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Abstract

Contrary to most signal decomposition methods that usually decompose an original signal into a series of

components simultaneously, a novel approach based on repeated extraction of Maximum Energy Compo-

nent (MEC) is proposed. The approach starts from determination of the MEC referring to the estimated

Power Spectral Density (PSD) function, and then represents the MEC by employing an exponential func-

tion to fit the original signal. By defining a stopping criterion based on two adjacent estimated PSDs, each

MEC can be accurately extracted with an improved performance throughout the entire signal decompo-

sition. To verify the proposed method, a single degree-of-freedom system subject to harmonic loads has

been examined. Numerical results show that the analytical response can not only be decomposed into four

MECs corresponding to the excitation and the system, respectively, but also provide an accurate estimation

of natural frequency and damping ratio of the system. Meanwhile, by observing results from the Ensemble

Empirical Mode Decomposition (EEMD), Variational Mode Decomposition (VMD) and Prony based on

state-space model (Prony-SS), an improved decomposition accuracy has been achieved from the proposed

approach. Furthermore, experimental data from the Norwegian Deepwater Programme and two sets of

field-test data from one fixed offshore platform and an offshore wind turbine have been used to demonstrate

the correctness of the developed signal decomposition method. It is noted that divergence in results by

Prony-SS can be observed when a very large model order is used, while the proposed method provides the

better decomposition and reconstruction of signals.
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A state matrix defined in state-space model.

bp p th coefficient in the Prony-SS method.

ci,n n th IMF under i th EMD.

ci i th IMF of the EEMD.

f tn(t), fsn(t) transient and steady-state responses.

fn(t) total responses of a structure.

frem remaining part of the original signal.

F similarity transformation of a coefficient matrix of the converted ODEs.

H Hankel matrix.

Nnoi, Np, Nf number of adding white noise, sampled points and components.

Nr, Nc selected number of rows and columns in H.

Nt, Ns number of components in transient and steady-state responses.

Rf (t) autocorrelation function of fn(t).

Re, Im real and imaginary parts of a complex number.

s Laplace variable.

SCsw stopping criterion.

Sf (ω̃) spectral density function.

Sf
od singular matrix with a dimension of od× od.

∆t time interval.

T transpose operator of a vector.

Uf
od,V

f
od singular vectors with a dimension of Nr × od.

y, yn, ȳ original signal, added Gaussian white noise and overall signal in EMD.

zn roots of a characteristic equation.

αn coefficient of white noise.

λn λn = ln zn
∆t .

ωd damped frequency.

ρn, ξn, ωn, θn amplitude, damping ratio, natural frequency and phase, embedded in transient response.

ρ̄, ξ̄, ω̄, θ̄ amplitude, damping ratio, natural frequency and phase, embedded in steady-state response.

ρ̃n, ξ̃n, ω̃n, θ̃n generalized amplitude, damping ratio, natural frequency and phase, respectively.
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1. Introduction

The application of offshore structures has extended from the oil and gas industry to the offshore wind

industry, and it has become critical to assess the structural reliability of offshore structures to prevent unex-

pected damage/failure [1–4]. From the viewpoint of system control theory, dynamic responses of a struc-

ture contain important information about the structure and its excitations simultaneously. In other words,

if the important information can be properly extracted from the measured responses, then characteristics of

the structure and its excitations can then be further studied by researchers in different areas. This can be

achieved by using the signal decomposition method, which can decompose an original signal into a series

of components. However, in most engineering issues, the expected components are not easily obtained due

to the limitations of the applied algorithm, different natures of the analyzed signals, measured noises, etc.

[5].

In recent decades, various signal decomposition methods have been studied, and the Fourier-based

method has been widely used for signal decomposition. The Fourier-based method spreads the signal over

the space of complete orthogonal sine and cosine functions and achieves the conversion of the signal from

time to frequency domain [6]. However, due to the linear and periodic conditions, when the method is

applied for measured signals, there will be contradictory phenomena such as false frequencies and energy

leakage [7]. To avoid the periodicity hypothesis, Huang et al. [8] proposed the Empirical Mode Decom-

position (EMD) based on the concept of instantaneous frequency. One obvious advantage of EMD is that

it does not require prior knowledge and can adaptively decompose signals, so this method has been widely

used in various fields [9, 10]. However, when the frequencies of two components are close, EMD will not

function well and results will be influenced by mode mixing. Due to these shortcomings, when EMD is

used for processing measured signals, results are not ideal.

