore, there is significant research on early and reliable detection of internal 
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bleeding. In [11] the authors created the Bleeding Detection Data Set from vital signs 

of pigs (Sus domesticus), measured at 250Hz using a classic bed-side hemodynamic 

monitoring system designed for human patients. The collected measurements are 

arterial blood pressure (ABP), central venous pressure (CVP), and airway pressure 

(AP). The data was collected from a cohort of 52 healthy pigs subjected to induced slow 

bleeding. Each animal has been sedated, instrumented, left to rest for half an hour, and 

then bled at the fixed rate of 20mL/min. Fig. 23 shows some sample data, both before 

and after the surgical intervention. 

 

Fig. 23 Two-second long snippets of the “before and after” data from Pig-1 of the internal bleeding dataset. top 
to bottom), Arterial Blood Pressure (ABP), Central Venous Pressure (CVP), and Airway Pressure (AP). 

From this collection we created three datasets. In each case we did the following. For 

each of the 52 pigs, we took the first 2,000 data points (eight seconds) of data from both 

the before and the after traces, creating a training set with 52 classes, with just two 

exemplars per class.  

For the test set, we took the second (2,001 to 4,000) and third (4,001 to 6,000) snippets 

from both the before and the after traces, creating a test set with four exemplars per 

class. 

This is a difficult classification problem, beyond the fact that the data is not aligned, 

there are a huge number of classes, and a very small training set. Moreover, while the 

two examples in each class represent the same individual, they represent a snapshot of 

the individual under very different medical conditions. 

We compared 1-nearest neighbor classification using MPdist, Euclidean Distance, 

cDTW (DTW, with its warping parameter constrained [11]), BOSS [29], and SBD (K-

shape) [21]. In order to make sure we did justice to SBD, we asked the original author 

to run this experiment, which he graciously agreed to do. The author of BOSS [29] was 

not available to run our experiments, so ran them ourselves. We found it was difficult 

ABP

CVP

AP

Before After

Two seconds Two seconds



  

to learn the four parameters on the relatively small training sets, so we allow the 

algorithm to “cheat”, testing many combinations of parameters and choosing the best 

on the test data.  

Table 1 Comparing between MPdist, Euclidean, cDTW and SBD (K-Shape), 
BOSS distance measures over ABP, CVP and AP datasets in terms of error-rate 
on the three internal bleeding datasets. 

 MPdist Euclidean cDTW SBD BOSS 

ABP (%) 0 87.50 86.54 46.64 74.34 

CVP (%) 10.09 91.83 90.38 42.79 69.23 

AP (%) 18.75 94.23 89.42 85.58 79.76 

The reader may wonder if the poor performance of DTW is due to the fact that with 

such limited training data, it could not learn the best setting for the width of warping 

window. It has been shown that a careful setting of this parameter can make a significant 

difference in accuracy [1], however our two-exemplar per class training set may make 

it challenging to find a good setting [9]. To test what difference (if any) a better setting 

of the parameter could make, similar to the treatment of BOSS, we can allow DTW to 

“cheat”, and choose the setting that maximizes the accuracy on the test data. If we do 

this, the error-rates of ABP and CVP are slightly improved, to 75.00% and 84.13% 

respectively. 

4.9 Handling Missing Data 

The possibility of missing data plagues most time real-world time series data mining 

applications [33][12][35]. In some cases, the missing data may be explicitly marked 

with “NaN” or “INF”, or with some other non-numeric special value. In other cases, 

the missing data may be marked with a special numeric value. For example, Aspentech, 

a major provider of time series analytic tools for the oil and gas industry, uses -9999 to 

represent missing data. Choosing a numeric value like this to represent missing data 

can lead to issues, especially if the data is shared beyond a closed system. For example, 

consider the data shown in Fig. 24. It is clear from common sense (the temperature in 

a large room cannot change instantaneously) that the many, equal-valued, low-valued 

readings correspond to missing data. However, the repeated low value here is -

4.88909110, which does not seem to be a special value. It may originally have been a 

special value, say -99, that was cast to an innocuous number during a data normalization 

step. However, because of the poor provenance of the data, it is difficult to be sure. We 

call such data implicitly missing data, to differentiate it from explicitly missing data 



  

case denoted with non-numeric values.  In either case, such data offers significant 

challenges for time series data mining. 

