
Vol.:(0123456789)1 3

Requirements Engineering 
https://doi.org/10.1007/s00766-020-00330-4

ORIGINAL ARTICLE

Modeling functional requirements using tacit knowledge: a design 
science research methodology informed approach

Adrian Benfell1 

Received: 31 October 2018 / Accepted: 9 March 2020 
© The Author(s) 2020

Abstract
The research in this paper adds to the discussion linked to the challenge of capturing and modeling tacit knowledge through-
out software development projects. The issue emerged when modeling functional requirements during a project for a client. 
However, using the design science research methodology at a particular point in the project helped to create an artifact, a 
functional requirements modeling technique, that resolved the issue with tacit knowledge. Accordingly, this paper includes 
research based upon the stages of the design science research methodology to design and test the artifact in an observable 
situation, empirically grounding the research undertaken. An integral component of the design science research methodol-
ogy, the knowledge base, assimilated structuration and semiotic theories so that other researchers can test the validity of the 
artifact created. First, structuration theory helped to identify how tacit knowledge is communicated and can be understood 
when modeling functional requirements for new software. Second, structuration theory prescribed the application of semiotics 
which facilitated the development of the artifact. Additionally, following the stages of the design science research methodol-
ogy and associated tasks allows the research to be reproduced in other software development contexts. As a positive outcome, 
using the functional requirements modeling technique created, specifically for obtaining tacit knowledge on the software 
development project, indicates that using such knowledge increases the likelihood of deploying software successfully.

Keywords  Functional requirements modeling · Tacit knowledge · Design science research methodology · Structuration · 
Semiotics

1  Introduction

To improve software development, the research in this 
paper details how to utilize tacit knowledge during func-
tional requirements modeling. The research also aligns to 
the recognized challenge associated with tacit knowledge 
when developing software [5, 21, 45, 50] and asks the fol-
lowing Research Question (RQ): how can tacit knowledge 
be obtained and managed in order to contribute to functional 
requirements modeling? To answer the RQ, the Design Sci-
ence Research Methodology (DSRM) [6, 7, 24, 28, 39] 
empirically grounds the research undertaken [18, 27]. The 
DSRM incorporated input from end-users, a requirements 
engineer (also the researcher), and the Unified Modeling 
Language (UML) to change unwanted circumstances into 

better ones during a software development project for a 
client.

DSRM affords a process that guides researchers to ini-
tiate, develop and measure the impact of an artifact in a 
problem situation. The artifact must be evaluated to warrant 
its applicability to form a novel research contribution, either 
as problem solving or providing a more effective solution. 
Research rigor is central to the DSRM which includes a pro-
cess model and a supporting knowledge base [18, 27, 28, 
39]. The knowledge base in this research assimilated the 
development of a framework based upon structuration theory 
and semiotics [25, 40–42]. The framework first helped to 
analyze how end-users conveyed tacit knowledge, and sec-
ond, assisted when making changes to functional require-
ments modeling to aid its capture and management. Also, 
structuration theory guided the use of semiotic concepts 
which formalized a functional requirements modeling tech-
nique specific to handling tacit knowledge during a repeat 
of the requirements analysis phase of the software develop-
ment project.

 *	 Adrian Benfell 
	 a.benfell@uea.ac.uk

1	 University of East Anglia, Norwich Research Park, 
Norwich NR4 7TJ, UK

http://orcid.org/0000-0001-9825-4532
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-020-00330-4&domain=pdf


	 Requirements Engineering

1 3

To present the research completed, the arrangement of 
this paper is based upon the stages of the DSRM. First, how-
ever, is a section that includes the theoretical background 
which discusses the presence of tacit knowledge when devel-
oping software and possible outcomes if this type of knowl-
edge is not used. The theoretical background section also 
identifies mechanisms based upon structuration and semiotic 
theories that can be employed to capture and model tacit 
knowledge for functional requirements modeling, while also 
denoting the meaning of social system used in this paper. 
Section 3, research methodology, outlines the rationale 
and motivation for using the DSRM. Additionally, Sect. 3 
includes the DSRM stages followed to provide a mental 
model, a template, so that other researchers can check the 
validity of the research [39]. This paper then follows the 
stages of the DSRM in Sects. 4–7. Section 4 identifies the 
problem, the motivation for the research, and the objectives 
adhered to. Section 5 includes the design and development 
of the artifact, and Sect. 6 comprises its demonstration. 
Section 7 has an evaluation of the artifact, the solution, set 
by the objectives in Sect. 4. Section 8 incorporates a short 
conclusion.

2 � Theoretical background

To develop new software, functional requirements modeling 
helps to specify what is needed, structures communication, 
and provides tangible evidence that monitors how software 
development projects progress [1, 3, 29, 33, 36, 38]. Func-
tional requirements modeling acts as the instrument between 
project stakeholders to facilitate communication. Hence, it is 
essential that stakeholders such as end-users communicate 
requirements unambiguously and requirements engineers 
interpret them correctly. To specify requirements, stakehold-
ers normally use two different types of knowledge, tacit and 
explicit. Tacit knowledge has a personal quality that is dif-
ficult to formalize and articulate [32, 37, 44] and may also be 
defined as the skills, ideas and experiences that people own 
but which are difficult to express and codify [15]. Addition-
ally, people are not cognizant about the tacit knowledge they 
own, and more importantly, how other people might make 
use of it. To share tacit knowledge with others normally 
requires extensive personal contact, regular interaction, and 
trust [26], as such knowledge can only be shared in specific 
contexts, for example when people participate in the same 
social systems [37].

Explicit knowledge refers to knowledge that is codifi-
able and transmittable using formal systematic languages 
[17]. Explicit knowledge is therefore easier to discover and 
model during software development when working with pro-
ject stakeholders. The amount of tacit and explicit knowl-
edge can fluctuate on a scale whereby one of them takes 

dominance depending upon the situation [44]. For example, 
the amount of tacit knowledge increases in conditions where 
people work or socialize in the same environment and use 
specificity in language to simplify communication [44]. 
The scale of fluctuation suggests that capturing and mod-
eling tacit knowledge is difficult for requirements engineers 
in situations when they have not had extensive personal 
contact, regular interaction, or built trust. When functional 
requirements modeling, tacit and explicit knowledge are 
both needed [5, 21, 45, 50]. Also, many researchers have 
yet to agree on the best methods for its management, and 
additionally suggest that where tacit knowledge is owned 
by experts in a problem domain, requirements elicitation 
techniques are not guaranteed to capture tacit knowledge [8, 
10, 12, 22, 29, 31, 45, 50].

Reviewing functional requirements modeling further 
indicates that it utilizes the combination of diagrams and 
narrative to represent proposed software [1, 4, 16, 19, 23, 
43, 53]. Typically, functional requirements are captured dur-
ing elicitation when examining documentation, carrying out 
observation, in meetings, doing interviews, or distributing 
questionnaires. For example, when applying Unified Mode-
ling Language (UML) Use case diagrams, the symbols avail-
able become topics of conversation that can be asked, and 
when combined with recommended structured narrative in 
UML [51], help to frame questions and elicit answers from 
individuals. This process unfolds as the symbols available 
that represent actors, use cases, and associations in Use case 
diagrams, also form links to narrative dictionaries that must 
be populated for software development [30, 51].

Applying UML begins the process of modeling which 
relies upon explicit knowledge. For instance, Fig. 1 illus-
trates how the application of different symbols belonging 
to UML modeling techniques is used to create requirements 
models. Figure 1 shows a typical approach to functional 
requirements modeling starting with Use case diagramming 
to denote actors, use cases, associations, include, extend 
and generalization. Each element helps to detail use cases 
further with supporting narrative collected from end-users. 
The process continues by deconstructing each use case with 
other types of UML diagram, shown in Fig. 1, to help form 
completed requirements models.

When functional requirements modeling with UML 
using the elements in Fig. 1, this escalates the difficulty of 
capturing and modeling tacit knowledge. For example, the 
application of UML results in the compilation of a vocabu-
lary specific to software development, described as a “ker-
nel vocabulary” [30]. Such vocabularies during functional 
requirements modeling can become unfamiliar to different 
types of stakeholder who use different terms and definitions 
in a project. Some terms and definitions stakeholders use are 
known explicitly, but other ones are known tacitly. Hence, 
stakeholders are likely to find it difficult to understand how 



Requirements Engineering	

1 3

their views and expectations for new software are repre-
sented if they do not understand how their requirements are 
being represented by UML. Hence, where tacit knowledge 
is owned by stakeholders and is not as expressible as explicit 
knowledge, requirements elicitation techniques are not guar-
anteed to capture tacit knowledge [5, 21, 45, 50]. To explain 
this dichotomy further, the duality of social structure and 
agency in structuration theory illuminates how tacit knowl-
edge forms in stakeholder minds, and when engaged with 
social systems, how it might be discovered more expediently 
during functional requirements modeling.

