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Abstract
Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropri-
ately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputa-
tion Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares 
two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets 
from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely 
at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble 
a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity 
measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. 
Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach 
combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases.
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Introduction

Many real-world datasets have missing or incomplete data 
[22, 23, 75]. Since the accuracy of most machine learning 
algorithms for classification, regression and clustering could 
be affected by the completeness of datasets, processing and 
dealing with missing data is a significant step in data min-
ing and machine learning processes. Yet, this is still under-
explored in the literature [11, 28, 49, 61, 68–70].

A few strategies have been commonly used to handle 
incomplete data [30, 34, 48]. For regression problems spe-
cifically where missing data has been more widely studied 
[36, 38, 39, 48, 55], multiple imputation (MI) has shown 
advantage over other methods [48, 72] because the multiple 
imputed values give a mechanism to capture the uncertainty 
reflected in missing data. However, work is still needed to 
address the problem of missing data in the context of data 

mining algorithms. Particularly, it is timely to experiment 
with the concept of multiple imputation and how to apply 
to classification problems.

The aim of this work is therefore to conduct a thorough 
investigation on how to effectively apply MI for classifica-
tion algorithms. We propose an ensemble that combines 
multiple models produced by MI, and we investigate the 
ways for combining different ensemble mechanisms with 
MI methods to achieve best results.

Our proposed method, MIE, is evaluated and compared 
with other alternatives under some simulated scenarios of 
increasing uncertainty in terms of missing data. For this, we 
create an experimental environment using datasets selected 
from the University of California Irvine (UCI) machine 
learning repository [47]. For each dataset, we use a mecha-
nism called Missing Completely at Random (MCAR) to gen-
erate missing data by removing the values of chosen attrib-
utes and instances with a variable probability. Therefore, 
we produce several experimental datasets which contain 
increasing amount of data MCAR.

In those scenarios, we investigate how increasing the 
amount of missing data affects the performance of compet-
ing approaches for handling missing data. They include the 
algorithm’s internal mechanism for handling missing data, 
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single imputation, machine learning imputation and our pro-
posed MIE.

The Problem of Missing Data

Little and Rubin [48] have defined the missing data problem 
based on how missing data is produced in the first place 
and they proposed three main categories as follows: Miss-
ing Completely at Random (MCAR), Missing at Random 
(MAR) and Missing not at Random (MNAR). The catego-
risation is important because it affects the biases that may be 
inherent in the data, and therefore the safety of approaches 
such as imputation. Missing Completely at Random 
(MCAR) occurs when an instance missing for a particular 
variable is independent of any other variable and independ-
ent of the missing data. It can be said that for MCAR miss-
ing data is not related to any other factor known or unknown 
in the study. This represents the safer environment for 
imputation to operate. Missing at Random (MAR) happens 
when the probability of having missing value in a record 
may depend on the known values of other attributes but not 
on the missing data. There are some inherent biases in data 
MAR, but it may be still safe to analyse this type of data 
without explicitly accounting for the missing data. Missing 
not at Random (MNAR) occurs when the probability of the 
instance having a missing value depends on unobserved val-
ues. This is also termed a non-ignorable process and is the 
most difficult scenario to deal with. In this paper we focus 
on addressing MCAR data, the safest environment in which 
imputation could operate and one that is often encountered. 
Further work will investigate the other mechanisms.

Horton et al. [39] have further categorised the patterns of 
missing data into monotone and non-monotone. Monotone 
patterns of missing data imply that the same data points have 
missing values in one or more features, so specific points 
are affected by missing data. They state that the patterns 
are concerned with which values are missing, whereas the 
mechanisms are concerned with why data is missing.

We focus in this study on non-monotone MCAR data, so 
our missing data affects multiple data points with no particu-
lar relation between data missing for different attributes for 
the same data points.

Mechanisms for Dealing with Missing Data

In practice, there are four popular approaches that have 
been used to deal with incomplete data: complete analysis 
[48], statistical imputation methods [4, 24, 34, 59], machine 
learning algorithms for imputation [40, 51, 52, 57, 59] and 
algorithms with a built-in mechanism to deal with missing 
data [10, 25, 43, 51, 74]. The first three approaches rely on 
pre-processing of the data to either remove or replace miss-
ing values. The last approach comprises a mechanism in the 

algorithms themselves to produce models taking account of 
the missing data. We provided a detailed explanation of the 
different approaches in our previous work [2].

We also studied how different classification algorithms 
such as C4.5 [51, 52], Naïve Bayes (NB) [10, 45], support 
vector machines (SVMs) [5, 16, 74] and random forest (RF) 
[7, 21] and their implementations in Weka, our platform 
of choice, can treat missing values [2]. A number of clas-
sification algorithms (e.g. C4.5 [52] and RF [43]) have been 
constructed with a mechanism called fractional method to 
cope with missing data. Naïve Bayes ignores features with 
missing values; thus, only the complete features are used 
for classification [10, 45]. SVMs do not deal with missing 
values [46] but its implementation in Weka, SMO, performs 
simple imputation [32]. In this work we investigate PART, 
in addition to the previous classifiers, which is also capable 
of treating missing data when constructing a partial tree as 
C4.5 does [25].

The rest of this paper is organised as follows: “Related 
Work” section reviews related research; the methods used in 
our paper are described in “MIE for Classification” section 
followed by our experimental set-up in “Experimental Set-
Up” section and “Results” section detail out the results of 
this study; this is followed by a discussion and conclusions 
in “Discussion and Conclusions” section.

Related Work

MI has been studied in the context of statistical analysis 
[55, 57, 58]. After that, it has been widely applied in many 
studies such as in survival analysis [41, 73], epidemiologi-
cal and clinical trials [44, 65], medical studies [56, 72] and 
longitudinal studies [50, 63]. The application of MI with 
ensemble learning for classification has rarely been used in 
the literature. We review a few published papers that have 
discussed the problem of missing data in the context of clas-
sification algorithms and the use of MI methods.

Silva-Ramírez et al. [62] proposed a method for simple 
imputation based on a multi-layer perceptron (IMLP) and a 
method for multiple data imputation that combines a multi-
layer perceptron and k-nearest neighbour (k-NN algorithm 
to impute missing data (MIMLP). The problem under con-
sideration was monotone MCAR missing data. The methods 
were compared with the traditional imputation methods such 
as mean, hot-deck and regression-based imputation. Their 
results showed that the MIMLP method performed best for 
numeric variables and the IMLP method performed better 
with categorical variables. Imputation by MLP methods 
offered some advantages for some datasets though statisti-
cal test for significance was not performed.

Liu et al. [49] proposed a credal classification method 
with adaptive imputation for incomplete pattern. In credal 



SN Computer Science           (2020) 1:134 	 Page 3 of 20    134 

SN Computer Science

classification objects can belong to multiple classes and 
meta-classes. The method has two stages. First, a record is 
classified based on the available information if the class is 
non-ambiguous. However, when the record is hard to clas-
sify, then it goes to the second step which involves imputa-
tion and later classification. In the imputation phase, self-
organized map (SOM) is used in combination with k-NN to 
obtain good accuracy while reducing computational burden.

