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Abstract

Mortality projections are of great interest to the pension and insurance industry

and with an ageing population, the projections need to cover a longer period. A sig-

nificant question is how to incorporate in mortality projections the longevity risk due

to medical advances and uptake of health interventions. We show how hazard ratios

obtained from medical studies in combination with the baseline hazards described

by Gompertz or Weibull survival distributions, can be translated into changes in

individual and population period life expectancy. The impact of medical advances

and health interventions can differ among groups of people, such as by sex, age, and

deprivation. Changes in life expectancy depend on the composition of the population

and these attributes. These calculations are illustrated by a case study on statins,

a drug that can significantly improve life expectancy. An R program implementing

our methodology is provided in the Appendix.

Keywords Hazard Function; Health Data; Mortality; Population Health; Gom-

pertz distribution; Weibull distribution

JEL codes C18, C13, C46, I13

∗Corresponding author, e.kulinskaya@uea.ac.uk, School of Computing Sciences, University of East An-

glia, Norwich Research Park, NR47TJ , Norwich, UK

1



1 Introduction

Life expectancy (LE) and changes in life expectancy are of great interest to the

pensions and insurance industry, society, and government as they affect among oth-

ers the old-age dependency ratio, social security and pensions, long-term care, and

healthcare systems. A significant question in the actuarial community is how to take

into account medical advances and their impact on ageing in forecasting mortality

[Purushotham et al., 2011]. National life tables are often used in projecting mortality

trends in populations of insured and in pension schemes [Barrieu et al., 2012].

However, these mortality projections are susceptible to heterogeneity in mortal-

ity rates and their trends (basis risk) and to significant improvement in longevity

(longevity risk).

Longevity-trend projections are used for managing longevity risk in pricing and

reserving for insurance and annuity products as well as for costing of public and

private pensions. Changes in these projections result in significant consequences. As

an example, an upwards update of longevity in the French prospective life tables in

2006 from the previously used tables from 1993 resulted in increase of reserves by

French insurers by an average of 8% [Barrieu et al., 2012]. Downward changes in

longevity in the recent Continuous Mortality Investigation (CMI) projections is a

more recent example in the opposite direction. Cohort life expectancies at age 65

are around 6 months lower in CMI 2018 model than in CMI 2017, and are over a

year lower than in CMI 2015, for both males (21.921 using CMI2018 vs. 22.454 using

CMI2017) and females (24.200 using CMI2018 vs. 24.709 using CMI2017), Continu-

ous Mortality Investigation [2019]. Related revision to longevity-trend assumptions

resulted in considerable mortality reserves releases by UK insurance companies. Le-

gal and General reported mortality release of £433 million in 2018 to align to CMI

2016 tables [Legal&General, 2019]. Similarly, Aviva longevity reserve releases were

£780 million in 2018 and £779 million in 2017 [Montague, 2019].

Changes in mortality projections also directly affect annuities costs, especially

in the decreasing interest rates environment. Khalaf-Allah et al. [2006] provide a

method to estimate an increase in annuity values resulting from the reduction in the

forces of mortality, and provide numerical examples for different inception ages and

rates of interest.

Basis risk in mortality projections arises because policyholder mortality rates and

the pace of their evolution typically differ from that of the national or industry-wide
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population, which are used in deriving mortality projections such as the CMI models,

due to portfolio-specific selection effects. Portfolio membership is very different to

the general population and to any other portfolio in respect in its socio-economic mix,

lifestyle and health profile. This translates into different mortality levels, different

main causes of mortality and mortality improvement projections. Typically, pension

scheme members have seen higher improvements in life expectancy than the general

population, more so for more affluent pension scheme members who have been largely

resilient to recent negative changes as opposed to less affluent members who have seen

life expectancy plateau [O’Reilly, 2019]. Modelling mortality, adjusting for the pop-

ulation’s characteristics using individual records instead of aggregated records, can

explain a higher percentage of heterogeneity in mortality rates and thereby reduce

the basis risk of mortality projections. Not only mortality rates, but also longevity

improvements can differ by individual profiles of socio-demographic and health fac-

tors. By modelling uptake of treatment and estimating the effect of that treatment

on longevity conditional on the individual profile, one could assess portfolio-specific

longevity risk.

