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Abstract

Rearrangements are discrete processes whereby discrete segments of DNA are deleted, replicated and inserted into novel positions. A sequence
of such configurations, termed a rearrangement evolution, results in jumbled DNA arrangements, frequently observed in cancer genomes. We
introduce a method that allows us to precisely count these different evolutions for a range of processes including breakage-fusion-bridge-cycles,
tandem-duplications, inverted-duplications, reversals, transpositions and deletions, showing that the space of rearrangement evolution is super-
exponential in size. These counts assume the infinite sites model of unique breakpoint usage.
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1. Introduction

Rearrangements are events where a piece of DNA from a
genome is moved to a different location, deleted from the cell,
duplicated, replaced in reversed orientation or a combination
thereof. These arise through a range of different mechanisms,
resulting in complicated configurations across many biological
entities, for example salmonella [1], grass [2] and cancer [3] all
exhibit rearrangements.

The use of rearrangement algorithms to interpret such con-
figurations has a rich history. Notably, the evolution of rever-
sals have been thoroughly studied [4, 5, 6, 7], along with tan-
dem duplications [8, 9, 10, 11, 12, 13], breakage-fusion-bridge
processes have been studied more recently [14, 15, 16], and
more general processes such as double-cut-and-join and com-
binations thereof have also been analyzed both graph theoreti-
cally [17, 18, 19] and with group theoretic techniques [20, 21].
A general overview of these and other problems found in rear-
rangement algorithms, as well as a plethora of other references
can be found in [22].

There is one feature we focus on for which published re-
sults differ significantly. This relates to the infinite sites model
[23], which assumes that there are an infinite number of sites
on DNA that can be mutated, and that the chance that the same
site is mutated twice is effectively zero. In the context of re-
arrangements, a site is a DNA position that is implicated in a
rearrangement, and is often referred to as a breakpoint. These
can be single positions (in breakage-fusion-bridge events, for
example, as detailed below), pairs of sites (in tandem duplica-

tions), or indeed a multitude of positions (chromothripsis [24]).
For most rearrangement studies, the infinite sites model is not
assumed and breakpoints are taken to be reusable. For exam-
ple, of the references above, only [13, 16, 18, 19] take an infinite
sites approach, naturally raising the issue of which methodol-
ogy is appropriate.

Rearrangement methodology was originally constructed to
account for different orders of genes between pairs of genomes.
Breakpoints were thus implicitly interpreted as gaps between
genes, meaning reuse of breakpoints is perfectly reasonable.
An examination of breakpoint reuse first appeared when the as-
sumption that rearrangements occur uniformly across the genome
was considered [25], revealing the presence of rearrangement
hotspots, or breakpoint regions. Such regions can be the re-
sult of highly mutable DNA, such as fragile sites, or regions
undergoing positive selection, such as deleted tumour suppres-
sor genes in cancer [26]. Furthermore, these regions are known
to rearrange at different rates [27]. Conversely, the regions be-
tween such hotspots can exhibit a lack of breakpoints. This
can be the result of selection against mutation. Highly con-
served synteny blocks are known to be unaltered in bacterial
rearrangement processes [28], for example. In cancer the con-
trast is less extreme; although some regions certainly contain
a higher density of breakpoints, rearrangements are found all
over the genome.

More recent sequencing technologies allow breakpoints to
be examined in very high resolution, meaning breakpoints and
their reuse can even be examined down to the level of base
nucleotides in some cases. This can be important for the re-
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construction of rearrangement evolution; missing information,
even from small DNA blocks, can result in erroneous predic-
tions [29]. In cancer genomes, even within fragile sites [26],
breakpoints occur at unique positions meaning breakpoint reuse
is somewhat unlikely and an infinite sites model is more appro-
priate. The decision of whether to use an infinite sites model or
not then comes down to resolution, that is, whether breakpoints
or breakpoint regions are being considered. In the present work,
we adopt an infinite sites approach, and building on [13, 16, 18],
assume breakpoints occur at unique DNA positions.

The classical problem considered in most rearrangement
studies is to estimate the sequence of rearrangements that con-
nect two distinct, known genomes. For example, in cancer ge-
nomics, one is comparing a (healthy) reference genome to a
rearranged cancer genome. Modern sequencing methods mean
that high-resolution rearrangement information is available, al-
though this is generally incomplete; the number of copies of
DNA segments (the rearranged blocks of DNA) and pairwise
segment adjacency information may be available, but the entire
sequence of segments that constitute a full genome is unknown
[18]. An exploration of the space of possible configurations that
fit the data then becomes desirable, which motivated the fol-
lowing combinatorial problem; specifically, we instead fix one
(reference) genome and are interested in the number of different
DNA configurations that can subsequently arise from a given
sequence of rearrangements. The rearrangements involved can
be taken from a range of rearrangement classes.

For sequences of rearrangements taken from a single class,
the number of configurations has previously been found exactly
in some cases. For breakage-fusion-bridge-cycles, the num-
ber is the super-exponential power 2

1
2 n(n−1), where n counts the

number of rearrangements [16], and for tandem-duplications,
the number is

∏n
k=1(4k − (2k + 1)) [13]. These counts were

achieved by similar graph theoretic constructs, suggesting the
methods or results may be applied across a wider class of rear-
rangement classes. The present work offers a simpler approach,
utilizing geometric arguments and algebraic properties of cer-
tain sequences of words. Whilst this technique does not de-
scribe the rearrangement process in as much detail as [13, 16],
it is sufficient to navigate the rearrangement spaces involved
and demonstrate super-exponential size. Furthermore, this is
achieved for different combinations of rearrangement classes.

In the next section we review the different admissible re-
arrangement mechanisms and provide an algebraic representa-
tion. The third section describes the counting technique. The
fourth section provides technical results needed to verify the
counts are correct, and a conclusions section completes the work.

2. Rearrangement Mechanics

There are several different types of rearrangement that can
occur in DNA evolution, and many of them can occur in com-
bination in a single cancer genome [18]. These include tandem-
duplications, reversals, breakage-fusion-bridge-cycles, inverted-
duplications and deletions, which are the classes that we con-
sider. Whilst these methods are likely extendable to inter-chrom-
osomal operations such as translocations and double-cut-and-

join operations, we stick to intra-chromosomal events for the
present study. We note that there are other more complex rear-
rangements such as chromothripsis that may also be going on
in genomes [24], along with unknown processes, which we do
not consider.

2.1. Rearrangement Classes

We now describe the rearrangement classes in more detail,
utilizing the examples given in Fig. 1.

Breakage-fusion-bridge cycles (BFB) arise when two pieces
of duplicated DNA are erroneously joined together resulting in
palindromic DNA. A piece of DNA, initially represented as a
sequence of two segments, 12, loses one of the segments, 2.
The remaining segment, 1, is duplicated and the two pieces
erroneously attached to each other at the same end, resulting
in configuration 11, where the overline 1 indicates the second
copy of 1 is in reversed direction compared to the first. Collec-
tively, this is represented algebraically as 12 → 11. Note that
if the duplication occurs from the other end with segment 1 be-
ing lost, we get 12 → 22. In both cases the resultant product
is palindromic and any subsequent BFBs can be implemented
equivalently from either end of the product. A more detailed
description of this behaviour can be found in [14, 15, 16].