A correlation-based low-rank matrix completion (LRMC) 
method was developed by Chen et al. [12]. The method 
applies LRMC to estimate missing data then uses a weighted 
Pearson’s correlation followed by K-nearest neighbour (k-
NN) search to choose the most similar samples. Further-
more, they proposed an ensemble learning to integrate 
multiple imputed values for a specific sample to improve 
imputation performance. The proposed method was tested 
on both traffic flow volume data and benchmark datasets. 
Further investigation was conducted to test the performance 
of the imputation in the classification tasks. Their proposed 
correlation-based LRMC and its ensemble learning method 
achieved better performance than traffic flow imputa-
tion methods such as temporal nearest average imputation 
(TNAI), temporal average imputation (TAI), probabilistic 
principal component analysis (PPCA) and low-rank matrix 
completion (LRMC).

Tran et al. [69] proposed a method that introduces multi-
ple imputation with an ensemble and compared the proposed 
method with others that use simple imputation. Ten datasets 
were collected from UCI repository. The ensemble achieved 
better classification accuracy than the other methods. How-
ever, they only applied C4.5 as a classification algorithm 
and used one method to perform multiple imputation on 
relatively small datasets.

Garciarena and Santana [31] studied the relationship 
between different imputation methods and missing data 
patterns using ten datasets from the UCI repository and a 
set of fourteen different classifiers such as decision trees, 
neural networks, support vector machines, k-NN and logistic 
regression. The result shows that the performance of indi-
vidual classifiers is statistically different when using various 
imputation methods. They concluded that the key to select-
ing proper imputation methods is to check first the patterns 
of missing data.

Tran et al. [70] further proposed methods incorporating 
imputation (single/multiple) with feature selections and 
clustering to improve classification accuracy and also the 
computational efficiency of imputation.

A new hybrid technique based on a fuzzy c-means clus-
tering algorithm, mutual information feature selection and 
regression models (GFCM) was developed by Sefidian 
and Daneshpour [61]. The aim was to find a set of similar 
records with high dependencies for a missing record and 
then apply regression imputation techniques within the 

group to estimate missing values for that record. The method 
showed statistically significant differences in most cases in 
comparison with mean imputation, kNNI, MLPI [62], FCMI 
[53] and IARI [64].

MIE for Classification

MI is a promising method that has been used to replace 
missing values by randomly drawing several imputed values 
from the distribution of unknown data [48, 55]. Unlike in 
simple imputation, the uncertainty is reflected as the impu-
tation process will result in various plausible values. There 
are a number of methods to impute data that we will explore 
in our work, and explain below. We also explore different 
methods to ensemble the results obtained from the different 
imputed values, as the ensemble represents a method for 
combining the evidence from the different models to arrive 
a final classification which should encompass the degree of 
missing data.

Imputation Methods

Multivariate Imputation by Chained Equations (MICE)

Fully Conditional Specification (FCS) is a method of MI 
that was firstly developed by Kennickell [42]. It defines a 
conditional density function to specify an imputation model 
for each missing predictor (variable) one by one, then iter-
ates the imputation over that model. Multivariate Imputation 
with Chained Equations (MICE), an algorithm developed 
by Buuren [8], is based on FCS but the imputation can be 
also applied for data that has no multivariate distribution. 
For each variable with missing values, the algorithm starts 
by identifying an imputation model for each column with 
missing values. After that, the imputation will be performed 
based on random draws from the observed data. The process 
is repeated based on the number of iterations set-up and the 
number of variables with missing values.

Expectation–Maximisation with Bootstrapping (EMB)

Honaker et al. [38] have developed an EMB algorithm for 
handling missing data that combines the EM algorithm with 
a bootstrapping approach. The EM algorithm is an itera-
tive approach developed by Dempster et al. [17]. Starting 
with the expectation and then the maximisation step, the 
algorithm aims to estimate the model parameters by itera-
tively performing the following. Firstly, in the expecta-
tion step (E-step), the likelihood function is evaluated by 
considering the current estimate of the model parameters. 
Second, in the maximisation step (M-step), the parameters 
are updated to maximise the likelihood function. Next, the 
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E-step updates the parameters from M-step to determine the 
new distribution.

On the other hand, bootstrapping is a mechanism used 
to estimate a sample distribution from original data with or 
without replacement. EMB works by repeatedly drawing a 
bootstrap with replacement from the original data M times, 
for the M required imputations; then, EM is run which firstly 
assumes a particular distribution, then initialise a mean and 
variance values for the missing data in each bootstrap gener-
ated. Then, the likelihood function is estimated by consider-
ing the current estimate of the model parameters (mean and 
covariance). Then, the parameters are updated to maximise 
the likelihood model. The expectation and the maximisation 
steps are repeated until the values converge [37].

Ensemble Methods

An ensemble is a technique for combining models used in 
machine learning. It was introduced by Tukey [71] when 
he built an ensemble of two different regression models. 
Since then, it has been then broadly studied and reviewed in 
classification tasks [6, 19, 20, 76]. The idea of an ensemble 
is to induce a set of base learners (classifiers), then their 
predictions are aggregated in some way to obtain a better 
classification. This can have advantages over relying on a 
single model as a combined model may be more precise and 
accurate. Furthermore, Breiman [6] explained the usefulness 
of ensembles with unstable classifiers that are easily affected 
by changes to the training data such as decision trees and 
neural networks.

An ensemble can be categorised according to the underly-
ing machine learning algorithms used into two main types: 
homogeneous and heterogeneous. A homogeneous ensemble 
is constructed from learners of the same type, e.g. a set of 
decision trees. On the other hand, when the strategy is to 
combine different types of learners such as decision trees, 
neural networks, or Bayesian networks, then we have a het-
erogeneous ensemble.

In general application, the aim of constructing an ensem-
ble is to achieve a classification accuracy that is higher than 
any of the individual learner. Thus, the individual learners 
are expected to be accurate with an error rate better than 
random guess, and diverse so two classifiers make different 
errors when predicting a new instance. A number of methods 
for constructing a diverse ensemble have been developed 
[6, 13, 19, 27]. Below is an explanation of the most popular 
ensemble methods which are bagging and stacking.

Bagging

Bagging (also known as bootstrap aggregation) is one of 
common ensemble methods that can be applied to classifica-
tion and regression problems [19, 52]. It is used to reduce 

the variance between models by generating additional train-
ing sets from the original data [52]. One such method is 
where a proportion of data points are randomly chosen with 
replacement by using bootstrap mechanism which generates 
multiple training sets; each has approximately 63% of the 
training data points [52, 66]. Then, a same base learner (e.g. 
decision trees) is run in parallel on these training sets. As a 
result, an ensemble of different models will be generated. To 
make the prediction for a new data, the final decision is made 
by a majority vote of the individual predictions obtained 
from the different models [19, 52].

Stacking

In the context of ensemble learning, meta-learning is the 
process of learning from the multiple learners and their out-
puts on the original training data. Such a method is efficient 
when individual classifiers misclassify the same patterns 
[54]. The method was introduced by Wolpert [76] and refers 
to a construction mechanism that uses the output of classi-
fiers instead of the training data to build the ensemble. A 
stacking ensemble can be implemented in two or more lay-
ers. In the first layer, a number of base learners are trained on 
the entire training set then produce (level-0) models. Then, 
the predictions of the individual models are used as input 
attributes (meta-level attributes) to the ensemble. The target 
of the original training set is appended to the (meta-level 
attributes) to form a new set of predictions, (level-1) model. 
This set is used to train a meta-classifier in the ensemble. 
The meta-classifier can be trained based on the predicated 
class label or the probabilities generated from (level-0) mod-
els [67]. This model is used to estimate the final prediction 
in the ensemble.