To solve the problem of mode mixing in EMD, Wu and Huang [11] proposed the Ensemble Em-

pirical Mode Decomposition (EEMD) by adding Gaussian white noise to the original signal so that the

blank frequency domain is filled and the screening effect is improved. To date, EMD-based methods have

been successfully applied in many aspects, such as mode extraction [12] and biomedical image [13]. In

2014, Dragomiretskiy and Zosso [14] proposed a completely nonrecursive Variational Mode Decomposi-

tion (VMD) method by transforming decomposition into a variable decomposition problem and used the

alternating direction multiplication method to optimize it. However, the number of extracted modes in VMD

needs to be determined before decomposition. If the number of modes is improperly set, the loss or aliasing
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of information in the measured signal may occur, which limits its practicability in processing measured

signals. Zhao et al. [15] proposed a quadratic penalty item optimal VMD method based on single-objective

salp swarm algorithm to alleviate the mode mixing of complex vibration signals and maintained the signal

fidelity for complex vibration signal without prior knowledge. Lian et al. [16] proposed a method that

introduced columns of indicators to judge the accuracy of decomposition to automatically determine the

mode order. The simulated and measured signals from a hydropower plant were successfully analyzed by

this method.

In addition, there exists an earlier method, i.e., the Prony method, which was proposed by the French

scientist Gaspard de Prony and is based on a complex exponential model [17]. One can find some appli-

cation of this method in signal processing [18], dynamic response analysis [19], spectral estimation [20],

and so on. However, one significant shortcoming of the traditional Prony method is that it is very sensitive

to noise because the process of solving a high-order polynomial is typically an ill-conditioned problem in

math. To improve the accuracy of the Prony method when noise is present, there are two types of methods:

to obtain better results by optimizing the sampling interval or window size [21], and to filter the time series

data before or after using the Prony method [22]. Based on the state-space model, Hu et al. proposed a

signal decomposition method called the Prony-SS method [23]. By introducing a first-order matrix differ-

ence equation, the ill-conditioned problem of rooting the high-order polynomial equation can be avoided,

and the numerical conditionality and robustness are significantly improved. Liu et al. [24] proposed an

iterative noise extraction and elimination method for noise contaminated signals, and the interference of

high-energy noise on modal parameter identification of offshore wind turbines can be reduced significantly.

But it only focused on the elimination of high-energy noise, and did not consider the decomposition of

different components in the measured signals.

Based on the concept of one-by-one component extraction, a new signal decomposition method is pro-

posed in this paper. Different from the EMD method in which each component is decomposed one by one

according to the frequencies from high to low, only the most significant component is extracted at each

decomposition in terms of calculated magnitudes or their power spectral density function, aiming at im-

proving the accuracy of each decomposed component. Because each component can be extracted with an

expected accuracy, it is reasonable to expect that the proposed method should have better accuracy in signal

decomposition. In the following studies, numerical, experimental and sea-test data are used to investigate

the performance of the approach. Specifically, the numerical example is a single degree-of-freedom system
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used to demonstrate and make comparisons with EMD-based methods and the newly developed Prony-SS;

the experimental data are from a VIV test by the Norwegian Deepwater Programme (NDP); and the sea-test

data are from a fixed platform under wave loadings and from an offshore wind turbine (OWT) in service,

collected to study potential applications in engineering.

2. Preliminaries

2.1. The ensemble empirical mode decomposition

To suppress the mode mixing of EMD, the EEMD was developed by adding Gauss white noise. Steps

of the algorithm include the following [25]:

(1) A set of Gaussian white noises yn(t) is added to the original signal y(t), and then an overall signal

ȳ(t) can be obtained as

ȳ(t) = y(t) + αn · yn(t) (1)

where αn is the amplitude coefficient of the white noise. Perform the EMD on Eq. 1, and the signal can be

expressed as a sum of Intrinsic Mode Functions (IMFs).

(2) Repeat step (1) by adding different white noise, and take an average of estimated IMFs, as

ci =

∑Nnoi
n=1 ci,n
Nnoi

(2)

where ci is the ith IMF, ci,n is the nth IMF under ith EMD, and Nnoi means the number of noises.

2.2. The Prony-SS method

The Prony-SS method, which was recently proposed by Hu et al. [23], which is a technique that uses

the state-space model to replace the high order homogenous difference equation, with the capacity of better

conditioning and stability. Similar to the Prony’s method, the Prony-SS method also includes three steps:

Step 1: Write the discrete signal y(tk) in a matrix form, as
y0 y1 · · · yp−1

y1 y2 · · · yp
...