Tandem-duplications (T D) occur when a piece of DNA is
copied and placed adjacent to the first copy. Algebraically, we
can consider this as an operation 123 → 1223, where the mid-
dle segment, labelled 2, has been copied. These processes have
been implicated in many duplication processes [30], including
cancer [31], and the combinatorics have been well characterized
[8, 9, 10, 11, 12].

Deletions (DEL) arise when segments of DNA are excised
from a genome. Algebraically these can be represented as 123→
13, where segment 2 has been deleted. Such processes arise
naturally as part of genomic evolution, inactivating tumour sup-
pressor genes, for example [26].

Reversals (REV) occur when a piece of DNA is excised and
reinserted in the backwards orientation. Algebraically, this can
be represented as 123 → 123, where the segment labelled 2 is
inverted. These have been implicated in various situations [32].
The combinatorics of these processes are also well character-
ized [4, 5, 6, 7], as well as for the more general double cut and
join process [17, 20]. The term reversal is usually adopted by
algebraic descriptions of the process. However, this can also be
referred to with the more biological term inversion [18]. Note
that the term reversal applies more generally to permutations
(such as 12345 → 14325, for example) that reverse the order
of (but do not invert, or track the orientation of, individual) seg-
ments, whereas the term inversion explicitly requires the DNA
to be placed in inverted orientation.

Transpositions (TRA) arise when two pieces of DNA are
interchanged, or equivalently when one piece is excised and in-
serted into a different position in the chromosome [22, 33, 34].
We can represent this algebraically as 1234→ 1324, where the
segment 3 is excised and implanted between segments 1 and 2.
This process can be referred to as an insertion, a more general
biological term in which the original segment may be excised
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Figure 1. The rearrangement classes analysed, including breakage-fusion-bridge, tandem-duplication, deletion, inverted-duplication, reversal and transposition. The
horizontal tick-marked bar indicates the original reference DNA configuration, each number denoting a segment of DNA (123 for inverted-duplication reference,
for example). The configurations below each horizontal bar are the rearranged DNA, lined up against the reference. Solid lines are segments, dotted and dashed
lines denote connections. Final algebraic configurations are given word representations under the rearrangement names (1223 for inverted-duplication, for example,
where an overline indicates a segment in reversed configuration).

within-chromosome as above (preserving the number of seg-
ment copies) [18], or the inserted segment may be copied or
excised from an external source (from other chromosomes or
cells, for example) [35, 36]. Note, however, that the term trans-
position is strictly reserved for intra-chromosomal insertions.

2.2. Rearrangement Evolution

All these processes can be implicated in genomic evolution,
where checkpoint machinery fails and aberrant DNA structures
are allowed to propagate, cancer genomes exhibiting perhaps
the most prominent combinations of these processes, resulting
in very scrambled genomes [18]. We consider a combinatorial
problem arising from such a mixed process, where we are re-
quired to count the number of different discrete structures that
can arise from such processes (the discrete nature of the struc-
ture is made more precise below).

Consider the rearrangements in Fig. 2, for example, where
we can see a combination of three such operations, a tandem-
duplication (T D), a breakage-fusion-bridge (BFB), followed
by a deletion (DEL). This choice of rearrangement sequence
T D → BFB → DEL is now fixed and we are interested in the
number of possible ‘configurations’ that may arise, where we
need to say what we mean by configurations.

Now, any instance of this rearrangement sequence will im-
plicate five breakpoints, delineating the six segments that are
initially contiguous, represented as 123456. For this example,
after the first event, a T D, the region 234 is duplicated, resulting
in sequence 1234.23456. We represent the structure in Fig. 2 by
aligning it against the original sequence 123456, lining up the
same segments vertically. Novel somatic connections between
initially disconnected segments are indicated by a dashed line
in the structures, and by a decimal point algebraically. Note
that the start point of the duplicated region 234 implicates the
position between segments 1 and 2, represented as [12]1, the
subscript indicating it is the first copy of this breakpoint in the
word. Similarly, the duplication termination point between seg-
ments 4 and 5 is represented as [45]1. Such positions implicated

in rearrangement are examples of the aforementioned break-
points. The rearrangement operation is then represented alge-
braically with the term T D([12]1, [45]1). The next rearrange-
ment, a BFB, duplicates the subsequence 1234.2345, joining
both copies at the single breakpoint between segments 5 and
6, resulting in the word 1234.2345.5432.4321, segment 6 be-
ing lost. This is represented as BFB([56]1). The last operation,
DEL([23]3, [34]4), implicates the third and fourth copy of the
remaining two reference positions, those at each end of segment
3, deleting the subsequence 24, resulting in the final sequence
1234.2345.543.321.

Now, the last operation DEL([23]3, [34]4) is acting on dis-
tinct positions [23] and [34]. It would seem that (following
genomic duplication by the BFB) operations utilising distinct
copies of the same breakpoint, such as DEL([23]2, [23]3), may
be possible. However, this would require both ends of the dele-
tion to occur at precisely the same genomic sequence, some-
thing that is excluded by the infinite sites assumption, and ar-
guably unlikely to occur in practice, for the rearrangements
presently considered at least. There may plausibly be other re-
arrangement processes (based on sequence homology) that im-
plicate the same genomic sequence twice, but such processes
are not considered further, and would require extensions to the
methods detailed below.

We thus find that all five breakpoint positions [12], [23],
. . . , [56] that demarcate the six original segments 1, 2, . . . , 6 are
implicated. In general each breakpoint [mn]p represents the pth

copy of the reference position between segments m and n in a
word. Because breakpoints are only implicated once, we find
that implicated breakpoints are always in their original order
with n = m + 1.

We can represent this chain of events as an algebraic ‘con-
figuration’ termed an evolution:

123456→ 1234.23456→1234.2345.5432.4321

→ 1234.2345.543.321
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1 2 3 54 6 1 2 3 54 6

TD([12]1,[45]1) BFB([56]1)

1 2 3 54 6

DEL([23]3,[34]4)

1 2 3 54 6

123456 1234.23456 1234.2345.5432.4321 1234.2345.543.321

Reference

Figure 2. One possible instance of the rearrangement sequence involving a tandem duplication (T D), a breakage-fusion-bridge-cycle (BFB), and lastly a deletion
(DEL). The corresponding evolution of words based upon a reference of six initially contiguous DNA segments numbered 1, 2, ... , 6 is given. Breakpoints acted
upon are labelled. For example, the deletion acting on 1234.2345.5432.4321 starts from [23]3; the third copy (represented by subscript) of the breakpoint between
segments labelled 2 and 3. The resulting structures are aligned relative to the reference; solid lines indicate DNA segments and dashed lines indicate connections.
The crosses indicate the breakpoints implicated by the next rearrangement. The sequences of numbers are constructed by walking through the structure from the top
left end and reading off the segments. The decimal points indicate somatic connections between segments not adjacent in the reference. An overline indicates the
segment is in reversed orientation.

This is a sequence of words based upon the reference sequence.
However, note from Fig. 2 and the construction described above
that if we have (i) the initial word, (ii) the rearrangement se-
quence, and (iii) the breakpoints implicated in each rearrange-
ment, then the evolution can be reconstituted.

Evolutions are considered distinct if they differ at any sub-
sequence in the chain. For example, in Fig. 3 we see the eleven
possible evolutions arising from a sequence of two IDs. The
first and last evolution have the same initial and final words
(12345 and 12.2.34.4.5) but have distinct intermediate struc-
tures (with words 1234.4.5 and 12.2.345), so are considered
distinct. Note that this observation is related to the classical
rearrangement problem of connecting two fixed genomes by a
path of rearrangements; the existence of distinct paths indicates
multiple solutions exist for the corresponding classical prob-
lem.