Framework for MIE

Our ensemble for MI works as follows. We first generate a 
series of increasing missing data under MCAR assumption. 
We then impute the artificial training datasets and gener-
ate five imputed datasets using two different MI techniques: 
MICE and EMB as described in “Imputation Methods” 
section. We next use these datasets to train classifiers and 
build our bagging and stacking ensembles. For our bagging 
ensemble, we train homogeneous classifiers (same classi-
fiers) on the imputed datasets. We then combine the predic-
tions of the models obtained from a separate test data using 
a majority vote method. This method aggregates the predic-
tions from the individual models and chooses the class that 
has been predicted most frequently as the final prediction, 
as illustrated in Fig. 1. Therefore, the bagging ensemble is 
evaluated using a hold-out test set. This can be viewed as an 
alternative method for bagging in which multiple imputed 
datasets may be more dissimilar to each other hence generate 
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more diverse models. On the other hand, Fig. 2 represents 
the construction of our stacking ensemble showing two lay-
ers. The first one involves the multiple imputed datasets 
trained by a number of learners (heterogeneous classifiers) to 
generate different models. The models are tested then against 
a separate test set to make a new dataset of predictions. This 
new dataset is combined with the actual class of the test set 
to construct the (level-1) dataset which is used as an input 
for the second layer. In this layer we train a meta-classifier 
and then we evaluate the performance of the ensemble using 
10-fold cross-validation. 

Experimental Set‑Up

Datasets

For our study, a collection of 20 benchmark datasets were 
obtained from the UCI machine learning repository [47]. 
The datasets have different sizes and feature types (numeri-
cal real, numerical integer, categorical and mixed) as shown 
in Table 1. They were all complete datasets, that is they 
have no missing values, except PostOperativePatient dataset 
where three records with missing values have been deleted.

Data Preparation

Before conducting experiment we solved the problem of 
the sparse datasets we have, LSVT and Forest Cover Type. 
LSVT has five attributes with zero values, so we deleted 
those features. On the other hand, we transform Forest Cover 
Type by taking the attributes that represent Wilderness_Area 
(4 binary columns) and Soil_Type (40 binary columns) then 
reducing each to a single column with multiple values. So 
the first new column has a numerical value of (1–4) which 
represents the presence of a particular area while the second 
indicates the soil type with a value (1–40). Additionally, we 
followed Clark et al. [15] mechanism of treating Abalone 
as a three-category classification by grouping classes 1–8, 
9 and 10, and 11 so that we can improve the classification 
process.

Some datasets are provided with separate train and testing 
sets. The rest have been partitioned using StratifiedRemove-
Folds filter in Weka to retain the class distributions with a 
ratio of 70% training and 30% testing, except Forest Cover 
Type, our largest dataset, where 60% of data is used for train-
ing and 40% for testing.

Table  2 shows the mean accuracy and the standard 
deviation of the classifiers (J48, NB, PART, SMO and RF) 
obtained on the testing sets by training on the original data 
with no missing values. Those classification results for the 
complete data are used then as the benchmarks to study how 
missing data affects the accuracy and performance of the 
algorithms when various methods for dealing with missing 
data are used. Note that we run RF five times with differ-
ent random seeds as it obtains different results in each run 
given its stochastic nature. The RF classifier performs better 
than other classifiers in nine of the datasets. Then, SMO is 
the second best classifier, working best on five datasets out 
of twenty, while J48 and PART work best on three datasets 
each. The performance of NB is the worst compared to the 
other classifiers.

Then, we test the performance of multiple classifiers on 
multiple datasets using Friedman test to check which clas-
sifiers outperform others. The test shows a significant dif-
ference (p value < 0.05 ) in performance so we proceed with 
post hoc test, Nemenyi test. The Critical Difference diagram 
as a result of applying Nemenyi test is shown in Fig. 3. The 
figure illustrates that RF behaves significantly better than 
PART and NB although there are no statistical differences 
within each group, i.e. no statistically significant between 
RF, SMO and J48. Similarly, the performance difference 
for J48, PART, NB and SMO is not statistically significant.

Missing Data Generation

To create scenarios for testing with increasing missing data, 
some values in the training sets are removed completely at 

Fig. 1   The bagging ensemble framework takes imputed datasets as 
inputs to train different classifiers C

1
 , ...,C

n
 in layer 1. The predictions 

made by individual classifiers, P
1
 , ...,P

n
 , are combined by the major-

ity vote method
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random as follows: Firstly, 10% (then 20%, 50%) of the 
attributes are randomly selected to remove data with the fol-
lowing chosen rates 5%, 15%, 30% and 50% of the records, 
respectively. We repeat the process of selection and remov-
ing five times so different features/records may be affected 
by missing data each time. As a result, 12 artificial datasets 
are produced from each of the original datasets each time 
and those have multiple levels of missing data. In total, we 
generate ( 20 ∗ 12 ∗ 5 = 1260 ) datasets. Table 3 summarises 
the experimental scenarios artificially created.

In our experiments, the models are tested on separated 
test data. However, for the stacking ensemble, the results 
reported represent tenfold cross-validation as the predictions 
of the separated test sets are used to construct a new dataset 
for the second layer of the stacking ensemble.

Comparative Methods

Building Models with Missing Data (MD)

In “Mechanisms for Dealing with Missing Data” section we 
discussed that the chosen algorithms have their own way of 
dealing with missing data internally. We therefore pass all 
the data including missing data to the algorithms without 
pre-processing. Such models are referred to as J48_MD, 
NB_MD, PART_MD, SMO_MD and RF_MD.

Simple Imputation (SI)

To test simple imputation, the numerical attributes are 
replaced with their mean and the categorical attributes with 

Fig. 2   The stacking ensemble 
framework takes imputed data-
sets as inputs to train classifiers 
C
1
 , ...,C

n
 . The predictions made 

by individual classifiers, P
1
 , 

...,P
n
 , are used to form a new 

data to be used to train a meta-
classifier in the second layer
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Table 1   The details of the 
datasets collected for the 
experiments

The # symbol next to the dataset denotes that it has come with a separate test set

No. Dataset #Features #Instances #Classes Feature types

1 PostOperativePatient 8 87 2 Integer, categorical
2 Ecoli 8 336 8 Real
3 Abalone 8 4177 3 Integer, real and categorical
4 TicTacToe 9 958 2 Categorical
5 BreastTissue 10 106 6 Real
6 Statlog 20 1000 2 Integer, categorical
7 Spect # 22 276 2 Categorical
8 Flags 30 194 8 Integer, categorical
9 BreastCancer 31 569 2 Real
10 Chess 36 3196 2 Categorical
11 Connect-4 42 67,557 2 Categorical
12 ForestCoverType 54 581,012 7 Integer, categorical
13 ConnectionistBench 60 208 2 Real
14 HillValley # 101 606 2 Real
15 UrbanLandCover # 148 168 9 Integer, real
16 EpilepticSeizure 179 11,500 5 Integer, real
17 Semeion 265 1593 2 Integer
18 LSVT 309 126 2 Real
19 HAR # 561 10,299 6 Real
20 Isolet # 617 7797 26 Real