...
. . .

...

yNp−p−1 yNp−p · · · yNp−2




b0

b1

· · ·

bp−1

 =


yp

yp+1

· · ·

yNp−1

 (3)

In the above equation, p represents the number of terms and should be specified in advance; b0,b1,· · · ,bp−1

are the determined parameters; Np is the number of sampled points.
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Step 2: Apply the state-space model to calculate roots (denoted as zn) of the characteristic equation of

the pth-order homogeneous linear ordinary differential equation.

Step 3: Use the following equation to estimate amplitudes ρn and phases θn, by
z0

1 z0
2 · · · z0

p

z1
1 z1

2 · · · z1
p

...
...

. . .
...

z
Np−1
1 z

Np−1
2 · · · z

Np−1
p





ρ1e
iθ1

ρ2e
iθ2

...

ρpe
iθp


=



y0

y1

...

yNp−1


(4)

3. Signal decomposition based on maximum energy component extraction

Similar to traditional signal decomposition methods, which usually represent an original signal f(t) by

a combination of multiple components, one has

f(t) =

Nf∑
n=1

fn(t) (5)

where Nf is the number of components.

3.1. Representation of structural responses and definition of maximum energy component

In contrast to most methods, we focused on the issue of decomposing dynamic responses of an under-

critically damped structure subject to environmental excitations such as waves, currents, etc., thus, fn(t)

can be interpreted as follows

fn(t) = f tn(t) + fsn(t) (6)

where f tn(t) and fsn(t) are the transient and steady-state responses of the structure. Specially, for a single

degree of freedom (SDOF) system excited by a harmonic excitation, one can obtain the two terms in Eq. 6

as

f tn(t) = ρ e−ξωt cos(ωdt+ θ) = ρeiθe(−ξω+iωd)t (7)

and

fsn(t) = ρ̄ cos(ω̄t− θ̄) = ρ̄eiθ̄eiω̄dt (8)

where ρ, ξ, ω and θ are the amplitude, damping ratio, natural frequency and phase, respectively, of the

transient response; and ωd is the damped frequency that has a relationship with ω, i.e., ωd = ω
√

1− ξ2.

Likewise, ρ̄, ω̄ and θ̄ are the corresponding values of the harmonic excitation.
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Thus, Eq. 5 can be written as [26]

f(t) =

Nt∑
n=1

f tn(t) +

Ns∑
n=1

fsn(t) =

Nf∑
n=1

ρ̃ne
iθ̃ne(−ξnω̃n+iω̃n

√
1−ξ2n)t (9)

where Nt + Ns = Nf ; ρ̃n, θ̃n, ω̃n are generalized representations of the corresponding values of transient

or steady-state responses, and ξn should be zero for steady-state responses.

In this paper, the maximum energy component is just a relative concept and refers to the most significant

component in the decomposed signal. A signal represented by Eq. 9 is determined by a zero mean, stationary

Gaussian random process, so its energy distribution can be characterized by its power spectral density

function Sf (ω̃). For each component, one has

Sf (ω̃) =
1

2π

∫ ∞
−∞

Rf (t)e−iω̃tdt (10)

where Rf (t) is the autocorrelation function of f(t), and it satisfies the relationship of a Fourier transform

pair with Sf (ω̃).

Thus, the maximum energy component can be identified by finding its maximum amplitude shown in

Eq. 11 as

Smecf = 20 log10(Sf (ω̃))max (11)

The above equation shows that the maximum energy component can be quantitatively evaluated when

the component is extracted, but the remaining question is how to obtain ρ̃, θ̃, ω̃ and ξ of this component.

3.2. Extraction of the maximum energy component

For a sampled signal with time interval ∆t, Eq. 9 can be rewritten by

fk = f(tk) =

Nf∑
n=1

ρ̃ne
iθ̃ne(−ξnω̃n+iω̃n

√
1−ξ2n)k∆t =

Nf∑
n=1

ρ̃ne
iθ̃neλnk∆t (12)

where tk = k∆t, k = 0, 1, Np − 1, and Np is the number of sampled signals.