In the last decade, dozens of ideas have been introduced to allow similarity 

measurements in between time series which may have missing values [26][33][34][12]. 

There are two major approaches. The first is to “repair” the missing data with some data 

imputation method [12][35]. The second approach is to somehow adapt the distance 

measure itself [26]. For example, the DUST measure is an attempt to generalize 

Euclidean distance to missing data [26].  

 

Fig. 24 A subset of the data from the Berkeley Intel Lab Mote Data clustered using complete linkage hierarchical 
clustering [27]. Each time series is 7,000 data points long, or about 2.5 days. left) The clustering obtained by 
Euclidean distance. center) The clustering obtained by MPdist600. right) The clustering obtained by Euclidean 
distance using only the region from 5,000 to 5,200. 

Note that repairing the data is only a good option for explicitly missing data. If an 

algorithm is given free rein to repair data in the more general case, it may introduce 

artifacts into true data that simply did not conform to the analyst’s assumptions [35]. 

Fortunately, the MPdist can bypass all such considerations. So long as there exists at 

least one region in each time series that is longer than L, then the MPdist is defined. 

Note that the location of the error free regions does not have to be in the same place in 

each time series. Moreover, the MPdist is indifferent to whether the missing data is 

implicit, explicit or any combination of the two.   

To demonstrate the effectiveness of the MPdist for missing data, we clustered data from 

the Berkeley Intel Lab Mote Dataset, corresponding to about two and a half days [26]. 

We choose half the data from one side of the building, and the other half from the other 

side, to provide a natural grouping. Fig. 24.left shows that the Euclidean distance has a 

hard time with this data, returning what looks like a random clustering. In contrast, Fig. 

24.center shows that the MPdist correctly partitions the data. Here the data is so noisy 

Euclidean Distance MPdist Euclidean Distance (subset) 



  

that it is not clear with a casual inspection that the clustering is really semantically 

meaningfully. To allow us to see that it is, we found a contiguous region of 200 data 

points in which none of the eight time series had missing values, and clustered just those 

regions as shown in, Fig. 24.right. Note that the MPdist clustering used MPdist600, 

however we get the correct portioning of the data if we vary L anywhere in at least the 

order of magnitude range of 60 to 600. 

This invariance to implicit/explicit missing data is a very useful feature of our proposed 

distance measure. Other distance measures can sometimes be adapted to handle missing 

data, by modifying the data [35] or the algorithm itself [26]. However, the MPdist 

simply works “out-of-the-box”, there is nothing to do. 

4.10 Scalability Tests 

To demonstrate the scalability of our algorithm, we performed the following 

experiments. Note that, unlike the state-of-the-art ED/DTW subsequence search 

algorithm in [22], our algorithm’s performance is independent of the structure of data. 

In particular, the time taken depends only on m, the length of the data being searched, 

n the length of the query, and L, MPdist’s sole parameter. Thus, we do not need to 

average over multiple runs to evaluate performance. We compare brute force MPdist 

and our subsequence based acceleration of MPdist. We also compare to the MASS 

algorithm [18]. While it does not really make sense to compare the speeds of algorithms 

that can return different answers, we include MASS because is the optimally fast 

subsequence search algorithm under any distance measure. Thus, it may be seen as a 

lower bound on performance3 of any subsequence search algorithm. We begin by fixing 

n to 128, and L to n/2 (typical values used in Section 4.1) and we measure the time 

taken for increasing large datasets.  

Next, we fix m to 216 and vary n between 32 and 256 (again with L to n/2). Finally, we 

fix m to 216 and n to 128, vary L between 32 and 128. The results of these experiments 

are shown in Fig. 25. 

                                                                    
3 This is for the case where the query length is not known ahead of time. If the query length is known, it may be possible to have a faster 

index-based search.   

 

 



  

 

Fig. 25 left-to-right) The effect of varying the size of the dataset, the query length and the sliding window length. 
Note the logarithmic time axis. 

These results show us that our subsequence based acceleration of MPdist achieves three 

orders of magnitude speedup over the brute-force method, and it is not substantially 

slower than the fastest implementation of ED based subsequence search. 

