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Abstract Invited Reviewers
Next-Generation Sequencing (NGS) technologies are expected to play a

crucial role in the surveillance of infectious diseases, with their

unprecedented capabilities for the characterisation of genetic information

underlying the virulence and antimicrobial resistance (AMR) properties of

microorganisms. In the implementation of any novel technology for
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regulatory purposes, important considerations such as harmonisation,
validation and quality assurance need to be addressed. NGS technologies
pose unique challenges in these regards, in part due to their reliance on

bioinformatics for the processing and proper interpretation of the data verél.on g
produced. Well-designed benchmark resources are thus needed to (revision)
evaluate, validate and ensure continued quality control over the 07 Dec 2018
bioinformatics component of the process. This concept was explored as 1 2
part of a workshop on "Next-generation sequencing technologies and version 1
antimicrobial resistance" held October 4-5 2017. Challenges involved in 13 Apr 2018
the development of such a benchmark resource, with a specific focus on
identifying the molecular determinants of AMR, were identified. For each of
the challenges, sets of unsolved questions that will need to be tackled for
them to be properly addressed were compiled. These take into
consideration the requirement for monitoring of AMR bacteria in humans, ' v
animals, food and the environment, which is aligned with the principles of a report report
“One Health” approach.
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(iIZ757:3 Amendments from Version 1

This version contains a few text additions following the
suggestions and comments from Dr Kwong, Dr Lavezzo and
Dr Palu in their referee reports.

These additions include:
1. A short overview of the experts’ scientific backgrounds.
2. A short discussion of de-identification processes for
human DNA sequences in section 2.1.

3. Areflection of the impacts of the purpose of the
experiment (diagnostics, risk assessment...) on the
benchmark datasets in section 2.2.

4. A clarification that the “truth” of a sample will depend on
the objective of the analysis (i.e. detecting the genetic
determinants of AMR, predicting AMR or predicting
antimicrobial treatment outcomes).

5. A paragraph in the conclusions discussing the
applicability of the discussions to microorganisms other
than bacteria.

See referee reports

1. Introduction

Next-Generation Sequencing (NGS) technologies are increas-
ingly regarded as an essential tool in modern regulatory
frameworks. Monitoring schemes that rely on the characteri-
sation of genetic information will gain considerably by uti-
lising these technologies. Their importance for infectious
diseases surveillance was highlighted by “The Review on
Antimicrobial Resistance” in 2014, which stated that “advances in
genetics, genomics and computer science will likely change the
way that infections and new types of resistance are diagnosed,
detected and reported worldwide, so that we can fight back

2]

faster when bacteria evolve to resist drugs™'.
This interest can be observed in the rapid expansion in recent

years of whole-genome sequencing capacities in national public
health infectious diseases surveillance laboratories, as recently

Sample
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reported in a European survey by the European Centre for
Disease Prevention and Control (ECDC)’. Antimicrobial resist-
ance (AMR), i.e. the ability of a microorganism to resist the
action of an antimicrobial agent, is of particular importance in
this surveillance program. Its observed rise places heavy burdens
on healthcare systems, leading to prolonged treatment times,
higher mortality and high economic impacts (see 3). In March
2017, the Joint Research Centre organised a meeting in order
to better understand the state-of-the-art of the application
of NGS technologies in the fight against AMR". Although it
is clear that the uses of NGS vary according to the specific need
(e.g. to guide clinical intervention or to evaluate the environ-
mental and human health risks of AMR genetic determinants),
these discussions highlighted overlaps in the needs and the
challenges of implementing NGS for the monitoring of AMR
in humans, animals, food and the environment. Some of these
were also highlighted in previous workshops organized by
the European Food Safety Authority (EFSA) and the ECDC>.

A full regulatory implementation of NGS technologies to moni-
tor AMR will need to address many standardisation challenges
throughout the process, which broadly includes sample prepa-
ration and DNA extraction, library preparation for sequencing,
the use of an NGS instrument for generating the sequences,
the bioinformatics analysis, and interpretation and report-
ing of results (see Figure 1). Focusing on the bioinformatics
step, an important shared challenge is the need to correctly
and reliably identify the known genomic determinants of
AMR from a set of NGS reads produced from sequencing a
sample. The ECDC study reported the requirement for sufficient
bioinformatics expertise as one of the important hurdles to a
more general implementation of NGS for routine testing’. This
observation has also been made in recent case studies and
reviews’™'".