Our primary combinatorial question then is to count the
number of distinct evolutions corresponding to a given rear-
rangement sequence. Note that we are only interested in the
different discrete, algebraic structures that arise from such pro-
cesses; the exact genomic positions of the breakpoints are not
of concern.

Note that we have assumed each subsequent rearrangement
implicates new breakpoints. Once a rearrangement has occurred,
any exposed breakpoints are repaired and the chance that the
next rearrangement will occur at the same position is unlikely,
and the infinite sites model is adopted.

Now for a chain of n rearrangements of the same type, ask-
ing how many different evolutions are possible is a problem
we have considered elsewhere, where we have shown that there
are 2

1
2 n(n−1) possible evolutions from breakage-fusion-bridge-

processes [16] and
∏n

k=1(4k−(2k+1)) are possible from tandem-
duplications [13]. The proofs rely on an induction that instead
of asking what happens if we perform an nth rearrangement af-
ter n− 1 previous events (at the end of the evolution), considers
what happens to the structure if a new rearrangement is placed

at the start of the evolution. We adapt this approach, obtaining
the following.

Theorem 1. The number of distinct rearrangement evolutions
corresponding to the rearrangement sequence R1 → R2 →

R3 → · · · → Rn is given by
∏n

k=1 ΦRk (βk) where Rk denotes
the class of the kth rearrangement in the sequence (selected
from Table 1), βk =

∑
j>k β(R j) denotes the number of break-

points subsequently implicated by later rearrangements, and
β(R j) counts breakpoints implicated by rearrangement R j. The
final number of segments in the reference is one greater than
the total number of breakpoints, β0 + 1.

This can then be used to count rearrangement evolutions.
For example, consider counting the number of possible evolu-
tions of the form T D → BFB → DEL, one example of which
was given in Fig. 2. We start with the final rearrangement, the
DEL, which has no following rearrangements, and so subse-
quent breakpoints. Then using β3 = 0 for DELs in Table 1, we
find the number of ways of doing this is ΦDEL(β3) = 0 + 1 = 1.
Note that the DEL introduces two breakpoints. We then intro-
duce a new first rearrangement, the BFB, for which there are
ΦBFB(β2) = 22 configurations (using β2 = β(DEL) = 2 in Table
1). This give four possible evolutions, all with β1 = β(BFB) +

β(DEL) = 3 breakpoints. We finally introduce the first event,
the TD, for which there are ΦT D(β1) = 23+2 − (3 + 3) = 26
choices, giving 26×4×1 = 104 possible evolutions in total. For
all such evolutions we have β0 = β(T D)+β(BFB)+β(DEL) = 5
breakpoints in total, resulting in the β0 + 1 = 6 reference seg-
ments given in Fig. 2.

We see from the third column in Table 1 that the rearrange-
ment classes duplicating DNA (BFB, T D and ID) result in
larger evolution spaces. Specifically we will have the follow-
ing.

Corollary 1. Let N(n) denote the number of evolutions for a
particular sequence R1 → R2 → · · · → Rn of rearrangements.
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1 2 3 54

12.2.34.4.5

1 2 3 54

123.32.4.43.5

1 2 3 54

1234.4.4.432.3.5

1 2 3 54

123.3.4.4.3.32.5

1 2 3 54

123.4.4.4.43.32.5

1 2 3 54

1234.43.34.4.2.5

1 2 3 54

123.32.4.4.23.3.5

123.32.4.4.2.5
12.2.34.4.5

1 2 3 54

123.3.4.432.5

1234.43.3.2.5

(A) (B) (C) (D)

(E) (F) (G) (H)

1 2 3 54 1 2 3 541 2 3 54
(I) (J) (K)

Figure 3. Eleven possible configurations (A-K) arising from two inverted-duplications (IDs). Each configuration contains three structures and a sequence. The first
(upper) structure is the reference, labelled 1, 2, . . . , 5. The second indicates the structure after the first ID, the crosses indicated the two breakpoints implicated in
the second ID. The third structure indicates the final structure, along with the numerical sequence of associated reference segments (overlined segments are inverted
and decimal points denote somatic connections).

Then for duplication sequences (i.e. Ri ∈ {BFB, T D, ID} for
i = 1, 2, . . . , n) we have log N(n) = O(n2). For sequences with-
out duplication, we find log N(n) = O(n log n).

We now develop the machinery to establish these results.

3. Updating the Reference

First we describe combinatorics associated with updating
the reference. Instead of taking an evolution and asking how
many new evolutions are possible when another rearrangement
is applied (at the end of the evolutionary process), we instead
suppose the reference is a product of a rearrangement (i.e. we
introduce a new rearrangement at the beginning of the process)
and count the number of consistent possibilities. We consider
this for the range of rearrangement types in Table 1.

3.1. Breakage-Fusion-Bridge-Cycles

Consider a stretch of DNA implicated in a sequence of var-
ious rearrangements. For example, consider the case that ini-
tially we have a contiguous sequence of five segments, the refer-
ence ABCDE, demarcated by four breakpoints that will be im-
plicated by subsequent rearrangements (two T Ds or four BFBs
would implicate four breakpoints, for example). We now as-
sume the reference is not in fact the original genome, but the
result of a BFB which will implicate an additional breakpoint,

five in total. Then the updated reference can be represented as a
sequence of six segments 123456 separated by five breakpoints.
We can then ask how the segments A, B, . . . , E line up against
the updated reference of six segments. One possibility is the
BFB mapping structure given in Fig. 4, where as we walk from
point I to II to III we see the contiguous segments A to E, with
the upper part I-II containing three of the original four break-
points and the lower part II-III the remaining one. The newly
introduced fifth breakpoint is the fold at position II.

Note that as we walk through the updated structure, the
original order of the segments A through to E must be pre-
served, because we are not changing the configuration ABCDE,
rather just assuming it is the product of an earlier event. This
means that the order of the four original breakpoints is also pre-
served along the structure, a feature that applies more generally
than this example.

This change of reference can be represented as a reference
mapping M from the original reference to the updated one. For
the BFB example in Fig. 4, we see that A → 1 covers one
segment from the new reference, whereas D → 5543 covers
four, one of them twice. The full mapping is given to the right
of the mapping structure in Fig. 4. Formally, we can represent
the mapping of segments, such as M(A) = 1, M(D) = 5543, for
example.

When lined up against the new reference, the lower break-
point on II-III is positioned between the first two breakpoints on
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Rearrangement Breakpoints Counting Number of Evolutions

Class Implicated Factor

R β(R) ΦR(k) N(n) =
∏n

k=1 ΦR(nk) N(1) N(2) N(3) N(4)

BFB 1 2k 2
1
2 n(n−1) 1 2 8 64

T D 2 2k+2 − (k + 3)
n∏

k=1
(4k − (2k + 1)) 1 11 627 156123

ID 2 2k+2 − (k + 3)
n∏

k=1
(4k − (2k + 1)) 1 11 627 156123

REV 2
(

k+2
2

)
(2n)!

2n 1 6 90 2520

DEL 2 k + 1 (2n − 1)!! 1 3 15 105

TRA 3
(

k+3
3

)
(3n)!