Table 2   The mean accuracy 
of the classifiers and standard 
deviation for the complete 
datasets obtained based on test 
set

Best accuracy values for each dataset are in bold

Dataset J48 NB PART​ SMO RF Avg

PostOperativePatient 71.43 64.29 71.43 60.71 64.29 (0.00) 66.43 (0.00)
Ecoli 82.14 83.04 82.13 83.04 80.89 (1.20) 82.25 (0.24)
Abalone 63.43 58.91 62.21 65.23 65.36 (0.71) 63.028 (0.14)
TicTacToe 84.33 72.73 88.09 98.75 95.17 (1.14) 87.81 (0.23)
BreastTissue 65.71 57.14 62.86 57.14 64.57 (1.56) 61.48 (0.31)
Statlog 72.37 76.28 69.97 76.27 74.95 (1.22) 73.97 (0.24)
Spect 66.84 64.71 65.24 67.91 69.95 (1.48) 66.93 (0.30)
Flags 57.81 48.44 53.13 35.94 60.00 (2.61) 51.06 (0.52)
BreastCancer 95.24 93.65 92.06 97.88 95.98 (0.80) 94.96 (0.16)
Chess 99.25 88.08 98.97 95.40 99.06 (0.16) 96.15 (0.03)
Connect-4 79.31 72.11 78.39 76.06 81.94 (0.07) 77.56 (0.01)
ForestCoverType 93.71 62.16 91.4 71.70 96.58 (0.02) 83.11 (0.01)
ConnectionistBench 72.46 69.57 65.22 81.15 84.35 (1.89) 74.55 (0.38)
HillValley 48.15 51.44 48.15 53.08 56.71 (1.80) 51.51 (0.36)
UrbanLandCover 67.65 77.91 69.83 74.56 81.30 (0.53) 74.25 (0.11)
EpilepticSeizure 48.53 43.33 49.62 27.52 68.17 (0.40) 47.43 (0.08)
Semeion 92.84 91.34 98.49 97.74 95.40 (0.10) 95.16 (0.02)
LSVT 66.67 51.19 97.62 76.19 85.71 (1.69) 75.48 (0.34)
HAR 93.85 75.85 94.47 98.31 97.95 (0.20) 92.09 (0.04)
Isolet 83.45 82.36 82.81 95.83 93.97 (0.31) 87.68 (0.06)
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their mode. Then, the produced datasets after imputation 
are used for classification model building. In our results the 
models with single imputation are referred to as J48_SI, 
NB_SI, PART_SI, SMO_SI and RF_SI.

Random Forest Imputation (RFI)

We use a RF imputation package (missForest) implemented 
in R to replace missing values using a RF algorithm. The 
algorithm starts with filling incomplete data by median if 
they are numeric or mode if they are categorical. Then, it 
updates missing values by using proximity from random for-
est and iterates the imputation a number of times. Finally, 
the imputed value for an attribute with missing values is the 
weighted average of non-missing values if it is numeric or 
the mode if it is nominal. We set up the number of iterations 
to perform the imputation to 5 and the number of trees that 
grow in each forest to 300. In our results the models that 

used RFI are referred to as J48_RFI, NB_RFI, PART_RFI, 
SMO_RFI and RF_RFI.

Proposed MIE Methods

The following steps have been undertaken to test the bagging 
and stacking ensemble. First, MICE and Amelia packages in 
R, which implement Multivariate Imputation with Chained 
Equation and Expectation–Maximisation with Bootstrap 
algorithms, respectively, are applied to generate five imputed 
datasets. For MICE, we set the predictive mean match as the 
imputation method, the number of iterations to perform the 
imputation to 20 and the number of the imputed datasets to 
5. For Amelia, we used 5 as the number of imputations, too. 
Additionally, we perform the imputation in parallel when 
processing large and high dimensional datasets.

The multiple imputed datasets are used as inputs to train 
the classifiers and for our bagging ensemble, we aggregate 
the predictions obtained by the models by the majority vote 
method. One base learner is used as the classifier. Our clas-
sifiers of choice for the bagging ensemble are J48 [51], NB 
[45], PART [26], SMO [60] and RF [43] (as implemented 
in Weka) with their default options for classifying the data. 
On our results, such models are referred to as MICE_Hom 
and EMB_Hom, depending on the method to perform the 
imputation in the first place.

A second ensemble approach tested is to build a stacking 
ensemble, where the training datasets are used to perform 
the imputation then to train all chosen classifiers to generate 
several models. These models are used as inputs to the first 
layer of the stack. The predictions of the different models 
on the testing set are used to form a new dataset for level-1 
in the ensemble. Then, we train a meta-classifier in this new 
dataset in the second layer. For testing the stacking ensem-
ble, we perform 10-fold cross-validation to evaluate the per-
formance of models. These are referred to as MICE_SE and 
EMB_SE depending on the MI method.

Evaluating Classification Methods

We use the classification accuracy as the metric for our 
comparisons of performance. We compare between all the 
approaches looking for differences in the algorithms’ perfor-
mance on each scenario separately. We perform Wilcoxon 
signed-rank test with Finner’s procedure for correcting the 
p values for pairwise comparison testing with a significance 
level of � = 0.05 [18, 29] with a number of controls sepa-
rately as follows:

We perform two different statistical tests when evaluating 
the performance of classifiers over the datasets as follows: 

1.	 When comparing multiple classifiers over multiple 
datasets, we use the method described by Demšar [18], 

Fig. 3   Critical Difference diagram showing statistically significant 
differences between classifiers. The bold line connecting classifiers 
means that they are not statistically different

Table 3   Experimental scenarios with missing data artificially created

Scenario %Features selected %Records 
affected by 
MD

Sce1 10 5
Sce2 15
Sce3 30
Sce4 50
Sce5 20 5
Sce6 15
Sce7 30
Sce8 50
Sce9 50 5
Sce10 15
Sce11 30
Sce12 50
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including the Friedman test and the post hoc Nemenyi 
test which is represented as a Critical Difference (CD) 
diagram, with a significance level of � = 0.05.

2.	 The Wilcoxon signed-rank test is applied for performing 
pairwise comparison. We use a control algorithm, the 
performance of the classifier on SI, with a significance 
level at � = 0.05.

Evaluating Imputation Methods

Numerous statistical methods are used to check the varia-
tion between and within the multiple imputed datasets [1, 
3, 8, 35]. These involve graphical representations such as 
histogram, density and quantile–quantile plots [1]. Others 
suggest the use of numerical comparisons such as means and 
standard deviations [35]. In this study instead we propose 
the use of dissimilarity, as used in the context of clustering 
algorithms [9, 9, 33], to evaluate the quality of the imputa-
tion methods. Dissimilarity is a numeric measurement of 
the degree of difference between data points. We check the 
quality of the imputation by comparing each imputed data 
point with its original counterpart. In that way we can meas-
ure the dissimilarity between each pair of points (original/
imputed). We can then aggregate dissimilarity across the 
whole dataset to arrive at a measure of quality of the impu-
tation, with imputations that produce points closer to the 
original being considered better than those where the dis-
similarity is greater.