By contrast, within the scientific research community the
recent literature reflects widespread enthusiasm for the
application of NGS approaches to the determination of AMR

»Interpretation ]»Management

Various platforms:

Clinical sample, Isolate culture,

Environmental sample, ~ DNA extraction, lllumina,
Food sample Library preparation lon Torrent,
Pe PR ’ PacBio,
Nanopore,
Figure 1. Overview of the different steps involved

the detection and monitoring of antimicrobial

NGS reads Diagnosis, Storage and archiving,
Clinical intervention, Results sharing,
AMR genetic Risk assessment, Monitoring schemes,

determinants

in the use of Next-Generation Sequencing technologies for
resistance. The benchmark strategy discussed

in the current article

focuses on the bioinformatics steps, the pipeline converting the output of the sequencing experiment into a list of identified

antimicrobial resistance genetic determinants (dashed rectangle).
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characteristics in bacteria. For the bioinformatics steps, many
useful strategies have been published. These are, however, very
varied in the approaches and resources they use. Some start with
sequencing reads produced by the Illumina'>", Ton Torrent",
PacBio'” or Nanopore'® platforms, just to give a few exam-
ples. To predict the resistance profile, interesting results were
reported with very different strategies, including k-mer analysis
of the reads'’, sequence comparisons of individual reads to data-
bases'”!°, first assembling the reads into contigs using various soft-
ware packages”'® and building and comparing de Bruijn graphs
of the sequenced sample reads and the reference database'’. The
reference set of genetic determinants of AMR used by the
bioinformatics pipelines also varied, including databases such
as ARGANNOT”, CARD', ResFinder’, Resqu'’, ARDB”,
custom-generated from Genbank sequences'®”” or combinations
of these'". Interestingly, the choice of the database was shown to
greatly influence the interpretation of risk associated with AMR
in public health**. Even individual steps, such as mapping
sequenced reads to a reference, can be done with different tools,
each carrying their own compromises (see 25-28).

This complex - and dynamic - reality poses a challenge for the
implementation of bioinformatics pipelines in regulatory settings,
where the demonstration of reliability and reproducibility
is crucial (see also 11,29). Harmonisation approaches must
face the variability described above in terms of technologies,
strategies, and software used, each with their demonstrated
success, limitations and caveats. A further factor influencing the
complexity of applying a given bioinformatics pipeline is that
new versions of the individual tools that perform tasks such as
quality-checking, trimming or assembling the reads, are con-
stantly being released, which may have unanticipated impacts
on pipeline performance. Ready-made and/or commercially
available solutions that aim to facilitate the implementation of
a NGS-based pipeline by lowering the technical skill required
(see, for example, 30,31) face the attendant “black-box” issues
when proposed for regulatory purposes.

In response to this complex state-of-the-art and the fast-moving
environment in which these technologies are developing, efforts
for the standardisation and development of best practices have
avoided the prescription of restrictive guidelines, methods or
technologies in favour of a more flexible approach emphasising
quality metrics and fitness-for-purpose’™*. For bioinformatics
pipelines, the development of benchmark resources would
play an important role in validating specific bioinformatics
strategies and workflows, testing any update to the software
underlying an established pipeline or allowing proficiency
testing of individual laboratories™. These resources would
need to include a set of inputs for the bioinformatics pipelines
(“in silico reference materials”) linked to a “correct” expected
output, as well as consideration for the minimum performance
requirements to be met by the pipelines. Different initiatives
are ongoing to develop these benchmarking resources includ-
ing, for example, the Critical Assessment of Metagenome
Interpretation (CAMI) project for the evaluation methods for
metagenome analysis™.
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On the 5" of October 2017, the Joint Research Centre invited
experts in the field of AMR monitoring in order to discuss
the challenges involved in the development of such a bench-
mark strategy, for the specific purpose of evaluating the
bioinformatics pipelines that transform a set of NGS reads to a
characterised AMR profile. The experts were invited based on their
recent publications on the use of NGS to detect the genetic deter-
minants of AMR in diverse fields: human and veterinary health,
the food chain and the environment. The conclusions of these
discussions are summarised in Table 1, and discussed in this
document.

2.The challenges

Although some of the challenges considered reflect the real-
ity of NGS technologies in general, efforts were made to high-
light the issues that are specific to the identification of AMR
determinants. Broadly, the challenges can be grouped in different,
often overlapping categories.

2.1. Nature of the benchmark datasets

How should a benchmark strategy handle the current and
expanding universe of NGS platforms? What should be the
quality profile (in terms of read length, error rate, etc.) of “in
silico reference materials”? Should different sets of reference
materials be produced for each platform? In that case, how to
ensure no bias is introduced in the process?