As discussed in reference [23], the signal f(tk) can be decomposed into a series of components with a

better conditioning number using a state-space model. In this paper, a state-space model is employed with

the construction of a Hankel matrix,

Hf (k) =


fk fk+1 · · · fk+Nc−1

fk+1 fk+2 · · · fk+Nc

...
...

. . .
...

fk+Nr−1 fk+Nr · · · fk+Nr+Nc−2

 (13)
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where Nr and Nc are the selected number of rows and columns, respectively, and they satisfy the relation-

ship of Nr +Nc + 1 = Np.

Since the most significant component will be extracted at each time, the model order, here denoted as

od, should be equal to 2 in theory. By setting k = 0 and employing the singular value decomposition, Eq. 13

can be written in the form [27]

Hf (0) = [ Uf
od Ũf

od
]

 Sfod 0

0 S̃fod

 (Vf
od)

T

(Ṽf
od)

T

 = Uf
odS

f
od(V

f
od)

T (14)

where T is a transpose of a vector, Uf
od and Vf

od are singular vectors with a dimension of Nr × od, and Sfod

has a dimension of od × od. The singular values S̃fod are assumed to be zero when the rank of the matrix

is exceeded od. In theory, the model order od is equal to the number of non-zero singular values shown in

Eq. 14.

According to the realization theory, one can find a relationship between Hf (0) and Hf (1) by substitut-

ing k = 1 into Eq. 13,

Hf (1) = Uf
od

√
SfodA

√
Sfod(V

f
od)

T (15)

where A = eF∆t, and here F is a similarity transformation of a coefficient matrix of a converted first-

order matrix differential equation. Following that, the damping ratio ξn and natural frequency ω̃n of this

component can be calculated. The, by substituting estimated ω̃n and ξn into Eq. 12, one can easily obtain

ρ̃n and θ̃n. The detailed procedure can be found in [23].

3.3. Accuracy evaluation of each extracted component

During the extraction of each maximum energy component, the caused error can be calculated as well as

the accuracy of the following components extraction. To improve the accuracy of each extracted component,

a stopping criterion SCsw is defined as

SCsw = |
|S̃mecf | − |Smecf |

Smecf

| (16)

where S̃mecf and Smecf are maximum values of the power spectral density function with two different model

orders od; | | means the absolute of a number.

When Eq. 16 meets the expected accuracy, the model order is used to extract the component. Here,

subscript l is used to denote the number of extracted components, and ω̃l, ξ̃l, ρ̃l, θ̃l can be accordingly

determined. Using Eq. 12, this component in the time domain can be constructed as

fl(tk) = ρ̃le
iθ̃leλlk∆t (17)
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Therefore, the remaining part of the original signal f(tk) can be obtained as

frem(tk) = f(tk)−
l∑
1

fn(tk) (18)

Theoretically, frem(tk) should be equal to zero, but for measured data, it will be approaching zero due to

random errors or small inconsistencies. The traditional method for evaluating the decomposed performance

can be applied by reconstructing all extracted components for the difference from the original one.

3.4. Procedure of the proposed method

Four steps should be included during the implementation of the proposed method, as shown in Fig. 1:

• Step 1- determination of MEC: calculate the autocorrelation function of the original signal Rf (t) and

then find the maximum value using Eqs. 10 and 11.

• Step 2- extraction of the MEC: substitute the original signal into Eq. 13 by implementing Eq. 15 with

od = 2, obtain eigenvalues of matrix A, and then ω̃n, ξn, ρ̃n and θ̃n can be calculated, respectively.

• Step 3- accuracy evaluation of the MEC: A stopping criterion SCsw is set using Eq. 16. If SCsw

satisfies the expected accuracy, this extracted component can be regarded as the real one. Otherwise,

the order od is increased until the satisfactory SCsw is obtained.

• Step 4- combination for signal reconstruction: replace the original signal with the remaining part

using Eq. 18 and repeat Steps 1-3 until each relative MEC is extracted. Then; a reconstructed signal

can be obtained by combining all extracted MECs using Eq. 12.

4. Numerical demonstration: a single-DOF system subjected to a harmonic loading

In this example, an SDOF system withm = 10 kg, c = 2 N s/m and k = 40 N/m is used to demonstrate

the validity of the proposed method and provide a detailed numerical procedure. Based on eigen analysis,

the natural frequency and damping ratio can be calculated as 0.3183 Hz and 0.05, respectively. To obtain

the dynamic response of this SDOF system, a harmonic loading x(t) with three components is considered

as

x(t) =
3∑

n=1

Bn cos(2πfnt+ φn) (19)
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Fig. 1: The flow chart of the proposed method.

whereBn, fn and φn are the amplitude, frequency and phase of the nth component, separately. As an exam-

ple, these values are set to Bn = [1.2, 0.2, 0.8], fn = [0.3, 0.2, 0.8] and φn = [−π/4, π/8, 0], respectively.

