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Abstract 

 

Single-crystal silicon carbide (4H-SiC) is a promising third-generation semiconductor 

material because of its excellent electrical, mechanical and chemical properties. 

However, the high hardness of 4H-SiC makes it a typical difficult-to-machine material, 

which greatly restricts the development of SiC devices. In this work, molten KOH 

etching was first used to polish SiC. The perfect crystal surface and dislocation spots 

were studied separately. For the perfect crystal surface, a typical isotropic etching 

polishing behavior was observed. The speed of the polishing process was closely 

correlated with the temperature. An ultrafast polishing of sliced SiC was achieved, 

reducing the roughness from 246.5 nm to 16.06 nm within 2 min at 800 ℃, and all 

subsurface damage was removed, as demonstrated by TEM. For the dislocation spot, a 

relationship between the etch pits angle and temperature was found, making it possible 

to remove the influence of the dislocation spot by increasing the etch pits angle to 

approach 180°. This study shows that molten KOH etching could be a very promising 

SiC polishing method and deserves further research. We anticipate that this approach 

will be applicable to ultrafast polishing of SiC at the industrial scale. 
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1. Introduction 

As one of the most promising third-generation semiconductor materials, single crystal 

silicon carbide (4H-SiC) has attracted significant attention due to its excellent electrical, 

mechanical and chemical properties, and this material has been found to be especially 

suitable for producing devices that operate under high voltage, high frequency and high 

temperature conditions [1-3]. To fabricate electronic devices based on 4H-SiC, an 

atomic flatness and damage-free surface is essential. However, owing to its high 

hardness (Mohs hardness: 9.0-9.5) and high chemical inertness, SiC is one of the most 

difficult-to-machine materials in the world [4, 5]. How to obtain a smooth SiC surface 

efficiently without any damage remains a challenge. 

To smooth SiC, a mechanical method will inevitably introduce new damage, such 

as scratches, subsurface-surface damage (SSD) and residual stress, to the sample [6, 7]. 

Meanwhile, chemical mechanical polishing (CMP) method generally have a low 

etching rate due to the excellent chemical inertness of SiC [8]. For highly efficient 

smoothing of sliced SiC wafers, electrochemical mechanical polishing (ECMP) method 

has been reported [9]. However, the efficiency of this process is greatly dependent on 

the doping concentration, which is not applicable for semi-insulating wafers. A pure 

chemical method could solve the problems that come with mechanical or electrical 

related polishing method. Among the various etchants employed for etching SiC, 

molten KOH etching is preferable due to its high selectivity and moderate operating 

conditions [10]. Compared with etchants based other alkali metals, potassium have 

relatively larger radius, therefore less likely to diffuse into the bulk SiC and cause 

contamination [11]. The applications of molten KOH etching to reveal dislocations in 

SiC have been extensively studied [8, 12]. As a form of pure chemical etching, no SSD 

is introduced during the etching process due to the zero normal stress applied to the 

surface [13]. Meanwhile, the etching speed can reach > 3 um/min, which is 1800 times 

higher than that of the conventional CMP method [14]. However, KOH has not been 

used to polish SiC due to the dislocation revelation effect. As molten KOH etching is 

considered the most convenient method to reveal dislocations in SiC, dislocation spots 
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on SiC will be preferentially etched and form a large etch pit and seriously increase the 

surface roughness, which are the main difficulties that hinder the polishing applications 

of molten KOH etching [15]. 

To address this challenge, we studied the etching behavior of dislocation in SiC. 

The development of etch pits requires that etching proceed faster in the direction of the 

dislocation than on the surrounding surface [16]. The higher etching rate along the 

dislocation could be attributed to the localized strain field, which implies excessive 

elastic energy that reduces the energy barrier of etching [17]. However, the strain 

energy of the dislocation will decrease with the increase of the temperature due to the 

reduction of the shear modulus [18]. Thus, the enhancement of the etching rate from 

the dislocation could decrease when the temperature increases and could result in a 

wider etch pit angle. We find that the angle of the etch pit has a positive correlation 

with temperature in the experiment. When the angle is close to 180°, the roughness 

damage from the etch pit can be neglected. Molten KOH etching of SiC at a very high 

temperature could solve the dislocation pit problem. Thus, we believe that KOH could 

be a very promising approach for fast polishing of SiC. 

