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environment in the North West and East Anglian regions of
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Significance and Impact of the Study: Several outbreaks within the UK have highlighted the danger of
contracting Shiga toxin-producing Escherichia coli from contact with areas recently vacated by livestock.
This is more likely to occur for STEC infections compared to other zoonotic bacteria given the low infec-
tious dose required. While studies have determined the prevalence of STEC within farms and petting
zoos, determining the risk to individuals enjoying recreational outdoor activities that occur near where
livestock may be present is less researched. This study describes the prevalence with which stx genes,
indicative of STEC bacteria, were found in the environment in the English countryside.
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Abstract

Shiga toxin-producing Escherichia coli is carried in the intestine of ruminant

animals, and outbreaks have occurred after contact with ruminant animals or

their environment. The presence of STEC virulence genes in the environment

was investigated along recreational walking paths in the North West and East

Anglia regions of England. In all, 720 boot sock samples from walkers’ shoes

were collected between April 2013 and July 2014. Multiplex PCR was used to

detect E. coli based on the amplification of the uidA gene and investigate

STEC-associated virulence genes eaeA, stx1 and stx2. The eaeA virulence gene

was detected in 45�5% of the samples, where stx1 and/or stx2 was detected in

12�4% of samples. There was a difference between the two regions sampled,

with the North West exhibiting a higher proportion of positive boot socks for

stx compared to East Anglia. In univariate analysis, ground conditions, river

flow and temperature were associated with positive boot socks. The detection

of stx genes in the soil samples suggests that STEC is present in the English

countryside and individuals may be at risk for infection after outdoor activities

even if there is no direct contact with animals.

Introduction

Shiga toxin-producing Escherichia coli cause diarrhoea,

often bloody, that can progress to anaemia and kidney

failure. An estimated 30% of cases require hospitalization

during the course of infection (Byrne et al. 2015). In Eng-

land, there is an average of 900 cases a year identified by

Public Health England, but the real number of infections

is probably much higher (Adams et al. 2016). The first

outbreak of STEC was attributed to ground beef patties at
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a fast food restaurant chain in the United States in 1982

(Riley et al. 1983), and meat products are still associated

with causing many STEC outbreaks (Heiman et al. 2015;

Adams et al. 2016). However, several outbreaks have been

attributed to the presence of people on fields recently

vacated by ruminant animals (Crampin et al. 1999; Howie

et al. 2003). Additionally, all published case–control stud-
ies performed on sporadic infections within the UK have

identified contact with animals or their environments as a

significant contributor to sporadic infections (Kintz et al.

2017). A recent study reports significant associations

between livestock density and the spatial distribution of

STEC infections in England (Elson et al. 2018). All this

raises interesting questions about the likelihood of acquir-

ing a STEC infection by participating in recreational out-

door activities in the countryside.

Cows and other ruminant animals are able to carry

STEC asymptomatically as part of their normal intestinal

flora since their epithelial cells lack the receptors for

internalizing the Shiga toxin. Studies on cows in the UK

have demonstrated that, at any time, 4–15% of the ani-

mals in a herd may be carrying STEC (Chapman et al.

1997; Mechie et al. 1997; Omisakin et al. 2003; Paiba

et al. 2003). The bacteria can survive in cow pats up to

21 months (Kudva et al. 1998; Hutchison et al. 2005; Fre-

maux et al. 2007), and within soil, STEC can be detected

up to 200 days after inoculation (Maule 2000; Jiang et al.

2002; Bolton et al. 2011). STEC requires only a small

number of bacteria, between 10 and 100, to be ingested

to cause illness (Tuttle et al. 1999; Strachan et al. 2002).

Its extended survival time under different conditions and

the low infectious dose increase the likelihood that indi-

viduals may become ill after encountering STEC in the

environment.

STEC shares its zoonotic transmission with other gas-

trointestinal bacterial pathogens such as Campylobacter

and Salmonella. Therefore, many techniques have been

developed to screen for these pathogens within farms in

an effort to curtail transmission from animals to con-

sumers. One of these methods is using boot socks to

cover the shoes and collecting samples from the floor or

ground as the individual walks around the premises

(Caldwell et al. 1998; Skov et al. 1999; McCrea et al.

2005). These boot socks can then be analysed for the

presence of the pathogens, indicating colonized animals

are present. This method has been demonstrated to be

just as, if not more, sensitive than the older drag swab

method developed for use on chicken farms (Buhr et al.