As we have different data types in our datasets, i.e. 
numeric, categorical, mixed, we use the weighted overall 
dissimilarity formula proposed by Gower [33], the Gower 
Coefficient, to compute the distance dis(a,b) between each 
data point, a, in the original dataset and the corresponding 
data point, b, in the artificial dataset after performing MI 
as follows:

where N denotes the total number of features in a dataset, 
w is the assigned weight to a feature (we set w=1 for each 
feature) and f is a feature which can be either numerical or 
categorical.

Before we apply the formula to measure distance, we 
standardise each numerical attribute, f, into a comparable 
range using the standardised measure, z−score , to avoid 
attributes with a larger range having a bigger effect on 
the distance measurement. For this we use the following 
equation:

(1)dis(a, b) =

∑N

f=1
w
(f )

ab
dis

(f )

ab

∑N

f=1
w
(f )

ab

(2)x
�

= z(xf ) = (xf − mf )∕sf

where x denotes a value in an attribute, m the mean of attrib-
ute and s is the mean absolute deviation for that attribute. 
Then, we compute the distance, dis(f )

ab
 , as follows:

The contribution of each categorical attribute to the overall 
dissimilarity dis(f )

ab
= 0 if xaf  and xbf  are identical otherwise 

dis
(f )

ab
= 1 .

The overall aggregated dissimilarity function remains in 
the same range [0,1]. Finally, we average the distance of all 
records to obtain the mean distance between the original 
and imputed data.

Results

In order to understand how different algorithms behave 
under different imputation regimes, we began by investi-
gating each algorithm separately. In particular, we applied 
our proposed methods that combine MI with ensemble 
techniques, MIE, along with the comparative approaches 
as described in “Comparative Methods” section. We there-
fore study the performance of the internal mechanism of 
the algorithms for handling missing data (e.g. for J48, J48_
MD, NB_MD, PART_MD, SMO_MD and RF_MD), the 
simple imputation (J48_SI, NB_SI, PART_SI, SMO_SI and 
RF_SI), the RF imputation (J48_RFI, NB_RFI, PART_RFI, 
SMO_RFI and RF_RFI). Our proposed MIE methods are 
represented by the combination between MI methods with 
bagging (MICE_Hom, EMB_Hom) and stacking ensembles 
(MICE_SE and EMB_SE). The details of the results can be 
found from the authors.

Classification Performance

For each of the classifier/imputation methods studied, we 
applied the Friedman statistical test [18] to compare the per-
formance of the imputation methods including our proposed 
approach. The test compares the mean ranks of the classi-
fiers on a number of datasets as follows: with 7 algorithms 
(i.e. variations on imputation regimes) and 20 datasets, ϝ it 
is distributed according to the ϝ distribution with 7 − 1 = 6 
and (7 − 1) ∗ (20 − 1) = 114 degrees of freedom. If we use a 
significance level of � = 0.05 , the critical value of ϝ is 2.18.

For the J48 algorithm, Table 4 summarises the mean rank 
for the different imputation/ensemble methods on each of 
the artificial datasets in each scenario separately. Hint: low-
est rank means better performance. On average, for J48 the 
stacking ensemble with EMB (EMB_SE) obtained a bet-
ter rank hence better overall classification accuracy, with 
MICE_SE second best. J48_SI was the worst.

(3)dis
(f )

ab
=
|
|
|
x
�

af
− x

�

bf

|
|
|
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Table 4   The mean rank for J48 
on different imputation methods 
along with proposed approach 
on all dataset affected by 
missing data in all scenarios

The value in bold indicates that the algorithm performs better than others

Scenario J48_MD J48_SI J48_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 5.08 5.38 4.13 4.88 3.60 2.50 2.45
2 5.35 5.30 4.25 4.50 3.78 2.60 2.23
3 5.58 5.58 4.10 4.18 3.93 2.10 2.55
4 4.93 5.53 4.68 4.50 3.70 2.33 2.35
5 5.38 5.60 3.98 4.53 3.68 2.45 2.40
6 5.25 5.68 4.43 4.10 3.55 2.48 2.53
7 5.35 5.20 5.05 4.15 3.48 2.40 2.38
8 5.20 5.53 4.58 4.80 3.05 2.48 2.38
9 4.93 5.33 4.80 4.75 3.60 2.48 2.13
10 5.30 5.13 4.70 4.50 3.43 2.23 2.73
11 5.00 5.33 4.58 4.50 2.90 2.63 3.08
12 4.88 5.65 4.15 4.20 3.13 3.30 2.70
Avg rank 5.19 5.44 4.45 4.47 3.49 2.50 2.49

Table 5   The mean rank of NB 
in combination with different 
imputation methods and of 
our proposed approach on all 
dataset affected by missing data 
for different scenarios

The value in bold indicates that the algorithm performs better than others

Scenario NB_MD NB_SI NB_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 4.40 5.05 4.98 4.98 5.23 1.73 1.65
2 4.55 4.73 5.05 4.95 5.40 1.88 1.45
3 4.63 4.88 4.93 5.05 5.05 1.63 1.85
4 4.60 5.00 5.40 4.38 5.18 1.60 1.85
5 4.55 4.95 5.40 4.93 4.68 1.88 1.63
6 4.68 4.63 5.15 5.20 4.93 1.75 1.68
7 4.63 4.63 5.18 5.03 5.20 1.80 1.55
8 4.80 4.63 5.20 4.90 4.83 1.85 1.80
9 4.18 4.80 5.28 4.85 5.00 2.05 1.85
10 4.48 5.15 5.25 4.53 4.95 2.08 1.58
11 3.90 5.20 5.55 4.90 5.03 1.73 1.70
12 4.08 5.18 4.90 4.63 4.85 2.08 2.30
Avg rank 4.45 4.90 5.19 4.86 5.03 1.84 1.74

Table 6   The mean rank of 
PART in combination with 
different imputation methods 
and of our proposed approach 
on all dataset affected by 
missing data for different 
scenarios

The value in bold indicates that the algorithm performs better than others

Scenario PART_MD PART_SI PART_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 4.48 5.45 4.78 4.63 3.65 2.45 2.58
2 4.43 5.58 4.78 4.58 3.35 2.93 2.38
3 4.80 5.43 4.78 4.35 3.33 2.88 2.45
4 4.85 5.55 4.85 4.28 3.65 2.40 2.43
5 4.30 5.43 4.75 5.40 3.10 2.58 2.45
6 4.73 5.48 4.55 4.73 3.28 2.70 2.55
7 4.75 5.13 4.70 4.90 3.03 3.13 2.38
8 4.35 5.93 5.03 4.23 2.93 2.95 2.60
9 4.98 5.53 5.15 4.58 3.10 2.73 1.95
10 4.63 5.50 5.00 5.00 3.03 2.50 2.35
11 5.28 5.70 4.85 4.25 2.60 2.75 2.58
12 4.38 5.75 4.88 4.30 3.18 2.93 2.60
Avg rank 4.66 5.54 4.84 4.60 3.18 2.74 2.44
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Similar results were obtained for the NB, PART and SMO 
algorithms as illustrated in Tables 5, 6 and 7. In each case 
the EMB_SE algorithm produced the best performance in 
terms of ranking and hence overall accuracy on different 
datasets. For both NB and PART, MICE_SE was second 
best. However, for SMO in Table 7, RFI was a close match 
to MICE_SE. For RF, shown in Table 8 EMB_Hom was the 
best in most scenarios, whereas the internal mechanism of 
RF for handling MD showed worse performance than others 
in most cases.

