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Abstract

Submarine canyons are associated with increased biodiversity, including cold-water coral (CWC) 

colonies and reefs which are features of high conservation value that are under increasing anthropogenic 

pressure. Effective spatial management and conservation of these features requires accurate distribution 

maps and a deeper understanding of the processes that generate the observed distribution patterns. 

Predictive distribution modelling offers a powerful tool in the deep sea, where surveys are constrained 

by cost and technological capabilities. To date, predictive distribution modelling in canyons has 

focussed on integrating groundtruthed acoustically acquired datasets as proxies for environmental 

variables thought to influence faunal patterns. Physical oceanography is known to influence faunal 

patterns but has rarely been explicitly included in predictive distribution models of canyon fauna, 

thereby omitting key information required to adequately capture the species-environment relationships 

that form the basis of predictive distribution modelling. In this study, acoustic, oceanographic and 

biological datasets were integrated to undertake high-resolution predictions of benthic megafaunal 

diversity and CWC distribution within Whittard Canyon, North-East Atlantic. The main aim was to 

investigate which environmental variables best predict faunal patterns in canyons and to assess whether 
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including oceanographic data improves predictive modelling. General additive models, random forests 

and boosted regression trees were used to build predictive maps for CWC occurrence, megafaunal 

abundance, species richness and biodiversity. To provide more robust predictions, ensemble techniques 

that summarise the variation in predictions and uncertainties between modelling approaches were 

applied to build final maps. Model performance improved with the inclusion of oceanographic data. 

Ensemble maps identified areas of elevated current speed that coincided with steep ridges and 

escarpment walls as the areas most likely to harbour CWCs and increased biodiversity, probably linked 

to local hydrodynamics interacting with topography to concentrate food resources.  This study shows 

how incorporating oceanographic data into canyon models can broaden our understanding of processes 

generating faunal patterns and improve the mapping of features of conservation, supporting effective 

procedures for spatial ecosystem management.

1. Introduction

Submarine canyons are environmentally complex geomorphological features that incise continental 

margins and act as conduits between the shelf and the deep sea (Allen and Durrieu de Madron, 2009, 

Huvenne and Davies, 2014, Puig et al., 2014, Amaro et al., 2016, Fernandez-Arcaya et al., 2017). 

Canyons are characterised by high spatial and temporal heterogeneity in environmental conditions (De 

Leo et al., 2014, Amaro et al., 2016), often resulting in enhanced regional and local productivity, 

biodiversity, and faunal abundance (De Leo et al., 2010, Vetter et al., 2010, De Leo et al., 2014). Reef-

forming cold-water coral colonies (from here indicated as CWC) and reefs in particular represent 

features of high conservation value that can occur within canyons and are under increasing 

anthropogenic pressure (92/43/EEC, 1992, OSPAR, 2008, Davies et al., 2017). Accurate distribution 

maps of these features, in addition to an understanding of the processes that drive the observed spatial 

patterns, can support their effective spatial management and conservation (Huvenne and Davies, 2014, 

Buhl-Mortensen et al., 2015, Anderson et al., 2016a). In the deep sea, where surveys are constrained by 

costs and technological capabilities, predictive mapping offers a powerful tool for such studies. (Robert 

et al., 2015, Anderson et al., 2016a, Robert et al., 2016). Predictive mapping is based upon models of 

species–environment relationships that enable predictions of the likely occurrence of species beyond 

where they have been sampled (Guisan and Zimmermann, 2000, Guisan and Thuiller, 2005). These 

techniques are based upon concepts of niche theory, whereby species’ distributions are determined by 

the environmental dimensions of their ecological niche (Guisan and Zimmermann, 2000). Therefore, 

accurate predictions rely upon the incorporation of ecologically relevant environmental data collected 

at resolutions which capture the scale at which these variables influence species spatial patterns 

(Lecours et al., 2015, Miyamoto et al., 2017, Misiuk et al., 2018, Porskamp et al., 2018).

In submarine canyons, acoustically derived environmental variables (e.g., depth, slope) are routinely 

used as indirect proxies for direct and resource variables (sensu Guisan and Zimmermann, 2000) 
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including, water mass characteristics (temperature, salinity, potential density, dissolved oxygen 

concentration, aragonite compensation level and pH), substratum, seafloor characteristics, current 

exposure and food supply (Wilson et al., 2007, Robert et al., 2015); all of which have been shown to 

act at multiple scales to influence faunal patterns in canyons (De Mol et al., 2011, Howell et al., 2011, 

Baker et al., 2012, De Leo et al., 2014, Bargain et al., 2018). For example, water mass characteristics 

tend to influence canyon fauna at spatial scales of 10 - 1000 km (Dullo et al., 2008, Fabri et al., 2017) 

at which resolution they often co-vary with depth (Henry et al., 2014). On the other hand, spatial 

variation in seafloor characteristics and substratum are influential at finer resolutions of <1 - 10 km 

(Howell et al., 2011, Robert et al., 2015, Fabri et al., 2017), which can be captured by terrain derivatives 

such as slope and rugosity (Wilson et al., 2007, Howell et al., 2011). Equally at this resolution, aspect 

can provide insights into areas that may be more exposed to currents (Wilson et al., 2007, Robert et al., 

2015). 

However, the sole use of indirect variables as proxies can hinder ecological interpretation, as a single 

proxy can be collinear with multiple direct and/or resource variables across varying scales (Wilson et 

al., 2007, Porskamp et al., 2018) and because the measured proxy does not influence organisms’ 

distributions directly, it can lead to further predictive inaccuracies. In addition, environmental data are 

often acquired at low resolutions that reflect technological constraints rather than being ecologically 

meaningful (Verfaillie et al., 2009, Huvenne and Davies, 2014, Ismail et al., 2015, Lecours et al., 2015, 

Porskamp et al., 2018). These data are then incorporated into models at a pre-determined single fixed 

resolution as opposed to the increasingly advocated approach of incorporating data at multiple 

resolutions to then statistically identify the resolution that best captures the variability in the 

environment to which fauna are responding (Wilson et al., 2007, Fourniera et al., 2017, Porskamp et 

al., 2018). Consequently, the use of indirect variables together with the mismatch of resolution between 

ecological processes and data sampling represent key limitations of predictive model and map accuracy 

and precision (Brown et al., 2011, Lecours et al., 2015, Lo Iacono et al., 2018, Porskamp et al., 2018).

Physical characteristics of the water column and oceanographic processes are known to influence faunal 

patterns, including those of CWCs (Dullo et al., 2008, De Mol et al., 2011, Flögel et al., 2014, Fabri et 

al., 2017) but have rarely been included in predictive models of canyon fauna, one exception being 

Bargain et al (2018). In canyons supporting intense hydrodynamic processes (Hall and Carter, 2011, 

Aslam et al., 2018) variability in faunal patterns has been observed and attributed to the increased 

heterogeneity in physical oceanography (Huvenne et al., 2011, Johnson et al., 2013). As such, canyons 

represent model systems for testing the role of physical oceanography in controlling faunal distribution 

patterns.  

Here we develop predictive distribution models for CWCs and epibenthic megafaunal biodiversity 

using a multiscale approach integrating bathymetric and oceanographic datasets and their derivatives in 
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the Whittard Canyon (North-East Atlantic) to investigate which environmental variables best predict 

faunal patterns.  Finally, we aim to assess how the inclusion of oceanographic variables affects model 

performance, testing the null hypothesis that the inclusion of physical oceanographic variables in 

distribution models has no effect on model accuracy or precision.