2007; Lungu et al. 2012). Boot socks have also recently

been used to sample for pathogens in the wider environ-

ment (Brena et al. 2016; Jones et al. 2017). The aim of

this research was to analyse boot socks generated during

the Enigma project for Campylobacter to determine the

frequency with which STEC-associated virulence genes

were detected in the English countryside (Jones et al.

2017). Two different locations, the North West of Eng-

land and East Anglia, encompassing different land uses,

climates and geographies, were chosen for the study

(Jones et al. 2017).

Results and discussion

Presence of STEC virulence genes in boot sock samples

There were six walk locations: three in the North West

and three in East Anglia. The walks were completed

between April 2013 and July 2014, occurring every week

from April through July and every 3 weeks during August

through March, leading to a total of 40 walk dates for

each location. For each walk, three different walkers wear-

ing boot socks were present. This meant a total of 720

boot socks were collected (6 locations 9 40 walks per

location 9 3 walkers). After the walks were completed,

the walkers sent the boot socks in sterile plastic bags for

processing. Further details on the walks and boot sock

collection can be found in Jones et al. (2017).

Multiplex PCR was used to detect three different STEC

virulence genes: the shiga-toxins stx1 and stx2 and the

intimin eaeA as a marker for the locus of enterocyte

effacement (LEE). This method was chosen as it has pre-

viously successfully detected the presence of STEC from a

variety of different sources and would lend itself to

quickly screening a large number of environmental sam-

ples (Deng and Fratamico 1996; Paton and Paton 1998a;

Noll et al. 2015). The uidA gene was also included as an

indicator that E. coli was present in the culture grown up

from the frozen boot socks samples (McDaniels et al.

1996). Of the 720 samples, 592 (82�2%) of the samples

amplified uidA, indicating E. coli had grown in the over-

night culture. Only 14 samples amplified virulence genes

(10 eaeA and 4 stx2) in the absence of uidA; these were

still included in the subsequent analyses given the low

numbers of this occurrence compared to total boot sock

samples. The breakdown of the virulence genes detected

in the 720 boot socks samples is shown in Fig. 1. In total,

45�5% of samples were positive for the eaeA and 12�4%
positive for either of the stx genes. For stx genes, stx2 was

detected more often than stx1 with 9�2% of the samples

positive for only stx2 and 2�1% of the samples positive

for only stx1; 1�1% of the samples contained both stx

genes. Furthermore, the majority of the stx-positive sam-

ples were also positive for eaeA, with only 2�2% of the

samples containing only stx1 and/or stx2, but 10�1% of

the samples containing either stx gene or eaeA.

When considering only the stx-positive samples, a

majority (83%) amplified the stx2 gene. Compared to
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stx1, presence of stx2 in STEC bacteria is associated with

more severe disease and a higher likelihood to progress to

haemolytic uremic syndrome (Boerlin et al. 1999; Tarr

et al. 2005). Furthermore, 82% of stx-positive samples

also amplified the eaeA gene. STEC strains that carry the

LEE pathogenicity island are associated with more severe

disease (Paton and Paton 1998b; Boerlin et al. 1999). If

the virulence genes detected on these walks are associated

with live bacteria, these results indicate that there would

be the possibility for these strains to cause potentially sev-

ere disease if individuals became infected.

While the use of culturing from the boot sock samples

suggests that the detected virulence factors came from live

bacteria, it does not necessarily mean that these bacteria

are an immediate threat to human health. One caveat to

the method of detection for the boot socks as performed

in this study is that there is no manner to quantify the

amount of pathogenic bacteria that may have been

encountered during a walk or that the bacteria would be

ingested by the individual. Another caveat is that the

detection method used does not guarantee that the

detected virulence genes came from the same bacteria;

eaeA is also associated with several other types of patho-

genic E. coli that may have also transferred to the boot

socks and grown under the culturing conditions. Addi-

tionally, it is possible that free stx phage was present on

the boot sock and this then infected the E. coli growing

in the overnight sample, leading to stx-positive samples

that did not initially contain STEC bacteria.

Distribution of stx by region and walk location

As eaeA is associated with other pathogenic E. coli, fur-

ther characterization of the boot sock samples focused on

the stx virulence genes. Overall, 89 of the 720 boot socks

were positive for at least one stx gene. The results were

broken down by region and walk location to see whether

there were any differences in the presence of the stx genes

in the environment between the two regions. The regional

analysis demonstrated that the number of stx-positive

boot socks was much lower in East Anglia region com-

pared to the North West, with 0�8–5�8% of the 120 boot

socks per location demonstrating the presence of an stx

gene in East Anglia compared to 15�8–25% in the North

West (Fig. 2). As far as the number of walks that exhib-

ited at least one stx-positive boot sock, at least one of the

walkers on 2�5–15% of the walks in East Anglia walked

through soil that later allowed for amplification of one of

the stx genes. In the North West, this was between 32�5
and 42�5% of the walks.