As described in the Introduction, different NGS technology
platforms exist for the generation of sequence data serving as
inputs for the bioinformatics processes used in the analysis
of AMR determinants. Moreover, the technology continues to
evolve rapidly with the advent of what is now termed “third
generation sequencing” methods that can read the nucleotide
sequences at the level of single molecules®’. Focusing on validat-
ing the technology or the instrument itself is therefore not a useful
approach to ensure the reliability of the bioinformatics steps,
since it can reasonably be expected that sequencing technolo-
gies and protocols will undergo many changes over the coming
years. Section 862.2265 of the FDA’s Code of Federal Regula-
tions Title 21° regulates the general use of NGS instruments
for clinical use; even when, in this context, devices are cleared
as Class IT exempt', laboratories using these instruments must
still establish a bioinformatics pipeline for their intended use™.
Thus, an effective benchmark strategy will be independent of
existing and upcoming NGS technologies, while avoiding any
bias that would favour one technology to the detriment of others.

The proprietary nature of the different raw data outputs pro-
duced by the various technologies may not be a primary con-
sideration for present purposes since standard file formats exist
that can store raw reads and the associated metadata (ex. QC
metrics) produced by the different sequencers. These include
FASTQ" and BAM", and they have been successfully used

'See, for example, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRL/
rl.cfm?1id=427645
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Table 1. Summary of the challenges identified in the generation of benchmark datasets for the purpose of evaluating
the bioinformatics pipelines that process a set of NGS reads into a characterised AMR profile. See text for details.

Section Challenges

2.1 Nature of the benchmark datasets
- NGS platforms

Nature of the benchmark datasets
- datasets origin

Questions to be addressed
How should a benchmark strategy handle the current and expanding
universe of NGS platforms?

What should be the quality profile (in terms of read length, error rate, etc.)
of in silico reference materials?

Should different sets of reference materials be produced for each platform?
In that case, how to ensure no bias is introduced in the process?

Should in silico reference material be composed of the output of real
experiments, or simulated read sets?

If a combination is used, what is the optimal ratio?

How is it possible to ensure that the simulated output has been simulated
“correctly”?

For real experiments datasets, how to avoid the presence of sensitive
information?

Nature of the benchmark datasets
- quality metrics

Regarding the quality metrics in the benchmark datasets (e.g. error rate,
read quality), should these values be fixed for all datasets, or fall within

specific ranges?
How wide can/should these ranges be?

2.2 Samples composition - resistance
mechanisms

How should the benchmark manage the different mechanisms by which
bacteria acquire resistance?

What is the set of resistance genes/mechanisms that need to be included
in the benchmark?

How should this set be agreed upon?

Samples composition - bacterial
species

Should different sample types (isolated clones, environmental samples, ...)
be included in the same benchmark?

Is a correct representation of different bacterial species (host genomes)

important?

2.3 Evaluation of pipeline performance
- dataset characterisation

How can the “true” value of the samples, against which the pipelines will be
evaluated, be guaranteed?

What is needed to demonstrate that the original sample has been correctly
characterised, in case real experiments are used?

Evaluation of pipeline performance
- performance thresholds

How should the target performance thresholds (e.g. specificity, sensitivity,
accuracy, ...) for the benchmark suite be set?

What is the impact of these targets on the required size of the sample set?

2.4 Generation, distribution and update of
the benchmark - future proofing

How can the benchmark stay relevant when new resistance mechanisms
are regularly characterised?

How is the continued quality of the benchmark dataset ensured?

Generation, distribution and update of
the benchmark - ownership

in laboratory proficiency testing**>*. More recent platforms

produce outputs using the HDF5 standard or variants of it;
conversion into FASTQ would require an additional compu-
tational step, using one of the available tools. However, all
platforms (as well as sequencer models and versions within each
platform) have differences in the profile and amount of raw
reads produced, with variations in their number, length, error
rates, error types, etc.”*. Attempting to create a single set of
in silico reference materials would either introduce a bias towards
a specific platform and/or create a dataset which is not rep-
resentative. Creating individual sets of reads would increase
the work (with no end in sight as platforms appear or evolve)
and require careful consideration to avoid, once again, bias.

All this highlights a clear challenge, which is how to address
both the evolution of the platforms, differences amongst

Who should generate the benchmark resource?
How can it be efficiently shared?

instruments and run-to-run variabilities, in view of the need for
benchmark datasets serving as the basis for the validation and
harmonisation of NGS approaches in clinical and/or regulatory
frameworks.