6n 1 20 1680 369600

Table 1. Size of evolution spaces for six rearrangement classes. The first column is the class of rearrangement (see Fig. 1). The second column contains the number
of breakpoints utilized by the rearrangement. The third column is the combinatorial factor ΦR(k) contributed by rearrangement R in a sequence of rearrangements,
where k denotes the number of breakpoints subsequently formed in the genome after rearrangement R. The fourth column is the size of the rearrangement space if
only a single class of rearrangement is in operation. The next few columns highlight the growth of this space with the number of rearrangements.

I-II. However, the lower breakpoint could have been positioned
in four different locations relative to the three breakpoints on
the arm I-II. These would all result in distinct reference map-
pings. This choice is counted by the factor

(
4
3

)
.

Now, more generally we have k breakpoints to realign rather
than four. Along I-II we can position r of them, the remain-
der k − r along II-III. For any given r, the number of different
ways of interleaving the upper and lower breakpoints against
the updated reference (whilst preserving their order along the
structure) will be

(
k
r

)
. If we sum this over the possible values

of r ∈ {0, 1, . . . , k} we find 2k possibilities. This is the counting
factor given in the third column of Table 1.

Furthermore, if we now consider a rearrangement sequence
consisting entirely of n BFBs, then each one will introduce a
single breakpoint and a factor of the form 2k where k counts the
number of subsequent breakpoints in the process. This suggests
the total number of possible structures is given by

∏n−1
k=0 2k =

2
1
2 n(n−1), giving the total number of configurations found from

a sequence of BFBs, as given in the fourth column of Table 1,
a result derived by other means in [16]. Note furthermore that
the exponent of this count is of order O(n2), exhibiting super-
exponential growth of the space of rearrangements with n.

As remarked earlier, a BFB can duplicate DNA either from
the left or right, resulting in two possible palindromic chromo-
somes. This symmetry means that any BFB events immediately
following the first BFB can act from either end with the same
result. Thus when using Theorem 1 to count the number of evo-
lutions for a sequence of rearrangements, we must specify the
direction of the first BFB for any chain of consecutive BFBs in
the sequence (or double the count for each chain of BFBs).

By construction, we have counted the number of different
reference mappings we get for the different relative positions of
the breakpoints on the mapping structure. This is repeated in the
following subsections for other rearrangement classes. We still
need to verify that distinct reference mappings result in distinct

evolutions and the factors can be combined in the manner of
Theorem 1. This is deferred until Section 4.

3.2. Tandem-Duplications

We next assume that a reference genome with k breakpoints
is actually the product of a T D. We thus need to count the
number of different ways of lining up the k breakpoints along
a tandem duplication structure such that their original order is
preserved. An example of a suitable mapping structure is given
in Fig. 4. In general, we can place r breakpoints along the
top portion (labelled I to II in Fig. 4) and k − r breakpoints
along the bottom portion (labelled III to IV). Including the two
breakpoints for the T D (at positions II and III) we now have
r + 1 along the top portion and k − r + 1 along the bottom, k + 2
in total. Now these two sets of breakpoints can have any relative
order except one; the upper T D breakpoint (II) cannot be to the
left of the lower T D breakpoint (III). Thus we find

(
k+2
r+1

)
− 1

orders are possible. Then summing over the possible values of
r we find

∑k
r=0

((
k+2
r+1

)
− 1

)
= 2k+2 − (k + 3) possible orders.

If we consider a sequence of n TDs, each introduced a pair
of breakpoints, then combining these factors together results in
the factor

∏n
k=1(4k − (2k + 1)) given in the fourth column of

Table 1. This is precisely the result found by other means in
[13]. Note that like BFBs, the size of this super-exponential
space also has exponent O(n2) for n TDs.

3.3. Inverted-Duplications

IDs produce different structures to T Ds, although the final
combination count proves to be the same. We again position k
breakpoints along a structure in their original order and count
the number of ways they align relative to the new reference.
From the mapping structure in Fig. 4 we see if the reference is
actually the product of an ID there are three regions in which
we can place these breakpoints that are later implicated, the
stretches I-II, II-III and IV-V. Now we can place r breakpoints
along IV-V. These are to the right of any breakpoints placed
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Figure 4. Redefining the reference with mapping structures. A reference sequence ABCDE of five segments is updated to be the product of an earlier rearrangement
for six classes of event. The original structure is then aligned against the new reference 123 . . . n where n is the number of segments in the updated reference. Solid
lines indicate DNA and dotted lines indicate where segments are joined together. Mappings from the original reference to the updated reference are also provided.

along I-II or II-III and only one choice is possible as their order
along IV-V is fixed. If we have s breakpoints placed along II-III
then the remaining k− r− s are placed along I-II. Now there are(

k+1−r
s

)
ways to interleave the breakpoints along II-III (including

the new breakpoint at III) amongst those on I-II (relative to the
new reference). We then sum this over the possibilities of s ∈
{1, 2, . . . , k + 1− r} and r ∈ {0, 1, . . . , k + 1}, which results in the
same factor 2k+2 − (k + 3) seen for TDs. Note that the space of
n IDs therefore also has growth exponent O(n2).

3.4. Reversals
For this case we suppose that a reference containing k break-

points in subsequent rearrangements is actually the product of
a reversal. Then the different possible evolutions correspond to
the different choices of positioning the k breakpoints along the
three regions I-II, II-III and III-IV of the REV mapping struc-
ture in Fig. 4, where II-III is the inverted region, and the original
order of the breakpoints running through the updated structure
is the same. If we place x of them in I-II and y of them in II-III,
so k−x−y in III-IV, the number of choices is

∑k
x=0

∑k−x
y=0 1 =

(
k+2

2

)
giving the expression in Table 1.

If we have a sequence of n reversals (each producing two
breakpoints), the number of evolutions is a product of such fac-
tors resulting in the total count (2n)!

2n . If Stirling’s formula is
used, one can see that the exponent grows as O(n log n) rather
than O(n2). This reduction in the growth of the corresponding
evolution space is likely due to the fact that unlike reversals,
BFB, T D and ID processes are duplicating DNA and provide
more combinatorial opportunities for different evolutions.

3.5. Deletions
If a reference (containing k breakpoints) is this time the

product of a deletion, then the deleted region cannot contain

any of these breakpoints (otherwise they could not be present
in the reference after the deletion). As the order of these break-
points is preserved along the corresponding mapping structure,
the only choice is how many of them are left of the deleted re-
gion. The number of choices is thus simply k + 1.

For a sequence of n deletions implicating n breakpoints in
total, the number of evolutions is thus (2n − 1)!!. This process
also has growth exponent of order O(n log n) and like reversal
is a process that does not duplicate DNA.

We note that we can also consider arm loss as an additional
rearrangement process, where an entire end of the chromosome
is lost (rather than an internal segment). In this case there is
only one way to position the breakpoints (on the undeleted re-
gion) and the factor is simply unity. For any sequence of re-
arrangements including arm loss we can thus just ignore such
events when calculating combinatorics.

3.6. Transpositions
The final rearrangement class considered is transposition.

If a reference sequence containing k breakpoints is actually the
product of a transposition, then we have three regions to po-
sition the breakpoints, the regions I-II, II-III, III-IV and IV-V
portrayed in Fig. 4. The number of choices is counted by

(
k
3

)
.

For a sequence of n transpositions, this results in (3n)!
6n evolu-

tions. This is a process without DNA duplication, which again
has growth order exponent of order O(n log n).