2. Methods

2.1 Study area

Whittard Canyon is located along the Celtic Margin, south-west of the British Isles in the Northern Bay 

of Biscay and extends >200 km (Figure 1). It is a dendritic canyon system comprised of four main 

tributaries, the Western-, Western Middle-, Eastern Middle- and Eastern- branches, incising the shelf 

edge at a depth of ~200 m and coalescing at ~3700 - 3800 m water depth, then developing as Whittard 

Channel up to a depth of ~4500 m, where the it joins the Celtic Fan that leads onto the Porcupine 

Abyssal Plain (Hunter et al., 2013, Amaro et al., 2016). Intensified bottom currents and internal tides 

have been associated with the canyon, making it a good candidate for investigating the impact of 

physical oceanography on faunal patterns (Reid and Hamilton, 1990, Hall et al., 2017, Aslam et al., 

2018). Within the canyon system are the Dangaard and Explorer Canyons that together constitute the 

only deep-sea marine conservation zone (MCZ) within English waters. The Canyons MCZ designation 

is based upon the presence of the ‘Deep-sea bed’ broadscale habitat and ‘Cold-water coral reefs’, ‘Coral 

gardens’ and ‘Sea-pen and burrowing megafauna communities’ habitat features of conservation interest 

(JNCC, 2013, Davies et al., 2014, DEFRA, 2019). Accurate predictive maps of these features based on 

key environmental predictors are essential to assist effective management of the MCZ. This study 

focuses on the Eastern branch of Whittard Canyon and the adjoining Dangaard and Explorer Canyons 

(Figure 1). This region of the Whittard Canyon system was chosen as the Eastern branch has been 

identified as the most hydrodynamically energetic while the Dangaard and Explorer Canyons incise the 

Brenot Spur, which is postulated to be a generation site for the internal tide that propagates into the 

Eastern branch (Aslam et al., 2018).

Whittard Canyon exhibits heterogeneity in both physical and oceanographic attributes. The 

geomorphology and substrata of the canyon are complex, with variability observed along the canyon 

axis and between branches (Stewart et al., 2014, Robert et al., 2015, Amaro et al., 2016, Ismail et al., 

2018). The heads of the canyons are characterised by steep-sided walls and coarser substrata 

(outcropping bedrock, boulders and cobbles) (Carter et al., 2018). Where the branches coalesce, the 

Whittard Channel leads further downslope to the depositional fan comprised of finer grained substrata 

(fine sand, silt and hemiplegic ooze).  Sediment dynamics within the canyon are poorly understood. 

Although developing on a passive margin, Whittard Canyon does experience sediment dynamics 

(Amaro et al., 2016, Carter et al., 2018). Resuspension by intensified bottom currents and local slope 

failures within the canyon facilitate the availability of fine grained material (Reid and Hamilton, 1990, 



5

Amaro et al., 2015, Amaro et al., 2016, Hall et al., 2017, Carter et al., 2018) which is then transported 

via active down-slope transport in the form of turbidity currents and mud-rich sediment gravity flows 

(Cunningham et al., 2005, Amaro et al., 2016).

As it descends, the canyon intersects several water masses, including the Eastern North Atlantic Water 

(ENAW) (~100 - 600 m), the Mediterranean Outflow Water (MOW) (800 - 1200 m) and the Northeast 

Atlantic Deep Water (NEADW) (1500 - 3000 m), within which occurs a core of Labrador Sea Water 

(LSW) (~1800 - 2000 m) (Pollard et al., 1996, Van Aken, 2000). Mixing occurs along the water mass 

boundaries (Van Rooij et al., 2010). Barotropic tidal currents interact with the steep canyon topography 

converting some of the energy into baroclinic internal waves (Allen and Durrieu de Madron, 2009, Hall 

et al., 2017) and partly standing internal waves have been observed within the Eastern branch (Hall et 

al., 2017). Internal wave driven turbulent mixing is associated with increased concentrations of 

particulate organic matter (POM) and nepheloid layer production within the canyon (Wilson et al., 

2015, Hall et al., 2017, Aslam et al., 2018).
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Figure.1. Location map of (A) the Whittard Canyon and (B) data acquisition during the JC010, J036 

and JC125 cruises over the Whittard Canyon Eastern branch and the adjoining Dangaard and Explorer 

Canyons. Background bathymetry from GEBCO Compilation Group (2019). 
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2.2 Data acquisition and analysis

Data were collected during (1) the JC124_JC125 expedition funded by the ERC CODEMAP project 

(Starting Grant no 258482), the NERC MAREMAP programme and the Department of Environment, 

Food & Rural Affairs (DEFRA), (2) the JC010, JC035 and JC036 expeditions funded by the NERC 

core programme OCEANS2025 and the EU FP7 IP HERMIONE, and (3) the MESH expedition funded 

by the European Union INTERREG IIIb Community Initiative, and DEFRA. 

2.2.1 Video data acquisition and analysis

During the JC010 and JC036 cruises, video data were acquired using the remotely operated vehicle 

(ROV) Isis equipped with a standard definition video camera (Pegasus, Insite Tritech Inc. with SeaArc2 

400 W, Deep sea Power & Light illumination) and stills camera (Scorpio, Insite Tritech Inc., 2048 x 

1536 pixels). For the JC125 cruise, the ROV Isis was equipped with a dual high definition stills and 

video camera (Scorpio, Insite Tritech Inc., 1920 x 1080 pixels). Positional data were derived from the 

ROV’s ultra-short baseline navigation system (USBL).  A total of nine dives were completed in the 

Eastern branch (Figure 1 and Table 1) at an average speed of ~0.08 m s-1 and an average camera height 

of 3 m from the seafloor (Robert et al., 2015).  Video footage from the dives was analysed with all 

epibenthic megafauna >10 mm annotated and georeferenced, organism size was estimated from a laser 

scale with parallel beams positioned 10 cm apart. Due to limited species taxonomic knowledge for the 

area, fauna were identified to the lowest taxonomic level possible and identified as morphospecies 

(visually distinct taxa). To ensure consistency in nomenclature and improve comparability of 

annotations, the developed morphospecies catalogue was based upon the CATAMI nomenclature 

(Althaus et al., 2015) and cross-referenced against the Howell and Davies (2010) morphospecies 

catalogue for the North-East Atlantic Deep Sea. Those sections where the ROV altitude was >4 m for 

extended periods, prohibiting annotations, were noted by time and not considered in subsequent 

analysis. Video data annotations from the JC010, JC036 (previously annotated by Robert et al (2015)) 

and JC125 cruises were combined into a single data matrix with possible annotator bias in the combined 

dataset assessed following the protocol set out in Durden et al (2016) (see supplementary materials 

S1.1). Transects were subdivided into 50 m length sections and the morphospecies records within each 

section consolidated, with Species richness, Simpson’s reciprocal index (1/D) (Simpson, 1949) and 

megafaunal abundance calculated for each 50 m section sample.  These metrics were chosen as together 

they capture the key faunal responses to environmental heterogeneity (McClain and Barry, 2010, Amaro 

et al., 2015). Presence-absences for three scleractinian reef forming species, Desmophyllum pertusum 

(formerly Lophelia pertusa), Madrepora oculata and Solenosmilia variabilis were combined to provide 

a CWC presence-absence value. This was recorded because reef forming scleractinians represent 

features of high conservation value that are often associated with increased diversity (OSPAR, 2008, 
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92/43/EEC, 1992, Davies et al., 2017). Additionally, as long-lived immobile filter feeders that are 

associated with sustained hydrodynamics (Dullo et al., 2008, Howell et al., 2011, Fabri et al., 2017), 

CWCs represent good candidates for investigating the role of physical oceanography on faunal 

distributions.

All statistical analyses were conducted using the open source software R (R_Core_Team, 2014), 

packages “sp”, “maptools”, “rgeos”, “vegan”, “clustersim” and “MASS”.

Table.1 ROV dives in the Whittard Canyon analysed in this study: Dive code, start and end position 

(degrees and decimal minutes), dive length (m) and depth range across dive (m).