In this paper, we propose a novel polishing method for molten KOH etching of 

SiC. Sliced surface SiC (SS-SiC) with surface roughness (Sa) of 246.5 nm could be 

reduced to 16.06 nm within 2 min. As demonstrated by TEM, the SSD is completely 

removed, and only the lattice arrangement of SiC remains on the surface. The etching 

properties of a perfect crystal surface and dislocation spot are studied separately. For 

the perfectly crystal surface, the etching process contains three stages: roughing, 

polishing, and bossing. Typical etching holes with a spherical geometry cover the 

surface, implying that this is an isotropic etching process [19]. The trend of the first two 

stages follows the isotropic etching polishing (IEP) model Yi et al. presented, where 

the roughness first increases and then decreases with the increase in the radii of the 

isotropic etching holes [20]. The bossing stage emerges only at high temperatures (> 

800 ℃) due to the small KOH vapor bubbles generated by the increased saturated vapor 

pressure. The speed of each stage is closely associated with the temperature. At higher 

temperatures, each stage runs faster and thus reaches the turning point earlier, which is 
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crucial for fast polishing. For the dislocation site, the etch pit angle increases with 

temperature, and at ~1200 ℃, the dislocation effect is minimized. The use of a high 

temperature allows the threshold of the shear modulus to be reached, which completely 

releases the strain energy in dislocation spots, thus eliminating the enhancement of the 

etching rate from dislocations [21]. However, under high temperature conditions, the 

bossing effect greatly increases the surface roughness. This method cannot directly 

replace CMP method at current stage, but it can serve as a highly efficient method to 

remove the SSD layer for SS-SiC and obtain a relatively smooth surface. Further study 

is needed to either eliminate the bossing effect or reduce the etch pit vanishing 

temperature to get a better polishing result. 
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2. Method  

Commercially available sliced surface on-axis 4H-SiC (SS-SiC) wafers were used in 

this study. All experiments were conducted on the Si (0001) face, which is also the most 

commonly used face for electronic device applications. The SS-SiC wafer was cut into 

10 mm * 10 mm chips for the convenient of experiments. 

The etching rate generally shows an Arrhenius-type temperature dependence, so 

precision control of the temperature is needed [10]. Generally, the molten KOH etching 

process is carried out in a nickel crucible filled with KOH (GR, 95%, Macklin) that has 

been preheated to the target temperature. However, we found that over a high 

temperature range (>900 ℃), reactions occurred between nickel and molten KOH and 

the SiC sample was highly polluted by their reaction product. To overcome this problem, 

a crucible-less molten KOH etching method was developed, as shown in Fig. 1. A small 

sheet of solid KOH (~0.05 g) was directly placed on the Si face of the SS-SiC sample, 

and then, this sample stack was placed on top of an adiabatic stage to make it easier to 

grip. Meanwhile, the muffle furnace was preheated to the target temperature. After 

achieving the target temperature, the sample stack with the adiabatic stage was sent into 

the furnace. Solid KOH was quickly heated to the target temperature due to the small 

mass, forming a molten KOH droplet that covered the whole Si face of the SS-SiC chip, 

and etching reactions took place. This method provides the fastest approach to heat 

KOH to the target temperature without pollution from the crucible. After the etching 

reached the target time, the sample stack was removed from the furnace and directly 

cooled in the atmosphere; then, it was washed with ultrasonic vibration in deionized 

water. The etching temperature was set to 500 - 1200 °C, and the washing time was 0 - 

30 min. The as prepared sample was then further characterized.  