More stx-positive boot socks were found positive for

the North West region compared to East Anglia. This

correlates with the higher amount of livestock that are

present in the North West compared to East Anglia

(Elson et al. 2018) and also suggests that there is a signifi-

cant reservoir for stx-containing bacteria in such environ-

ments. There are also more STEC infections in the North

West compared to East Anglia (Byrne et al. 2015; Visham

2019). It is reassuring for using boot socks as a sampling

method that the results reflect both the trends in poten-

tial animal reservoirs and the recorded number of human

infections.

Seasonality of STEC virulence genes in the environment

STEC infections exhibit a seasonal peak, with the number

of human cases rising during summer months (Byrne

et al. 2015). To see whether the detection of the stx viru-

lence factor in the environment followed the seasonal

trends for STEC infections, the number of positive boot

socks from each region was plotted against the month of

the walks occurring (Fig. 3). Too few boot socks in East

Anglia were positive for stx to give any indication of sea-

sonal differences of stx in the environment. However, the

North West demonstrated an increase in the presence of

stx over the summer months, with the number of positive

boot socks dipping in October 2013 then increasing again

in May 2014.

Environmental conditions associated with positive boot

socks

Using information collected during the walks and data

recorded from local weather stations on the days of the

walks, regression analysis was used to determine whether

there was any association with positive boot socks and

environmental conditions. In univariate analyses, state of

the ground, mean river flow and mean daily temperature

were associated with the number of positive boot socks

per walk. In particular boggy ground and river flow were

negatively associated with stx-positive boot socks while

the 7-day mean temperature was positively associated
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Figure 1 Number of positive samples from multiplex PCR for STEC

virulence factors. Multiplex PCR was used to screen for the eaeA, stx1

and stx2 virulence factors from 720 boot sock samples.
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with stx-positive samples (Table 1). In the final model,

only mean daily temperature was significantly associated

with the number of positive boot socks (IRR = 1�20
(1�12–1�28), P < 0.001); the only other variable in the

final model after removing all predictors with a P > 0�2
was mean river flow in the previous 7 days (IRR = 0�89
(0�777–1�02), P = 0�094).

Consistency of boot socks within walks

Since three different boot socks were worn during each

walk, the number of walks where the boot socks all exhib-

ited the same result (either all positive or all negative for

stx) was calculated (Fig. 4). In all, 181 of all walks had

zero positive boot socks while only seven of the walks, all
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Figure 2 Percentage of boot socks positive

for stx. (a) Percentage of all boot socks

positive for stx by walk location (n = 120

boot socks) and region (n = 360). (b)

Percentage of walks with at least one stx-

positive boot sock by walk location (n = 40)

and region (n = 120).

0·0%

10·0%

20·0%

30·0%

40·0%

50·0%

60·0%

70·0%

P
er

ce
nt

ag
e 

of
 p

os
iti

ve
 b

oo
t s

oc
ks

Apr
 1

3

M
ay

 1
3

Ju
n 

13

Ju
l 1

3

Aug
 1

3

Sep
 1

3

Oct 
13

Nov
 1

3

Dec
 1

3

Ja
n 

14

Feb
 1

4

M
ar

 1
4

Apr
 1

4

M
ay

 1
4

Ju
n 

14

Ju
l 1

4

Figure 3 Seasonality of positive boot socks.

Percentage of boot socks positive for stx

within the two different study regions. Solid

lines underneath the dates indicate times

when walks were performed weekly. Dashed

lines indicate periods of time when walks

were undertaken every 3 weeks. Black

line = North West region; grey line = East

Anglia region.
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occurring in the North West, found all three boot socks

positive. This means that less than a quarter of all walks

(21�7%) exhibited variation in the presence or absence of

STEC-related virulence factors on the boot socks col-

lected.