4. Evolution Uniqueness

So far, we have taken a rearrangement sequence R1 → R2 →

· · · → Rn and an associated evolution S of the form W1 →

W2 → · · · → Wn+1 containing words Wi based upon an original
reference sequence such as ABCDE in Fig. 4. We have then

7
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introduced a new first rearrangement, resulting in updated rear-
rangement sequence R0 → R1 → · · · → Rn along with updated
reference 12 . . .m. Section 3 counted the number of different
ways of mapping the original reference ABCDE against the up-
dated reference 12 . . .m, taking the geometry of the new first
rearrangement R0 into account. However, for our primary com-
binatorial problem, we also need to consider how the evolution
S is affected, including whether we get a well defined updated
evolution E = M(S ) of the form V0 → V1 → · · · → Vn+1 with
words Vi based upon the updated reference.

Recall that a pair of evolutions are distinct if they contain se-
quences of words such that the ith word in each sequence differs
at some segment for at least one occurrence i. To demonstrate
the validity of Theorem 1 will require three features:

Property A: Any mapping M can be applied to an original
evolution S to give a well defined updated evolution E = M(S ).

Property B: Applying two distinct reference mappings Mi ,
M j to a single original evolution S results in two distinct up-
dated evolutions. That is, Mi(S ) , M j(S ) for i , j.

Property C: Applying reference mappings to two distinct
original evolutions S 1 , S 2 results in two distinct updated evo-
lutions. The pair of mappings utilized can be distinct or identi-
cal. That is; Mi(S 1) , M j(S 2) for S 1 , S 2.

Note that together these properties tell us that if Mi(S 1) =

M j(S 2) we must have i = j and S 1 = S 2. The upshot is that
all mappings produce unique updated evolutions across all ex-
isting original evolutions. This will later be seen as sufficient to
establish Theorem 1 (see Section 4.4).

Examples of the situation considered are given in Fig. 5(B,C),
where we have two original evolutions S 1 and S 2 (using orig-
inal reference ABCD) corresponding to the rearrangement se-
quence BFB → DEL, both resulting in three breakpoints. The
introduction of a new first T D rearrangement adds two extra
breakpoints, giving five in total, so we have segments 12 . . . 6
in an updated reference. From Section 3.2, there are ΦT D(β1) =

23+2 − (3 + 3) = 26 possible reference mappings, where β1 = 3
counts the number of breakpoints formed after the T D. In Fig.
5(A) we have three examples from these 26 possibilities, la-
belled M1, M2 and M3. Applying these three mappings to the
two original evolutions results in six updated evolutions E1-E6
in terms of new reference 123456 (the example modifying S 1
with M1 gives the evolution portrayed in Fig. 2). All six cases
give a well defined updated evolution in accordance with Prop-
erty A. Furthermore, if we take a single evolution, say S 1 and
a pair of distinct mappings, say M1 and M2, the updated evolu-
tions are distinct (note the updated evolutions E1 = M1(S 1) and
E2 = M2(S 1) differ at the final fourth word). This is an example
of Property B, where a single evolution produces distinct evolu-
tions when two distinct mappings are applied. Note also that if
we take two distinct evolutions (S 1, S 2) and any two mappings
(distinct or otherwise), the updated evolutions differ (any evo-
lution from E1-E3 is distinct from any evolution from E4-E6 in
at least one word, that is, Mi(S 1) , M j(S 2) for all i, j). This is
the third Property C we need to explain; distinctness of evolu-
tions is preserved under the application of (distinct or identical)
mappings.

In order to explain these three properties, we need to con-

sider certain characteristics of the mappings.

4.1. Reference Update Mapping Characteristics
There are four characteristics we require from the mappings.

The first is concerned with the mapping of breakpoints, the sec-
ond with the uniqueness of breakpoint usage, the third with
contiguity of segments between implicated breakpoints, and the
fourth relates to the chronology of rearrangement events.

4.1.1. Mapping Breakpoints
Firstly then, we consider breakpoint usage. In Fig. 5(D)

the left table gives the breakpoints implicated for the two orig-
inal evolutions (S 1, S 2) corresponding to BFB → DEL in Fig.
5(B,C). For example, take the entry [AB]2 for the end point of
the deleted region in evolution S 1. This indicates the second
adjacency of AB in the word ABC.CB · A is implicated (the
position with symbol ·). Now a mapping, such as M1, takes
A → 123, B→ 42 and C → 345, meaning the word is updated
to 1234.2345.5432.4 · 321. The breakpoint position can still
be identified, but the breakpoint label becomes [34]4 with the
new reference (as given in the first row, last entry of the right
table in Fig. 5(D)). This applies in general; the action of a map-
ping on breakpoints is well defined for a given evolution; in this
case we have M1([AB]2) = [34]4. Note that the mapped posi-
tion [34] does not depend upon the evolution involved, but the
copy (subscript 4) does. We thus have (i) an updated rearrange-
ment sequence (with new first rearrangement), (ii) an updated
list of breakpoint positions, and (iii) a new first word 12 . . . n.
As noted in Section 2.2, these three things are all that is needed
to construct an evolution and we have Property A; the updated
evolution E = M(S ) is well defined for any mapping M and
original evolution S .

4.1.2. Uniqueness
Secondly, note that each breakpoint is implicated uniquely

by the infinite sites assumption. For example, each row of
the left table in Fig. 5(D) uses original breakpoint positions
[AB], [BC], [CD] exactly once, and each row of the right ta-
ble in Fig. 5(D) uses updated breakpoint positions [12], [23],
. . . , [56] exactly once. Now, consider two distinct breakpoints
[AiAi+1]p and [A jA j+1]q from the original reference (Ai, A j ∈

{A, B,C,D}). Under any mapping M, these will remain dis-
tinct. Either i , j in which case the reference positions differ
in both the original and updated reference by the infinite sites
assumption, or we have i = j, p , q and the copy of the same
breakpoint is different, something that must remain true after
the mapping has relabelled segments. Thus we have the obser-
vation that distinct breakpoints are mapped to distinct break-
points. That is, M(B) , M(B′) for any breakpoints B , B′.

4.1.3. Segments
Thirdly, consider the consecutive nature of segments. The

reference contains consecutive segments, such as 123456, for
example. If we have a rearrangement, such as BFB([56]1) act-
ing at breakpoint [56]1, for example, we end up with modified
word 12345.54321. The end product now has a new novel so-
matic connection [55]1 (at the decimal point). Note that the

8



/ Journal of Theoretical Biology 00 (2020) 1–14 9
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[34]3 [23]3

E4=M1(S2)

E5=M2(S2)

E6=M3(S2)
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Figure 5. A sample of updated evolutions. (A) Three sample reference mappings (M1-M3) corresponding to the update of evolution BFB→ DEL to T D→ BFB→
DEL. The original reference ABCD is mapped onto updated reference 123456. (B,C) Respectively describe how evolutions S 1, S 2 are updated under the mappings
of (A). (D) Provides breakpoint reference positions for original and updated evolutions (e.g., [34]3 for the end of deleted region in evolution E5 = M2(E2) indicates
the third copy (subscript) of the position between segments 3 and 4 is utilized).

segments either side of the connection remain in (their origi-
nal) consecutive order, albeit reversed on the right side of the
connection. This applies in general; segments between somatic
connections run in consecutive order.