In medicine, the Cox proportional hazards model is the most popular method of

time-to-event analysis or survival analysis. The vast majority of clinical trials and

observational studies that analyse survival outcomes use this model. The main ob-

jective of this study was to develop a method to incorporate proportional hazards

modelling into actuarial tasks, from underwriting individual lives to modelling hypo-

thetical changes in population or group life expectancy due to medical advances and

health interventions. To do this successfully, some parametric assumptions about the

shapes of survival distributions are necessary. We demonstrate that both Gompertz

and Weibull survival distributions in combination with the Cox model can be suc-

cessfully used for actuarial calculations. We demonstrate our methodology on the

important example of survival benefits of statins.

Statin therapy for primary prevention of cardiovascular disease (CVD) has been

reported to improve life expectancy [Mihaylova et al., 2012]. In 2014, the National

Institute for Health and Clinical Excellence (NICE), a UK national body that pro-

vides guidelines on prescription of drugs, widened the eligibility criteria for statin

therapy for primary prevention of CVD [NICE, 2016], making an additional 4.5 mil-

lion UK residents eligible for the therapy [NICE, 2014]. Previous studies reported

trends in statin prescription over time and by sex, age, and deprivation in the UK
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[Finnikin et al., 2017, O’Keeffe et al., 2015, 2016]. However, it is not yet known

what the impact of statin prescription in the general population is on the national

life expectancy and how this can be related to mortality projections of populations

of insureds and pension schemes.

We estimate the effect of statin prescription on longevity at various cardiac risks at

ages 70 and 75, where the cut-off points of cardiac risks were informed by the changing

guidelines on primary prevention of CVD. We also calculate the hypothetical changes

in national life expectancy if all eligible people were to be prescribed a statin. As

the populations of insureds and pension schemes are unlikely to be representative of

the national population, this study used a representative primary care database to

evaluate the effect of statin prescription on individual and national life expectancy

by sex, age, and deprivation, so that the results could be applied to an individual

and to populations with other socio-demographic compositions.

2 Cox Proportional Hazards Model

Cox proportional hazards model is the most popular method of modelling survival

outcomes. It represents the hazard function or force of mortality as µ(y, t) =

µ0(t) exp(βT y) for a vector of parameters β, and a vector of covariates y. The base-

line hazard µ0(t) is not specified, and interest generally lies in the hazard ratios

µ(y1, t)/µ(y2, t) = exp(βT (y1 − y2)), which do not depend on µ0(t) and are constant

over time. However, some assumptions about the shape of the baseline hazard are

useful if an estimate of a survival function or a life expectancy is required. The three

parametric distributions compatible with the proportional hazards assumption are

exponential, Weibull and Gompertz distributions. Denote the baseline log-hazard by

λ0(t) = logµ0(t). Then λ0(t) = a corresponds to the exponential, λ0(t) = a + bt to

Gompertz, and λ0(t) = a+b log t to Weibull baseline hazards. The respective propor-

tional hazards models are called Cox-exponential, Cox-Gompertz and Cox-Weibull

survival models [Bender et al., 2005].

When the proportional hazards assumptions are not satisfied, one way to gener-

alise the Cox model is to consider the hazards µ(y, t) = µ0(γ, t) exp(βT y), where the

baseline hazard is known up to a multidimensional parameter γ, and to estimate the

latter from the vector of predictors y [Bender et al., 2005, Devarajan and Ebrahimi,

2011, Begun et al., 2019]. Another class of models uses time-dependent coefficients
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µ(x, t) = µ0(t) exp(βT (t)y). These classes of survival models will be addressed in our

future research.

3 Individual Life Expectancy

3.1 Effective age

To facilitate understanding of the hazard ratio, the hazards can be presented as

the difference between chronological age and “effective age”, which is the average

chronological age with the same hazard.

For simplicity, consider a single binary risk factor with the reference value y = 0

and, in the presence of a risk in question, y = 1. Let µ1(t) be the hazard function

at risk y = 1. On the log scale, the log-hazards are λ1(t) = λ0(t) + β. This means

that the log-hazard lines differ only by an increment β. For a monotone-increasing

hazard, find the (unique) time increment ∆(t) such that λ1(t) = λ0(t + ∆(t)). The

value of t + ∆(t) is, by definition, the effective age of the person with risk y = 1

at chronological age t. The value of ∆(t) is the difference in effective age between

people with/without the risk factor y at age t. If model includes other variables, the

difference is adjusted for them.