2.1 � The duality of structure, tacit knowledge 
and social systems

The sharing of tacit knowledge between individuals, pre-
viously discussed, suggested that it requires specific con-
texts, extensive personal contact, regular interaction, and 
trust, in social systems [26]. Structuration theory helps to 

explain this situation. The duality of structure and agency is 
the central configuration in structuration theory, as duality 
relates to the relationship that people as agents have with 
structure, as agency cannot exist independently [25]. The 
interplay of the two sustains social systems and how people 
acquire tacit knowledge. With reference to Fig. 2, structure 
is determined by signification, domination, and legitimation 
supported by three modalities, interpretive scheme, facility, 

Fig. 1   Requirements modeling with the UML

Fig. 2   Structuration theory [25]



	 Requirements Engineering

1 3

and norm, each characterized by language and communi-
cation. In Fig. 2, for agents to interact in social systems, 
structure incorporates the rules of language used to facilitate 
communication, but also allows agents to create new words, 
acronyms, and so on with associated meaning. The known 
system of interaction maintains the rules of language and 
communication so that hearers understand what speakers 
say. Language and communication delineate social systems, 
thus the association between structures and agents generate 
signs that are then interpreted in communication [25].

2.2 � Signification, semiology and semiotics

Referring to Fig. 2, for interpretive schemes to work struc-
turation theory includes a semiology and semiotic view of 
signification [25]. The view, however, is not developed in 
detail. In semiology and semiotic theories, different sign 
parts unify in a relationship, as either dyadic or triadic [40, 
46]. These theories have a subjective element to understand-
ing signs present in communication, as signs can have alter-
native meanings within different social systems [40, 46]. 
For example, when the parts work in combination, interpret-
ing signs in communication, called signification, involves 
semiosis [2, 20, 35, 47, 49]. Semiosis combines how sig-
nification occurs involving the actual sign, its object, and 
someone’s understanding. However, to simplify semiosis it 
can be organized into three dimensions [35]. Syntactic as 
the relationship between signs, semantic as the relationship 
between signs and the objects they represent, and pragmatic 
as the relationship between the sign and the interpreter [35].

Semiology, the science of signs, advocates that a sign is 
a dyadic conceptual object which consists of a signifier, the 
sign’s physical attributes such as a sound, a printed word, or 
an image, and the signified, as the meaning suggested by a 
sign distinct from its physical form in someone’s mind [46]. 
The purpose of semiology helps to understand the relation-
ship between the signifier and signified of the language used 
in different social systems. Alternatively, a triadic view of 
signs exists called semiotic [40–42]. In semiotics a sign is 
said to be triadic as there is a relation between the sign, its 
object and someone’s mind, the interpreter. Signs in this 
context help to construct a relationship between the mind 
and experience, and signification occurs when signs cause 
habitual changes in the interpreter. The triadic form of semi-
otics also relates to understanding. First, qualisign (a qual-
ity), sinsign (something that exists) and legisign (a general 
law) categorize signs according to their type, the sign itself. 
Second, the trichotomy of icon (similarity), index (points to) 
and symbol (symbolic) identifies how signs relate to their 
object. Third, rheme (possibility), dicisign (fact), and argu-
ment (reason) relate to the degree of comprehension, the 
actual interpretation of signs.

Regarding semiology, a sign in a signifier and signified 
association are indivisible for meanings to emerge, and 
semiotic theory is similar by including a sign and object in 
place of signifier and signified [40–42, 46]. However, semi-
otics includes the concept of an interpretant which includes 
the three types of sign, rheme, dicisign, and argument to 
classify how signs influence people, and how people can 
change the meaning of signs in repeatable processes of semi-
osis. Hence, the interpretant identifies how people interpret 
signs within the social systems they belong to, explicitly and 
tacitly, in a duality of structure and agency. Based upon this 
premise, semiotic theory (referred to as Peircean semiotics 
for the remainder of this paper) is favorable to show how 
tacit knowledge, held by individuals in social systems, may 
be obtained and modeled by requirements engineers.

3 � Research methodology

The rationale for using the DSRM links to its focus upon the 
creation of how things should be to achieve goals [24, 28, 
39, 48]. Consequently, the purpose of design science is “to 
change existing situations into preferred ones” to address 
specific problems through artifact creation [39]. The arti-
fact shown in this paper, a functional requirements modeling 
technique called “Normative statements” fits the two impor-
tant characteristics of design science, novelty and relevance 
[24, 28, 39]. For novelty, Normative statements solved the 
problem associated with obtaining tacit knowledge in the 
requirements phase of the software development project 
(called SupportManagerDB for the remainder of this paper). 
Regarding relevance, Normative statements add to the dis-
cussion associated with tacit knowledge during functional 
requirements modeling.

The DSRM additionally provides a research process 
and a template for presenting and conducting design sci-
ence research, applicable to the challenge associated with 
tacit knowledge that emerged during the SupportManag-
erDB project. Table 1 shows how the DSRM [15, 24, 27] 
was applied for the research in this paper. Design science 
research methodologies must be theoretically, internally and 
empirically grounded [15]. This research is grounded so that 
other researchers can evaluate this paper with confidence. 
For theoretical grounding, the knowledge base used in this 
paper incorporates widely understood functional require-
ments techniques based upon UML, and structuration and 
semiotic theories. Internal grounding means to have logical 
consistency, a clearly described and reusable process [15]. 
The stages of the DSRM provides the apparatus for logical 
consistency in Table 1. To show the empirical grounding of 
DSRM, the application of the methodology was successful 
in practice, it changed a difficult situation into an improved 
one [39].



Requirements Engineering	

1 3

Ta
bl

e 
1  

D
SR

M
 p

ha
se

s, 
ac

tiv
iti

es
, k

no
w

le
dg

e 
ba

se
 a

nd
 g

ro
un

di
ng

D
SR

M
 p

ha
se

s (
in

te
rn

al
 g

ro
un

di
ng

)
Ph

as
e 

an
d 

as
so

ci
at

ed
 a

ct
iv

ity
 d

es
cr

ip
tio

n
Li

nk
ed

 k
no

w
le

dg
e 

ba
se

 (t
he

or
et

ic
al

 a
nd

 e
m

pi
ric

al
 g

ro
un

di
ng

)

1.
 P

ro
bl

em
 id

en
tifi

ca
tio

n 
an

d 
m

ot
iv

at
io

n 
(S

ec
t. 

4)
W

ha
t i

s t
he

 p
ro

bl
em

? 
Ju

st
ify

 th
e 

va
lu

e 
of

 a
 so

lu
tio

n
Re

qu
ire

m
en

ts
 m

od
el

in
g 

ne
ed

s t
o 

be
 c

ha
ng

ed
 to

 a
cc

om
m

od
at

e 
ta

ci
t 

kn
ow

le
dg

e 
to

 im
pr

ov
e 

de
pl

oy
ed

 so
ftw

ar
e 

fo
r e

nd
-u

se
rs

Re
al

-w
or

ld
 p

ro
bl

em
 e

xt
ra

ct
ed

 fr
om

 th
e 

so
ftw

ar
e 

de
ve

lo
pm

en
t p

ro
je

ct
 

Su
pp

or
tM

an
ag

er
D

B
 p

ro
je

ct
 to

 e
m

pi
ri

ca
lly

 g
ro

un
d 

th
e 

re
se

ar
ch

 
m

et
ho

do
lo

gy
2.

 D
efi

ne
 th

e 
ob

je
ct

iv
es

 o
f a

 so
lu

tio
n 

(S
ec

t. 
4)

H
ow

 sh
ou

ld
 th

e 
pr

ob
le

m
 b

e 
so

lv
ed

? 
W

ha
t c

ri
te

ri
a 

ar
e 

pe
rt

in
en

t t
o 

su
cc

es
s?

To
 a

dj
us

t U
M

L 
to

 a
llo

w
 th

e 
ca

pt
ur

e 
an

d 
us

e 
of

 ta
ci

t k
no

w
le

dg
e.

 T
ac

it 
kn

ow
le

dg
e 

m
us

t b
e 

us
ed

 to
 im

pr
ov

e 
th

e 
sp

ec
ifi

ca
tio

n 
of

 re
qu

ire
-

m
en

ts
 fo

r n
ew

 so
ftw

ar
e

K
no

w
le

dg
e 

of
 so

ftw
ar

e 
en

gi
ne

er
in

g 
an

d 
re

qu
ire

m
en

ts
 m

od
el

in
g 

ba
se

d 
up

on
 U

M
L 

to
 th

eo
re

tic
al

ly
 g

ro
un

d 
th

e 
D

SR
M

 o
w

ne
d 

by
 th

e 
re

qu
ire

-
m

en
ts

 e
ng

in
ee

r/r
es

ea
rc

he
r. 