Fig. 2 shows the simulated loading with ∆t = 0.1 s.

Two scenarios are taken into account in this example: the first uses the proposed method to decompose

the simulated loading, and the second deals with the estimated dynamic response of the system, including

making comparisons with traditional methods such as EEMD, VMD and Prony-SS.

4.1. Scenario 1: decomposition on the simulated loading

As shown in Eq. 19, the three components are previously known and can be used to investigate the

accuracy of the proposed method. As discussed in the procedure of the proposed method, the first step is to

determine which component should be extracted first. In this example, based on the autocorrelation function

of the original signal Rf (t), the maximum value can be calculated using Eq. 11 as Smecf = 80.7418 dB. In

the second step, substituting the sampled data (1500 points in Fig. 2) into Eq. 15 with Nr = 1500, one can

obtain Nc = 1501. Then, implementing Eq .14, Uf
od and Vf

od have dimensions of 750×2, and Sfod is 2×2,

with the preset model order od = 2, one can obtain

A =

 0.9823 0.1874

−0.1874 0.9823

 (20)
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Fig. 2: Simulated loading in terms of Eq. 19.

and ω̃n = 1.8848 rad/s, ξn = 0.1575 × 10−3, ρ̃n = 1.2266 and θ̃n = −0.7747. Comparing the above

values with the true ones, one can find that this component is just the one at 0.3 Hz, and its amplitude is 1.2,

which implies this component is indeed the MEC of the original. Based on step 3, let od = 4 and repeat

step 2; then, one can obtain Smecf = 80.8769, and SCsw = 0.0017, which means the difference is less than

1%. If this accuracy is acceptable, then one can move to the second MEC extraction, as discussed in step 4.

A direct comparison between the three extracted components and their true ones is shown in Fig. 3, and one

can find perfect consistency between them, which implies good accuracy of signal decomposition using the

proposed method.

4.2. Scenario 2: decomposition on the estimated dynamic response

In practice, structural response contains not only information of excitations, but also has a direct reflec-

tion of stiffness, mass and damping. Therefore, if the loading shown in Fig. 2 is imposed on the system,

an analytical response can be obtained because of the harmonic characteristic of this loading. In addition, a

much more general case is considered in which this system has initial conditions, i.e., initial displacement

and velocity are randomly set to 0.5 m and 0.2 m/s, respectively. Fig. 4 shows the estimated dynamic re-

sponse with a time duration of 3000 points, which will be used as the original signal for decomposition.

Based on the same procedure yielding Fig. 3, one can decompose Fig. 4 into a series of components.

One should note that the only difference is that the extraction number Nf is 4, and SCsw = 1 × 10−6 is

used to ensure that each MEC can be extracted with sufficient accuracy. For example, during the extraction
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Fig. 3: Comparison between extracted components by the proposed method and true ones.
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Fig. 4: Analytical response of the system excited by the simulated loading.
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Fig. 5: Four extracted MECs by implementing the proposed method.

of the first MEC, SCsw reached 6.8740× 10−14 when model order is od = 6, and this component is shown

in Fig. 5 (a), with ξ = 0.0502 and ω = 0.3183 Hz, which shows very good estimations of the true values of

this system. Shown in Fig. 5 (b)-(d) are the other three extracted components; one can clearly find that their

amplitudes are in a descending sequence, and the amplitude of the last one is less than 1 × 10−3, which

implies that Nf = 4 is suitable.

4.3. Comparison with traditional signal decomposition methods

To show the capability of the proposed method, we selected three decomposition methods that have

been widely used in recent years to make a comparison, including EEMD, VMD and Prony-SS. EEMD

has unique advantages in dealing with nonlinear signals. It is an empirical decomposition method with

advantages including adaptive filtering and does not require any transformation. Using white noise, the

mode-mixing issue of EMD has been overcome to some extent. Based on the concept of IMF, VMD

establishes a clear variational model. It has the anti-noise advantage of a Wiener filter and can balance the

backward error caused by non-recursive screening. Prony-SS is a recently developed method where the

signal is decomposed into the form of a complex exponential function that avoids the periodic hypothesis

of the traditional Fourier transform. By introducing the first-order differential equation, the ill-conditioned

problem of the Prony method is overcome, which leads to high precision.