CLSM (Confocal laser scanning microscopy KEYENCE VK-X1000) was 

employed to observe the morphology and measure the etch pit angle. A white-light 

interferometer microscope (Taylor Hobson M112-4449-02 CCI HD) was utilized to 

measure the surface roughness (Sa) of the sample. Each sample was measured 8 times 

in random locations, and the measurement area for each time was 50 μm × 50 μm. After 
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excluding the maximum and minimum, 6 of these areas were counted to represent the 

roughness of the sample. AFM (atomic force microscope, BRUKER Dimension edge) 

in the tapping mode was used to study the detailed morphology of the sample. To 

identify the SSD of the sample before and after molten KOH etching, TEM 

(transmission electron microscope, FEI Tecnai F30) was used to investigate the SSD, 

and FIB (Focused Ion beam, FEI Helios 600i) was utilized to prepare the sample. A 

carbon layer and 3 Pt layers were coated on the sample before FIB cutting to prevent 

scattering ion beam damaging the surface layer of the sample. 

 

 

Fig. 1. Schematic diagram of the experimental setup for KOH etching. 
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3. Results and Discussion 

3.1 Isotropic Molten KOH etching of SiC 

Fig. 2a shows the typical morphology of the SiC surface after etching with KOH at 

600 °C for 3 min. This AFM image shows a morphological intersection of the spherical 

surface, which implies that the etching process is isotropic. The cross-sectional profile 

of the red dashed line in Fig. 2a is shown in Fig. 2b. Compared with Fig. 2c, which is 

the profile of the original sliced SiC sample, the striking structures of the original sliced 

surface are removed, and the replacement is a link of arcs, suggesting that the original 

morphology can be fully removed by molten KOH etching and that an IEP-type surface 

remains. Fig. 2d shows the morphology change during isotropic etching, starting with 

a jagged structure on the SS-SiC surface, which implies that cracks and spikes were 

introduced during slicing of the SiC ingot. Isotropic etching occurs on every spot on 

the surface. As the etching process is isotropic, a red circle is used in Fig. 2d to imply 

that the etching range extends in every direction. The rest surface shows a line of 

intersecting arcs. The morphology change matches well with that shown in Fig. 2c and 

Fig. 2b. As we repeat the isotropic etching process several times, the surface becomes 

more and more flat. This matches with the typical morphology change of IEP provided 

by Yi et al. [20]. The predicted morphology change implies that KOH etching could be 

a promising approach for generating a smooth SiC surface.  
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Fig. 2. (a) AFM image of the Si-face of the sliced 4H-SiC sample after 3 min of etching 

at 600 °C; cross sectional profile of: (b) the red dotted line in (a), (c) the Si face of SS-

SiC and (d) the schematic of the isotropic etching polishing (IEP) process. 

 

 

3.2 Etching characteristics under low temperature 

Based on the mechanism of the morphology change in isotropic etching in 3.1, the 

resulting surface will be flatter when more materials are removed. According to the 

Arrhenius equation, the etching rate is exponentially related to temperature [22]. Thus, 

a higher temperature and longer time are expected to lead to a better smoothing result. 

The molten point of KOH under atmospheric pressure is 360 °C, while most studies of 

molten KOH etching of SiC are carried out in the range of 450 - 700 °C to prevent 

either underetching or overetching [15, 23, 24]. Considering the safety of the 

experiment and ensuring there is enough etching speed, we chose the most commonly 

used temperature range (500 - 700 °C) in the first stage of this study, and the duration 

times were from 0 - 30 min. 

Fig. 3 shows the morphology change of SS-SiC etched at 500 °C for 0 - 30 min. 

The raw Si-face of the SS-SiC is shown in Fig. 3a. The cracks and spikes caused by the 

slicing process are shown, and the surface roughness (Sa) is 252.5 nm. After 3 min of 
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KOH etching, as shown in Fig. 3b, the Sa increased to 267.2 nm. This phenomenon is 

related to the opening of cracks in the SSD layers, which is also observed in the etching 

of fused silica using HF [25]. When the duration time exceeds this point, the roughness 

starts to gradually reduce, as observed in Fig. 3c-e. A surface filled with intersecting 

spherical surfaces with an expanding radius is observed, and the roughness drops to 

58.1 nm for the 30 min sample, as shown in Fig. 3e. Fig. 3f shows the cross-sectional 

profile of Fig. 3a-e. The radius expansion of the etched spherical structure can be clearly 

observed, and the trend matches well the proposal presented in Fig. 2d. The isotropic 

smoothing mechanism using molten KOH etching is thus verified, and further studies 

were carried out. 