3.2 Effective age under Cox-Gompertz model

Under the Gompertz model applied to numerous populations over time, the increase

in annual hazard of mortality associated with ageing one year is approximately con-

stant between ages 50 and 95 [Brenner et al., 1993, Spiegelhalter, 2016, Vaupel, 2010].

For England and Wales in 2010, this increase was 1.103 for men and 1.111 for women.

Theorem on effective age (Spiegelhalter (2016)) Consider a hazard function

µ(t) under the proportional hazards assumption, i.e. let µ(y, t) = µ0(t) exp(βy) for

a binary factor y = 0 or y = 1. Let µ0(t) = exp(a+ bt) (Gompertz baseline hazard),

and denote the hazard function for y = 1 by µ1(t). Then, µ1(t) = µ0(t + ∆), where

∆ does not depend on t. The time difference between the chronological and effective

age, ∆ = β/b.

Corollary Consider an intervention at time T . Assume that the hazard function

is µ(y, t) = exp(a + bt + βy). Denote the survival functions at age t without/with

intervention by S0(t) and S1(t), respectively. Then
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1. For t ≥ T ,

S1(t) = S0(T )S0(t+ ∆)S−10 (T + ∆).

2. For age z ≥ T , life expectancy

e1(z) = e0(z + ∆). (1)

Proof The hazards are µ0(t) for t ≤ T and µ0(t + ∆) for t > T . Cumulative

hazards are M0(t) for t ≤ T and M0(T ) +
∫ t
T µ0(t + ∆)dt = M0(T ) −M0(T +

∆) + M0(t + ∆) for t > T . Thus, S1(t) = S0(T )S−10 (T + ∆)S0(t + ∆). Given

that S0(T ) = S1(T ), (1) follows.

By definition, the life expectancy at age z,

e1(z) =

∫∞
z S1(t)dt

S1(z)
=

∫∞
z S0(T )S0(t+ ∆)S−10 (T + ∆)dt

S0(T )S0(z + ∆)S−10 (T + ∆)
=

∫∞
z S0(t+ ∆)dt

S0(z + ∆)
= e(z+∆).

Missov and Lenart [2013] give the expressions of life expectancy for Gompertz

and Gompertz-Makeham distributions.

3.3 Effective age under Cox-Weibull model

The Weibull distribution is also well suited to describe disease- and ageing-related

outcomes. Matsushita et al. [1992] use it to describe Japanese survival rates over

time, and Li and Zhang [2015] describe Weibull modelling of cancer progression and

death rates. Juckett and Rosenberg [1993] argue that the Gompertz distribution is

better suited to describe all-cause mortality, whereas the Weibull distribution is a

better descriptor of single causes-of-death.

The Weibull hazard function with scale σ and shape k is given by

µ0(t) =
k

σ

( t
σ

)k−1
.

The log-hazard function can be written as λ0(t) = a+ (k− 1) log(t) for a = log(k)−

k log(σ). Under the assumption of proportional hazards, λ1(t) = λ0(t) + βy. The

calculation to obtain the effective age includes the log-hazards λ1(t1) = λ0(t), or

(k − 1) log(t1) = (k − 1) log(t0) + β. This results in t1 = t0 exp(β/(k − 1)), so

we can communicate constant percentage increase or decrease in effective age or,

rather, accelerated aging due to risk y. The use of Cox-Weibull model for actuarial

applications will be further explored in our future research.
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4 Period Life Expectancy

For a population, the period life table supposes 100,000 live births and shows the num-

ber lx surviving to exact age x. The survival function at age x is S(x) = lx/100000.

There are typically separate life tables for males and females but otherwise this

survival function is a weighted average of the survival functions of the people with

different risk profiles at age x within the population. Suppose that the population

consists of multiple risk groups j = 1, · · · , J . The treatment of interest (i = 0; 1) is

prevalent in each risk group from age T, but its effect may vary. Let Sij(x) be the

survival function of group j with treatment i at age x; let fj be the prevalence of

risk group j at age T (Σjfj = 1), and let pj,i be the prevalence of the treatment of

interest in group j at age T , i = 0, 1.

Then the value of the overall population survival function S(x), at age x = T is the

weighted mean of the survival functions in the individual risk groups with/without

the treatment:

S(T ) = [
∑
j

fjpj,1S1j(T ) +
∑
j

fj(1− pj,1)S0j(T )]/
∑
j

fj . (2)

The sum of weights in the above equation is 1, but we kept the denominator as, in

real data, the estimated prevalences fj are subject to rounding and perhaps other

errors.