Conclusions

Using multiplex PCR, we were able to successfully detect

the virulence factors eaeA and stx genes, associated with

STEC, from boot socks collected during walks in the Eng-

lish countryside. The samples for this study were initially

collected to investigate the presence of Campylobacter in

the environment (Jones et al. 2017). This initial analysis

of the boot socks found 47�1% positive for Campylobac-

ter. Similar to the results of our study, Campylobacter-

positive boot socks were also detected more frequently in

the North West over East Anglia. Overall, 41 (5�7%) of

the 720 boot socks collected demonstrated the presence of

Campylobacter and either the eaeA and stx virulence

genes. The results of both of these studies indicate that

boot socks can be used successfully for collecting environ-

mental samples across a wide sampling area and then

used to detect multiple different pathogens. Given the

convenience of this method, it is now being used by Pub-

lic Health England to assist with sampling during out-

break investigations (McFarland et al. 2017).

Materials and methods

Preparation of samples from boot socks

Details on the choice of walking routes and use of citizen

scientists for sample collection are shown in Jones et al.

(2017). For processing the boot socks, 100 ml of room

temperature buffered peptone water was added to the

Table 1 Results of negative binomial regression of number of boot

socks per walk positive for stx

Variable

Univariate analysis

IRR

L

95%

CI

U

95%

CI P

Ground

Dry 1 0�012
Wet 0�845 0�493 1�449
Boggy 0�349 0�173 0�703

Weather

Dry 1 0�099
Rain 0�527 0�246 1�128

People

0 1 0�29
1–10 1�132 0�583 2�198
>10 1�802 0�776 4�188

Sheep

0 1 0�098
1–10 2�606 0�595 11�409
>10 4�008 1�134 14�166

Cows

0 1 0�408
1–10 1�778 0�766 4�127
>10 1�141 0�467 2�786

Horses

0 1 0�117
1–10 1�752 0�78 3�939
>10 3�583 1�07 12�001

Muck

N 1 0�368
Y 1�393 0�677 2�868

Mean daily precipitation in

previous 7 days (mm)

0�961 0�869 1�062 0�434

Mean river flow in previous

7 days (M3 s�1)

0�764 0�632 0�924 0�005

Mean daily temperature in

previous 7 days (°C)

1�215 1�141 1�294 <0�0001
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Figure 4 Internal consistency in number of

positive boot socks in individual walks. Since

three boot socks were collected on each

walk, the internal consistency based on the

number of boot socks positive for stx was

determined. Total walk number = 240.
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sterile sample bag the boot socks were received in. These

were palpated to re-suspend any material and 4 ml was

removed and frozen in cryovials. This was undertaken for

all boot socks received during the original study period

from April 2013 through July 2014.

Isolation of genomic DNA and multiplex PCR

The samples frozen in peptone-buffered water were

thawed and 0�5 ml was added to 4�5 ml modified tryp-

tone soy broth (Oxoid CM0989, Thermo Scientific, Bas-

ingstoke, UK) to enrich for E. coli. Cultures were grown

overnight at 37°C, 1 ml was removed and the bacteria

were pelleted. Genomic DNA isolation was performed

using Qiagen’s DNA mini kit (Qiagen, Manchester, UK).

Primers were purchased from Sigma-Aldrich (Haverhill,

UK). The uidA primers were based on McDaniels et al.

(1996) while the eaeA and stx primers were from Son

et al. (2014) (McDaniels et al. 1996; Son et al. 2014). Qia-

gen’s HotStar Taq Plust Master Mix kit, supplemented to

2�5 mmol l�1 MgCl2, was used to perform all multiplex

PCR reactions according to the manufacturer’s directions

using 0�2 µl of gDNA. Cycling conditions included an

initial 10 min at 95°C to activate the polymerase followed

by 25 cycles of 95°C for 1 min, 54°C for 1 min, and

72°C with a final extension step of 7 min at 72°C. Sam-

ples were run on 2% TAE gel electrophoresis with ethid-

ium bromide and visualized with UVP’s ChemiDoc-IT2

imager. The expected sample sizes were 623 bp for uidA,

482 bp for stx2, 306 bp for stx1 and 245 bp for eaeA.

Statistical analysis

During the walks, information was collected on the con-

dition of the footpath and the number of livestock seen

by the walkers. Information was also collected from local

weather stations on the flow of nearby rivers and the

average temperatures and amount of rainfall in the 7 days

up to and including the day of the walk. These were used

in a longitudinal panel negative binomial regression uni-

variate analysis using the number of boot socks as count

data. All variables with P < 0�2 in the univariate analysis

were combined in a multiple variable analysis. Using a

backwards step-wise process, variables were removed if

P > 0�2 until only variables with P < 0�2 remained in the

model. All statistical analyses were performed in STATA 14.
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