St
ru

ct
ur

at
io

n 
an

d 
se

m
io

tic
 th

eo
rie

s t
o 

un
de

rs
ta

nd
 th

e 
ca

pt
ur

e 
an

d 
us

e 
of

 ta
ci

t k
no

w
le

dg
e 

to
 fu

rth
er

 th
e 

th
eo

re
tic

al
 g

ro
un

di
ng

 o
f t

he
 D

SR
M

3.
 D

es
ig

n 
an

d 
de

ve
lo

pm
en

t (
Se

ct
. 5

)
C

re
at

e 
an

 a
rt

ifa
ct

 th
at

 so
lv

es
 th

e 
pr

ob
le

m
 u

si
ng

 c
on

st
ru

ct
s, 

m
od

el
s, 

m
et

ho
ds

 o
r i

ns
ta

nt
ia

tio
ns

 in
 w

hi
ch

 th
e 

re
se

ar
ch

 c
on

tr
ib

ut
io

n 
is

 
em

be
dd

ed
D

ev
is

e 
a 

fr
am

ew
or

k 
th

at
 in

fo
rm

s h
ow

 to
 c

ha
ng

e 
re

qu
ire

m
en

ts
 m

od
-

el
in

g 
an

d 
in

st
an

tia
te

 th
os

e 
ch

an
ge

s u
si

ng
 U

M
L 

so
 th

at
 th

e 
w

id
er

 
so

ftw
ar

e 
de

ve
lo

pm
en

t c
om

m
un

ity
 m

ay
 m

ak
e 

us
e 

of
 th

e 
fu

nc
tio

na
l 

m
od

el
in

g 
te

ch
ni

qu
e(

s)
 d

ev
is

ed

St
ru

ct
ur

at
io

n 
an

d 
se

m
io

tic
 th

eo
rie

s, 
an

d 
re

qu
ire

m
en

ts
 m

od
el

in
g 

w
ith

 
U

M
L 

to
 th

eo
re

tic
al

ly
 g

ro
un

d 
de

si
gn

 a
nd

 d
ev

el
op

m
en

t

4.
 D

em
on

str
at

io
n 

(S
ec

t. 
6)

D
em

on
st

ra
te

 th
e 

us
e 

of
 th

e 
ar

tif
ac

t b
y 

so
lv

in
g 

on
e 

or
 m

or
e 

in
st

an
ce

s 
of

 th
e 

pr
ob

le
m

Ill
us

tra
te

 th
e 

co
m

po
si

tio
n 

of
, a

nd
 d

em
on

str
at

e 
ho

w
, t

he
 fu

nc
tio

na
l 

re
qu

ire
m

en
ts

 m
od

el
in

g 
te

ch
ni

qu
e(

s)
 o

bt
ai

ne
d 

an
d 

us
ed

 ta
ci

t k
no

w
l-

ed
ge

D
em

on
str

at
e 

ho
w

 to
 a

pp
ly

 th
e 

ne
w

 fu
nc

tio
na

l r
eq

ui
re

m
en

ts
 m

od
el

in
g 

te
ch

ni
qu

e 
w

ith
in

 th
e 

re
al

-w
or

ld
 S

up
po

rtM
an

ag
er

D
B

 p
ro

je
ct

 to
 

em
pi

ri
ca

lly
 g

ro
un

d 
th

e 
re

se
ar

ch

5.
 E

va
lu

at
io

n 
(S

ec
t. 

7)
H

ow
 w

el
l d

oe
s t

he
 a

rt
ifa

ct
 w

or
k?

 D
id

 it
 m

ee
t t

he
 st

at
ed

 o
bj

ec
tiv

es
 (i

n 
2)

 w
ith

 o
bs

er
ve

d 
re

su
lts

?
C

om
pa

ra
tiv

e 
an

al
ys

is
 w

ith
 re

qu
ire

m
en

ts
 m

od
el

in
g 

te
ch

ni
qu

es
 in

 
U

M
L 

an
d 

th
e 

re
qu

ire
m

en
ts

 p
ha

se
 in

 th
e 

re
al

-w
or

ld
 S

up
po

rtM
an

-
ag

er
D

B
 p

ro
je

ct
. A

ls
o,

 in
di

ca
te

 h
ow

 th
e 

ev
al

ua
tio

n 
of

 th
e 

ar
tif

ac
t 

m
ig

ht
 it

er
at

iv
el

y 
re

vi
se

 P
ha

se
 2

 a
nd

 3
 o

f t
he

 D
SR

M

U
nd

er
st

an
di

ng
 o

f t
he

 fu
nc

tio
na

l r
eq

ui
re

m
en

ts
 m

od
el

in
g 

te
ch

ni
qu

e,
 it

s 
str

en
gt

hs
, w

ea
kn

es
se

s a
nd

 a
pp

lic
ab

ili
ty

 to
 c

on
te

m
po

ra
ry

 fu
nc

tio
na

l 
re

qu
ire

m
en

ts
 m

od
el

in
g 

th
eo

ry
 a

nd
 p

ra
ct

ic
e 

an
d 

ob
se

rv
e 

its
 a

pp
ro

pr
i-

at
en

es
s f

or
 re

qu
ire

m
en

ts
 m

od
el

in
g 

to
 sh

ow
 th

e 
em

pi
ri

ca
l g

ro
un

di
ng

 
of

 th
e 

D
SR

M

6.
 C

om
m

un
ic

at
io

n
C

om
m

un
ic

at
e 

th
e 

pr
ob

le
m

, u
se

fu
ln

es
s, 

no
ve

lty
, a

nd
 e

ffe
ct

iv
en

es
s o

f t
he

 so
lu

tio
n



	 Requirements Engineering

1 3

The first column in Table 1 lists the research phases and 
their sequence, and the corresponding row for each phase 
identifies the tasks completed. For rigor, the last column 
links the knowledge base with the different tasks in each 
phase. The knowledge base is made up of knowledge tools 
such as foundational theories, frameworks, instruments, con-
structs, models, methods, and instantiations [39]. Integrating 
a knowledge base improves the application of the DSRM 
as the most suitable knowledge tools are selected accord-
ing to the objectives of the proposed solution [24, 28, 39]. 
Building the knowledge base was first governed by the iden-
tification of “dialog reference points” [14, 34], second, the 
expected application of UML set by the SupportManagerDB 
project, and third structuration and semiotic theories as they 
have been applied in information systems research [32, 47, 
49, 52]. For example, research into requirements modeling 
maximizes the potential to consider the role of structuration 
theory using its signification and communication pillar [32] 
which embeds semiotics. The pillars of structuration theory 
were also used to explore cross-cultural software produc-
tion [52].

4 � Problem identification, motivation 
and objectives of a solution

The structuration theory view of social systems, made up of 
structure and agency organized as signification, domination 
and legitimation pillars, refers to the group of people that 
required a new software system, SupportManagerDB, for 
managing tenants and accommodation. TenantManagement, 
a pseudonym, denotes the social system for the remainder 
of this paper. The accommodation management team com-
prised eight Support Managers (one as a Senior Support 
Manager), a Head of Residential Services, a requirements 
engineer (also the researcher), and to help scope initial pro-
ject requirements, two members from an Information Tech-
nology (IT) support department. Support Managers and the 
Senior Support Manager specified most of the functional 
requirements and are referred to as end-users for the rest of 
this paper. The two members from the Information Technol-
ogy (IT) support department met only at milestone meetings 
to check progress. They had knowledge of UML and pro-
gramming, and with the requirements engineer, ensured the 
consistent use of UML.

The IT support department requested that the require-
ments engineer follow a user-centered UML [51] Use 
case driven software development process as they wanted 
end-users involved during the requirements analysis phase 
of the project. All end-users attended meetings linked to 
functional requirements elicitation, such as project scop-
ing and providing functional requirements as verbal and 
textual descriptions during semi-structured meetings. The 

IT support department helped to verify the requirements 
model as end-users were not expected to understand the 
application of UML [51] beyond UML Activity diagrams. 
The process allowed the review and modification of the 
requirements model and other artifacts such as the design 
model and software at timely intervals. For design and 
implementation, all team members met to approve func-
tioning software only. Key end-users (the Senior Support 
Manager and two Support Managers) had between 5 and 
10 years of work experience at TenantManagement and 
had built-up extensive knowledge related to business func-
tions. The remaining Support Managers had comparative 
experience when working at other social systems. Each 
end-user owned a portfolio of accommodation according 
to location and number of tenants. End-users attended 
training courses associated with their role adding to their 
expertise. They had varied levels of IT skills but as a min-
imum showed competence when using computer-based 
office products.