Should in silico reference material be composed of the
output of real experiments, or simulated read sets? If a com-
bination is used, what is the optimal ratio? How is it possi-
ble to ensure that the simulated output has been simulated
“correctly”? For real experiment datasets, how to avoid the
presence of sensitive information?

The core component of a benchmark resource is, by defini-
tion, a set of inputs representative of what the benchmarked
bioinformatics pipeline is expected to receive in normal, real-
life use. A logical source for this dataset, then, is the actual
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output of laboratory sequencing experiments'’*'. However,
using data generated by real experiments assumes a high level of
quality that will need to somehow be assessed and demon-
strated. These experiments will need to be properly charac-
terised in terms of the “true” conclusions the benchmarked
pipeline is expected to reach. In addition, although there can be
actions taken to ensure that most of the host DNA is filtered
from the dataset, real metagenomics experiments from a human
source could lead to privacy problems, while samples from food
should ensure the absence of information on patented genetically
modified food potentially present in the sample®”. Careful
filtering against a standard “exclusion database”, or other adequate
strategies, may be necessary to solve this issue. For example,
de-identification processes for human DNA sequences have been
proposed for clinical datasets. However, the impact of applying
tools that modify in any way the reads in a metagenomics data-
set should be well understood, as there is a risk that the filtered
dataset is no longer representative of a real experiment. Experi-
mental data could also be generated using pure cultures of bac-
teria present as well-characterised strains in biorepositories (see,
for example, 46)

These concerns could be addressed by in silico-generated data-
sets, where the exact quantity of reads and genes from each
source in the composite dataset can be better controlled. Many
tools have been developed for this purpose, simulating reads from
the different available platforms (see, for example 47-51). Once
again, it will be important to properly understand these tools,
agree on their applicability for the purpose of generat-
ing the desired benchmark datasets, and correctly set their
parameters so that the resulting simulations are a correct represen-
tation of the “real” samples.

Regarding the quality metrics in the benchmark datasets (e.g.
error rate, read quality), should these values be fixed for all
datasets, or fall within specific ranges? How wide can/should
these ranges be?

Available published studies of benchmarking NGS bioinfor-
matics pipelines tend to focus on the performance of specific
steps at various levels of input quality and/or complexity (SNP
rate, GC content, error rate, quality of the reference sequences,
contamination, etc.)’>>>, This is different from a fit-for-
purpose evaluation of a complete pipeline under conditions
where the quality of the input is guaranteed through the appli-
cation of best practices and quality control of the laboratory
component of the procedure. An important consideration is
the extent to which the benchmark should challenge the pipe-
line robustness by including varying levels of, for example,
error rates or reads quality. It is likely that a pipeline that works
best under optimal conditions would be sensitive to variation
of the sequencing run quality. The extent of desired variation
should be agreed upon and captured in the in silico reference
material included in the benchmark.

2.2. Samples composition
How should the benchmark manage the different mechanisms by
which bacteria acquire resistance? What is the set of resistance
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genes/mechanisms that need to be included in the benchmark?
How should this set be agreed upon?

Several mechanisms for the development of resistance to
antimicrobials have been characterised™, including: 1) production
of an enzyme that digests/metabolizes/modifies the antimi-
crobial; 2) production of efflux pumps that remove the drug
from within the cell; 3) modification, through mutations or
biochemical reactions, of the intracellular target of the antimi-
crobial so that their interaction is lost; 4) activation/upregulation/
acquisition of alternate pathways that allow survival by
bypassing the pathway disrupted by the antimicrobial; and
5) downregulation of the expression of the pores through which
the drug enters the bacteria.

Mechanisms 1), 2) and 4), often involve the acquisition of novel
genes by the bacteria from its environment (horizontal trans-
fer) and may be detected, for example, by mapping reads to
reference sequence databases that compile such genes. The
genetic determinants of mechanisms 3) and 5), however, vary
on a case-by-case basis, and may require the detection of Single
Nucleotide Polymorphisms (SNPs), insertions/deletions (indels)
or variations of copy numbers. These represent different types
of bioinformatics determinations which a comprehensive pipe-
line must be able to resolve, and the benchmark needs to
reflect this reality by ensuring that the various types of AMR
determinants are correctly represented in the dataset.