Assume that the proportional hazards assumption holds, so that the force of

mortality (hazard) at age x, µij(x, Y ) = µ0(x)µij(Y ), where µ0(x) is the baseline

hazard at age x and the age-independent component (which depends also on other

factors Y) can be modelled by

log(µij(Y )) = aij = a0(T ) + αi + βj + γij + βTY, (3)

where a0(T ) is the baseline value which may depend on the time of intervention T ; αi,

βj , and γij are main effects and interaction of risk group j and treatment i, centered

at the baseline (i.e. α0 = γ0j = 0), and the covariates Y have no interactions with

the treatment or the risk of interest.

4.1 Survival function under Cox-Gompertz model

Assuming the Gompertz baseline hazard, the log-hazards for treatment i in risk group

j is aij + bx, so the log-hazards in various subgroups differ by intercept but have the
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same slope. The survival functions are Sij(x) = exp(−eaijb−1(ebx−1)). Substituting

aij from (3), the survival functions at age x ≥ T , where T is the intervention age,

are

Sij(x|Y, T ) = exp(−ea0(T )+αi+βj+γij+β
TY b−1(1− ebx)). (4)

Assuming that at age T , the prevalence of the risk groups and treatments within

the groups, does not depend on Y , then Y can be integrated out (incorporating the

result into the a0(T ) term) to obtain

S(x|T ) =
∑

j fjpj,1 exp(−ea0(T )+α1+βj+γ1jb−1(1− ebx))

+
∑

j fj(1− pj,1) exp(−ea0(T )+βjb−1(1− ebx)).
(5)

This is a non-linear equation with one unknown, a0. The left-hand side is given by

the period life-table, and the slope b should be determined for a particular population

of interest. As S(x) is a decreasing function of a0, equation (5) has a unique solution.

After solving equation (5) for a0(T ), we can find component survival functions

Sij(x) for any set of prevalences {fj} and {pj,1}.

4.2 Estimating changes in life expectancy

The remaining life expectancy (LE) at age x for the Gompertz distribution G(a, b)

can be written as
∫∞
z G(a,b)(x)dx = b−1 exp(b−1ea)E1(b

−1ea+bx), where E1(z) =∫∞
z t−1 exp(−t)dt denotes the exponential integral, Missov and Lenart [2013]. How-

ever, this expression should be divided by the survival S(z), to provide a proper LE

at z. Thus, the life expectancy at age z for a Gompertz distribution is obtained as

eG(a,b)(z) =
b−1 exp(b−1ea)E1(b

−1ea+bz)

exp(−eab−1(ebz − 1))
. (6)

The component life expectancies eij(z) are obtained for each component distri-

bution G(aij , b).

To calculate the population life expectancy, consider the survival function of the

overall population, which is a finite mixture of subpopulations, S(x) =
∑
wkSk(x),∑

wk = 1. The index k here stands for a pair {j, i}. Then the life expectancy at age

z is

e(z) =

∫∞
z S(x)dx

S(z)
=

∑
k wkSk(z)

∫∞
z Sk(x)dx/Sk(z)∑
wkSk(z)

=

∑
k wkSk(z)ek(z)∑

wkSk(z)
. (7)
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Taking all pj,1 = 0, we obtain a hypothetical life expectancy e0(z) if there were

no intervention of interest, and, for all pj,1 = 1, a hypothetical life expectancy e1(z)

with full uptake of the intervention.

An R program implementing our methodology to evaluate changes in period life

expectancy due to an intervention, assuming an underlying Gompertz distribution,

is provided in the Appendix. It requires a qx vector of hazards across an age range

of interest, the data on the prevalences {p} and {f}, and the hazard ratios of the

risk groups and the intervention in each risk group on mortality. The program fits a

Gompertz distribution to qx over the age range, finds the value of a0(T ) from equation

(5), and calculates component survival functions Sij(x) and life expectancies eij(x)

(with/without intervention) for a requisite age x ≥ T . It also calculates hypothetical

period LEs without/with intervention. The program uses the R package expint to

evaluate the exponential integral E1(z).