 

Fig. 3. White light interferometer image of the Si-face after etching at 500 °C for: (a) 0 

min (the raw SS-SiC surface), (b) 3 min, (c) 10 min, (d) 15 min, (e) 30 min; (f) the 

cross-sectional profiles of the surface (a-e), respectively. 

 

 

The roughness change of the etched surface at a temperature from 500 -700 °C and 

duration time from 0 - 30 min is shown in Fig. 4. For the 500 °C sample, which is also 

shown in Fig. 3, the roughness first increase as the crack opens and then reduces as the 

isotropic etching sphere increasers. The same trend was observed in the 550 °C sample. 

The roughness of the rising peak was achieved faster compared with that of the 500 °C 
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sample due to the increase in the etching rate. After reaching the peak point, the 

reduction was also faster with the increase of the temperature, and the effect of the 

etching rate increased, inducing an increase of the etching spherical expansion rate. For 

the sample at 600 °C and 700 °C, an increase in roughness in the early stage was not 

observed, possibly because the etching rate increased too fast that the peak achieved 

before our first picking point of 1 min. As the temperature further increased, the etching 

rate increased, leading to a more obvious increase of the smoothing process. For the 

700 °C sample, the mean roughness was reduced from 246.5 nm to 48.7 nm within 1 

min. With a further increase in duration time, the smoothing rate was reduced, which 

matches the IEP model presented by Yi et al. [20]. A minimum roughness of 19.2 nm 

was observed in the 700 °C 10 min sample. 

 

Fig. 4. Surface roughness of the Si-face of 4H-SiC after etching at 500 - 700 °C for 0 - 

30 min. 

 

 

In summary, two stage are revealed for molten KOH etching of SiC over a low 

temperature range (500 - 700 °C). The first stage is roughening, caused by the opening 

of cracks and SSD, which is common in the early stage of isotropic etching of materials 

with an SSD layer [26]. The second stage is polishing due to the expansion of the 

isotropic etching sphere. The speed of each stage depends on the temperature. To obtain 
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a faster polishing result, a higher temperature is needed. In addition, the etch pits of 

dislocations over the low temperature range heavily influence the overall roughness. 

Thus, the etching behavior of dislocation spots must be studied to obtain a better result. 

 

3.3 Etching characteristics of dislocation 

Molten KOH etching is regarded as the most common dislocation revelation method. 

Many etch pits of dislocations will form during the etching process, which strongly 

increases the overall roughness [27]. To obtain a better polishing result, the effect of the 

etch pits needs to be eliminated. Hartman et al. observed that when the temperature 

increased to > 1170 °C, a reduction (> 95%) of the dislocation density was observed in 

silicon because dislocation annihilation is unconstrained by crystallographic glide 

planes at high temperature [28]. Meanwhile, high temperature annealing is the most 

common approach for stress relaxation, which could reduce the level of dislocation [29, 

30]. It is reasonable to presume that the revelation of dislocation etch pits is also highly 

related to temperature. 

We first studied the relationship between the etch pit angle and the etching time. 

Fig. 6a-e shows an in-situ CLSM image of an edge dislocation found on the Si face of 

SiC, and Fig. 6f shows their cross-sectional profiles along each solid red line. As the 

duration time increases, the shape of the etch pits remains the same, but the pits increase 

in size. The etch pit angle remains the same. This result suggests that etch pits only get 

bigger and deeper as the duration time increases, while the angle remains unchanged. 

Thus, to minimize the effect of the etch pits, the etching time should be short. 
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Fig. 5. In-situ CLSM image of an edge dislocation after etching at 550 °C for: (a) 1 min, 

(b) 2 min, (c) 3 min, (d) 4 min, (e) 5 min; (f) the cross-sectional profile of (a-e) along 

the solid red line. The angles are 138.5°, 137.8°, 137.0°, 137.4° and 138.1°, respectively. 