Many recent evaluations of the use of NGS for the determina-
tion of AMR have emphasised the difficulty of establishing a
curated knowledge base of drug resistance genetic determinants
to be used as a reference database in NGS data analysis™'*.
The same problem is mirrored in the design of a benchmark
that would ensure all determinants are correctly detected.
It is also of foremost relevance to consider that certain genetic
determinants such as efflux pumps (mechanism 2 above) are
notorious for giving false positive results, as they perform a vari-
ety of export functions not necessarily related to antibiotic resist-
ance (see, for example, 50). Eliminating these from the search
parameters of bioinformatics pipelines was shown to improve
positive predictive value’’. The results of testing a pipeline
using a benchmark dataset involving all mechanisms must be
interpreted with the aim of the pipeline in mind, and this should
be taken into account when/if criteria are set (see also section 2.3).

Alternatively, choosing to focus a benchmark dataset on spe-
cific resistance mechanisms could simplify the task, but these
choices would need to be agreed upon, justified and the limita-
tions clearly stated. This reflection is to be linked to ongoing
extensive discussions on the generation of appropriate data-
bases of resistance genes and correct interpretation of resistome
profiles (see 24,58). An a priori statement can be made that the
benchmark dataset should focus on mechanisms of acquired
bacterial resistance. Similarly, for lack of being exhaustive in
terms of the AMR genetic determinants it includes, a set of
in silico reference materials can be composed of the resist-
ance mechanisms most relevant for public and environmental
safety, for example, focusing on certain specific plasmids and AMR
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genes which have been identified as being important in clinical
infections.

The decisions through which specific resistance mecha-
nisms are included in/excluded from the benchmark should
be clear, transparent, agreed upon and justified in order to
ensure that the benchmark is relevant to the types of risks
considered. These will vary depending on the purpose of the experi-
ment (e.g. environmental risk, clinical decision making), and will
be important to evaluate whether the same resistance factors can
be incorporated into a single benchmark dataset or if different
resources will be needed. Transparency is important since these
decisions will also guide the inclusion/exclusion of novel resistance
mechanisms according to the changing epidemiology over time
(see also section 2.4).

Should datasets representing different sample types (e.g.
isolated clones, environmental samples) be included in the same
benchmark? Is a correct representation of different bacterial
species (host genomes) important?

The preceding section focused on the nature of the genetic
determinants to be included in the in silico datasets. These
sequences (i.e. AMR genes), however, represent a very small
fraction of the overall totality of the sequence data generated
from biological materials (e.g. bacterial genomes) in a given
experiment. The nature of these majority “background” reads
(bacterial host genomes, other contaminants in the sample etc.)
in the components of a proper benchmark dataset thus needs to
be carefully considered, as they can influence the accuracy of
the pipelines.

The detection of drug resistance in clinical settings is often
performed by sequencing pure cultured isolates'®*“". Pathogens
of particular concern in the context of nosocomial infections
will, accordingly, need to be properly represented in the
in silico datasets. Lists of AMR pathogens presenting significant
risks are maintained (see 61) and include the ESKAPE patho-
gens (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa
and Enterobacter sp.) and Escherichia coli, among others.

Culture-dependent methods cannot be systematically applied to
environmental samples for various reasons, including the fact
that most environment bacteria are not recovered under standard
culture conditions®. Culture-independent approaches (metage-
nomics) can then be used to analyse the human and environ-
mental resistomes within complex bacterial populations'* %,
These approaches have also been proposed for clinical pur-
poses, greatly reducing the time necessary for characterisation®'’.
For these samples, agreeing on a realistic genetic diversity
within a benchmark® - a set of communities which can be
considered “representative” - is a significant challenge as there is
tremendous variability in the species composing the microbiomes
of different communities'**-%".

2.3. Evaluation of pipeline performance
How can the “true” value of the samples, against which the
pipelines will be evaluated, be guaranteed? What is needed to
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demonstrate that the original sample has been correctly charac-
terised, in case real experiments are used?

One of the objectives of validating a bioinformatics pipeline
is to demonstrate that its accuracy is above an acceptable value,
with low instances of false negative and false positive results®.
Antimicrobial susceptibility testing using traditional meth-
ods is, in itself, a complex procedure subject to differences in
methodologies and interpretations®; hence they have required
(and will require) validation and standardisation’”-"”. There
have been reports where discrepancies between NGS-based
predictions and susceptibility testing were caused by isolates
with inhibition zones close to the susceptibility breakpoint.
It was suggested that the results could have been concord-
ant if the susceptibility testing had been performed under
different culture conditions, for example, with a different
culture medium’. The extent to which these “borderline” cases
should be included in the benchmark or not, and the final “cor-
rect” prediction that will be attached to them will need to be
carefully considered. It should also be discussed what the most
relevant endpoint in this context is, between, for example,
the Minimum Inhibitory Concentration (MIC) prediction and
resistance levels above wildtype/type strain.