Dive Start Position End Position Length 
(m)

Depth 
Range (m)

JC125_113 48° 22.296' N 10° 2.374' W 48° 22.296' N 10° 2.374' N 1850 2619 - 3199
JC125_250 48° 43.803' N 10° 5.842' W 48° 43.803' N 10° 5.842' N 600 751 - 886
JC125_259 48° 24.049' N 9° 59.867' W 48° 24.049' N 9° 59.867' N 2000 2148 - 2987
JC125_262 48° 44.149' N 10° 5.965' W 48° 44.149' N 10° 5.965' N 965 464 - 879
JC125_263 48° 38.331' N 10° 0.514' W 48° 38.331' N 10° 0.514' N 1600 1138 - 1422
JC_10_065 48° 25.908' N 9° 56.432' W 48° 25.908' N 9° 56.432' N 6585 464 - 2634
JC_036_115 48° 36.742' N 9° 57.297' W 48° 36.742' N 9° 57.297' N 3000 1222 - 1667
JC_036_116 48° 39.251' N 10° 1.903' W 48° 39.251' N 10° 1.903' N 1500 910 - 1407
JC_036_117 48° 27.646' N 9° 56.958' W 48° 27.646' N 9° 56.958' N 2050 1762 - 2470

2.2.2 Acoustic data acquisition and processing, and extraction of terrain derivatives 

Multibeam echosounder (MBES) data were acquired during the MESH, JC035 and JC125 cruises with 

the ship-board Kongsberg Simrad EM120 MBES system of RRS James Cook (Masson, 2009, Huvenne 

et al., 2016) and Kongsberg Simrad EM1002 MBES system of RV Celtic Explorer (MESH, Davies et 

al., 2008). Bathymetry data were processed utilising CARIS HIPS & SIPS v.8 and combined utilising 

the mosaic to new raster tool in ArcGIS 10.4.1, to produce a new grid at a resolution of 50 m (WGS1984, 

UTM Zone 29N).  

Terrain derivatives previously identified as useful in predictive mapping (Wilson et al., 2007, Brown et 

al., 2011) were extracted from the bathymetry using the ArcGIS extension Benthic Terrain Modeler v. 

3.0 (Walbridge et al., 2018). Slope, eastness, northness, curvature, fine and broad bathymetric position 

index (BPI) and rugosity (VRM = Vector Ruggedness Measure) were calculated. 

The bathymetric position index is a derived metric of a cell’s position and elevation relative to its 

surrounding landscape/cells within a user defined area (Wright, 2005). A combination of broad and fine 

scale BPI metrics were derived to enable features at varying scales to be identified (Wilson et al., 2007). 

Broad scale BPI was calculated using a neighbourhood analysis based upon an annulus with an inner 
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radius of 2 pixels and an outer radius of 20 pixels with a scale factor of 1000. Fine scale BPI was 

calculated using a neighbourhood analysis based upon an annulus with an inner radius of 1 pixel and 

an outer radius of 2 pixels with a scale factor of 100. Rugosity is a measure of the ratio of the surface 

area to the planar area and was calculated with a neighbourhood size of 3 x 3 pixels (Wilson et al., 

2007). Other scales were also assessed (Supplementary S1.2). Slope is a measure of change in elevation, 

and aspect (subsequently converted to eastness and northness) measures the orientation of maximum 

change along the slope. Curvature is a measure of the shape of the slope, with values indicating whether 

a slope is convex or concave. Three types of curvature were calculated: profile, planar and general. 

Each accentuates different aspects of slope shape and can provide indirect measures of different 

processes relating to flow, erosion and deposition within the canyon (Wilson et al., 2007). 

To capture the range of spatial scales at which the terrain derivatives may affect faunal distributions, a 

multiscale approach was implemented, whereby terrain variables were derived from bathymetry gridded 

at 50, 100 and 500 m. Statistical modelling (following the same protocol to assess predictive value of 

variables as detailed in section 2.3) was then applied to identify the most ecologically meaningful 

resolution to use for each variable, identified as those derivatives contributing the greatest to variance 

explained. Terrain derivatives from bathymetry gridded at 50 m were found to be optimal 

(Supplementary S1.2), and were exported as rasters at 50 m resolution (Figures 2 and 3) for further 

modelling.

Bathymetric slope criticality to the dominant semi-diurnal internal tide was calculated (Supplementary 

S1.3) from the processed bathymetry gridded at 50 m and the potential density derived from a ship-

based CTD cast acquired during JC125 (Figure 1). Bathymetric slope criticality to the dominant semi-

diurnal internal tide (α) can identify potential areas within the canyon where up-slope propagating 

waves could be reflected back down-slope toward the canyon floor (supercritical, α > 1), be focussed 

toward the head of the canyon (subcritical, α < 1) or, become trapped  (near-critical, α = 1) resulting in 

waves breaking and mixing (Hall et al., 2017).  

2.2.3 Oceanographic data processing and derived environmental variables 

Near bottom values for absolute salinity and conservative temperature were extracted from the 

Forecasting Ocean Assimilation Model 7 km Atlantic Margin model (FOAM AMM7) (O’Dea et al., 

2014). The FOAM AMM7 is a coupled hydrodynamic-ecosystem model, nested in a series of one-way 

nests. Values were averaged from daily means over a three-year period to account for interannual 

seasonal variability.

Near bottom values for tidal current variables (R.M.S, Root mean squared near-bottom baroclinic and 

barotropic current speed) over an M2 tidal cycle were calculated from velocity components extracted 
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from a 500 m resolution canyon region hydrodynamic model based on a modified version of the 

Princeton Ocean Model, used to simulate the dominant semi-diurnal internal tide in the Whittard 

Canyon region for 32 M2 tidal cycles (Aslam et al., 2018). Both R.M.S baroclinic and barotropic current 

speed were calculated to differentiate between the influences of the two tides that exhibit different 

spatial patterns across the canyon system (Figure 3).

In order to represent the physical oceanographic conditions experienced by the benthos and match the 

resolution of the depth and terrain derivatives, the oceanographic data were interpolated into rasters at 

50 m resolution in ArcGIS (Figure 3). Interpolation was based upon spatial variograms calculated in 

Golden Software Surfer V 8 and undertaken by kriging using the Spatial Analyst tool box in ArcGIS. 

To account for discrepancies in bathymetric resolution between the physical oceanographic models and 

the bathymetry gridded at 50 m, bathymetry from the models was also exported and rasters created. 

Depth discrepancies between the datasets were accounted for by extracting oceanographic and current 

values from the nearest corresponding depths to that of the bathymetry gridded at 50 m. 
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Figure.2. Maps (50 m pixel resolution) of the bathymetric derivatives used as environmental variable 

proxies in the predictive models: (A) Depth (m), (B) Rugosity, (C) Slope (ɵ), (D) Broad bathymetric 

positioning index, (E) Fine bathymetric positioning index, (F) Curvature, (G) Profile curvature, (H) 

Planar curvature, (I) Log of bathymetric slope criticality to the dominant semi-diurnal internal tide.
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Figure.3. Maps (50 m pixel resolution) of the bathymetric derivatives used as environmental proxies in 

the predictive models, and of the environmental variables derived from the FOAM AMM7 ocean model 

and a canyon specific hydrodynamic model published by Aslam et al., 2018: (A) Northness, (B) 

Eastness, (C) Salinity (g/kg), (D) Temperature (°C), (E) R.M.S current speed for the barotropic tide (m 

s-1), (F) R.M.S current speed for the baroclinic tide (m s-1).
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2.3 Modelling

2.3.1 Modelling approaches

Modelling was conducted in the open source software R using a variety of packages as detailed in 

Hijmans and Elith (2017) and Zuur et al (2014a) including “randomForest”, “mgcv” and “gbm”. 

Environmental variables coinciding with the mid-point of each 50 m video transect segment were 

extracted from each of the environmental rasters and combined with the corresponding values for 

abundance, species richness, 1/D and CWC occurrence to form a single data matrix. Data exploration 

was undertaken following Zuur et al (2010) and indicated non-linear relationships between the response 

and environmental predictor variables.