 

 

To study the relationship between the etching temperature and the angle of 

dislocation of the pits, an in-situ study of edge dislocation etching at 500 ℃, 600 ℃ and 

700 ℃ for 1 min is shown in Fig. 6. This study shows that with an increase in 

temperature, the etch pit angle increases. A more systematic diagram of the etching 

temperature and the etch pit angle is shown in Fig. 7. The etch pit angle of both edge 

dislocation and screw dislocation, which are the most influential types of dislocations 

that increase the surface roughness, was studied. Both types of etch pit angles increase 

with increasing temperature. The speculative mechanism for the increase of the etch pit 

angle with temperature is illustrated in Fig. 7b. We assume that the etching rate for the 

perfect crystal SiC surface is v0, the etching rate along the horizontal direction is vH, 

the dislocation effect-induced increase of the etching rate along the dislocation line is 

vD and half of the etch pit angle is θ. tan(θ) can be expressed as Eq. 1: 

 

tan(𝜃) =
𝑣𝐻𝑡

𝑣0𝑡+𝑣𝐷𝑡
=

𝑣𝐻

𝑣0+𝑣𝐷
        𝑣𝐷 > 0   (1) 
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As vD is the increase of etching from dislocation, this parameter should be 

originated from the localized strain field, which contains elastic energy that reduces the 

etching energy barrier. vD should be proportional to the energy associated with 

dislocation ED, which is expressed in Eq. 2 and Eq. 3 [17]:  

𝑣𝐷 (𝑠𝑐𝑟𝑒𝑤) ~ 𝐸𝐷(𝑠𝑐𝑟𝑒𝑤) =
𝐺𝑏2

4𝜋
𝑙𝑛 (

𝑟

𝑟0
)           (2) 

𝑣𝐷 (𝑒𝑑𝑔𝑒) ~ 𝐸𝐷(𝑒𝑑𝑔𝑒) =
𝐺𝑏2

4𝜋(1−𝜈)
𝑙𝑛 (

𝑟

𝑟0
)          (3) 

where G is the shear modulus, b is the deformation distance of dislocation, r is the 

radius from the dislocation center, r0 is the radius of the dislocation central core and ν 

is Poisson’s ratio. From Eq. 2 and Eq. 3, we can find ED is proportional to the shear 

modulus of SiC. According to the mechanical threshold stress (MTS) model, the shear 

modulus will decrease with the increase in temperature [21]. Thus, ED and vD will 

simultaneously decrease with temperature. From Eq. 1, we find that tan (θ) increases 

when vD decreases. Meanwhile, when vD becomes 0, the etching shape is represented 

by the red dotted triangle in Fig. 7b. No etch pits remain on the surface. The effect of 

dislocation is eliminated. It is reasonable to assume that the increase of the etching rate 

from dislocation will also disappear when the temperature is high enough. Thus, a high 

temperature is needed to eliminate the effect of etch pits. 
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Fig. 6. In-situ CLSM image of an edge dislocation after etching for 1 min at: (a) 500°C, 

(b) 600 °C, (c) 700 °C; (d) the cross-sectional profile of (a-c) along the solid red line. 

The angles are 137.8°, 139.0° and 153.9°, respectively. 

 

 

 

Fig. 7. (a) The relationship between the etch pit angle and the etching temperature for 

edge dislocation and screw dislocation after etching at 600 °C - 1100 °C for 2 min, and 

(b) the schematic of the etch pit formation. 
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3.4 Etching characteristics under high temperature 

To prove our assumption regarding the temperature around the dislocation angles, 

we performed a set of experiments comparing the morphologies of SiC etched at high 

temperature (1200 °C) and low temperature (700 °C) for the same duration time (3 min), 

and the results are shown in Fig. 8. The 700 °C experiment is shown in Fig. 8a, where 

large etch pits of dislocations can be clearly identified. The dominant dislocation type 

is edge dislocation. The rest of the perfect crystal surface only shows the intersection 

of spherical surfaces. The 1200 °C sample is shown in Fig. 8b for the same 

magnification, and the results match our prediction. No large dislocation etch pits were 

observed, suggesting that the etching enhancement from the dislocation effect had 

disappeared. Only very small hexagonal etch pits were found, which might have been 

caused during the cooling process, when the temperature goes through a low 

temperature range for a short period of time, inducing low temperature etchings that 