So far we have used the Friedman test to compute the 
average ranks. The test also gives us the ability to compute 
a p value, to discern if the algorithm performs significantly 
different to others according to the average rank obtained. 
Table 4 presents the p values resulting from application 
of the Friedman test for each scenario and each algorithm 
and shows that the performance of the different imputation 

methods when combined with a given classifier were sig-
nificantly different. The symbol ∗ denotes that the test was 
significant p < 0.05 . J48, NB and PART were statistically 
different when different imputation methods were applied 
in all scenarios tested. The performance of SMO was sig-
nificant in most cases while RF was the same in half of the 
cases.

We also used the Wilcoxon signed-rank test for pairwise 
comparison with a control algorithm. This test computes the 
median (not average) accuracy among all datasets. We chose 
the performance of the classifiers applied to data imputed by 
SI as a control as this is a form of naive imputation which 
may be frequently used and is often used as a control against 
new data imputation methods (Table 9). MI combined with 
an ensemble in the case of the J48 algorithm (i.e. EMB_
Hom, MICE_SE and EMB_SE) was statistically significant 
better than the control in all cases as shown in Table 10. On 

Table 7   The mean rank of SMO 
in combination with different 
imputation methods and of 
our proposed approach on all 
dataset affected by missing data 
for different scenarios

The value in bold indicates that the algorithm performs better than others

Scenario SMO_MD SMO_SI SMO_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 4.68 5.00 3.95 4.30 3.75 3.53 2.80
2 4.83 5.10 4.05 3.78 4.00 3.30 2.95
3 4.60 5.15 3.63 4.63 3.83 3.40 2.78
4 4.80 5.15 3.48 4.43 3.60 3.18 3.38
5 4.20 4.85 3.90 3.80 4.30 3.25 3.70
6 4.80 5.05 4.05 3.75 4.08 3.00 3.28
7 4.93 5.65 3.65 4.05 3.78 3.13 2.83
8 4.90 5.08 3.48 4.00 3.75 3.53 3.28
9 4.85 5.03 3.93 3.90 4.03 3.45 2.83
10 4.85 4.98 4.00 3.75 4.10 3.08 3.25
11 4.38 4.93 2.95 4.58 4.03 3.80 3.35
12 5.03 5.25 2.93 3.93 3.83 3.48 3.58
Avg rank 4.74 5.10 3.66 4.07 3.92 3.34 3.16

Table 8   The mean rank of RF 
in combination with different 
imputation methods and of 
our proposed approach on all 
dataset affected by missing data 
for different scenarios

The value in bold indicates that an algorithm performs better than others

Scenario RF_MD RF_SI RF_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 5.10 4.65 3.58 3.90 3.20 4.00 3.58
2 4.95 4.78 3.85 4.10 2.93 4.12 3.23
3 4.88 4.35 3.60 4.5 3.03 3.63 4.03
4 4.65 4.80 3.75 4.55 2.85 4.00 3.40
5 4.63 4.40 3.43 3.28 4.70 3.88 3.70
6 5.38 4.45 3.58 4.08 3.05 3.45 4.03
7 5.10 4.33 3.68 4.05 3.00 4.15 3.70
8 4.55 4.23 3.45 4.23 2.88 4.33 4.35
9 5.63 4.90 3.70 3.63 3.03 4.03 3.10
10 5.08 4.48 4.03 3.45 3.25 3.93 3.80
11 4.88 4.60 3.08 3.83 2.90 4.15 4.58
12 5.25 4.20 2.85 3.93 3.03 4.30 4.45
Avg rank 5.00 4.51 3.55 3.96 3.15 4.00 3.83
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the other hand, MICE_HOM models and J48_RFI were sig-
nificantly different in a few scenarios. The internal mecha-
nism of J48 for handling MD was not different than SI.

For the NB algorithm, the results are shown in Table 11. 
We can see that only the combination between MI and 
stacking (MICE_SE and EMB_SE) performed statistically 
different from the control while other methods showed no 
difference.

For PART, as shown in Table  12, the combination 
between MI with ensembles (EMB_Hom, MICE_SE and 
EMB_SE) was better than the control in all cases. On 
the other hand, MICE_Hom, PART_RFI and the internal 
method were significantly different from the control in a 
few scenarios.

For SMO, performance for the EMB_SE approach is bet-
ter in most but not all cases and similarly for MICE_SE, 
as illustrated in Table 13. SMO_RFI was better than the 
control only when the ratio of missingness increases. The 
EMB_Hom method was significantly better than the control 
when low missing values were encountered.

For RF, Table 14 presents the comparison with the con-
trol and shows some improvements when EMB_Hom was 
used. For all other approaches to missing data there appears 
to be little difference.

Quality of the Imputed Data

Here we first evaluate the quality of imputation methods 
used, i.e. how far is the imputed data from the real data. 
We used the normalised Euclidean distance as explained 
in “Evaluating Imputation Methods” section to compute 
the mean dissimilarity between the imputed and the origi-
nal data. We divide our analysis by the feature type (i.e. 
numerical, categorical or mixed) as imputation may work 
differently for different data types. The number of datasets 
in each group is 10, 5 and 5, respectively.

The three plots at the top of Fig. 4 represent the mean 
dissimilarity between the real and the imputed values using 
EMB, MICE, RFI and SI with respect to the numerical 
datasets. In most of the scenarios RFI produced imputed 
data closer to the real data as the mean dissimilarity was 
very close to 0. EMB was a close match to RFI followed by 
MICE. However, imputed data by SI was the worst as it was 
further from the real data specially with increasing uncer-
tainty. With respect to the categorical data, the plots in the 
middle of the figure show that the mean dissimilarity for all 
imputation methods devised was close to each other and to 
the real data though EMB produced the best performance for 
most scenarios. In the case of categorical data, all methods 
tested were efficient in terms of recovering missing values. 

Table 9   The p values resulting from the Friedman test for comparing 
the performance of each classifier with different imputation methods 
separately

The symbol (*) shows that the performance of the classifiers are 
statistically different when applying different imputation/ensemble 
methods

Scenario Classifiers

J48 NB PART​ SMO RF

1 6.33E−07* 7.03E−13* 5.34E−06* 0.03* 0.07
2 3.76E−07* 5.50E−13* 5.88E−06* 0.02* 0.03*
3 1.34E−08* 9.59E−12* 1.21E−05* 0.01* 0.11
4 1.71E−07* 3.00E−12* 5.79E−07* 0.01* 0.04*
5 7.05E−08* 4.37E−12* 8.65E−08* 0.34 0.19
6 3.59E−07* 4.00E−12* 6.29E−06* 0.02* 0.02*
7 8.73E−08* 1.59E−12* 1.33E−05* 0.00* 0.09
8 2.46E−08* 1.24E−10* 5.22E−07* 0.04* 0.15
9 6.39E−08* 6.13E−10* 3.54E−09* 0.02* 0.00*
10 1.06E−06* 3.58E−11* 3.76E−08* 0.03* 0.13
11 1.74E−05* 4.04E−13* 1.82E−08* 0.05 0.02*
12 8.55E−05* 1.37E−07* 6.46E−06* 0.01* 0.01*