The requirements engineer worked with the accommo-
dation management team, carried out all software develop-
ment activities, organized with the IT support department 
review meetings and recorded feedback. To help understand 
functional requirements, previously completed paper-based 
forms were made available. The project timescale included 
1 year for software development, and an additional year to 
review the new software system and make small modifica-
tions if required. The project incorporated a further 2 years 
consisting of four reviews to monitor the functioning of the 
software system. The project lasted for three-and-half-years 
and the team structure remained for the whole duration. Dur-
ing that time five of the eight Support Managers changed 
employment and TenantManagement recruited others to 
maintain the team structure. However, core members of 
the team, the Head of Residential Services, Senior Sup-
port Manager and two Support Managers provided stability 
during the DSRM. In addition, while the project lasted for 
three-and-half-years, there were “spikes” in activity linked 
to the supporting software development process, as phases, 
shown in Table 2.

To use UML [51], the supporting software develop-
ment process followed iterative development and included 
the phases project scoping, requirements analysis, systems 
design, and implementation. In the first year of the project, 
formal meetings occurred to check progress and comprised 
three scheduled major reviews, in the first month project 
scoping, in the sixth a requirements and design review, and 
in the last month, a post implementation review. In between 
the major reviews, informal meetings took place with end-
users, mostly in one-to-one settings, for functional require-
ments elicitation. To help with functional requirements mod-
eling a UML-based Computer-Aided Software Engineering 
(CASE) tool was used.



Requirements Engineering	

1 3

The CASE tool facilitated the start of functional require-
ments modeling with a UML Use case diagram [51] and this 
specified how the proposed software from actor (end-user) 
perspectives should work. Typically, the actors depicted the 
different jobs that Support Managers were responsible for 
when interacting with the proposed software system, and 
several use cases according to the needs of actors detailed 
initial software functionality. Actors stated roles worked 
through by end-users and any expected data transfer mod-
eled interaction. In the UML-based CASE tool, numbered 
steps showing the full functionality of each use case, com-
pleted as chains of actions by actors, then moved to the 
UML Activity [51] component of the requirements model 
for further elaboration, and then onto UML Communication 
modeling to show the coordination of boundary, control and 
entity stereotype classes [51] and the ownership of func-
tions between them. Based upon the UML Communication 
diagram, the CASE Tool facilitated the creation of a pilot 
UML Class model.

The first key review meeting, project scoping, assessed 
preliminary requirements using a project initiation document 
supported by a UML Use case model with additional nar-
rative. The key meeting 6 months into the project, require-
ments and design review, considered the entire requirements 
model for the project incorporating UML Use case, Activ-
ity, and Communication diagrams and a pilot UML Class 
diagram. During the first 6 months, the requirements engi-
neer organized with all Support Managers other less formal 
meetings (two each) to begin work on requirements. At the 
end of each informal meeting, Support Managers provided 
feedback informing any changes needed.

After achieving agreement for the UML Use case model, 
complications surfaced. When discussing the requirements 
for the proposed software during one-to-one and group 
meetings, applying UML forced the creation of a kernel 
vocabulary [30]. The UML Use case model consisted of 
actors, use cases, and different associations (includes and 

extends), formed its composition. Team members did not 
experience communication and understanding difficulties 
in meetings when the requirements engineer used the basic 
elements of UML Use case modeling only (which excluded 
includes and extends). However, as UML Use case mod-
eling started a functional decomposition process by nam-
ing use cases according to a verb-object convention, the 
process of clarifying and agreeing use cases also allowed 
specific terms to emerge which demonstrated how the social 
system was organized in line with structuration theory. For 
example, when using a term such as “incident”, it invoked 
a range of responses from the end-users. For example, Sup-
port Manager A stated, “during each incident I also have 
to consider a range of incidents from assault to threatening 
behavior”. Support Manager B said, “when I deal with an 
on-call incident, report forms must have follow-up actions. 
I add my write-up of follow-up actions to the forms in the 
spare boxes provided”. The Senior Support Manager also 
indicated “all support managers must discuss additional inci-
dents. My experience in many cases show that most often 
when a tenant is at fault over an incident, there are others 
to be discussed and reported. I also amend the form with 
additional incidents”.

Difficulties appeared, however, when progressing into 
UML Activity and Communication modeling and complet-
ing the kernel vocabulary as communication was difficult 
which resulted in missing tacit knowledge. The Senior 
Support Manager said, “Those diagrams look interesting. 
I don’t understand them that well, but I trust what you are 
doing. I am looking forward to getting the new database to 
make my job easier”. Using the modeling techniques that 
incorporate formalized but different procedures and sym-
bolic notation, team members were unable to express their 
understanding with the same clarity when the requirements 
engineer used UML Use case diagrams. Consequently, 
time quickly advanced toward the six-month key meeting, 
requirements and design review, resulting in an inaccurate 

Table 2   Composition of the requirements model

Phase Team activities Artifact

1. Initial scope of requirements Individual meetings with all Support Managers
Team review

Project initiation document

2. Use case modeling included: narrative for each use case 
(11 use cases)

Activity model for complex use cases (for 8 use cases—8 
Activity models)

Communication model for each use case (for 11 use 
cases) according to UML stereotypes

Pilot class model (merging of 11 communication models)

Individual meetings with all support managers
Team review (including IT support team to very 

UML diagrams)

Requirements specification

3. Class modeling Team review Design specification—class model
4. Detailed class modeling: finalized class model, rela-

tional database model, and C# skeleton code generation
Team review Programming specification

5. First phase deployment of SupportManagerDB project Team review (all end-users) Full working software



	 Requirements Engineering

1 3

requirements specification. The key meeting 6 months into 
the project, requirements and design review, considered the 
entire requirements specification which incorporated the 
UML Use case, Activity, and Communication models, and 
the pilot UML Class model. The accommodation manage-
ment team judged the requirements specification to be inac-
curate. However, a preliminary software system built from 
the functional requirements model helped to meet the initial 
one-year deadline. This plan eased time pressure allowing 
the DSRM, for 3 months, to be followed at the beginning of 
the second year of the project. At the last key review meet-
ing, post implementation review, the accommodation man-
agement team indicated that the SupportManagerDB project 
met very few requirements. Table 2 presents the require-
ments model (particularly phases 1 and 2) at this stage of 
the SupportManagerDB project. It also shows each phase 
followed and corresponding requirements and design tasks, 
team activities with each phase, and the artifacts created.

When using the UML Use case diagramming techniques, 
end-users did not experience communication and under-
standing difficulties in meetings, as the basic structure of 
UML Use case modeling was explained and supported by 
the requirements engineer, end-users engaged with the mod-
eling process. However, when introducing complexity such 
as “includes” and “extends” to begin functional decomposi-
tion, end-users became concerned that their views were not 
being documented in the requirements model. For example, 
Support Manager D said, “I can’t follow the picture showing 
what I do after you added more detail. Maybe I should wait 
until I see the database to see if it works as I hope it will”. 
However, as previously pointed out, the UML Use case 
driven approach started a functional decomposition process 
by naming use cases according to a verb-object convention, 
ready for further modeling with UML Activity and Com-
munication diagrams. The process of clarifying and agreeing 
the structure of use cases did allow end-users to identify and 
agree to specific terms such as “case reporting”, “incident”, 
“case time allocation”, “accommodation change request”, 
and others and for the requirements engineer/researcher to 
record them.

The difficulty of capturing and modeling tacit knowledge 
emerged as a challenge during meetings with end-users. 
Often, contradictory requirements were provided by end-
users according to their understanding of localized needs as 
each Support Manager had responsibility for a specific area 
and several tenants. The more experienced Support Manag-
ers had developed different work processes which achieved 
expected outcomes in terms of work deliverables but were 
not cognizant of the changes they made. Hence, at the begin-
ning of year two of the project, the researcher piloted the 
idea of working with the terms identified by asking team 
members to explain them further and following the DSRM. 
Working with strict time pressures, travelling to different 

locations and again in mostly one-to-one meetings, consen-
sual agreement did, however, quickly form across end-users 
when identifying different terms. The researcher took the 
view that such specific terms might give clues to unlocking 
functional requirements based upon tacit knowledge more 
accurately than UML modeling techniques alone. Set by the 
first two phases of the DSRM, the following list defines the 
objectives of a solution agreed with end-users:

1.	 Create a functional requirements modeling technique 
that begins with specific terms and models tacit knowl-
edge while maintaining user-centeredness within the 
SupportManagerDB project;

2.	 As a condition placed upon the SupportManagerDB pro-
ject, ensure that the new functional requirements mod-
eling technique works with UML Use case modeling and 
aligns seamlessly with design, specifically with UML 
[51] Class modeling;

3.	 To maintain the original schedule, the functional 
requirements modeling technique must enable require-
ments to be modeled speedily as end-users agreed to 
check requirements but insisted on the deployment of a 
revised software system at the end year two of the Sup-
portManagerDB project to match the original timescale.