Here, we compare the decomposition results of the second component (shown in Fig. 5), i.e., the com-
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Fig. 6: Comparison of components with 0.3 Hz extracted by the four methods.

ponent with a frequency of 0.3 Hz. First, with a ratio of the standard deviation of the added noise set to

0.2, the EEMD method is used to decompose the signal, and 11 components are obtained. The decomposed

component with 0.3 Hz is illustrated in Fig. 6 as the blue line. It can be seen that the components at the

endpoint are not stable due to the endpoint effect of EEMD, and it tends to be stable over time. Then, VMD

is performed to decompose the signal, and since the dynamic response has four components, the number of

modes is set to be 4. As shown with the green line, similar to EEMD, VMD also has the problem of the

end-point effect. With a mode order of 8, the result of the Prony-SS is shown as the yellow line. Additional-

ly, the result by the MEC is shown as the red line. All four methods can effectively separate the component

with 0.3 Hz. However, due to the influence of the end-point effect, the results of EEMD and VMD are worse

than Prony-SS and the MEC. Moreover, the components decomposed by EEMD and VMD are smaller than

those by Prony-SS and the MEC, which indicates that Prony-SS and the MEC decompose the signal more

thoroughly. For further comparison of Prony-SS and the MEC, the residues after decomposition are shown

in Fig. 7. We can see that the residue of the proposed method is smaller, which means the precision of the

MEC is higher than Prony-SS.
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Fig. 7: Comparison of residues by Prony-SS and the MEC.

5. Experimental data: VIV data from the Norwegian Deepwater Programme

In this example, the experimental data derived from a Riser High Mode Vortex-Induced Vibration (VIV)

test sponsored by the Norwegian Deepwater Programme (NDP) is analyzed. The model is made of com-

posite fibers with an L/D of 1400, and the dimensions are L = 38 m and D = 0.0027 m. In each test,

the model riser was pulled horizontally at different speeds. When the ends of the riser model were pulled

at the same speed, a uniform flow profile was produced; when the model riser was fixed at one end and the

other end was pulled, a linear shear flow profile was produced. The details of the experiment are recorded

in [28, 29].

During the experiment, the vibration is mainly produced by the coupling motion in the crossflow and in-

line directions, and there are other interferences such as noises. Therefore, the measurement signal is mixed

with many frequency components. Through signal decomposition, different frequencies can be identified.

At the same time, the frequency of the inline response is twice the frequency of the crossflow motion [30].

These details can also help us to demonstrate the correctness of the signal decomposition. Here, we select-

ed the acceleration data as ∆/L = 0.1314 in the inline direction for analysis. The corresponding towing

speed is 0.7 m/s. The chosen signal with a duration of 10 s in the time domain and frequency domain are

illustrated in Fig. 8.

When implementing EEMD, which is an adaptive decomposition method, a total of 14 IMFs was ob-
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Fig. 8: The waveform of the signal and the chosen signal of 10 s in the frequency domain.

tained, as shown in Fig. 9. Because the first decomposed component is noise, we only list the second IMF

to the sixth IMF. From the results, we can see that the signal is decomposed from high frequency to low

frequency. However, due to the effect of mode-mixing, the decomposition is not accurate. For example,

the component with 6.8 Hz not only exists in IMF 2, but can also be seen in IMF 3 and IMF 4; and the

component with 13.6 Hz exists in IMF 2 and IMF 3 simultaneously. As mentioned in Ref. [31], the prob-

lem of mode mixing has become one of the greatest drawbacks of EMD. Although the addition of white

noise has greatly improved the problem of mode mixing in EMD, for signals with very close frequencies,

the performance of EEMD is not satisfactory, and the components still cannot be successfully separated. At

the same time, because of noise, there are many meaningless low-frequency components, and this will lead

to serious over-binding.

It can be seen in Fig. 8 that the energy of two components is greater than the other components. There-

fore, when using VMD, the mode is set to 2, and the results are shown in Fig. 10. From Fig. 10 (b), we

can see the first mode corresponds to the cross-flow response; the second mode corresponds to the response

in the inline direction. However, due to the lower decomposition mode, each mode contains many fre-

quencies. These results are due to a priori nature of VMD, that is, before using VMD to decompose, the

number of decomposed modes is set artificially. If the set order of decomposition is not correct, the result

will be incorrect. Therefore, the choice of decomposed mode is crucial when using VMD to decompose the
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Fig. 9: The decomposition results of EEMD in (a) time domain and (b) frequency domain.

signal. However, when processing measured data, due to the influence of complex environment, the signal

is polluted by noise, and it is difficult to determine the number of meaningful modes buried in the signal.