Table 10   The median accuracy 
for J48 on different imputation/
ensemble methods along with 
proposed approach resulting 
from Wilcoxon signed-rank test

The symbol (*) indicates that the algorithm performs better than the control

Scenario J48_MD J48_SI J48_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 75.32 75.30 75.43 75.57 76.07* 81.05* 81.31*
2 75.24 75.24 75.69* 75.69* 76.11* 80.65* 81.34*
3 74.90 74.95 75.40* 75.40* 75.98* 81.01* 80.67*
4 75.03 74.86 75.08* 75.20* 75.86* 80.34* 80.21*
5 75.19 75.13 75.64* 75.78* 76.39* 80.86* 80.85*
6 75.39 75.11 75.60* 75.64* 76.28* 80.61* 80.44*
7 75.00 75.10 75.37 75.54 76.25* 80.15* 80.65*
8 74.54 73.93 74.54* 74.27 76.38* 79.71* 79.44*
9 75.63 75.21 75.31 75.34 76.70* 81.08* 81.09*
10 74.82 75.36 75.14 75.33 76.92* 80.74* 80.28*
11 74.31 73.84 74.91* 74.41 76.63* 78.78* 78.33*
12 73.04 71.92 73.50* 73.74* 75.63* 77.06* 77.66*
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Table 11   The median accuracy 
for NB on different imputation/
ensemble methods along with 
proposed approach resulting 
from Wilcoxon signed-rank test

The symbol (*) indicates that the algorithm performs better than the control

Scenario NB_MD NB_SI NB_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 69.91 69.94 69.77 69.91 69.76 81.80* 81.84*
2 69.99 70.0 69.80 69.92 69.83 81.83* 82.12*
3 70.09 70.07 69.78 69.88 69.93 81.42* 81.58*
4 69.74 69.92 69.54 69.67 69.78 81.15* 81.32*
5 69.89 70.04 69.56 69.96 69.92 81.16* 81.62*
6 69.90 70.06 69.50 69.77 69.90 81.47* 81.53*
7 70.07 70.14 69.62 69.85 69.91 81.22* 81.47*
8 69.66 69.94 69.35 69.53 69.74 80.41* 80.11*
9 70.13 70.31 69.37 70.15 70.013 81.04* 81.36*
10 70.03 69.91 69.18 70.31 69.79 81.35* 81.33*
11 70.25 69.73 69.07 69.83 69.62 79.86* 79.44*
12 70.25 69.07 69.09 69.54 69.49 78.11* 78.20*

Table 12   The median accuracy 
for PART on different 
imputation/ensemble methods 
along with proposed approach 
resulting from Wilcoxon signed-
rank test

The symbol (*) indicates that the algorithm performs better than the control

Scenario PART_MD PART_SI PART_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 75.89 75.51 75.56 75.46 77.11* 80.92* 81.03*
2 75.68* 75.14 75.60* 75.35 77.18* 79.81* 80.80*
3 75.62 74.99 75.34 75.61 77.34* 79.75* 80.08*
4 75.29 74.93 74.84 75.44 76.64* 79.86* 80.54*
5 75.98* 75.40 75.64 75.41 77.53* 80.27* 80.70*
6 75.55 75.09 75.65 75.34 77.26* 80.15* 80.54*
7 75.20 75.21 75.36 74.66 77.68* 79.42* 80.38*
8 75.19* 73.40 74.24* 74.74* 77.23* 78.32* 79.15*
9 75.58 75.23 75.11 75.35 77.65* 80.33* 81.02*
10 75.28* 74.80 74.92 74.69 77.55* 79.81* 80.22*
11 74.21* 73.15 74.20* 75.00* 77.75* 77.98* 78.40*
12 73.85* 71.70 72.85* 72.57 75.82* 76.45* 77.57*

Table 13   The median 
accuracy for SMO on different 
imputation/ensemble methods 
along with proposed approach 
resulting from Wilcoxon signed-
rank test

The symbol (*) indicates that the algorithm performs better than the control

Scenario SMO_MD SMO_SI SMO_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 76.12 75.61 75.93 76.52 76.36 81.37* 81.61*
2 75.75 75.62 75.74 76.27 76.12 81.55* 81.75*
3 75.66 75.54 76.27* 76.24 76.32* 81.11* 81.22*
4 75.46 75.40 76.38* 75.50 76.33* 80.95* 80.82*
5 76.23 75.99 75.61 76.35 76.26 80.93 81.25
6 75.71 75.79 76.01 76.14 75.85 81.12** 81.10*
7 75.28 75.04 75.84* 76.01 76.08* 80.94* 81.13*
8 74.99 75.00 75.51 75.94 75.44 79.75 79.95*
9 76.14 76.00 75.94 76.46 76.44 81.16* 81.50*
10 75.21 75.16 75.17 76.41 75.42 81.17* 80.93*
11 74.89 74.61 75.43 74.93 74.28 79.23 79.16*
12 73.27 73.26 75.20* 73.19 73.67 77.81* 78.23
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On the other hand, different imputation methods behave dif-
ferently with the mixed data type as shown at the bottom 
of the figure EMB produced data that was more similar to 
the real data as the mean dissimilarity did not exceed 0.1 in 
the worst case. RFI became second best followed by MICE. 
Again the SI was the worst in all cases.

Classification Results by Datatype

Finally, we analyse the efficiency of the imputation method 
based on different data types and we relate this to the per-
formance of different classifiers. We do this separately for 

each classification algorithm. We present box plots showing 
the range of accuracies (max, min, median and any outliers) 
obtained for all the datasets of a given data type. The differ-
ent scenarios in terms of % of missing data are represented 
in the x-axis, though we combined the results from the miss-
ing data affecting 10%, 20% and 50% features in one box plot 
as the same patterns were observed for each. The grey box 
plot in each graph represents the accuracy on the complete 
dataset, before any data is removed.

Figure 5 shows the range of accuracies as box plots for 
the J48 algorithm applied on numerical (left), categorical 
(centre) and mixed (right) datasets. On numerical datasets 

Table 14   The median accuracy 
for RF on different imputation/
ensemble methods along with 
proposed approach resulting 
from Wilcoxon signed-rank test

The symbol (*) indicates that the algorithm performs better than the control

Scenario RF_MD RF_SI RF_RFI MICE_Hom EMB_Hom MICE_SE EMB_SE

1 80.42 80.63 81.33* 81.25 81.45* 80.87 81.35
2 80.90 80.71 81.04 81.07 81.50* 80.86 81.43
3 80.42 80.54 80.74 80.53 81.29 80.98 80.70
4 80.04 79.99 80.45 80.45 80.88* 80.26 80.74
5 80.04 79.99 80.45 80.45 80.88 80.26 80.74
6 80.67 80.92 81.18 81.10 81.39 81.21 81.01
7 79.80 80.30 80.78 80.80 81.02 80.15 80.65
8 79.49 79.79 80.12 79.68 80.58* 79.50 79.28
9 80.37 80.45 80.88 81.13 81.43* 80.57 81.15
10 80.28 80.30 80.59 80.97 81.31 80.70 80.68
11 79.13 79.29 79.97 79.54 80.38* 79.00 78.36
12 77.91 78.38 78.91 78.55 79.11 77.26 77.52