5 � Design and development

To represent tacit knowledge as it appeared in the Support-
ManagerDB project, the specific terms that emerged, “case 
reporting”, “incident”, “case time allocation”, “accommo-
dation change request”, and others, are signs [2, 20, 35, 47, 
49]. Such specific terms take the form of “dialog reference 
points” and can include acronyms, labels, diagrams and so 
forth known only to agents within social systems [14, 34]. 
For example, end-users consistently used dialog reference 
points such as “case reporting”, “incident”, “case time allo-
cation”, “accommodation change request”, and others, dur-
ing the original requirements analysis phase of the Support-
ManagerDB project. Table 3 shows a collection of dialog 
reference points discovered during meetings and detailed 
further when following the DSRM.

The dialog reference points identified can be explained by 
the signification and communication pillar in structuration 
theory. To understand the role of dialog reference points 
[14, 25, 34] in the SupportManagerDB project, highlighted 
that they identified the scope of the problem domain in the 
social system. To explain this further, the following example 
based upon “Fire training” (taken from Table 3) is used. 
In the problem domain the process of signification occurs 
when a dialog reference point is identified—“Fire train-
ing”. The interpretative scheme is made up of causes and 
effects. Allocative and authoritative resources are used to 



Requirements Engineering	

1 3

identify effects associated with each dialog reference point. 
For example, Support Manager G said, “fire training must 
be completed”, and the Senior Support Manager stated that 
a “report must be sent to the Head of Residential Services”. 
The Head of Residential Services also specified in a team 
meeting that reports related to the malicious activation of fire 
alarms must be compiled. When identifying effects, power 
was exerted through relationships, for example between Sup-
port Managers and from the Head of Residential Services. 
To achieve the desired effects, causes were identified, “mali-
cious activation of a fire alarm is recorded as an incident, a 
tenant must attend a welfare meeting, and a tenant must go to 
fire training”. In identifying causes, if Support Managers did 
not complete expected actions it invoked “sanctions” as the 

desired effects, work outputs, were not evident. The process 
of identifying dialog reference points and associated causes 
and effects resulted in amendments made to Fig. 2 of the 
original form of structuration theory and is shown in Fig. 3. 

The structure in Fig. 3 represents how end-users began 
detailing dialog reference points based upon their tacit 
knowledge of the problem domain. The top layer repre-
sents the problem domain, and the bottom layer end-users. 
In structuration theory the term structure and not problem 
domain is used, and interaction and not end-users. However, 
the term problem domain follows structuration theory as 
rules and resources organized as properties of social sys-
tems, and end-user aligns to interaction. The top and bot-
tom layers of each pillar in Fig. 3 connect through the same 

Table 3   Dialog reference points and tacit knowledge

Dialog reference point Tacit Knowledge (agreed to and shared by end-users)

Cause Effect

Case reporting Contact time statistics for Incident on call reporting 
must include episodes, minutes, and hours

Account for types of incidents with totals
Report types of contact as application, drop-in, visit, 

email, letter, telephone with a total for each type

Submit a report for each case with timely figures to 
verify resource allocations linked to each support 
manager

Case time allocation Record and account for our time used in minutes for 
each case

Calculated and record time used in a report and for-
warded to head of residential services

Incident Consider a range of incidents from “assault” to 
“threatening behavior”

On-call incident report forms must have follow-up 
actions

Discuss additional incidents
Save incident records

Ensure accuracy and recording of incident data in a 
report and escalate to head of residential services and 
other stakeholders

Accommodation change request All tenants must see a support manager before the 
transfer to other accommodation

Use a priority scale 1, 2 and 3 for requests. 1 being 
the highest. The priority scale determines a queue-
ing order

Approve accommodation requests before a change of 
circumstances can begin

Approve tenants only for a change of accommodation 
once an accommodation change request is complete

Change of circumstances Give reason for leaving
Record new address
Verify and record other items such as keys returned, 

damages bill applied and amount, date of leav-
ing and the new address to complete a change of 
circumstances

A tenant moves accommodation

Calculate time in lieu Link accumulation of worked minutes and hours to 
Incident cases

Recorded report from “Case time allocation” must 
match calculated time in lieu

Fire training Record malicious activation of a fire alarm as an 
incident

A tenant must attend a welfare meeting
A tenant must go to fire training

Fire training completed and head of residential services 
notified

Discipline Allegation details of misconduct complete each disci-
pline record before saving

Agree and record outcomes between the tenant and 
support manager

Discipline meetings result in a range of warnings and 
actions from “informal verbal warning” to “notice 
to quit”

Discipline case escalated to head of residential services



	 Requirements Engineering

1 3

three modalities, interpretive scheme, norm, and facility 
[25]. Working across the top layer in Fig. 3, the pillar sig-
nification and communication was adjusted to show how 
end-users encoded and decoded tacit knowledge, starting 
with dialog reference points, and detailing each one using 
cause and effect statements. Also, following the cause and 
effect statements in Table 3, the legitimation and sanction 
and domination and power pillars represent the identification 
of causes and effects. For example, regarding the control of 
resources, domination and power depicted how the cause 
and effect statements were influenced by power relationships 
between end-users and other team members with a higher 
level of authority, such as the Head of Residential Services.

The combination of causes and effects linked to each 
dialog reference point is a process of Peircean semiosis. 
Referring to Fig. 3, the modality interpretive scheme assigns 
importance to signification. When end-users communicated 
functional requirements in meetings when repeating the 
requirements analysis stage during the DSRM, they did so 
by choosing to state effects and causes linked to dialog refer-
ence points. The researcher discovered this approach simpli-
fied communication and improved understanding when com-
pared to UML [51] beyond basic UML Use case modeling.

When semiosis occurred during this phase of the DSRM, 
the researcher observed end-users drawing upon tacit knowl-
edge to identify causes and effects. For example, when 
end-users discussed the dialog reference point “incident” 
in a team meeting, the agreed desired effect that emerged 
included the necessity to submit a report to the Head of 
Residential Services. The Senior Support manager said, 

“TenantManagement now requires all case time alloca-
tions to be recorded, reports produced which I have to send 
to [Head of Residential Services] with Support Managers 
holiday allowances according to time in lieu”. Then Sup-
port Manager C said, “I haven’t been completing the forms 
required by [Head of Residential Services]. Does that mean 
my time allocations are incorrect and my time in lieu hasn’t 
been calculated correctly?” In the process of semiosis, end-
users decided that they had to consider a range of incidents 
from “assault” to “threatening behavior”, record any follow-
up actions, discuss any additional incidents, and ensure that 
all information is saved to a database and shared with other 
end-users (in the Support Manager role) occurred before 
forwarding reports to the Head of Residential Services.

The interpretation of dialog reference points previously 
described are interpretant signs [40–42]. These are signs 
that evolve in someone’s mind when the circumstances of a 
situation permit interpretation to work toward completion. 
In the process of semiosis, it is an interpretative result that 
each person will arrive at if signs are sufficiently reflected 
upon. In terms of functional requirements modeling for 
the SupportManagerDB project to capture and model tacit 
knowledge, this pointed to the creation of a formalism that 
could be used by the requirements engineer with end-users 
to understand, communicate, and qualify tacit knowledge. 
When aligning dialog reference points to signification in 
structuration theory, Peircean semiotic theory pointed to 
rhemes (formal quality such as the word “report” which rep-
resents the possibility of a “report”), dicisigns (formal index-
icality as a sentence formed of rhemes to assert existence, 

Fig. 3   DSRM knowledge base derived from structuration theory [25]



Requirements Engineering	

1 3

“You have to create a report for the Head of Residential 
Services”), and arguments (formal mediation as a sequence 
of dicisigns, “You have to create a report for the Head of 
Residential Services. Therefore, you should save it to the 
database”), relate to the degree of tacit knowledge compre-
hension. Interpretant signs took the leading perspective to 
develop the functional requirements modeling technique to 
represent tacit knowledge.

Tacit knowledge when linked to foundational categories 
to infer meaning in Peircean semiotics, also emerged as dif-
ferent grades of clarity based upon interpretant signs. The 
first grade involves familiarity with a concept in day-to-day 
encounters (the representamen), and the second the ability 
to offer general definitions of a concept (the object). In the 
third, end-users knew, and agreed to, what effects to expect 
from holding a concept to be true (the interpretant) [2]. In 
terms of a change to functional requirements modeling, this 
structured the formalism to arrive at interpretant signs. For 
example, regarding dialog reference points and generating 
cause and effect statements, the first grade of clarity related 
to an unreflective awareness of them in everyday experi-
ence. When personal experience and consensus between 
end-users existed for each one, this offered a second grade 
of clarity and provided some generalized concepts associ-
ated with dialog reference points. In these two grades of 
clarity, although end-users understood and communicated 
functional requirements for the new software, deeper com-
prehension was available as the third grade, to intellectualize 
dialog reference points as the interpretant. The interpretant 
emerged by knowing what effects to expect from holding a 
dialog reference point to be true and being able to ensure 
correctness of the effects identified in terms necessary and 
sufficiency conditions in cause statements [11].