4.1.4. Chronology
Lastly, we consider the chronology of events. To do this

we again consider the action of the mappings on breakpoints
(rather than segments). In Fig. 5(D) the second table (with
updated evolutions) has six rows corresponding to the action of
three example mappings M1 − M3 to two original evolutions
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(S 1 and S 2) for the updated rearrangement sequence T D →
BFB → DEL. Each row contains the positions of breakpoints
using the updated reference. For example, updated evolution
E1 = M1(S 1) has a final deletion from breakpoint [23]3 to [34]4.
This is applied to the penultimate word 1234.2345.5432.4321,
removing 24 to give 1234.2345.543.321. These breakpoints can
be lifted to positions on the structure representing the mapping;
the blue stars in the structure for M1 in Figure 5(A).

Note that if we compare the mappings M1 and M2 that are
applied to original evolution S 1 to give updated evolutions E1 =

M1(S 1) and E2 = M2(S 2) (the first two rows of the second table
in Fig. 5(D)), the only differences in mapped breakpoints arise
in the final DEL event. More specifically, the first rearrange-
ment (T D) uses breakpoints ([12]1, [45]1) in both cases, the sec-
ond rearrangement (BFB) uses [56]1 in both cases, whereas in
the last rearrangement (DEL), evolution E1 uses ([23]3, [34]4),
whereas E2 uses ([34]3, [23]4). This is also apparent in Fig.
5(A), where we see the blue stars for the DEL are positioned
differently when comparing the first two diagrams (for M1 and
M2), whereas the red squares (T D) and green circle (BFB) are
similarly positioned. Conversely, when comparing M2 and M3,
we see that all three rearrangements are acting at different po-
sitions (e.g. the red squares for T Db take distinct positions be-
tween the second and third diagrams). This is reflected in the
second table in Fig. 5(D), where all three breakpoint sets in the
rows for E2 = M2(S 1) and E3 = M3(S 1) differ. Thus chrono-
logically, M1 and M2 differ in breakpoint usage at the last rear-
rangement, whereas M2 and M3 differ from the first event on-
wards.

More generally, for two mappings M and M′ updating an
evolutions S to E = M(S ) and E′ = M′(S ), respectively, we
can compare the positions of breakpoints in the corresponding
mapping structures. The first rearrangement (chronologically
speaking, that is, the first in the sequence R0 → R1 → R2 . . . )
with different breakpoint positions in the mapping structures
will be the one that first cause the corresponding updated evo-
lutions E and E′ to differ.

We next utilize these observations to validate Properties B
and C.

4.2. Single Evolutions with Distinct Mappings
Firstly then, to consider Property B, suppose we have a

single evolution (such as S 1 in Fig. 5B, for example), and
two distinct reference mappings (say M1 and M2). Then we
have two corresponding updated evolutions (E1 and E2). Now,
E1 = M1(S 1) and E2 = M2(S 1) are identical apart from the
last word in their respective sequences. As discussed in the last
section, this is because when the breakpoints of the first two
rearrangements are considered (chronologically), the T D (red
squares in Fig. 5(A)) and BFB (green hexagons) are positioned
identically along both mapping structures, whereas the break-
points for the DEL (blue stars) were in different locations. Thus
it is only when the DEL is implemented in the last step that the
evolutions differ. Conversely, if we compare the action of M1 to
M3 (on S 1), the positions of the breakpoints on the correspond-
ing mapping structures for all three rearrangements are distinct,
thus the evolutions differ as soon as the first rearrangement is

implemented (i.e. the second words in the corresponding evo-
lutions E1 = M1(S 1) and E3 = M1(S 1) are distinct).

Now in general, we have an original sequence of n rear-
rangements of the form R1 → R2 → · · · → Rn. If S is a corre-
sponding original evolution then we can write this as

W1
B1
−→W2

B2
−→ . . .

Bn
−→Wn+1 [S ] (1)

where Wi is the ith word in the evolution, and Bi represents the
breakpoints implicated by rearrangement Ri in the evolution (so
Bi is a vector of β(Ri) breakpoints; see Table 1).

Now, the introduction of a new first rearrangement results
in an updated rearrangement sequence R0 → R1 → · · · → Rn.
Consider two corresponding updates of the evolution S under
distinct mappings M1 and M2. Then we obtain two updated
evolutions E1 = M1(S ) and E2 = M2(S ), along with updated
breakpoints B̂i = M1(Bi) and B̂′i = M2(B′i). Now if these two
mappings are distinct (in the sense of the different mapping
structures counted in Section 3), the breakpoint positions on
the mapping structure must differ somewhere (between E1 and
E2). There must therefore be a rearrangement Ri with minimum
value i that these differences correspond to (by the chronolog-
ical properties discussed in Section 4.1.4). That is, B̂′k = B̂k

for k < i and B̂′i , B̂i. Prior to rearrangement Ri, both map-
pings are using the same breakpoint positions and the evolu-
tions will contain the same sequence of reference words prior
to this event. At the next rearrangement different reference po-
sitions are implicated, so different pieces of DNA are moved,
copied or deleted, and so the next word in each sequence must
therefore differ. Then if Vk and V ′k represent the updated words,
we can represent the updated evolutions as follows:

V0 B̂0
−→

V1 B̂1
−→

V2 . . .Vi−1 B̂i−1
−→

Vi

B̂i
↗

B̂′i
↘

Vi+1 B̂i+1
−→

. . . [E1]

V ′i+1
B̂′i+1
−→

. . . [E2]
(2)

The two evolutions thus bifurcate at rearrangement Ri and
the two sequences of words are not identical, as required for
Property B.

4.3. Distinct Evolutions After Mapping

Secondly then, for Property C we consider two distinct orig-
inal evolutions corresponding to a particular sequence of rear-
rangements, and need to show that after mappings are applied,
the updated evolutions remain distinct (the two mappings in-
volved do not have to be distinct).

For example, in Fig. 5(B,C), S 1 and S 2 are distinct orig-
inal evolutions corresponding to the rearrangement sequence
BFB → DEL. We also have three sample mappings M1-M3
corresponding to the updated rearrangement sequence T D →
BFB → DEL. Then if we apply any of these mappings to S 1
and S 2, the updated evolutions that are obtained remain distinct
(any of E1 − E3 differ to any of E4 − E6 in Fig. 5(B,C)), as
required.

Now, for this example, the two original evolutions are S 1 :
ABCD → ABC.CBA → ABC.C.A along with S 2 : ABCD →
ABC.CBA → A.BA. Thus the two evolutions differ in their last
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word. The initial rearrangement BFB acts on the same break-
point [CD]1 in both evolutions (see the first table in Fig. 5D),
meaning the same second word ABC.CBA occurs. However, the
final DEL rearrangement acts on different breakpoints; in S 1 we
have operation DEL([BC]2, [AB]2) giving final word ABC.C.A,
whereas in S 2 we have operation DEL([AB]1, [BC]2) giving a
different final word A.BA. More generally then we can dia-
grammatically represent the two original evolutions as follows.