could reveal dislocations. This shows high temperature can eliminate the effect of 

dislocations. However, many circular boss structures were also formed on the high 

temperature sample. One of the boss structures is shown in Fig. 8c, and the cross-

sectional profile along the red dotted line and a 3D image are shown in Fig. 8d. This is 

a typical boss structure with a slash side wall. The height of this structure is ~1.64 µm, 

which strongly influences the surface roughness. The forming mechanism of the boss 

structure is illustrated in Fig. 8e. When the temperature is near the boiling temperature 

of molten KOH, many vaporized KOH bubbles are generated due to enhanced thermal 

fluctuation [31]. The bubbles that attach to the SiC surface prevent the spot inside the 

bubble from contacting in the presence of the surrounding molten KOH. Owing to the 

large difference in the reactant flux in the vapor and liquid states, the etching reaction 

in KOH vapor is much slower than that in molten KOH [32, 33]. The etching speed 

inside the bubble is slower than that in the surrounding SiC, which is in good contact 

with molten KOH. Thus, a boss structure is formed on the surface due to the bubble 

effect. 
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Fig. 8. CLSM image of the Si face of 4H-SiC after etching at (a) 700 °C for 3 min and 

(b) 1200 °C for 3 min. (c) A higher magnification of the sample in (b). (d) Cross 

sectional profile along the red dotted line in (c). The insert is the 3D image of (c) and 

(e) the schematic of the boss structure formation. 

 

 

A set of experiments to determine the etching properties over a high temperature 

range (800 - 1000 °C) were carried out, and the results are shown in Fig. 9. The typical 

change shown in the morphology of the sample etched at 1000 °C for 15 s - 10 min is 

provided in Fig. 9a-e. From 15 s – 30 s, the morphology change looks like the change 

observed in Fig. 3c-e, possibly due to the temperature of KOH not having reached the 

target temperature. Thus, the change in morphology shows the characteristics of low 

temperature etching. After 1 min, the morphology becomes different. Although the 

surface roughness remains relatively low (~22 nm), many randomly distributed small 

protrusions are formed on the surface. When the duration time exceeds 10 min, the 

roughness dramatically increases. Many round boss structures form on the surface due 

to the bubble effect. The roughness change for temperatures from 800 - 1200 °C and 

duration times of 0 - 10 min is shown in Fig. 9f. The roughness changes generally occur 

in three stages: 1. When SS-SiC first contacts molten KOH, many subsurface cracks 

open, and the roughness increases. This phenomenon could be observed in the 800 and 

900 °C sample. For a sample at a higher temperature, this process may occur too quickly 
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to be observed. It completed within 15 s, which is shorter than the shortest duration 

time in our experimental set. 2. When the roughness reaches the peak point, it quickly 

decreases due to the IEP effect. The polishing speed is closely related to the temperature, 

which determines the etching rate of the isotropic etching process and thus determines 

the expansion rate of the radius of the etched spherical surface. 3. When the roughness 

decreases to its lowest point, it will remain almost unchanged over the low temperature 

range. However, for a high temperature sample (≥ 800 °C), the bubble effect will 

gradually occur, causing the roughness to increase. The rate of increase is also 

determined by the temperature. The higher the temperature, the nearer the sample will 

be to boiling, and a strong bubble effect will cause the roughness to rapidly increase. 

The roughness of the final condition when the bubble effect is saturated is also 

determined by the temperature, which determines the frequency and size of KOH 

bubbles emerging on the surface. To avoid the dislocation effect, a high temperature is 

needed, while too high of a temperature will lead to the bubble effect. Thus, the 

optimized condition is in between. In this work, a Sa roughness of 16.06 nm is achieved 

for the sample etched at 800 °C for 2 min from SS-SiC with a Sa roughness of 246.5 

nm. The material removal rate (MRR) is under this condition is estimated using the 

differential-weight method. Using the density of 3.21 g/cm3, the MRR is approximated 

to be 5.87 μm/min, which is much higher than the K+ ion diffusion rate [11]. This can 

dispel the concern of K+ contaminate the bulk SiC. 
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Fig. 9. White light interferometer image of the Si-face after etching at 1000 °C for (a) 

15 s, (b) 30 s, (c) 1 min, (d) 3 min, (e) 10 min; (f) the surface roughness of the Si-face 

of 4H-SiC after etching at 900 - 1200 °C for 0 - 10 min. 