Working further with structuration theory, the pillar 
legitimation and sanction combined with the pillar domi-
nation and power are the extra dimensions of structuration 
theory that helped to uncover tacit knowledge through power 
relationships between Support Managers and authoritative 
relationships, with and between, the Senior Support Man-
ager and the Head of Residential Services. Both affected 
the quality of cause and effect statements and their commu-
nication. These two pillars follow the idea of social norms 
[9]. They represent how end-users understood the problem 
domain through an array of influences which marked fur-
ther consensus to cause and effect statements. Hence, dialog 
reference points and linked cause and effect statements are 
representative of personal end-user experience and views 
through autonomy, formed tacitly and agreed to as inter-
pretant signs.

Using the dialogue reference points documented in 
Table 3, they follow the semiosis process associated with 
interpretant signs. Throughout this phase of the DSRM, 
when end-users communicated using dialog reference points, 

this began shaping a formalism based upon the interpretive 
scheme modality. Thus, to intellectualize dialogue reference 
points in a formalism and use these for functional require-
ments modeling as a third grade of clarity, modeling the 
cause and effect statements in the SupportManagerDB pro-
ject guided the development of the meta-model, presented in 
Fig. 4, to fit the DSRM objectives of a solution. The meta-
model determined how to generate the requirements mod-
eling technique that captures and models tacit knowledge.

6 � Demonstration

The modalities in structuration theory and added to the 
knowledge base framework in Fig. 3, interpretative scheme, 
norm and facility, helped to configure changes to require-
ments modeling based upon Fig.  4. The Interpretative 
Scheme in Fig. 3 incorporated the signification and com-
munication pillar by identifying the encoding and decod-
ing of tacit knowledge driven by dialog reference points. 
Also, according to the cause and effect statements shown in 
Table 3, the legitimation and sanction pillar shown as Norm 
in Fig. 4, included normative perceptions rooted as cause 
and effect statements. Regarding the control of resources, 
domination and power depicted power relationships between 
team members and how these manipulated cause and effect 
statements, endorsed by all team members and shown as 
Facility in Fig. 4.

The user-centeredness of UML Use case modeling con-
tinued to identify all team members as roles linked to the 
proposed software, required by the legitimation and sanc-
tion pillar, which resulted in the creation of the functional 
requirements modeling technique called “Normative state-
ments”, from Fig. 4, in this research. As the SupportManag-
erDB project had a project initiation document coupled with 
a range of use cases, with each use case identifying linked 
actors, the term ‘role’ replaced ‘actor’ to show the pillar 
domination and power. Information recorded with each role 
included the influence it had over other team members. Each 
Normative statement inclusive of causes that supported an 
effect became a candidate function within a candidate class 
to seamlessly link with design, and each effect had one or 
more causes combining necessary and sufficient conditions 
[11]. The structure in Fig. 4 provided the apparatus to intel-
lectualize tacit knowledge as Peircean interpretant signs and 
devise a functional requirements modeling technique that 
met the demands of stage 2 of the DSRM.

Regarding the revision to functional requirements mode-
ling within the context of structuration and semiotic theories 
to model tacit knowledge, quick consensus formed between 
end-users when working with Normative statements. Agree-
ment occurred in one-to-one meetings and approved in final 
requirements and design review. The Normative statements 



	 Requirements Engineering

1 3

represented the functional requirements incorporating 
tacit knowledge by end-users better. Normative statements 
allowed an autonomy of expression with short natural lan-
guage blocks of text permitting all team members in dif-
ferent roles to identify supporting necessary conditions to 
effects. Figure 5 presents an example Normative statement.

Candidate functions in Normative statements were 
mapped over to the stereotype classes, entity, controller and 
boundary to generate a pilot Class diagram as it is shown in 
Fig. 6. For detailed design, the class diagrams for each Nor-
mative statement were merged into one forming a completed 
UML Class model. The UML-based CASE Tool helped to 
manage this process by eliminating similar classes. The 
stereotypes used in the UML Class model used (boundary, 
control and entity [51]) structured the type of software asked 
for in the SupportManagerDB project.

Regarding the importance of iteration as part of the 
DSRM [39], the dialog reference points starting with “Case 
reporting” were modeled first followed by “Case time alloca-
tion” and then working through the list in Table 3. Refine-
ments included how candidate functions linked to candi-
date classes. The stereotypes boundary, control and entity 

indicated in UML [51] provided a mechanism to allocate 
functions based upon causes in Normative statements. When 
reaching the dialog reference point “Incident”, using bound-
ary, control and entity stereotypes routinized the adding of 
functions to classes. The objectives set out in Phase 2 of the 
DSRM remained unaltered.

7 � Evaluation

To address Objective 1 set in phase 2 of the DSRM, require-
ments modeling began with a basic UML Use case diagram 
to confirm dialog reference points with end-users, shown in 
Fig. 7. Normally, when naming use cases, the verb-object 
naming convention is used [51], but unnecessary for the 
SupportManagerDB project as the sole purpose of the Use 
case model was to show dialog reference points, actors, and 
interaction. The Senior Support Manager confirmed the 
UML Use case model, “I found this quite easy to follow. I 
could also see visually the scope of the project which makes 
it look quite simple”.

Fig. 4   Normative statements meta-model



Requirements Engineering	

1 3

Once all end-users agreed to the UML Use case diagram, 
the next stage of the requirements analysis phase consid-
ered Normative statements. For each dialog reference point 
shown in the Use case diagram, a Normative statement 
was compiled using a structured document based upon 
Fig. 5. The UML CASE Tool managed the document for 

each Normative statement, it linked each document to cor-
responding dialog reference points in the UML Use case 
model. Each Normative statement was discussed in semi-
structured one-to-one meetings with end-users. The require-
ments engineer first visited the Head of Residential Services 
and Senior Support Manager to corroborate the scope of the 

Fig. 5   Example normative statement as an interpretative scheme

Fig. 6   An example normative statement and linked pilot class model



	 Requirements Engineering

1 3

project then organized, with each of the remaining Support 
Managers, one meeting each. During all meetings, end-users 
agreed to effects first and then individually stated what they 
believed to be causes. The requirements engineer assembled 
the list of causes and effect(s) for each dialog reference point 

and confirmed these with all end-users before a team meet-
ing, the final requirements and design review. Table 4 shows 
a comparison between the original requirements analysis 
phase of the SupportManagerDB project, and the one after 
following the DSRM. Table 4 provides evidence that the 

Fig. 7   Basic UML diagram to show dialog reference points

Table 4   Comparison between original and revised requirements modeling phase

Phase (original) Revised (after the DSRM)

1. Initial scope of requirements Initial scope of requirements
2. Use case modeling included: narrative for each use case (11 use cases)
Activity model for complex use cases (for 8 use cases—8 activity models)
Communication model for each use case (for 11 use cases) according to UML stereotypes
Pilot class model (merging of 11 communication models)

Basic use case model which confirmed dialog 
reference points

Normative statement model. (8 Normative state-
ments)

Pilot class model achieved by merging class 
diagrams from each normative statement

3. Class modeling Detailed class modeling
4. Detailed class modeling: finalized class model, relational database model, and C# skeleton 

code generation
Relational database model
C# skeleton code generation and code completion

5. First phase deployment of project Full working software



Requirements Engineering	

1 3

DSRM and its research process with links to its knowledge 
base helped to reduce the effort associated with requirements 
modeling while capturing and using tacit knowledge in the 
requirements model for the SupportManagerDB project.

For Objective 2, Normative statements worked with UML 
Use case modeling and linked seamlessly with design, spe-
cifically with UML [51] Class modeling. Figure 8 shows 
that Normative statements bypassed the need for modeling 
requirements further using UML Activity and Communica-
tion diagrams. Figure 8 also shows how Normative state-
ments bridged requirements modeling from the UML Use 
case model to the Class model ready for detailed design.