To fulfil model assumptions of independence and improve interpretation of results, collinearity between 

environmental variables was tested and correlated variables removed. Collinearity was tested with 

Pearson’s correlation coefficient (pairwise correlations), variance inflation factor (VIF) scores and pair 

plots (Zuur et al., 2010, Zuur et al., 2014a) (Supplementary S2). Variable pairs with Pearson’s 

correlation coefficients >0.5 and VIF scores >5 were deemed correlated (Zuur et al., 2014a). For each 

group of correlated environmental variables, modelling using various techniques was undertaken (as 

described below) with a representative of each group added in turn to assess its predictive value by 

reviewing diagnostic plots of residuals and when model assumptions were met, retaining those that 

explained the greatest variance and gave the lowest Akaike’s Information Criterion (AIC) score (Table 

2). The AIC score is commonly applied to compare model performance and measures the goodness of 

fit and model complexity reflecting the variance explained penalised by the number of explanatory 

variables. A lower AIC score indicates a better model fit (Zuur et al., 2014a). This resulted in four of 

the 12 environmental variables being retained.

Table 2. Groups of correlated environmental variables. For each group, the variable retained for the 

models is indicated in bold.

Groups of correlated variables
•  Rugosity, F_BPI, B_BPI
•  Slope, General curvature, Profile curvature, Planar curvature
•  Depth, Temperature, Salinity
•  R.M.S current speed for the baroclinic tide, R.M.S current speed for the barotropic tide

Generalized Additive Models, Random Forests and Boosted Regression Trees were used to determine 

which environmental variables explained the greatest variance in observed spatial patterns in CWC 

presence-absence, species richness, 1/D and abundance. To assess the influence of physical 

oceanographic variables, model performance with and without these environmental predictor variables 
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was compared. Spatial autocorrelation in model residuals was assessed with semi-variograms and 

correlograms. Low spatial autocorrelation was observed in model residuals due to the sub-sampling of 

the data into training and test datasets (see section 2.3.2), together with the fact that sections of video 

transect were omitted due to data quality. Predicted probability of CWC occurrence, species richness, 

1/D and abundance were mapped by applying each of the model algorithms to the full spatial extent of 

the selected environmental variable rasters.

Random forests (RF) is a classification method that builds multiple trees based upon splitting rules that 

maximise homogeneity in response to predictors within branches, starting each time with a randomised 

subset of data points and predictor variables (Breiman, 2001, Prasad, 2007). RF was chosen because it 

makes no underlying assumption of the distribution of the response variable, is robust to overfitting, 

allows for interactions between environmental variables and nonlinear relationships between the 

response and environmental variables (Cutler et al., 2007, Prasad, 2007). RF was run in classification 

mode for CWC presence-absence data and regression mode for the continuous response variables. 

Abundance was log+1 transformed. Each random forest was run with 1500 trees and the number of 

variables chosen at each node split set to default (square root of the number of variables in the model 

for classification and two for regression) with the out of bag (OOB) settings set as default (Breiman and 

Cutler, 2018).

Boosted regression trees (BRT) is a combined classification and regression method that builds a 

sequence of  regression trees, with the initial tree fitted to the entire dataset and subsequent trees added 

to fit the remaining residuals (Elith, 2008). BRT was chosen as this method is robust to differing 

resolutions of data input and accommodates interactions and nonlinear relationships (Elith, 2008). BRT 

models were developed with cross validation on data using a tree complexity of 3 and learning rate of 

0.001 with the optimum number of trees determined using a step forward function using k-fold cross 

validation. These parameter settings were chosen to ensure a minimum of 1000 trees were created and 

that the models did not overfit the data (Elith, 2008, Elith and Leathwick, 2009). For CWC presence-

absence, a Bernoulli distribution was assumed, for species richness a Poisson distribution was assumed. 

Abundance was log+1 transformed to improve normality and modelled with a Gaussian distribution.  

Environmental variables were assessed using the inbuilt gbm.simplify function that specifies the 

optimum number of variables by dropping the least contributing variables and comparing deviance 

minimum error and model variance with and without that variable (Elith, 2008).

Generalized additive models (GAMs) are generalised models with smoothers and link functions based 

on an exponential relationship between the response variable and the environmental predictor variables 

(Zuur et al., 2014b). This method was chosen because it can accommodate nonlinear relationships and 

produces ecologically intuitive outputs (Zuur et al., 2014a). GAMs have successfully been applied to 

model the distribution of marine species and habitats (Robert et al., 2015). The degree of smoothing for 
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the environmental variables was selected based on the generalized cross validation (GCV) method and 

a log link function was used for all models except CWC presence-absence where a logit link function 

was used for the binary response. For CWC presence-absence, a Binomial distribution was assumed. 

For species richness and 1/D a Gamma distribution was assumed after exploring several alternative 

distributions (Gaussian, Poisson, quasi-Poisson and Negative-Binomial). Abundance was log+1 

transformed to improve normality and modelled with a Gaussian distribution. Environmental variables 

were assessed by a backward-step selection, whereby the environmental variables resulting in the lowest 

deviance explained were dropped one at a time and the model refitted until only statistically significant 

(p value <0.05) variables remained in the models. Overall model fit was then compared and the most 

parsimonious model, identified as that containing those environmental variables that explained the 

maximal amount of variance whilst giving the lowest AIC score, was selected.

2.3.2 Model performance

Model performance was assessed using a cross-validation procedure in which models were trained 

using a random partition of data (70%) and tested against the remaining portion (30%) (Guisan and 

Zimmermann, 2000). Model accuracy was assessed in terms of the model fit to the training dataset 

using AIC scores, diagnostic plots and variance explained (Adjusted R2). Predictive performance was 

assessed using the Area Under the Receiver operating Curve (AUC) score for CWC presence-absence 

(Elith and Leathwick, 2009). The AUC score indicates how well the model discriminates presences and 

absences. An AUC score <0.5 indicates that the model is no better than random and an AUC score >0.7 

can be considered as adequately discriminating presences from absences (Lobo et al., 2008). Due to the 

equal weighting of misclassification errors by the AUC, measures of sensitivity and specificity were 

also used to assess performance. Sensitivity is the fraction of correctly predicted CWC presences, while 

specificity is the fraction of correctly predicted CWC absences (Lobo et al., 2008).  Predictive 

performance for the remaining models was assessed with correlation coefficients (linear regression) 

between the predicted and observed values.

2.3.3 Ensemble Models

To provide more robust predictions, ensemble techniques that summarise the variation in predictions 

and uncertainties between modelling approaches were applied to build final maps. Ensemble models 

are important when optimal models cannot be identified. Ensemble model maps based upon weighted 

AUC scores or correlation coefficients of each of the algorithms were produced for each response 

variable. 
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3 Results

3.1. Morphospecies and observed patterns in diversity

A total of 280 morphospecies were annotated from the video data. Xenophyophores (representing ~17% 

of individuals) were the most abundant morphospecies, followed by Acanthogorgia. sp (~10%), 

Brachiopoda sp. 1 (~9%), Pentametrocrinus atlanticus (~8%) and Cerianthidae (~7%). Due to poor 

video quality, Brachiopoda were not annotated from the data collected during JC010 and JC036 and so 

are omitted from further analysis. The predominant functional groups observed were suspension (filter) 

feeders, followed by detritivores and carnivores.  Highest species richness (48) was sampled from a 50 

m transect segment of vertical wall hard substratum observed during the dive JC125_262.  This dive 

investigated a vertical wall community, comprising filter feeders (Cerianthidae, Scleractinia, 

Alcyonacea, Crinoidea, Actinaria, Porifera, Hydrozoa) detritivores (Echinus) and carnivores 

(Asteroidiea and Galatheoidea) (Figure 4). Highest diversity (1/D) (12.6) was recorded from the same 

dive JC125_262. Highest abundance (2149) was recorded from a 50 m transect segment on a different 

vertical wall observed during dive JC036_116, with the highest contributing taxa being D. pertusum 

(866 individual colonies) and Acanthogorgia sp. CNI14 (882). 