 

To study the SSD and further evaluate the polishing effect of the etching process, 

TEM images of the cross sections of the SS-SiC and the sample with the best polished 

effect (800 ℃, 2 min, Sa = 16.06 nm) are provided in Fig. 10. To avoid the damage 

introduced by the FIB sample preparation process, 1 layer of carbon coated by a Marker 

pen and 3 layers of Pt (coated by magnetron sputtering, electron beam deposition and 

ion beam deposition, respectively) were deposited on the surface as a protection layer. 

Fig. 10a shows SS-SiC, and two defined regions can be observed. Immediately beneath 

the ground surface is the first highly deformed region, which has a depth of ~ 200 nm. 

This region contains a high density of dislocations. Many cracks introduced during the 

slicing process appear in this region [34]. The second region below is lightly deformed 

with lower density of cracks and dislocation. The SAED (selected area electron 

diffraction) pattern of spot 1 is shown in Fig. 10b. Although no full halo ring could be 

recognized, suggesting that SS-SiC did not have full amorphization, the strongly 

twisted pattern indicates that the crystal structure has undergone a serious deformation 

[35]. This kind of elongated spot is also observed in cold rolling metal, indicating great 

interior stress [36]. Fig. 10c shows the surface after polishing. The carbon and Pt 

Sa=132.1 nm Sa=25.3 nm Sa=20.8 nm

Sa=23.3 nm Sa=96.7 nm
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protection layer can be observed, ensuring no additional damage will be induced by 

FIB. The surface of SiC becomes very flat, and the two deformed layers are removed. 

The stripes observed in the SiC part are interference fringes caused by the bending of 

the TEM sample due to FIB processing [35]. The SAED pattern of spot 2 in the insert 

shows a typical diffraction pattern along the [0-110] zone axis of 4H-SiC, suggesting 

that all the damage and deformation are removed and that only single crystal 4H-SiC is 

left [37]. To further confirm the removal of SSD, a HRTEM image was taken of the SiC 

surface. The result in Fig. 10d coincides with the (1-100) face of 4H-SiC. A regular 

crystal structure is observed in the interface, suggesting the thorough removal of the 

SSD layer. The TEM results provide strong evidence that molten KOH etching can fully 

remove the SSD layer and obtain efficiently smooth SiC.  

 

Fig. 10. (a) The TEM image of the SS-SiC sample, (b) the SAED pattern of spot 1 in 

(a), (c) TEM image of the sample after 2 min KOH etching under 800 ℃, the insert is 

the SAED of spot 2; (d) the HRTEM of (c). 
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4. Conclusions 

A highly efficient flattening method for SS-SiC using molten KOH etching is proposed 

in this study. A roughness reduction from 246.5 nm of SS-SiC to 16.06 nm within 2 min 

is achieved using molten KOH etching at 800 °C and the MRR is estimated to be 

5.87μm/min. As confirmed by TEM, all the SSD layers are removed, and only a perfect 

crystal structure remains after etching. The etching behaviors of SiC at low temperature 

and high temperature are studied in detail. When SS-SiC was etched at low temperature, 

it shows the typical characteristics of isotropic etching, which makes it possible to be a 

polishing method via the IEP mechanism. When etched at high temperature, the bubble 

effect due to the change in the saturated vapor pressure urgently demands the polishing 

effect. However, the disappearance of the dislocation effect requires a higher 

temperature and shorter etching time. At current stage, this method cannot directly 

replace the CMP method, but it can serve as a competitive alternative for grinding, 

lapping and mechanical polishing and is promising to be applicable to the industrial 

field. Meanwhile, it can remove the SSD layer for SS-SiC sample efficiently, and obtain 

a relatively smooth surface. We anticipate that better results can be achieved by 

inhibiting the bossing effect while increasing the temperature as much as possible. 
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