Finally, to ground these numbers, we briefly revisit the insect data considered in the 

previous section. To search a recording of length 360,000 corresponding to 1 hours of 

wall-clock time at 100 Hz, with a query length n = 128 and with L = n/2, took 4.71 

seconds, or about 764 times faster than real-time for that dataset. 

4.11 When can MPdist Fail? 

All distance measures can be made to perform worse than some rival, by an adversarial 

creation of data. It can be instructive to consider examples. Fig. 26 shows an example 

for MPdist. 

Fig. 26 left) Two exemplars from a classification dataset. Class A is 3 bumps and 3 saw-tooth elements, Class 
B is the mirror image of A. right) the error-rate of MPdist on this problem as we increase the sliding window 
length L. 

Here the ultra-liberal invariance of MPdist means that it has a difficult time telling the 

two classes apart when L is very short. However, as the length of L increases, every 

subsequence of A will include some bumps and some saw-teeth, in that order, allowing 

the error-rate to fall to zero. Thus at least for this dataset, so long as we have enough 

data to learn a reasonable value for L, we can do no worse than classic ED. More 

generally, the fact that MPdist includes the ED as a special case offers us some bounds 
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on how badly the MPdist could fail, given only the assumption that a reasonable value 

for L is known or can be learned. 

4.12 Revisiting the Hardcoded Choice of k 

All distance measures achieve robustness by discarding some information [3]. For 

example, Z-normalized ED discards all information about the mean/variance [1][3], K-

shape discards phase information [21] and DTW discards some alignment information 

etc. As explained in Section 3, MPdist discards 95% of the Matrix Profile values, 

considering only the maximum of the lowest 5% of the values to report a distance. We 

have glossed over this choice of the 5% value. Here we briefly justify this decision. 

Clearly k cannot be 0% (or everything would be equidistant). If it was 100% we would 

be forced to explain all the data, including the dropouts, spikes, spurious 

prefixes/suffixes etc. These are the exact distortions we wish to be invariant to. For 

example, Fig. 15 shows that MPdist was able to find semantically identical patterns, 

only by ignoring the large amounts of spurious and noisy data. So, our value must be 

between these two extremes of 0 to 100%, and probably towards the lower end of that 

range. In Fig. 21, we show the results of an experiment that makes this issue moot, or 

at least of very low priority. We repeated the experiments of Section 4.1, but this time 

holding L constant (at its learned value) and changing k from 1 to 10%. At least over 

this range it makes essentially no difference. Given that we can vary this value over an 

order of magnitude with no effect, we simply choose the halfway point and defer a more 

detailed discussion to [17]. 

Fig. 27 On 4 random datasets from [5], we tested the effect of changing k between 1 and 10% on holdout 
classification. Over this range it makes essentially no difference. 
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5 Conclusions 

We have demonstrated that many real-word domains require a distance measure that is 

more robust than the current state-of-the-art. We have introduced MPdist, a novel 

distance measure to repair this omission. We have shown that the MPdist is more robust 

to noise, irrelevant data, misalignment etc., than either Euclidian distance or DTW.  

Moreover, these desirable features do not come at the cost of lethargy. Under typical 

assumptions the MPdist can process data three orders of magnitude faster than real-time 

data streams from accelerometers or medical devices.  

As part of this research effort we have created or adapted three new time series 

classification datasets. We have donated these to the UCR archive (with the exact splits 

we used) so the community can build on our efforts. 

In addition, the first application of MPdist recently appeared in [15]. They introduced 

the concept of time series snippets, a representation for visualizing and summarizing 

massive time series datasets. The authors argue that their definition of time series 

snippets is enabled by the unique properties of the MPdist; no other distance measure 

would work for their task. We believe that this snippet paper will be the first of the 

many applications of the MPdist. 

We discussed the limitations of the MPdist. It is significantly slower than Euclidean 

Distance and difficult to index for disk resident data. In addition, it requires a parameter 

to be set. In future work, we hope to show how to index disk-resident data and consider 

implications of the MPdist for medical data mining and human behavior discovery from 

wearables.  

Finally, we have made all code and data freely available to the community (in perpetuity 

[17], to allow the community to confirm and extend our findings. 
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