Thus, due to blindness and randomness, the reasonable selection of parameters and the problem of under-

or over-decomposition of VMD limit its application in engineering.

When implement Prony-SS, the model order is set to 4, and the decomposed two components are illus-

trated in Fig. 11 as the blue line. When the extraction number Nf = 2 and SCsw = 1 × 10−6, the results

obtained by using the MEC are also shown in Fig. 11 as the red lines. Fig. 11 (b) shows the extracted com-

ponents in the frequency domain. We can see that both methods can successfully decompose the two main

components. In the first component, there are very small differences, and the results from the two methods

show good consistency. However, the amplitude of the second component extracted by the MEC is larger

than that obtained by Prony-SS. This means that after the decomposition, the MEC has smaller residual and

is thus more accurate than Prony-SS.

6. Field test study:

To study the performance of the proposed method in dealing with actual signals of offshore structures,

the measured data of two typical offshore structures were used: one from the WZ11-4D fixed platform

under wave excitation, and the other from an operational offshore wind turbine. Since Prony-SS and the

proposed method are superior to EEMD and VMD in the analysis of VIV data, we only used the results of
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Fig. 10: The results of decomposition by the VMD in (a) time domain and (b) frequency domain.
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Fig. 11: The decomposition results of Prony-SS and the MEC in (a) time domain and (b) frequency domain.
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Fig. 12: The tested platform in the Beibu Gulf of China.

Prony-SS for comparison in the following studies.

6.1. Platform under wave excitation

In this case, a fixed platform located in the southwest of Weizhou Island in the North China Sea was

used for measurement. The platform is a jacked structure with four legs and weighs 805.55 tons. The design

life of the platform is 20 years. The main pile of the platform is 4 × φ48′′, 67 m into the mud and weighs

710 tons; the pipe group is 4 × φ48′′, 67 m into the mud and weighs 504 tons. The area of the deck is

890 m2, and its weight is 486 tons. The weight of the equipment on the deck is 121.6 tons. Taking the

static water level as a reference point, the deck is divided into three layers, and the elevation of each layer

is 20.84 m, 25.84 m and 37.0 m, respectively. The plane size of the structure at the working point is 18.288

m long and 9.144 m wide. Acceleration sensors are arranged at the joints of the four main pile legs (+ 7.5

m). Fig. 12 shows the geographic location, measuring point arrangement and tri-axial accelerometers of the

target platform. In each test, the acceleration signals were recorded for 4 hours with a sampling rate of 500

Hz. In this case, the measured data at A-1 were selected for analysis, and the waveform of the measured

data is shown in Fig. 13 (a). Data of 50 s (from 1700 s to 1750 s) are selected for decomposition, and the

PSD spectrum of the chosen signal is shown in Fig. 13 (b).

Because of the good performance of the Prony-SS on signal decomposition, one may expect that this

method can also give good results. As discussed in Eq. 3, the number of terms should be selected in advance

and it has a direct influence on the accuracy of signal decomposition, so the order was set to increase from
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Fig. 13: The measured signal in (a) time domain and (b) frequency domain.

100 to 3000 with an interval of 500. The decomposition result was quantitatively evaluated by introducing

a correlation function defined as [32]

ρxrxo =
cov(xr, xo)

σxrσxo
=

E(xrxo)− E(xr)E(xo)√
E(x2

r)− E(xr)2
√
E(x2

o)− E(xo)2
(21)

where xr represents the reconstructed component, xo represents the original component, and E represents

the expectation. Using Eq. 21, the correlation coefficient ρi between the reconstructed and the measured

signal can be calculated, and the corresponding results of ρi are illustrated in Fig. 14 (b) as the blue line. As

the order increases, the correlation coefficient increases, but when the order exceeds 2300, the reconstructed

results completely deviates from the original signal, as indicated by the nearly zero ρi. Fig. 14 (a) shows

the result of reconstruction when the order is 3000 and the blue line denotes the measured signal. We

can see that at the beginning, the result of reconstruction is accurate, but as time increases, the error of

reconstruction becomes larger. This is because of the utilization of the state-space model, whose input

should be an impulse function, while the input of these measured data are continuous environmental loads

from waves, currents and so on.