Reef-forming CWCs, varying from single colonies to reefs were observed on seven dives amounting to 

62 sample points out of 404. CWCs occurred on hard substratum with steep to vertical topography 

between water depths of 464 - 1892 m, temperature ranges of 5.6 - 9.6 °C, salinity 35.3 - 35.5 g/kg and 

R.M.S near bottom current velocities 0.09 - 0.29 m s-1. CWCs were observed from a broad depth and 

associated temperature and salinity range because presence records represented the combination of three 

Scleractinia reef forming species (M. oculata, D. pertusum and S. variabilis) that occur across varying 

depth ranges. 

3.2 Modelling

3.2.1 Model performance

AUC scores for models of CWC presence-absence ranged from 0.96 - 0.99 (training dataset) to 0.82 - 

0.93 (test dataset) indicating that all models adequately discriminate presences from absences, with RF 

performing the best (Table 3). Model sensitivity ranged from 0.35 - 0.87 (training dataset) to 0.21 - 0.60 

(test dataset) and model specificity ranged from 0.97 - 1.00 (training dataset) to 0.98 - 0.99 (test dataset) 

with RF generally performing the best and GAM showing higher sensitivity in test datasets (Table 3). 

Lower sensitivity values and similar specificity and AUC values suggest a degree of overprediction of 

CWC occurrences by the models (Table 3). Correlation coefficients (Adjusted R2) between predicted 

and observed species richness, 1/D and abundance ranged between 0.17 - 0.87 (training dataset) and 

0.07 - 0.46 (test dataset) and were highest for RF, followed by BRT and GAM (Table 4). The superior 
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performance of RF could result from the inadequacy of available modelling distributions for the 

response variables assumed for BRT and GAM (Zuur et al., 2014a).

3.2.2 Variable contribution in the predictive models

The environmental variables used for optimal models of CWC presence-absence, species richness, 1/D 

and abundance are shown in Tables 3 and 4. The importance of the environmental variables varied 

between the modelling algorithms. The models for CWC presence-absence ranked depth, rugosity and 

R.M.S baroclinic current speed as important predictor variables (Table 3). Models of species richness 

and abundance ranked depth as the most important predictor variable, whilst models for 1/D rank the 

predictor variables inconsistently (Table 4). The inconsistent rankings of environmental variables 

between models could result from the similarity in their contributing explanatory power and presence 

of interactions between the environmental variables. For example, the BRT model including R.M.S 

baroclinic current speed for 1/D, gave similar explanatory value to depth (26%) followed by slope 

(23%), and then rugosity (17%), northness (17%) and R.M.S baroclinic current speed (15%). 

Furthermore, BRT pairwise interaction terms indicated interactions between depth and R.M.S 

baroclinic current speed. 
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Figure.4. ROV video images showing organisms and substrata encountered: (A) Acesta sp., 

Neopycnodonte sp., Porifera, scleractinian corals and crinoids from vertical wall substratum during dive 

JC125_262  at 477 m, (B)  Brachiopod sp. 1, Acesta sp, Psolus squamatus, Porifera and echinoids  from 

hard substrata during dive JC125_263 at 1400 m, (C) Desmophyllum pertusum reef  during dive 

JC125_262 at 790 m, (D) Brisingida sp. and Cidaris cidaris from hard substratum during dive 

JC125_262 at 879 m, (E) Cerianthidae and Paguroidea from soft substratum during dive JC125_262 at 

767 m, (F) Ceranthidae, Ophiuroidea, Cidaris cidaris, Munida sp., Bathynectes sp., crinoids, and 

epifaunal turf from coral rubble during dive JC125_250 at 751 m. Scale bars = 10 cm.
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Table 3. Modelling results for cold water coral presence/absence based upon each of the modelling algorithms (Boosted Regression Tree (BRT), Random 

Forests (RF) and General Additive Models (GAMs)) that integrate variables including baroclinic current speed (BC_RMS) and excluding baroclinic current 

speed. Model performance was assessed using a cross-validation procedure in which models were trained using a random partition of data (70 %) and tested 

against the remaining portion (30 %). Model accuracy was assessed in terms of the model fit to the training dataset using variance explained (Adjusted R2) and 

for GAMs the Akaike’s Information Criterion score (AIC) and for RF the out of bag (OOB) test misclassification error rate. Predictive performance was 

assessed based upon the test dataset using measures of sensitivity, specificity and the Area under the receiver operating Curve (AUC). 

                       
Excluding BC_RMS      Including BC_RMS  
Variance 
explained 

AUC Sensitivity Specificity Variance 
explained 

AUC Sensitivity SpecificityModel Variable 
importance

Train Test

OOB 
error 
rate 

AIC

Train Test Train Test Train Test

Variable 
importance

Train Test

OOB 
error 
rate 

AIC

Train Test Train Test Train Test

BRT

Depth, 
Rugosity, 
Eastness, 
Slope 

26% 28% 0.96 0.88 0.48 0.21 1 0.98

Rugosity, 
Depth,  
BC_RMS,  
Slope, 
Eastness

34% 27% 0.97 0.89 0.66 0.43 0.98 0.89

RF

Depth, 
Rugosity, 
Eastness, 
Slope, 
Northness

25% 13% 0.99 0.89 0.82 0.26 1 0.98

BC_RMS, 
Depth, 
Rugosity,  
Eastness, 
Slope

32% 12% 0.99 0.93 0.87 0.52 0.99 0.94

GAM

Rugosity, 
Eastness, 
Depth, 
Northness, 
Slope 61%

139 0.89 0.82 0.35 0.34 0.97 0.96

Rugosity, 
BC_RMS, 
Depth, 
Slope 58%

130 0.97 0.87 0.74 0.60 0.98 0.89

  (Adj R² 55%)           (Adj R² 53%)        
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Table 4. Modelling results for species richness, Simpsons’ reciprocal index (1/D) and abundance based upon each of the modelling algorithms (Boosted 

Regression Tree (BRT), Random Forests (RF) and General Additive Models (GAMs)) that integrate variables including R.M.S baroclinic current speed 

(BC_RMS) and excluding R.M.S baroclinic current speed. Model performance was assessed using a cross-validation procedure in which models were trained 

using a random partition of data (70 %) and tested against the remaining portion (30 %). Model accuracy was assessed in terms of the model fit to the training 

dataset using variance explained (Adjusted R2) and for GAMs the Akaike’s Information Criterion score (AIC). Predictive performance was assessed based upon 

the test dataset using correlation coefficients (Adjusted R2).

 Excluding R.M.S baroclinic current speed  Including R.M.S baroclinic current speed
Model Variable importance Variance 

explained 
(Train)

AIC Correlation 
Adj R² 
(Train)

Correlation 
Adj R² 
(Test)

Variable importance Variance 
explained 

(Train)

AIC Correlation 
Adj R² 
(Train)

Correlation 
Adj R² 
(Test)

Species Richness  
BRT Depth, Northness, 

Rugosity, Eastness, Slope
31%  0.72 0.27 Depth, Rugosity, 

Northness, BC_RMS, 
Slope, Eastness 

39%  0.78 0.31

RF
Depth, Rugosity, 
Northness, Slope, 
Eastness

35% 0.87 0.43
Depth, BC_RMS, 
Rugosity, Northness, 
Slope,  Eastness 

37% 0.87 0.46

GAM
Depth, Rugosity, 
Northness, Eastness, 
Slope

27.8%         
Adj R² 
(33%)

1384 0.39 0.29
Depth, Rugosity, 
BC_RMS, Northness, 
Eastness, Slope

49%           
Adj R² 
(43%)

1358 0.51 0.36

Abundance          

BRT
Depth, Eastness, 
Rugosity, Slope, 
Northness

32% 0.77 0.31 Depth, BC_RMS, 
Rugosity, Eastness, Slope 35% 0.73 0.34

RF
Depth, Eastness, 
Rugosity, Slope, 
Northness

36% 0.87 0.36 Depth, BC_RMS, 
Eastness, Rugosity, Slope 40% 0.87 0.40

GAM Depth, Rugosity, 
Eastness, Slope

19%         
Adj R² 
(15%)