Fig. 4   The mean dissimilar-
ity between the original and 
imputed data points as a result 
of applying different imputation 
methods on numerical datasets 
where different percentage of 
features affected by missing 
data at different levels. The first 
row represents numerical data, 
the second represents categori-
cal data, and the last represents 
mixed data
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(the plot to the left), there are two clear methods that stand 
out as the median value for EMB_SE and MICE_SE was 
much higher than that of other methods and of the com-
plete data for all levels of missing data. Also, the maxi-
mum accuracy of both EMB_SE and MICE_SE increased 
by about 10% compared with the complete data also for 
all levels of missing data. The EMB_Hom method also 
shows some improved performance though not so marked. 
The other methods perform similarly to one another and 
to the complete data. For the categorical data (centre 
plot), a similar pattern for median accuracy is observed 
with EMB_SE and MICE_SE showing best median per-
formance, with some but not so marked improvement for 
maximum accuracy too. Overall median accuracy of most 
approaches decreased with increasing uncertainty but for 
EMB_SE and MICE_SE it was both higher than the com-
plete data and that the other methods for most scenarios. 
On mixed datasets (right plot), the median accuracy of all 
approaches seemed to be similar to the complete data but 
the maximum average accuracy increased when applying 
MICE_SE and EMB_SE. Outliers, represented by dots in 
the plot, were presented in all methods tested for mixed 
data.

For the NB algorithm, similar results are shown in 
Fig. 6. However, for NB, MICE_SE and EMB_SE show 
performance improvements both in terms of maximum 

and medium average accuracies with respect to the mixed 
datasets.

For PART, shown in Fig.  7 the median accuracy of 
PART_MD, PART_SI, PART_RFI, MICE_Hom and 
EMB_Hom deteriorated for numerical datasets in compari-
son with the original data while the performance improves 
when MICE_SE and EMB_SE are applied. On categorical 
datasets, all different methods helped to keep performance 
similar to that of the complete data for low % of missing 
values but not when increasing the uncertainty. The perfor-
mance of EMB_Hom, MICE_SE and EMB_SE was the best 
on both categorical and mixed data.

For SMO, shown in Fig. 8 the median accuracy of all 
methods on numerical datasets was similar to each other 
and to the complete data while the minimum accuracy of 
MICE_SE and EMB_SE increased by up to 10% compared 
with the completed data. Similarly, all approaches tested on 
the categorical data were relatively close. On mixed datasets, 
the median accuracy of the classifier seemed to be equal 
to the complete data but the maximum accuracy increased 
when applying MICE_Hom, MICE_SE and EMB_SE.

Finally, the performance of RF with respect to different 
data types is shown in Fig. 9. All approaches tested were 
relatively similar so for this algorithm the method of impu-
tation produced minor or no improvements. MICE_SE and 
EMB_SE improved on maximum average accuracy for the 

Fig. 5   This figure contains box plots describing the overall average accuracy of J48 applied on imputed datasets using different imputation 
approaches along with the average accuracy on the complete data
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Fig. 6   This figure contains box plots describing the overall average accuracy of NB applied on imputed datasets using different imputation 
approaches along with the average accuracy on the complete data

Fig. 7   This figure contains box plots describing the overall average accuracy of PART applied on imputed datasets using different imputation 
approaches along with the average accuracy on the complete data
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Fig. 8   This figure contains box plots describing the overall average accuracy of SMO applied on imputed datasets using different imputation 
approaches along with the average accuracy for the complete data

Fig. 9   This figure contains box plots describing the overall mean accuracy of RF applied on imputed datasets using different imputation 
approaches along with original data
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categorical data but did not perform so well when increasing 
missing data was present. For the mixed data all approaches 
seemed similar.

Discussion and Conclusions

In this study, we investigate how different classification algo-
rithms behave when using various methods for missing val-
ues imputation. We propose our MIE approach to improve 
classification with missing data and compare it with other 
methods for dealing with missing data.

For J48, NB, PART and to a large extent for SMO, the 
proposed EMB_SE produced the best performance for most 
levels of missing data with MICE_SE being a closed second. 
For high levels of missing data SMO worked well with RFI. 
For the RF algorithm, however, EMB_Hom produced the 
best performance in most cases. The differences in perfor-
mance were statistically significant in all cases for J48, NB, 
PART and in the majority of cases for SMO. For RF, they 
were statistically significant in some scenarios only.

On the other hand, when comparing different approaches 
with a control method for imputation in the form of SI, we 
found that in most cases the proposed MIE techniques that 
rely on stacking (MICE_SE and EMB_SE) obtain statis-
tically significantly better classification accuracy than the 
control when working with J48, NB and PART. This was 
also true for SMO in the majority of scenarios but not for RF 
where EMB_Hom showed more significant improvements, 
consistently with our previous results.

It is not possible to directly compare our results to others 
working on related work due to different datasets and experi-
mental set-up. However, some comparisons are possible. For 
example, our findings, particularly for J48, are consistent 
with similar work done by Tran et al. [69] where they com-
bined data imputed by MICE with an ensemble by using 
the majority vote method. Their proposed work achieved an 
improvement in terms of the classification accuracy. In our 
work we obtained further improvements on accuracy when 
using EMB imputation and stacking ensembles (MICE_SE 
and EMB_SE).

We proposed the use of dissimilarity to assess how far is 
the imputed data from the real data so that we can relate this 
to the performance of the algorithms. For numerical data 
RFI seems to perform best particularly for growing percent-
ages of missing data. For categorical data EMB appears best 
by a very small margin, except for the highest missing data 
scenario. For mixed data EMB seems always best.

However, from further analysis of performance on each 
data type we can see that the imputation that recovers data 
best does not necessarily lead to a better classification per-
formance. From the box plot analysis, we find that for all 
algorithms and data types except for RF, EMB_SE and 

MICE_SE produce consistently better performance than 
the others, hinting at the fact that the ensemble plays a big 
part in producing good results. For RF again most methods 
seem to perform similarly though EMB_SE and MICE_SE 
are still consistently good performers. This indicates that the 
ensemble in itself produces improvements irrespective of 
the quality of the imputation. As RF is already an ensemble 
algorithm, the advantages of MI for RF appear less obvious 
than for the others.

One of our important findings is that even in scenarios 
of increasing uncertainty, it is possible to obtain results 
similar or in some cases better than those obtained with 
the complete data, if the right imputation technique is used. 
This is an important finding as reasoning with missing data 
becomes then a lesser problem in the context of MCAR data. 
In this sense our proposed MIE methods, particularly those 
using stacking as the ensemble method produce consistently 
good results. Although multiple imputation may consume 
time and memory particularly with large datasets, its advan-
tages in terms of representing the uncertainty as well as the 
ability to introduce diversity for the ensemble classifiers 
enables us to improve classification accuracy for scenarios 
with large levels of missing data and for most classifica-
tion algorithms tested. If an algorithm such as RF is used, 
then the imputation method appears less relevant, although 
a poor imputation method like SI can produce deteriorated 
performance particularly for mixed data.

As a future work, we can increase the number of imputed 
datasets to test if more diversity produces further improve-
ments. We could also test the implications of MAR data, by 
providing a different experimental set-up.
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