The realities of veterinary medicine, with specific modalities
of antimicrobial administration, mean that susceptibility MIC
breakpoints may differ between humans and animals’™. Thus,
the definition of science-based clinical MIC-breakpoints (CBPs)
is relevant to interpret results and to harmonise the results of
antimicrobial susceptibility testing of veterinary pathogens.
Currently, this issue is being discussed in different working
groups led by VETCAST. This may cause difficulties in assign-
ing a universal “correct” label to some datasets that would
apply to both humans and animals.

Reference samples of metagenomics experiments are even more
complex in this regard, with each sample containing numerous
instances of genetic AMR determinants'>'*”>. Metagenom-
ics analyses can detect genes (genotype), which are not neces-
sarily translated into resistance (phenotype); expression of the
protein(s), which is not directly revealed by DNA sequencing,
is important in this context. Assigning accurate profiles to
components of a reference dataset will be challenging, as there is
no existing pipeline recognised as the ‘gold standard’ to do so®.
Spiked samples or simulated reads may be a necessary initial step
in this context.

”

Ultimately, the “true” values to be assigned to the samples
in the dataset, and the challenges this will pose, will depend on
what the validated pipelines will be required to achieve. For exam-
ple, the benchmark has to be adaptable to whether the aim is
detecting the genetic determinants of AMR, predicting AMR
or (for human and veterinary health) predicting antimicrobial
susceptibility and thus treatment outcomes.

How should the target performance thresholds (e.g. specificity,
sensitivity, accuracy) for the benchmark suite be set? What is the
impact of these targets on the required size of the sample set?
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Validation of a process involves the determination of various per-
formance parameters, such as specificity, sensitivity, accuracy,
etc.””. When used specifically for the detection of antimicro-
bial resistance the benchmark resources need to include strict
performance thresholds, and whether these should be set a
priori along with the levels of these thresholds are subjects for
consideration. One also needs to clarify how the process can
cope with cases where more than one type of resistance needs
to be identified in a single sample, in particular for metagenomics
studies.

These performance parameters will be important, not only as
information to be included in the benchmark, but also because
they generally have a significant influence on the size of the
in silico dataset needed (see, for example, 76,77). Understanding
the target performance characteristics of a valid pipeline will
be necessary to guide decisions as to how many samples will
be needed in the in silico dataset, with respect to the pres-
ence or absence of AMR genetic determinants. Finally, not all
parameters are equally important for all samples - for exam-
ple, considerations of sensitivity are generally not relevant in
the case of cultured isolates as the bacteria are present in high
numbers, but may be crucial for metagenomics experiments
where the proportion of the target(s) relative to the background is
variable and unknown. Targeted metagenomics seem promising
approaches for the accurate detection of minority genes in
complex samples', and challenging the sensitivity of bioinfor-
matics pipelines with a benchmark dataset would be of added
value in this context.

2.4. Generation, distribution and update of the benchmark
How can the benchmark stay relevant when new resistance
mechanisms are regularly characterised? How is the continued
quality of the benchmark dataset ensured?

An important fact concerning antimicrobial resistance - and
one of the reasons it represents a global health emergency
- is that novel mechanisms of resistance are constantly being
reported and new genes and/or vectors of transmission regularly
emerge’®’®. Assuming that a benchmark resource can be pro-
duced covering the existing complexity of AMR determinants
(section 2.2), adapting this resource to new information is a
challenge that will need to be addressed in order to ensure that its
utility does not diminish with time. Criteria for inclusion of new
in silico datasets, and the mechanisms by which these decisions
should be taken, need to be discussed and agreed upon when
developing the resource.

Newly identified genetic determinants can also impact the infor-
mation linked to existing datasets in the benchmark resources.
These datasets will need to be re-evaluated in view of new
information to ensure that their AMR determinants are prop-
erly characterised. As an example, this issue was evidenced in
2015 with the identification of mcr-1 as a plasmid-borne colistin
resistance gene’’; re-analysis of existing NGS data from E.coli
isolates from food, feed and hospitalised patients for the previous
years in Denmark revealed previously characterised samples
containing this gene**!,
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Who should generate the benchmark resource? How can it be
efficiently shared?