Suppose that the two original evolutions S 1 and S 2 corre-
spond to a rearrangement sequence R1 → R2 → · · · → Rn. As
they are distinct, we can assume that they first differ at the i+1th

word in their sequences. Then we represent original evolutions
as follows:

W1
B1
−→W2

B2
−→W3 . . .Wi−1

Bi−1
−→Wi

Bi
↗
B′i
↘

Wi+1
Bi+1
−→ . . . [S 1]

W ′i+1
B′i+1
−→

. . . [S 2]
(3)

Here Bk and B′k denote the vector of breakpoints that rearrange-
ment Rk acts upon, in evolutions S 1 and S 2, respectively (so
Bk = B′k for 1 ≤ k ≤ i − 1). The terms Wk and W ′

k represent the
words in original evolutions S 1 and S 2, respectively (Wk = W ′k
for 1 ≤ k ≤ i). Thus the words are identical in both evolutions
for k ≤ i, but the breakpoint positions implicated by rearrange-
ment Ri are different (Bi , B′i), meaning the next word in the
respective evolutions differ (Wi+1 , W ′i+1), and the evolutions
bifurcate at rearrangement Ri.

Next we need to consider the effect of updating the evolu-
tion with the introduction of a new first rearrangement R0. This
results in updated rearrangement sequence R0 → R1 → R2 →

· · · → Rn. The evolutions are also updated to E1 = M1(S 1) and
E2 = M2(S 2) via the action of corresponding mappings M1 and
M2 on the breakpoints, resulting in updated breakpoints B̂k =

M1(Bk) and B̂′k = M2(B′k) (k ≤ n). We also obtain correspond-
ing words in the updated evolutions Vk and V ′k (0 ≤ k ≤ n + 1).
Now suppose we have B̂ j = M1(B j) , M2(B j) = B̂′j for some
minimal value j (so that B̂k = B̂′k for k < j). Then the first
j + 1 words in the updated evolution are the same (Vk = V ′k for
0 ≤ k ≤ j). Furthermore, the distinct action of the mappings on
B j means that the next word in the sequences must be distinct,
and the updated evolutions of Eq. 3 can then be represented as

V0 B̂0
−→

V1 B̂1
−→

V2 . . .V j−1
B̂ j−1
−→

V j

B̂ j
↗

B̂′j
↘

V j+1
B̂ j+1
−→

. . . [E1]

V ′j+1
B̂′j+1
−→

. . . [E2]
(4)

Then provided such a value j exists, the evolutions bifurcate
at rearrangement R j and Property C is satisfied. Now, there
are three things that can happen when reference mappings are
applied as above, depending on how the updated bifurcation
event (R j action in Eq. 4) compares to the original (Ri action in
Eq. 3). These cases are treated in turn, corresponding to j < i,
j = i and j > i, respectively.

Case I ( j < i): The two mappings implicate distinct break-
points at rearrangement R j, meaning the updated evolutions di-
verge at an earlier rearrangement than the original (which dif-
fered after the action of Ri). That is, we have M1(Bk) = M2(Bk)

for k < j but M1(B j) , M2(B j). Subsequently, we find that
although W j = W ′j in the original evolution, the updated evo-
lutions now differ at rearrangement R j, with V j , V ′j, and the
bifurcation point occurs earlier. However, the updated evolu-
tions E1 and E2 are thus still distinct, as required for Property
C.

For example, consider the updated evolutions E1 = M1(S 1)
and E6 = M3(S 2) from Fig. 5. Now, S 1 and S 2 diverge at the
last rearrangement (i = 2). When comparing the breakpoints
acted upon by M1 and M3 (see the first and last row in the sec-
ond table of 5(D)) we see that M1 and M3 implicate distinct ref-
erence positions for breakpoints in all three rearrangements ( j =

0), so applying M1 to S 1 and M3 to S 2 will see a difference oc-
cur at the second word 1234.23456 = V1 , V ′1 = 12345.23456
(after the actions of the first rearrangement R0 = T D) in the up-
dated evolutions. The differences between the two original evo-
lutions (occurring at the final (DEL) rearrangement when com-
paring S 1 and S 2) are superseded because the mapping now in-
duces an earlier dissimilarity after the first (T D) rearrangement,
and the two updated evolutions remain distinct, as required.

Case II ( j = i): Differences between mapped breakpoint po-
sitions occur at the same point as the original evolutions. More
specifically, this case assumes M1 and M2 have the same action
on breakpoint sets B1 = B′1, B2 = B′2, . . . , Bi−1 = B′i−1, that is,
B̂k = M1(Bk) = M2(B′k) = B̂′k, for k ≤ i − 1, (otherwise we have
Case I). Then the updated evolutions both have the same word
Vi = V ′i . Now we know that Bi , B′i . If we further suppose
that B̂i = M1(Bi) , M2(B′i) = B̂′i then the updated words Vi+1
and V ′i+1 will be distinct and so the updated evolutions will bi-
furcate at the same rearrangement Ri as the original evolution.
The updated evolutions are again distinct, as required.

For example, one possibility is that the same mapping is ap-
plied to both evolutions. Now, S 1 and S 2 diverge at the last step
(Fig. 5(B,C)). This is because the last event is a deletion, with
S 1 having action DEL([BC]2, [AB]2) (deleting B from the word
ABCCBA), whereas S 2 has action DEL([AB]1, [BC]2) (deleting
BCC from ABCCBA), resulting in distinct final words and so
evolutions (with bifurcation at the second rearrangement i = 2).
Now if the single mapping M1 is applied to both S 1 and S 2, the
implicated breakpoints are distinct. Specifically, ([BC]2, [AB]2) =

B2 , B′2 = ([AB]1, [BC]2)), which remains true when a sin-
gle mapping is applied to both breakpoints (B1 , B2 =⇒

M1(B2) , M1(B′2); see Section 4.1.2). The updated evolutions
E1 = M1(S 1) and E4 = M1(S 2) thus remaining distinct, as re-
quired, and have the same bifurcation point ( j = 2).

Case III ( j > i): We can also have the situation that differ-
ences between evolutions S 1 and S 2 and differences between
mappings M1 and M2 conspire to remove differences in the up-
dated evolutions, resulting in a later bifurcation point. More
specifically, we can have distinct breakpoints Bi , B′i (with
Bk = B′k for k < i) that are equal after they are updated; M1(Bi) =

M2(B′i) (with M1(Bk) = M2(B′k) for k < i). The updated evolu-
tion no longer bifurcates at rearrangement Ri.

An example of this is given in Fig. 6(B), where we have
two original tandem-duplication evolutions S 1 and S 2 corre-
sponding to rearrangement sequence T D1 → T D2 that differ
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Figure 6. Two original evolutions for tandem-duplication sequence T D1 → T D2 that are less distinct after mapping to updated sequence T D0 → T D1 → T D2. (A)
Two mappings M1 and M2 from original reference ABCDE to updated reference 1234567. (B) Original evolutions S 1 and S 2 differ after the first rearrangement.
(C) Updated evolutions E1 = M1(S 1) and E2 = M2(S 2) only differ at last word. (D-E) Breakpoint usage for rearrangements under original and updated evolutions.

after T D1. The rearrangement sequence is updated to T D0 →

T D1 → T D2 with mappings M1 and M2 giving updated evolu-
tions E1 = M1(S 1) and E2 = M2(S 2), respectively. The evolu-
tions E1 and E2 now only differ following T D2 (Fig. 6(C)). In
particular, the T D1 acts on distinct breakpoints between origi-
nal evolutions S 1 and S 2, with actions T D1([AB]1, [CD]1) and
T D1([AB]1, [DE]1) (see Fig. 6D), resulting in distinct words
W2 = ABC.BCDE and W ′2 = ABCD.BCDE. However, the up-
dated breakpoints B̂1 = M1([AB]1, [CD]1) = ([12]1, [34]2) =

M2([AB]1, [DE]1) = B̂′1 are equal, which results in the same
updated word V2 = V ′2 = 123456.3.23456.34567. Thus the
mappings M1 and M2 in the updated evolution have vanquished
one of the evolutionary differences. However, not all differ-
ences are removed and the updated evolutions in Fig. 6(C) are
still distinct.