858 0.19 0.14 Depth, BC_RMS, 
Rugosity, Eastness, Slope

38%            
Adj R² 
(33%) 

802 0.38 0.27

1-D           
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BRT Northness, Slope, Depth, 
Rugosity, Eastness 14% 0.44 0.20 Depth, Slope, Northness, 

Rugosity, BC_RMS 15% 0.58 0.25

RF Slope, Depth, Rugosity, 
Northness 18% 0.85 0.32 Depth, Slope, BC_RMS, 

Rugosity, Northness 20% 0.86 0.31

GAM Northness, Depth, 
Rugosity, Slope

27%            
Adj R² 
(12%)

862 0.17 0.07  
Depth, Rugosity, 
Northness, Slope, 
BC_RMS

26%             
Adj R² 
(12%)

862 0.17 0.08
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3.2.3 Influence of oceanographic data

The physical oceanographic variables were highly collinear and only R.M.S baroclinic current speed 

was retained in the optimum models. Overall model performance was improved with the inclusion of 

R.M.S baroclinic current speed as an environmental predictor variable (Tables 3 - 4). Spatial predictions 

from the ensemble model including R.M.S baroclinic current speed showed increased diversity and 

increased probability of CWCs in areas of elevated current speed that coincided with steep topography 

(Figures 5 - 8), while the extent of suitable CWC habitat predicted decreased (Figure 5). For a CWC 

occurrence threshold >60%, the suitable habitat reduced from 387 km2 to 174 km2, a decrease of 55%; 

for a threshold of >70% the habitat reduced from 125 km2 to 13 km2, a decrease of 89 % (thresholds 

consistent with those applied by Bargain et al., (2018). 

3.2.4 Model predictions

Model predictions were made across the full extent of available environmental rasters. However, as the 

models were trained from samples within the canyon branches, model predictions beyond this extent 

are deemed less reliable. Therefore, we limit further analysis of model predictions to within the canyon 

branches.    

Ensemble models predicted increased probability of CWCs, and increased species richness, 1/D and 

abundance at specific depths in areas of increased terrain complexity that coincided with relatively 

elevated current speed of the internal (baroclinic) tide.

Rugosity and slope were derived from 3 x 3 windows at a 50 m cell size and captured spatial 

heterogeneity in terrain features over 150 m resolution. Within the canyon, these relate to ridges 

between gullies and steep to vertical wall escarpments. Gullies occur on the canyon flanks and steep to 

vertical wall escarpments occur on the north-eastern flank of Whittard Canyon’s Eastern branch as well 

as in association with the amphitheatre rims and headwall scars at tributary heads throughout the canyon 

(Figure 5). Highest probability of CWCs, and highest species richness, 1/D and abundance are predicted 

to occur in association with the increased terrain complexity provided by these features. Furthermore, 

the ensemble models emphasise areas of increased biological prevalence associated with elevated RMS 

baroclinic current speed and coincident topography. These areas predominantly occur toward the 

canyon head and north-eastern flank of the Eastern branch and a dog leg region towards the lower 

reaches of Explorer Canyon (Figures 3, 5 - 8).

CWCs exhibited a negative response with increasing depth beyond ~2000 m and an overall positive 

response with increasing R.M.S baroclinic current speed, slope and seafloor ruggedness 

(Supplementary S3.1).  Ensemble models predicted increased probability of CWCs in association with 

increased terrain complexity with highest probability of CWCs predicted on the slopes of ridges and 
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escarpments above ~2000 m (Figure 5). Lowest probability of CWCs, was predicted in areas of low 

terrain complexity below ~2000 - 2500 m and at shallow depths along sections of the canyon axis and 

on the southern flanks of the Explorer and Dangaard Canyons (Figure 5). 

Species richness and 1/D exhibited similar relationships with the environmental variables. Both species 

richness and 1/D exhibited an overall negative response with increasing depth with peaks at ~1200 m. 

They showed a positive response with increasing R.M.S baroclinic current speed which became 

negative at speeds greater than 0.25 m s-1 and an overall positive response to increased slope and 

seafloor ruggedness (Supplementary S3.1).  Ensemble models predicted increased species richness and 

1/D in areas of increased terrain complexity with highest values predicted on escarpments and the crests 

and south facing slopes of ridges, peaking at 1200 m (Figure 6 and 7, respectively). Lower species 

richness and 1/D was predicted in areas of low terrain complexity below ~2000 - 2500 m and at shallow 

depths along sections of the canyon axis and on the southern flanks of the Explorer and Dangaard 

Canyons (Figure 6 and 7, respectively). 

Abundance increased with depth although below 1600 m, the response became negative. 

(Supplementary S3.1). The response of abundance to R.M.S baroclinic current speed was variable, 

becoming negative at speeds greater than 0.25 m s-1 whilst increased slope and seafloor ruggedness 

resulted in an overall positive abundance response. Ensemble models predicted increased abundance in 

association with greater terrain complexity. Peaks in abundance were predicted to occur on crests of the 

ridges between 800 - 1600 m (Figure 8). In areas of low terrain complexity below ~2000 - 2500 m, on 

the Southern flanks of the Explorer and Dangaard Canyons as well as at shallow depths along sections 

of the canyon axis, lower abundance was predicted by the ensemble model (Figure 8). 
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Figure.5. Ensemble model predictive maps for probability of CWC occurrence across (A) the extent of 

the survey area and (B and C) insets zoomed in on canyon flanks. (i): Predictive map based upon 

bathymetry and its derivatives. (ii): Predictive map based upon bathymetry and its derivatives with 

physical oceanographic data (R.M.S current speed of the baroclinic tide). Increased probability of 

CWCs is predicted on escarpments (1) and slopes of ridges (2) and lower probability is predicted in 

areas of low terrain complexity (3). Model predictions beyond canyon branches (i.e. on the interfluves 

and the shelf) are less reliable because training datasets did not include these environments. We have 

excluded them from our interpretation.
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Figure.6. Ensemble model predictive maps for species richness (A) across the extent of the survey area 

and (B and C) insets zoomed in on canyon flanks. (i): Predictive map based upon bathymetry and its 

derivatives. (ii): Predictive map based upon bathymetry and its derivatives with physical oceanographic 

data (R.M.S current speed of the baroclinic tide). Increased species richness is predicted on escarpments 

(1) and the crests and south facing slopes of ridges (2) while lower species richness is predicted along 

sections of the canyon axis and of low terrain complexity (3). Model predictions beyond canyon 

branches (i.e. on the interfluves and the shelf) are less reliable because training datasets did not include 

these environments. We have excluded them from our interpretation.
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Figure.7. Ensemble model predictive maps for Simpsons’ reciprocal index (1/D) (A) across the extent 

of the survey area and (B and C) insets zoomed in on canyon flanks. (i): Predictive map based upon 

bathymetry and its derivatives. (ii): Predictive map based upon bathymetry and its derivatives with 

physical oceanographic data (R.M.S current speed of the baroclinic tide). Increased 1/D is predicted on 

escarpments (1) and the crests and south facing slopes of ridges (2) while lower 1/D is predicted along 

sections of the canyon axis and of low terrain complexity (3). Model predictions beyond canyon 

branches (i.e. on the interfluves and the shelf) are less reliable because training datasets did not include 

these environments. We have excluded them from our interpretation.
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Figure.8. Ensemble model predictive maps for Abundance (log+1) (A) across the extent of the survey 

area and (B and C) insets zoomed in on canyon flanks. (i): Predictive map based upon bathymetry and 

its derivatives. (ii): Predictive map based upon bathymetry and its derivatives with physical 

oceanographic data (R.M.S current speed of the baroclinic tide).  Highest abundance is predicted on the 

crests of ridges between 800 - 1600 m (2) and lower abundance is predicted along sections of the canyon 

axis and of low terrain complexity (3). Model predictions beyond canyon branches (i.e. on the 

interfluves and the shelf) are less reliable because training datasets did not include these environments. 