Current guidelines and recommendations place the responsi-
bility of validating the bioinformatics pipelines (and ensuring
reliability after update of any of its components) with the opera-
tor/quality manager of the test facility’>*. In fact, thus far,
many different sets of benchmark materials and resources have
been produced for local use or within collaborative endeav-
ours (see 34). Benchmark datasets have also been used to
compare different methods or tools'***. The extent to which
these datasets address the concerns described in this document
is the subject of a case-by-case evaluation that may become
crucial for a wide implementation of NGS technology for rou-
tine and regulatory use. An open and inclusive discussion on the
different issues (described here or arising upon more detailed
considerations) will be important for the development of a resource
that can gain wide acceptance and use.

Conclusions

The aim of this document is to summarise a list of chal-
lenges that were identified at the meeting organised by the Joint
Research Centre on the 4" and 5" of October 2017 for the crea-
tion of a benchmark resource. The specific objective of this
benchmark would be to challenge the bioinformatics step of a
workflow to identify antimicrobial resistance in samples, using
NGS technologies. It is clear that this covers only a fraction
of the work necessary to fully implement this technology in
a regulatory context, which will also need to cover additional
steps such as the sampling, library preparation, sequencing run,
and interpretation of the AMR profiles (see Figure 1). How-
ever, this resource would facilitate the implementation of the
NGS technology in routine laboratory analyses by:

. Ensuring confidence in the implementation of the
bioinformatics component of the procedure, a step
currently identified as limiting in the field™*'".

. Allowing evaluation and comparisons of new/existing
bioinformatics strategies, resources and tools.

. Contributing to the validation of specific pipelines and
the proficiency testing of testing facilities.

. "Future-proofing" bioinformatics pipelines to updates
and replacement of the tools and resources used in
their different steps.

Some of the challenges in building such a resource are common
to all NGS-based methods. Many reports on standardisation,
quality management and good laboratory practice have focused
on clinical testing and the detection of germline sequence vari-
ants linked to cancer or other diseases and could guide some of
the decisions to be taken. In this context, reference materials
were highlighted as necessary for test validation, QC proce-
dures and proficiency testing®. However, many of the challenges
also reflect the reality of antimicrobial resistance monitoring
and are specific to this framework. How much of the avail-
able resources can be directly applied or used to guide future
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efforts in this field will need evaluation and, eventually,
complementation.

While the present discussion focuses on the monitoring of bacteria,
most of the challenges described herein and the means by which
they will be approached should apply to AMR monitoring in other
organisms, such as viruses, parasites, and fungi. The differences
will be in the final solutions proposed for the composition of the
benchmark dataset, due, of course, to the different biology in the
mode of action of the antimicrobials and their associated resistance
mechanisms.

As it was made apparent in the previous sections, many of
the challenges are due to the large heterogeneity behind the
reality of detecting AMR using NGS. Some of this hetero-
geneity will require the development of separate benchmark
datasets (e.g. the different sequencing platforms) while some will
obviously gain by being combined into a single resource (e.g.
human and veterinary medicine). Other cases will require more
discussions and evaluations of feasibility/added value in being
considered together vs separately (e.g. samples composed of
isolates vs metagenomics).

Whatever the final composition and number of the bench-
mark resource(s), the proper path will ensure a holistic view
of the problem that also reflects current public health data. This
decision-making process should include expertise in AMR
characterisation in humans, animals, food and the environment,
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in order to maximise its impact on the establishment of an AMR
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“One Health” approach.
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Jason C. Kwong
1 University of Melbourne, Melbourne, Vic, Australia
2 Austin Health, Melbourne, Vic, Australia

The opinion article by Alexandre Angers-Loustau and colleagues addresses an increasingly encountered
question by clinical and public health microbiology laboratories - what are the considerations in
developing a benchmark for validating methods to identify antimicrobial resistance determinants from
high-throughput sequencing data? This is an important step in using sequencing data for this purpose,
and this article reports back on the discussions by a panel of experts in the field of antimicrobial
resistance surveillance.

In general, the article is well-suited to publication in F1000Research, offering insight into an issue of
global importance, and | thank the authors for making the discussions from the October 2017 meeting
organised by the Joint Research Centre public. It is well written and explores each of the discussion
questions with supporting literature. My suggestions for improvement are minor and addressing them is
left up to the authors' discretion.

My overall comment is that while many of the relevant considerations are raised, as a clinician and
researcher, | am left with the burden of all these concerns, but no clear direction in how to address the
challenges (other than a few comments in the conclusion). | appreciate the purpose of the paper was to
summarise the challenges identified at the meeting, but | think this (opinion) article could be enhanced
and have a greater impact if more expert opinions and ideas on how to proceed were included.