For Property C to apply, we need to ensure that distinct orig-
inal evolutions and mappings cannot conspire to remove all dif-

ferences in the updated evolutions, otherwise we have a coun-
terexample to Property C. There are two situations to consider.

Consider first the possibility that Bi and B′i relate to dif-
ferent copies of the same breakpoint (e.g. Bi = [AB]p and
B′i = [AB]q for some p , q, say p < q without loss of gen-
erality). Now the segments in a word between somatic connec-
tions are consecutive (Section 4.1.3), increasing by one value
per segment (or decreasing if the region is inverted). Thus the
breakpoints [AB]p and [AB]q (with the same breakpoint value
[AB]) in the word Wi must be separated by at least one somatic
connection. That is we have a word of the form Wi = W ′i =

. . . [AB]p . . . [MN]r . . . [AB]q . . . . Note that A and B are con-
secutive segments from the original reference that will be acted
on by rearrangement Ri, whereas M and N are adjacent seg-
ments in a somatic connection that has already been formed by
rearrangement Rk (k < i), and are not consecutive in the refer-
ence. Now, under mappings M1 and M2, by the assumptions of
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Case III, [AB]p and [AB]q are mapped to the same value, say
[i j]k = M1([AB]p) = M2([AB]q). Also, [MN]r is the product
of an earlier rearrangement, and so by assumption is mapped
to the same value, say [rs]t = M1([i j]k) = M2([i j]k), where in
general s , r + 1. Then we find that word Wi is mapped by M1
to a word of the form Vi = . . . [i j]k . . . [rs]t . . . , whereas using
mapping M2 produces word V ′i = . . . [rs]t . . . [i j]k . . . . Then the
number of copies of some breakpoint [rs] that are positioned
to the left of [i j]k must be different in the two words, and so
Vi , V ′i . This contradicts the assumption that B̂i = B̂′i , and the
situation that Bi and B′i relate to different copies of the same
breakpoint cannot arise for Case III.

The second possibility is that Bi and B′i relate to copies of
distinct breakpoints. For example, B1 = ([AB]1, [CD]1) , B′1 =

([AB]1, [DE]1) (so i = 1) in Fig. 6). Now, by assumption the
distinct sets Bi and B′i have the same image under mapping. For
this example we have M1([AB]1, [CD]1) = M2([AB]1, [DE]1) =

([12]1, [34]2) (see Fig. 6(D,E)). The reason that the distinct
breakpoints [CD]1 and [DE]1 have the same image is because
([AB], [CD]) and ([AB], [DE]) have the same position on the
mapping structures for M1 and M2 in Fig. 6(A) (note the blue
stars are in the same place in both diagrams). However, po-
sitioning breakpoints [CD] in the first mapping structure and
[DE] in the second, at the same location on both structures (the
lower blue star), along with the fact that [AB], [BC], . . . , [DE]
run consecutively along the structures, means that there must
be a difference somewhere else. For this example, the differ-
ences manifest in the positions corresponding to rearrangement
T D3 (the green hexagons in Fig. 6(A) are different in the two
figures). Consequently, the evolutions differ after T D3 (Fig.
6(C)), and we cannot remove all differences between the evo-
lutions and an evolutionary difference will manifest at a later
stage, and updated evolutions E1 and E2 will be distinct, as re-
quired for Property C.

4.4. Induction

Thus we find that we have the observations required for
Theorem 1. For a rearrangement sequence R1 → R2 → · · · →

Rn we start with the last rearrangement to construct the single
rearrangement sequence Rn and count the number of evolutions
with ΦRn (0), the value 0 being used because no breakpoints
are formed after the action of rearrangement Rn has been com-
pleted. Each of the evolutions formed by Rn now contains β(Rn)
breakpoints. Now for each of these evolutions, we introduce a
new first rearrangement Rn−1 to produce updated rearrangement
sequence Rn−1 → Rn, resulting in a set of ΦRn−1 (β(Rn)) distinct
evolutions (using Property B from Section 4.2). By Property C
from Section 4.3 we also know that each such set of evolutions
are mutually distinct across the original ΦRn (0) evolutions, giv-
ing ΦRn−1 (β(Rn))×ΦRn (0) distinct evolutions in total, all of which
now contain β(Rn−1) + β(Rn) breakpoints. We proceed induc-
tively (working backwards chronologically, introducing earlier
and earlier rearrangements), resulting in the product formula
given in Theorem 1.

5. Conclusions

The sequencing of cancer genomes offers a freeze-frame
time snapshot of a genome (at the moment of diagnosis) and
understanding the evolution (of rearrangements) that has re-
sulted in the observed genome involves reverse engineering the
rearrangement path from the final configuration. This is a path
through spaces of rearrangements of the form that we have de-
scribed (although other classes of rearrangement could be in-
volved). The upshot of this is that the size of the space is
too large to fully explore computationally for more than six
or seven rearrangement events, even restricting the possibili-
ties to just the classes of rearrangements we have examined.
Other sources of information may be useful; longer reads such
as those offered by nanopore technologies will help restrict this
space, however, even if the entire rearranged chromosome is
known, exploring the evolution space to explain the observed
chromosome will likely still be a formidable task.

One unexplored issue relates to evolution similarity. Specif-
ically, given a final genomic configuration (and initial refer-
ence), finding out how many evolutions start and finish at these
loci is desirable. For complicated rearrangement sequences clus-
tering in one genomic region it would seem likely that there will
usually be only one evolution that can terminate at a particular
genomic configuration. However, there are many cases where
this is not so. For example, two overlapping (but not nested)
T Ds give the same final product irrespective of which T D is
done first. Two non-overlapping clusters of rearrangements also
have many evolutions with identical final structures. This can
also occur for BFB evolutions [16]. Furthermore, pairs of BFB
evolutions with distinct final structures, but equal numbers of
copies of genomic segments can be found. A more comprehen-
sive understanding of these issues for infinite site rearrangement
models, similar in vein to [37], would certainly be of interest.

One possible way to describe the evolution of observed re-
arranged genomes is to suppose the original contiguous config-
uration is completely dismantled into pieces (break the genome
at all breakpoints initially in one go), perform any required du-
plication, and then reassembled into the final configuration. Al-
though this can happen with chromothripsis, albeit in a more
controlled localized manner, this is an unlikely explanation in
general, and furthermore offers little insight into the rearrange-
ment processes that have taken place. Indeed many rearrange-
ment processes are understood as local events occurring during
distinct cell cycles. Breakage-fusion-bridge-cycles are known
to happen during consecutive cell cycles, for example [2, 16].
Gaining a better understanding of the biological mechanisms
that underlie the different rearrangements is obviously a de-
sirable aim, and understanding how corresponding spaces are
structured may help.

Finally, the work described pertains to the growth of a single
clone. Whilst many cancers are monoclonal (or at least domi-
nated by a single clone), many are polyclonal, with a mixture of
competing evolution paths. With more mature development of
single cell sequencing, phylogenetic techniques may be possi-
ble and may help reduce the complexity of inferring rearrange-
ment evolution.
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