We have excluded them from our interpretation.

4. Discussion

4.1. Environmental variables influencing faunal patterns in canyons

We have identified that depth, terrain complexity and hydrodynamics are important environmental 

factors influencing faunal patterns in submarine canyons and demonstrated that incorporating physical 

oceanographic data into predictive models improves their performance.
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Spatial heterogeneity in these environmental conditions drives spatial patterns in fauna by providing a 

greater variety of niches with the potential to support increased species richness and diversity (Levin et 

al., 2010, De Leo et al., 2014).

4.1.1. Terrain complexity

Terrain complexity is a proxy of seafloor heterogeneity that is positively correlated with diversity  

(Levin et al., 2010, De Leo et al., 2014). The high terrain complexity of canyons generates spatial 

heterogeneity in sediment dynamics (de Stigter et al., 2011, Martín et al., 2011, Puig et al., 2017), 

substratum composition (Huvenne et al., 2011, Huvenne and Davies, 2014, Stewart et al., 2014) and 

current exposure (Ismail et al., 2015). Filter feeders, including CWCs, show a preference for such 

increased terrain complexity (De Mol et al., 2011, Howell et al., 2011, Huvenne et al., 2011, Gori et al., 

2013, Rengstorf et al., 2013, Robert et al., 2015, Pierdomenico et al., 2016, Fabri et al., 2017, van den 

Beld et al., 2017, Bargain et al., 2018). They colonise topographic highs to exploit local current regimes, 

and so increase food encounter rates (Mohn et al., 2014, Fabri et al., 2017, Lo Iacono et al., 2018). In 

our study, increased probability of CWC occurrence, species richness, 1/D and abundance were 

associated with areas of high terrain complexity (slope and rugosity) over similar spatial scales 

predicted for macrobenthic diversity in canyons off  Hawaii (De Leo et al., 2014). These predictions 

are supported by previous studies within the canyon system that also predicted CWCs in areas of 

complex topography (Robert et al., 2015) and observed CWCs and increased epibenthic diversity and 

abundance in association with steep walls and topographic highs (Huvenne et al., 2011, Johnson et al., 

2013, Davies et al., 2014, Robert et al., 2015).  Our models predicted asymmetric distributions (where 

a higher prevalence of different taxa is predicted for one or the other canyon flank) between the 

opposing flanks of both Dangaard and Explorer Canyons. The flanks of the canyons differ in 

complexity, with higher species richness and probability of CWCs predicted for the more complex 

northern flanks. Unfortunately the spatial extent of predictive mapping in previous studies does not 

enable further confirmation of the asymmetric distributions predicted (Robert et al., 2015), but fauna 

are predicted and observed in association with complex terrain which would support our model 

predictions (Davies et al., 2014, Robert et al., 2015). In other canyons, asymmetric distributions have 

been attributed to the different geomorphology and hydrodynamics of canyon flanks, with one side 

more subject to intense hydrodynamics and the other dominated by depositional regimes (De Mol et al., 

2011, Fabri et al., 2017, Pierdomenico et al., 2017, Lo Iacono et al., 2018). Our data suggest, more 

specifically, that it is the differences in terrain complexity between flanks that result from these 

processes, together with variation in baroclinic current speeds which generate the observed asymmetric 

patterns in fauna distribution. 

Slope acts as a proxy for substratum type, which is correlated with faunal distributions. The steep slopes 

of Whittard Canyon are generally associated with hard substratum (Huvenne et al., 2011, Johnson et 
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al., 2013, Stewart et al., 2014, Robert et al., 2015, Robert et al., 2017, Carter et al., 2018), which is 

positively correlated with sessile epibenthic diversity as it provides a suitable surface for epifauna to 

adhere to (Baker et al., 2012). In addition, steep slopes prevent sediment deposition and subsequent 

smothering of epifauna in these environments affected by high sedimentation rates (Howell et al., 2011, 

Baker et al., 2012). Steep slopes may also provide refuge for fauna from anthropogenic disturbance 

caused by fishing gear (Huvenne et al., 2011, Johnson et al., 2013, Pierdomenico et al., 2016). A positive 

relationship between slope and diversity has been observed previously from Whittard and other canyons 

(Huvenne et al., 2011, Johnson et al., 2013, Robert et al., 2015, van den Beld et al., 2017, Chauvet et 

al., 2018). In our study, although highest diversity was recorded from vertical walls, some sections of 

the walls supported low diversity. This observation suggests that other processes and/or resources are 

acting together with terrain complexity to influence faunal distributions in canyons. 

4.1.2. Food supply and the internal tide

Variability in quality and amount of food supply influences canyon faunal distributions (De Leo et al., 

2010, McClain and Barry, 2010, Cunha et al., 2011, Chauvet et al., 2018). Many benthic species within 

canyons rely on surface derived POM as their main food supply (Cunha et al., 2011, Miller et al., 2012). 

Generally, availability of surface derived POM decreases with depth (Lutz et al., 2007). However, in 

active canyons sediments can regularly be flushed to the deep. In parallel, local hydrodynamics 

(including internal tides) can cause resuspension of material and generate nepheloid layers at specific 

depths (Puig et al., 2014, Wilson et al., 2015). Nepheloid layers are concentrations of suspended 

material (including POM) that represent an important food resource for deep-sea fauna (Demopoulos 

et al., 2017). 

Within Whittard Canyon, nepheloid layers and centres of resuspension have been previously observed 

1) where the MOW interacts with areas of complex canyon topography resulting in baroclinic internal 

wave motion, causing turbulent mixing (Wilson et al., 2015), and 2) associated with the internal tide at 

depths of 400 - 500 m, 900 - 1600 m and 1700 - 1800 m as well as where internal waves propagate at 

the boundary between the permanent thermocline 600 - 900 m and upper boundary of the MOW (Wilson 

et al., 2015). In our study, high probability of CWCs occurrence and peaks in species richness, 1/D and 

abundance are predicted at depths of 800 - 1600 m, coinciding with some of the above mentioned areas 

of resuspension and nepheloid layer production (Figures 5 - 8). Previous studies have also observed 

high diversity in association with nepheloid layers in Whittard Canyon (Huvenne et al., 2011, Johnson 

et al., 2013, Robert et al., 2015). The correlated spatial patterns between canyon fauna and nepheloid 

layer distributions support the importance of food availability, in the form of nepheloid layers, in 

influencing fauna distributions.

We found that internal tide dynamics correspond to an important factor influencing faunal patterns in 

canyons, contributing to increased spatial heterogeneity in environmental conditions. Faunal 
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distributions are influenced by the internal tide both directly and indirectly. The internal tide directly 

influences fauna distributions by current speed and indirectly via its role in the production and 

distribution of nepheloid layers.

Current speeds exceeding 0.15 m s-1 can cause resuspension of material (Thomsen and Gust, 2000), an 

important stage in nepheloid layer production. In our study, increased probability of CWC occurrence, 

species richness, 1/D and abundance coincide with areas of elevated current speed for the internal tide. 

CWC occurrences have been linked to intensified bottom currents in a number of settings (Davies, 

2009, Howell et al., 2011, Mohn et al., 2014, Rengstorf et al., 2013, van Oevelen et al., 2016), including 

canyons (Bargain et al., 2018). However, our data show that above 0.25 m s-1 species richness and 

abundance are predicted to decrease. Species vary in their feeding strategies and efficiency under 

different hydrodynamic regimes (Järnegren and Altin, 2006, van Oevelen et al., 2016). For filter feeders, 

increased current flow increases food encounter rate up to a limit after which the speed of the current 

exceeds that at which fauna can extract particles and/or causes physical disturbance (Johnson et al., 

2013, Orejas et al., 2016). Our models predict low diversity on relatively flat sections of the canyon 

floor that experience current speeds exceeding (0.25 m s-1), located toward the canyon head of the 

Eastern branch, and also where the adjoining Dangaard and Explorer canyons intersect the main axis 

(Figure 3, 6-8). These are areas expected to experience higher disturbance regimes as mobile sandy 

sediments are routinely reworked over the tidal cycle, forming an unsuitable substratum for colonisation 

and abrasing the lower canyon walls. Additionally stochastic/episodic turbidity currents and mud-rich 

sediment gravity flows travel along the canyon’s axis representing major disturbance events (Puig et 

al., 2014, Amaro et al., 2016). Johnson et al (2013) also attributed low diversity toward the bottom of 

canyon walls to increasing disturbance toward the canyon floor. It is therefore likely that disturbance is 

restricting faunal patterns across the canyon floor, and could explain the negative relationship of species 

richness and abundance with high current speed.