Regarding Objective 3, the functional requirements mod-
eling technique had to enable requirements to be modeled 
speedily as end-users agreed to check requirements but also 
insisted on the deployment of a revised software system at 
the end of year two in the SupportManagerDB project. Nor-
mative statements used for functional requirements mod-
eling within the SupportManagerDB project, although they 

have an element of framing, the formalism applied permitted 
functional requirements modeling to quickly advance. They 
made obtaining and using tacit knowledge more effective 
and sped up the functional requirements modeling process. 
A new software system deployed in the second year of the 
SupportManagerDB project met the conditions set out in 
phase 2 of the DSRM. Support Manager D remarked:

I didn’t like the way the software looked or worked 
when you first showed us what you had programmed. 
I know I agreed to the diagrams you had created for 
us but I didn’t understand them. I stopped using your 
first database as it didn’t work for me and went back 
to paper versions. I admit that I also felt nervous about 
using the software you created as I don’t feel confident. 
I understand the new things you did [Normative state-
ments] and feel more confident with the software. I 
learned more about how [Support Managers] work and 
that the way they work is very similar to me. I have 

Fig. 8   Combining normative statements with UML



	 Requirements Engineering

1 3

also had to adjust some of things I do for the better 
but I have now used the software and it supports what 
I am doing.

Following the DSRM showed that dialog reference points 
help to unlock tacit knowledge while maintaining the user-
centeredness of the requirements analysis phase in the Sup-
portManagerDB project. Hence, the design science research 
project shows that effective understanding in the functional 
requirements modeling process was possible when using 
Normative statements to reveal and model tacit knowledge. 
Normative statements crystallized tacit knowledge aligned 
to the three pillars in structuration theory when end-users 
discussed them in one-to-one and team meetings. From a 
semiotic viewpoint, signification helped to comprehend the 
use of Normative statements exchanged in communication 
and meanings inferred from them.

This study has limitations however. First, based upon 
the triangulation of data to act as the underlying method 
to establish validity and to achieve consistency could not 
include interviews related to end-user views of the require-
ments analysis stage. The researcher intended to collect 
these views, but at the end of the SupportManagerDB pro-
ject, team members dispersed to other roles within Ten-
antManagement and the researcher had difficulty organ-
izing interviews. Hence, the empirical methods employed 
included archived paperwork associated with the Support-
ManagerDB project collected as functional requirements and 
design models, coding specifications, one-to-one and team 
meeting agendas, notes taken and emails, and formal records 
of meetings. Second, this study also focused upon the issues 
with modeling functional requirements based upon a team 
of twelve people involved in a three-and-half-year project 
with room to allow the DSRM to run in parallel. Although 
the project lasted for three-and-half-years, only the Head of 
Residential Services, the Senior Support Manager and two 
Support Managers remained throughout. A further threat to 
reliability connects to the combined role of requirements 
engineer and researcher. To mitigate the requirements engi-
neer role, the two IT support department members that 
understood UML and programming provided checks related 
to the application of UML during the SupportManagerDB 
project. A further risk to reliability relates to the knowledge 
base presented in Fig. 3 as the researcher took sole respon-
sibility for its development which can introduce bias and 
limitations. First, to lessen this threat in relation to the appli-
cation of structuration theory, the knowledge base is limited 
to the basic tenets of the structure—agency relationship. A 
significant amount of work related to this relationship is used 
in information systems research, hence the knowledge base 
was designed not to deviate from the known application of 
structuration theory [32]. Regarding Peircean semiotics, the 
interim account includes several agreed and affirmed sign 

classifications [2, 13, 20, 27, 40–42, 49]. The researcher 
ensured consistency with those agreed classifications only.

Design science research methodologies must be theoreti-
cally, internally and empirically grounded [27]. The purpose 
of this type of grounding provides researchers with the case 
that applying the DSRM increases researcher confidence. 
For theoretical grounding, the knowledge base used in this 
paper incorporated widely understood functional require-
ments techniques based upon UML, and structuration 
and semiotic theories, also used extensively [32]. Internal 
grounding means to have logical consistency [18], a clearly 
described and reusable process. The stages the DSRM 
applied for this research provided the apparatus for logical 
consistency. To show the empirical grounding of DSRM, 
the application of the methodology was successful in prac-
tice, it changed a difficult situation into an improved one and 
resulted in the desired outcomes being achieved [39].

The knowledge base in the DSRM, inclusive of structura-
tion and semiotic theories matched the situation extant in 
the case study, thus generalizations are only viable when 
linked to similar types of software development projects as 
it is documented in phase 1 of the DSRM for this paper. 
The study also has wider implications to contemporary func-
tional requirements modeling associated with the objectives 
of the solution in phase 2 of the DSRM. For example, agile 
software development aims to create deployment success by 
using cross-functional project teams that apply user stories 
[1]. User stories are short statements that follow a < role > , 
a < requirement or feature > , and a < goal/value > structure 
[1]. The proposed Normative statements incorporate a dif-
ferent structure to identify tacit knowledge and matching the 
format, < role > , a < requirement or feature > , and a < goal/
value > structure would not capture and model tacit knowl-
edge. Also, Normative statements show which requirements 
link specifically to design classes, possibly connecting soft-
ware code more effectively to functional requirements than 
user stories. However, this is an area for further research 
allied to the iterative nature of the DSRM.

The implications of this design science research relate 
to modeling tacit knowledge. This paper emphasizes that 
uncovering tacit knowledge is a key component when 
specifying new software and answers the RQ, how can tacit 
knowledge be obtained and managed in order to contribute 
to functional requirements modeling? The RQ is resolved 
by using structuration and semiotic theories as the knowl-
edge base in the DSRM to revise functional requirements 
modeling. These theories advance the discussion related 
to understanding and managing tacit knowledge on soft-
ware development projects [5, 21, 45, 50]. For instance, the 
modality interpretive scheme helped to identify structures of 
signification as dialog reference points that influenced the 
understanding of tacit knowledge in processes of semiosis. 
Uniting with the modalities norm and facility to appreciate 



Requirements Engineering	

1 3

structures of signification, they helped to generate Norma-
tive statements which included a component based upon 
social norms. Norm and facility helped to identify tacit 
knowledge legitimized in power relationships between end-
users. Regarding Peircean semiotics, the third grade of clar-
ity and interpretant signs, Normative statements surfaced as 
an alternative functional requirements modeling technique 
for tacit knowledge.

Regarding iteration as part of the DSRM [39], and for 
further research, Normative statements need further inves-
tigation within other software development projects. For 
example, Peircean semiotics provided the grades of clar-
ity when identifying tacit knowledge and intellectualized 
Normative statements as interpretant signs. However, three 
accounts of Peircean semiotics exist, namely early, interim 
and final [2, 40–42]. The early account provides underpin-
ning to the interim account, and the final account although 
considered incomplete, adds other features to the interim 
account. Using the interim account, Peircean semiotics 
identifies the concept of a triadic sign integrating the three 
elements, representamen (the sign), object and interpretant. 
Understood by shared properties, a representamen signifies 
an object by conveying something about an object. Inter-
pretant signs represent the concept of mediation, whereby 
the representamen and object form a relation that divides 
interpretant signs. Based upon this foundation, the Peircean 
view of semiotics in the interim and final accounts may gen-
erate a different set of signs beyond the textual structure used 
in Normative statements, that with further research, other 
stages of software development inclusive of new modeling 
techniques may align to.

8 � Conclusion

The implications of this research relate specifically to the 
knowledge base described and presented in Fig. 2, the appli-
cation of DSRM, and the creation of Normative statements. 
The knowledge base emphasizes that the utilization of tacit 
knowledge improves functional requirements modeling. The 
application of the DSRM acted as a stimulus to the knowl-
edge base, and the knowledge base supported the DSRM 
with appropriate theory. It shows that structuration and semi-
otic theories can be closely coupled with functional require-
ments modeling. Principally however, this study contributes 
to challenges when it is difficult to capture and model tacit 
knowledge. Without tacit knowledge, functional require-
ments quality is lower and has implications for the design 
and coding of software. The research in this paper also dis-
covered that when using tools such as the UML, they create 
“competitive vocabularies”, also inhibiting the management 
of tacit knowledge. Normative statements are also an alter-
native functional requirements modeling technique to the 

ones available in UML such as Activity, Communication, 
and Sequence diagrams. They shortened the requirements 
analysis phase of the SupportManagerDB project, and might 
do so in similar software development contexts.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Agile (2018) http://www.agile​model​ing.com/artif​acts/userS​tory.
htm. Accessed 25 Oct 2018

	 2.	 Atkin A (2018) Peirce’s theory of signs. http://plato​.stanf​ord.
edu/archi​ves/sum20​13/entri​es/peirc​e-semio​tics/. Accessed Oct 
2018

	 3.	 Avison DE, Fitzgerald G (2006) Information systems develop-
ment: methodologies, techniques and tools, 4th edn. McGraw-Hill 
Maidenhead, Maidenhead

	 4.	 Avison DE, Wood-Harper AT (1990) Multiview: an exploration 
in information systems development. Alfred Waller Limited, 
Oxfordshire