When using the MEC method, to make a comparison with Prony-SS, the number of extractions was set

from 50 to 1500 (corresponding to the order from 1000 to 3000 in Prony-SS) and the stopping criterion

is set to SCsw = 1 × 10−6. The correlation function is also used to quantify the reconstruction error as

the red line in Fig. 14 (b). It can be seen that when the extracted number in the MEC corresponds to the

order, the correlation coefficient of the MEC is larger than the results of Prony-SS. This means that under
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Fig. 14: (a) The reconstructed signal by Prony-SS; (b) The correlation coefficient with different order.

the same conditions, the decomposition accuracy of the MEC is higher than Prony-SS. At the same time, it

can be seen that when the number of extractions is increased to a large value, the result of the MEC is still

accurate, and there is no problem of divergence. Fig. 15 plots the reconstructed result of the MEC versus the

measured signal when the number of extractions is set to 3000. It can be seen that the reconstructed result

is consistent with the measured signal, and the problem of inaccurate decomposition over time in Prony-SS

has been overcome.

6.2. An offshore wind turbine in service

The measured OWT is located in the region of the Yellow Sea near Jiangsu Province, China. The height

of the turbine is 86 m, and the foundation is a single pile structure. During the test, the dynamic signal of the

structure was acquired using an IMC collector and two tri-axial accelerometers, which were arranged inside

the tower. The first three modal frequencies of the operational OWT are 0.3097 Hz, 1.7762 Hz, and 3.9910

Hz with their corresponding damping ratios of 0.0269, 0.0661, and 0.0277 [33]. In this measurement, a

signal with the duration of 1 hour was recorded under each operating condition and the sampling frequency

was 100 Hz. Fig. 16 shows a prototype of the measured offshore wind turbine, the arrangement of the

measuring points, the tri-axial accelerometers and the signal acquisition system arranged on the OWT.

From these assembled accelerometers, one can obtain the dynamic responses of the offshore wind tur-

bine, and as shown in Fig. 17, which shows the measured time series and its PSD spectrum. From the PSD

spectrum (Fig. 17 (b)), we can see that in the measured response, there are not only the structural mode of

the offshore wind turbine but also the harmonic components caused by the rotation of the turbine blades
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Fig. 15: The reconstructed signal by the MEC.

[24]. To further understand the components in the response, the stochastic subspace identification (SSI) is

used to identify the modal information as shown in Fig. 18. The results are consistent with the frequencies

of the first six peaks in the spectrum, which are 0.3988, 0.7985, 1.6000, 1.1978, 2.0012 and 2.3880 Hz. In

the subsequent analysis, the signal from 900 s to 1000 s was chosen to be decomposed.

By setting the extraction number Nf to 50, and SCsw = 1 × 10−6, Fig. 19 shows the six components

corresponding to the six peaks decomposed from the measured signal. In Fig. 19, the red lines represent

the decomposed components in the frequency domain and the blue lines are the decomposed components

in the time domain (in the time domain, the horizontal axis is time (s) and the vertical axis is acceleration

(m/s2)). The frequencies of the six decomposed components are 0.3990, 0.7982, 1.1933, 1.5994, 1.9957

and 2.3893 Hz, which are almost identical to the results of SSI. When using the MCE, each component

can be decomposed, which proves the superiority and potential value in processing the measured signals in

real-world engineering problems.

7. Conclusions

In this paper, a novel signal decomposition method based on the concept of one-by-one component

extraction has been proposed. By representing the components in a complex exponential form, Maximum

Energy Components (MECs) corresponding to the structure and excitations have been successfully separat-

ed. By introducing a controlled accuracy criterion, each component has been precisely extracted. Numerical

results show that the proposed method has the similar accuracy as Prony-SS in decomposing the synthe-
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Fig. 16: The tested turbine and the test equipment.
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Fig. 17: The measured signal and its PSD spectrum.
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sized four components and outperforms EEMD and VMD. Furthermore, the stability and accuracy of the

proposed approach have also been demonstrated by examining the experimental and sea-test data. It is noted

that results by Prony-SS show the divergence and cannot provide the good decomposition of signals when

a large number of order is adapted, while the developed method shows a more stable capability of signal

decomposition and reconstruction with a high level of accuracy.
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