Minor comments:

Introduction (page 4)

It would be nice to know a little more about the panel of experts - for example, what mix of background or
fields did the experts come from e.g. clinical or public health microbiology, bioinformaticians,
epidemiologists, veterinary microbiology etc.?

Section 2.1: real experiments vs simulated read sets (page 5)
This section highlights some important concerns (e.g. filtering host DNA or patented genetically modified
food DNA), but these are more relevant to identification of antimicrobial resistance from metagenomic
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sequencing data - this is alluded to in the text, but not explicitly stated. Given the other technical
challenges with this, | wonder if the discussion should focus more on the "real experimental" data from
cultured bacterial organisms — the more likely initial validation before validation proceeds to metagenomic
datasets.

Section 2.2: how should the set of resistance genes/mechanisms be agreed upon (page 6)

The considerations here are well explored, but | wonder if there could be some mention of variation in
benchmark datasets depending on the purpose of resistance gene/mechanism detection. For example,
detection of AMR genes from environmental or livestock samples may have a different focus, and thus
different benchmark targets to detection of AMR genes in organisms from human samples. Even among
human samples, there may be differences in the mechanisms prioritised for detection between testing for
clinical treatment and testing for epidemiological surveillance (mcr-1 is a good example).

Section 2.3: how can the "true" value of the samples be guaranteed (page 7)

Great section and discussion. Along the lines of the discussion, | am interested to hear the authors'
thoughts on whether it is sufficient to validate NGS for predicting AMR against standard susceptibility
testing (e.g. MIC), or whether clinical studies evaluating treatment outcomes based on NGS detection are
required (i.e. treating based on genotype vs phenotype). My only comment for this section is that perhaps
some of the commentary is more directed at validation of NGS for "identifying antimicrobial resistance”
rather than "identifying antimicrobial resistance determinants" as stated in the title - two subtly different
targets. Perhaps some of the discussion could be clarified here.

“HTF5 format” (page 4) should actually be “HDF5 format”.
MIC should be spelt out at the first usage - minimum inhibitory concentration.

Is the topic of the opinion article discussed accurately in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clinical infectious diseases, microbial pathogen genomics, antimicrobial agents
and resistance, clinical metagenomics

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 11 May 2018

https://doi.org/10.5256/f1000research.15794.r33450

Page 13 of 15


https://doi.org/10.5256/f1000research.15794.r33450

FIOOOResearch F1000Research 2018, 7:459 Last updated: 09 APR 2020
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Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
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Enrico Lavezzo

University of Padova, Padova, Italy

Giorgio Palu

Department of Molecular Medicine, University of Padova, Padova, Italy

In this opinion article, Alexandre Angers-Loustau and colleagues address a hot topic in Diagnostic
Microbiology regarding the implementation of next generation sequencing platforms for the identification
of antimicrobial resistances. In particular, they focus on a specific step of the long pipeline which goes
from sample collection to data interpretation and management, namely the bioinformatics analysis of
sequencing data.

It's been more than 10 years since the introduction of the first NGS instrument, but an adequate
standardization and harmonization level of the many different platforms is not yet accomplished.

The article is very well written; it is concise but covers all the important issues that need to be considered
when willing to implement such technologies for the purpose of AMR detection.

| only have some minor points for the authors:

1. In section 2.1, page 5, regarding the potential presence of sensitive information (e.g. reads of
human origin) when including real experiment datasets in the benchmark. | don't see the problem
here. How the availability of anonymous DNA sequence information could compromise the
patient's privacy? Of course, patient's identity must be separated from sample's ID, but
the de-identification process is a standard procedure and others methods have also been
developed for this purpose (see for example this paper from Qamar et al. (2014)). Please discuss

about this.

2. Since this is an opinion article, | would like the authors to 'expose' themselves a little bit more on
some points. The challenges are presented by explaining the state-of-the-art, but it is not easy to
me to understand authors' thinking about the possible solutions. Obviously they can't have
answers for all the challenges, but they could express some personal positions (for example, what
about "Who should generate the benchmark resource"? To me, there should be a centralized
action aimed, as far as possible, at the definition of a global standard (similar for example to the
WHO HPV LabNet Proficiency Studies for Evaluating HPV DNA Typing Methods). What do the
authors think about this?

3. Finally, no reference is made to microorganisms other than bacteria, but AMR may be related also
to viruses and eukaryotic microorganisms. Are there any difference or peculiarity regarding the
bioinformatics analysis of sequencing data coming from them?
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