As the internal tide wave propagates, it generates vertical displacement of the isopycnal surfaces and 

associated nepheloid layers (Hall et al., 2017). The periodic vertical movement of the nepheloid layer 

in the water column replenishes food to canyon fauna over the tidal cycle and has been linked to the 

distributions of antipatharians and gorgonians in canyons of the Bay of Biscay (van den Beld et al., 

2017). In our study, CWCs are also associated with locations where the internal tide is proposed to 

propagate (Wilson et al., 2015, Aslam et al., 2018) and isopycnal displacements caused by the internal 

tide with amplitudes measuring up to 80 m have been recorded within the Eastern branch of Whittard 

Canyon (Hall et al., 2017). However, fine scale studies investigating the influence of the vertical 

variations in environmental conditions generated by the internal tide on fauna are still lacking.

Internal waves, turbulent mixing and downslope displacement of water can generally be associated with 

enhanced resuspension of POM and can control the development of nepheloid layers (Allen and Durrieu 
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de Madron, 2009, Hall et al., 2017, Aslam et al., 2018). Examples of the internal tide interacting with 

topography enhancing local hydrodynamics to form efficient food supply mechanisms to the benthos, 

have previously been documented in the Baltimore Canyon (Demopoulos et al., 2017). In other settings 

the reliance of CWCs on local current regimes to deliver food from the surface has been stressed 

(Rengstorf et al., 2013, Mohn et al., 2014, Davies, 2009, Mienis et al., 2009, Soetaert et al., 2016).  It 

is probable that a similar process is occurring in Whittard Canyon. Our models predict high diversity 

and probability of CWCs in areas of complex terrain, especially steep slopes that are critical and 

supercritical to the dominant semi-diurnal internal tide and experience moderate internal tide current 

speeds. In their study of nepheloid layers within Whittard Canyon, Wilson et al. (2015) found the 

distribution of nepheloid layers was associated with the criticality of the slope to the dominant semi-

diurnal internal tide. Intermediate nepheloid layers were associated with critical conditions, whilst 

supercritical conditions, that reflect wave energy back down slope to suspend material, were linked to 

the formation of intermediate nepheloid layers at greater depths. These correlated spatial patterns 

between canyon fauna, nepheloid layer distributions and criticality support the theory of the interactive 

processes of the internal tide (local hydrodynamics) and topography in generating spatial heterogeneity 

in food supply to which fauna respond. 

4.2. Physical oceanography in canyon modelling

Despite hydrodynamics having been related to epibenthic fauna distributions in canyons (Hargrave et 

al., 2004, Cunha et al., 2011, Huvenne et al., 2011, Johnson et al., 2013, Fabri et al., 2017, Bargain et 

al., 2018), there is a paucity of work which really quantifies this relationship as we have done here. Of 

the few studies that have incorporated hydrodynamics into predictive models, authors also found current 

speed to be an important environmental predictor (Bargain et al., 2018). In other studies the variable 

aspect, or its derivative components eastness and northness, used as a proxy for current exposure, have 

been identified as an important predictor variable (Lo Iacono et al., 2018). 

Our work has shown that by integrating high-resolution hydrodynamic data into predictive models we 

are able to capture greater environmental heterogeneity beyond that solely represented by terrain 

proxies (specifically areas of resuspension and nepheloid layer production), and in turn improved the 

precision of the predicted distribution maps. 

Future modelling efforts would benefit from incorporating physical oceanography data. However, high-

resolution hydrodynamic models have only been developed for a subset of canyons and previous studies 

that integrated oceanographic data at low resolutions found it difficult to discriminate different 

environmental conditions (Davies et al., 2008, Davies and Guinotte, 2011). Consequently, integrating 

oceanographic data at an appropriate scale currently represents the main challenge of high-resolution 

canyon mapping. 
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4.3. Model limitations

Field validations of deep-sea predictive models have demonstrated that caution should be applied not 

to over-interpret results (Anderson et al., 2016b). In particular, high spatial heterogeneity in 

environmental conditions and localised faunal distributions can be difficult to model accurately 

(Anderson et al., 2016b). As such, model results should be viewed as representing suitable locations 

rather than actual distributions. The outputs from models are constrained by the data inputs (Lecours et 

al., 2015, Miyamoto et al., 2017, Misiuk et al., 2018, Porskamp et al., 2018), as demonstrated by our 

results which differed depending upon the inclusion of hydrodynamics (Table 3 and 4). Consequently, 

increased sample size, data resolution of the environmental variables and the inclusion of environmental 

variables that capture variability in food availability could improve our model predictions by further 

characterising environmental gradients and resolving the species – environment relationship of canyon 

fauna.

The dependence of model performance on data resolution represents a limitation for deep-sea models 

(Lecours et al., 2015, Miyamoto et al., 2017, Misiuk et al., 2018, Porskamp et al., 2018). In our study 

the environmental variables temperature and salinity were extracted and interpolated from the FOAMM 

model that outputted the data at 7 km, which is too coarse a grid size to resolve the fine-scale 

heterogeneity that influences species distributions in Whittard Canyon. As a result these variables were 

not retained in the models. The inclusion of finer resolution temperature and salinity data would enable 

environmental heterogeneity in water mass characteristics to be better characterised. Unfortunately, 

such fine-scale modelling outputs are rarely available for canyons. Additionally, incorporating 

oceanographic data metrics of higher temporal resolution that capture temporal variability in addition 

to mean values, could further improve the predictive value of oceanographic variables, since species 

distributions are often limited by environmental extremes (Vasseur et al., 2014, Stuart-Smith et al., 

2017). Our results suggest that food supply is an important factor influencing species distributions, as 

such, the inclusion of environmental variables that capture variability in food availability could provide 

further insights and improve variance explained by models. Lastly, increasing the number of 

groundtruthed samples, from across the different canyon environments could reduce heterogeneity in 

the dataset and enable more accurate modelling of species- environment relationships, so improving 

prediction outside the originally sampled area. 

Despite the limitations of predictive modelling, as mentioned above, and despite the limitations of our 

specific dataset in Whittard Canyon, the results of this study still provide new insights in the functioning 

of submarine canyons, and in the processes that drive benthic faunal distributions in canyons.
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5. Conclusion

In conclusion, our study has shown that the inclusion of high-resolution oceanographic data into 

predictive models of CWCs and epibenthic megafaunal biodiversity improves their performance. Our 

work builds upon previous studies that solely used indirect variables to capture information regarding 

physical oceanography and provides further evidence within a statistical modelling framework for the 

role of hydrodynamics, and principally the internal tide, in influencing faunal patterns in canyons. 

Highest probability of CWCs and epibenthic diversity occur in areas of complex terrain that are subject 

to elevated current speed. These areas coincide with areas of probable resuspension and nepheloid layer 

distribution that represent enriched food resources for epibenthic canyon fauna. Future predictive 

modelling efforts would benefit from incorporating physical oceanography data at ecologically 

meaningful resolutions, based upon prior multiscale analysis, helping to ensure accurate habitat 

mapping of features of conservation interest, which will facilitate effective spatial management.
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Including physical oceanographic data improves predictive species distribution models

Faunal distributions are driven by environmental heterogeneity, mainly in food supply

The interactions between hydrodynamics and seafloor morphology cause variability in food supply 

High diversity and coral presence are linked to elevated currents and complex topography