	 5.	 Bagheri S, Kusters RJ, Trienekens JJ (2017) Eliciting end users 
requirements of a supportive system for tacit knowledge manage-
ment processes in value networks: a Delphi study. In: Engineering, 
technology and innovation (ICE/ITMC). IEEE, pp 1317–1326

	 6.	 Baskerville RL (1999) Investigating information systems with 
design science research. Commun AIS 2(3es):4

	 7.	 Baskerville R, Myers MD (2004) Special issue on design science 
research in information systems: making IS research relevant to 
practice: foreword. MIS Q 28:329–335

	 8.	 Bano M, Zowghi D (2015) A systematic review on the relationship 
between user involvement and system success. Inf Softw Technol 
58:148–169

	 9.	 Bicchieri C (2006) The grammar of society. Cambridge University 
Press, Cambridge

	10.	 Bjarnason E, Sharp H (2017) The role of distances in requirements 
communication: a case study. Requir Eng 22(1):1–26

	11.	 Brennan A (2017) Necessary and sufficient conditions, the stan-
ford encyclopedia of philosophy (summer 2017 edition). In: 
Edward N Zalta (ed). https​://plato​.stanf​ord.edu/archi​ves/sum20​
17/entri​es/neces​sary-suffi​cient​. Accessed 10 Oct 2018

	12.	 Brinkkemper S (1996) Method engineering: engineering of infor-
mation systems development methods and tools. Inf Softw Tech-
nol 38(4):275–280

	13.	 Chandler D (2017) Semiotics: the basics. Routledge, Abingdon
	14.	 Charlton B, Andras P (2003) The modernization imperative, vol 

8. Imprint Academic, Exeter
	15.	 Chugh R (2015) Do Australian universities encourage tacit 

knowledge transfer? In: Proceedings of the 7th international joint 
conference on knowledge discovery, knowledge engineering and 

http://creativecommons.org/licenses/by/4.0/
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.agilemodeling.com/artifacts/userStory.htm
http://plato.stanford.edu/archives/sum2013/entries/peirce-semiotics/
http://plato.stanford.edu/archives/sum2013/entries/peirce-semiotics/
https://plato.stanford.edu/archives/sum2017/entries/necessary-sufficient
https://plato.stanford.edu/archives/sum2017/entries/necessary-sufficient


	 Requirements Engineering

1 3

knowledge management (IC3K 2015), vol 3. KMIS, pp 128–135. 
ISBN: 978-989-758-158-8

	16.	 Cockburn A (2002) Agile software development, vol 177. Addi-
son-Wesley, Boston

	17.	 Collins H (2010) Tacit and explicit knowledge. University of Chi-
cago Press, Chicago

	18.	 Cronholm S, Göbel H (2015) Empirical grounding of design 
science research methodology. In: International conference on 
design science research in information systems. Springer, Cham, 
pp 471–478

	19.	 DSDM (2018) The DSDM agile project framework (2014 
onwards). https​://www.agile​busin​ess.org/conte​nt/choos​ing-dsdm-
your-agile​-appro​ach-0. Accessed 10 Oct 2018

	20.	 Eco U (1976) A theory of semiotics, vol 217. Indiana University 
Press, Bloomington

	21.	 Ferrari A, Spoletini P, Gnesi S (2016) Ambiguity and tacit 
knowledge in requirements elicitation interviews. Requir Eng 
21(3):333–355

	22.	 Fernández DM, Wagner S (2015) Naming the pain in requirements 
modeling: a design for a global family of surveys and first results 
from Germany. Inf Softw Technol 57:616–643

	23.	 Gane CP, Sarson T (1979) Structured systems analysis: tools and 
techniques. Prentice Hall Professional Technical Reference, Upper 
Saddle River

	24.	 Geerts GL (2011) A design science research methodology and 
its application to accounting information systems research. Int J 
Account Inf Syst 12(2):142–151

	25.	 Giddens A (1984) The constitution of society: outline of the the-
ory of structuration. University of California Press, Berkeley and 
Los Angeles

	26.	 Goffin K, Koners U (2011) Tacit knowledge, lessons learnt, and 
new product development. J Prod Innov Manag 28(2):300–318

	27.	 Goldkuhl G (2004) Design theories in information systems-a need 
for multi-grounding. J Inf Technol Theory Appl (JITTA) 6(2):7

	28.	 Hevner AR, March ST, Park J (2004) Design research in informa-
tion systems research. MIS Q 28(1):75–105

	29.	 Hofmann HF, Lehner F (2001) Requirements engineering as a 
success factor in software projects. IEEE Softw 18(4):58–66

	30.	 Jacobson I, Booch G, Rumbaugh J (1999) The unified software 
development process, vol 1. Addison-Wesley, Reading

	31.	 Jia J, Capretz LF (2017) Direct and mediating influences of user-
developer perception gaps in requirements understanding on user 
participation. Requir Eng 23:1–14

	32.	 Jones MR, Karsten H (2008) Giddens’s structuration theory and 
information systems research. MIS Q 32(1):127–157

	33.	 Loucopoulos P, Karakostas V (1995) System requirements mod-
eling. McGraw-Hill Inc., New York

	34.	 Luhmann N (2012) Introduction to systems theory. Polity Press, 
Cambridge

	35.	 Morris CW (1938) Foundations of the theory of signs. In: Neurath 
O, Carnap R, Morris CFW (eds) International encyclopedia of 
unified science. Chicago University Press, Chicago, pp 1–59

	36.	 Mumford E (1995) Effective systems design and requirements 
analysis: the ETHICS approach. Macmillan, New York City

	37.	 Nonaka I (1994) A dynamic theory of organizational knowledge 
creation. Organ Sci 5(1):14–37

	38.	 Nuseibeh B, Easterbrook S (2000) Requirements modeling: a 
roadmap. In: Proceedings of the conference on the future of soft-
ware engineering. ACM, pp 35–46

	39.	 Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) 
A design science research methodology for information systems 
research. J Manag Inf Syst 24(3):45–77

	40.	 Peirce CS (1932) The categories in detail. In: Hartshorne C, Weiss 
P (eds) Collected papers of Charles Sanders Peirce. Volumes I and 
II: Principles of philosophy and elements of logic, Book III, Chap 
2. Harvard University Press, Cambridge, MA

	41.	 Peirce CS (1933) The logic of relations. In: Hartshorne C, Weiss P 
(eds) Collected papers of Charles Sanders Peirce. Volumes III and 
IV: Exact logic (published papers) and the simplest mathematics, 
Chap XVI. Harvard University Press, Cambridge, MA

	42.	 Peirce CS (1998) The essential writings: selected philosophi-
cal writings (1893–1913), 1st edn. Indiana University Press, 
Bloomington

	43.	 Pohl K (2010) Requirements modeling: fundamentals, principles, 
and techniques. Springer, Berlin

	44.	 Polanyi M (1958) The tacit dimension. University of Chicago 
Press, Chicago

	45.	 Serna E, Bachiller O, Serna A (2017) Knowledge meaning 
and management in requirements engineering. Int J Inf Manag 
37(3):155–161

	46.	 Saussure F de (1983) Course in general linguistics (trans. Roy 
Harris). Duckworth, London

	47.	 Short T (2007) Peirce’s theory of signs, 1st edn. Cambridge Uni-
versity Press, Cambridge

	48.	 Simon HA (1996) The sciences of the artificial. MIT Press, 
Cambridge

	49.	 Sowa J (2000) Knowledge representation: logical, philosophical, 
and computational foundations. Brooks/Cole Thomson Learning, 
Pacific Grove

	50.	 Sutcliffe A, Sawyer P, Stringer G, Couth S, Brown LJ, Gledson A, 
Bull C, Rayson P, Keane J, Zeng XJ, Leroi I (2018) Known and 
unknown requirements in healthcare. Requir Eng 25:1–20

	51.	 UML (2018) Unified modeling language resource page. https​://
www.omg.org/spec/UML/2.5.1/. Accessed 10 Oct 2018

	52.	 Walsham G (2002) Cross-cultural software production and use: a 
structurational analysis. MIS Q 26(4):359–380

	53.	 Yagüe A, Garbajosa J, Díaz J, González E (2016) An exploratory 
study in communication in agile global software development. 
Comput Stand Interfaces 48:184–197

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.agilebusiness.org/content/choosing-dsdm-your-agile-approach-0
https://www.agilebusiness.org/content/choosing-dsdm-your-agile-approach-0
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/

	Modeling functional requirements using tacit knowledge: a design science research methodology informed approach
	Abstract
	1 Introduction
	2 Theoretical background
	2.1 The duality of structure, tacit knowledge and social systems
	2.2 Signification, semiology and semiotics

	3 Research methodology
	4 Problem identification, motivation and objectives of a solution
	5 Design and development
	6 Demonstration
	7 Evaluation
	8 Conclusion
	References