4.3 General case of an intervention effect under propor-

tional hazards

So far we have considered the Cox-Gompertz model. However, our method of

calculating survival function and life expectancy does not depend on assuming a

Gompertz distribution. In general, given proportional hazards, µ(t) = aµ0(t), the

cumulative hazard Ma(x) =
∫ x
0 aµ0(t)dt = aM0(x). And the survival function

Sa(x) = exp(−aM0(x)). So, instead of equation (4), we obtain

Sij(x|Y ) = exp(− exp(a0(T ) + αi + βj + γij + βTY )M0(x)). (8)

Substituting (8) into (2) yields

S(T ) =
∑
j

fjpj,1 exp(−ea0(T )+α1+βj+γ1jM0(T ))+
∑
j

fj(1−pj,1) exp(−ea0(T )+βjM0(T )).

(9)

For a given cumulative baseline hazard M0(T ), we then solve for a0.

9



5 Case study: survival benefits of statins

5.1 Modelling of effects of statins on survival

Statins are a class of lipid-lowering drugs that are prescribed to prevent cardiovas-

cular disease (CVD). Statins have been publicly available since 1987, but the drugs

started to become popular from 2000 onward. NICE’s recommendations on statin

therapy for CVD have changed over time, mostly widening the eligibility criteria. For

primary prevention, the eligibility criterium in the UK is based on the 10-year risk

of a first cardiac event calculated using QRISK2, which incorporates information on

multiple demographic, medical, and lifestyle factors (https://www.qrisk.org/). The

most significant changes in statins eligibility criteria were in 2006, when the thresh-

old of cardiac risk at which to prescribe statins was lowered to a QRISK2 ≥ 20%

(previously ≥ 40%) [Hippisley-Cox et al., 2008]; in 2007, when statins became first

line treatment for CVD survivors [NICE, 2013]; and in 2014, when the cardiac risk

threshold was further lowered to a QRISK2 score ≥ 10% [NICE, 2016]. With the

latest change, an additional 4.5 million UK patients became eligible.

In this section, we evaluate survival benefits of statins for an individual and their

effect on the period life expectancy in England and Wales. We also quantify the

potential impact of the NICE 2014 guideline on life expectancy. This work builds

on our previous research [Gitsels et al., 2016, 2017], where we estimated the hazard

ratios associated with statin prescription for primary and secondary prevention of

CVD in patients at retirement age. We make use of the oldest two cohorts consisting

of people born between 1920-40 and who reached the baseline age of 70 or 75 during

the study period of 1987-2011. The age cohorts were selected from The Health

Improvement Network (THIN) primary care database. When adjusted for sex, age

and deprivation, THIN patients are representative of the UK population [Blak et al.,

2011, Hall, 2009].

At the end of study period in 2010, statins were prescribed in 20% of patients with

a QRISK2 score of < 20%, in 45% of patients with a QRISK2 score of ≥ 20%, and

in 90% of patients with CVD. QRISK2 score increases with age and by age 70, there

were practically no patients with a QRISK2 score of < 10% and by age 75, there

were no male patients with a QRISK2 score of < 20%. Given cardiac risk group,

statins were prescribed more in women, in younger patients, and in patients from

less deprived areas, although these differences decreased over time, see Tables A.1

10



and A.2 for details.

In our previous work [Gitsels et al., 2016], we developed 12 Cox proportional

hazards models to estimate the effect of statin prescription on all-cause mortality for

three QRISK2 groups (< 10%, 10− 19% and ≥ 20%) by 4 key ages (60, 65, 70 and

75 years old). However, the models from [Gitsels et al., 2016] did not include the

effects of QRISK2 groups, denoted by βj in Equation (3), required for derivation of

changes in life expectancy due to statins. Therefore, we pooled the data for QRISK2

groups 10−19% and ≥ 20% at ages 70 and 75 from Gitsels et al. [2016], and fitted the

same Cox models after adding the QRISK2 group to the predictors. The final models

adjusted for sex, year of birth, socioeconomic status measured by Townsend score

(TS) [Townsend, 1987], diabetes, hypercholesterolaemia, blood pressure regulating

drugs, body mass index, and smoking status. The models included a random effect

on general practice to take into account the interdependence of patients from the

same practice. Interactions between statins, QRISK2 groups and the other risk

factors were tested, but none was significant.

For this case study, we use the adjusted hazard ratios (HRs) of QRISK2 groups

and of statin prescription on all-cause mortality obtained from the analysis. Addi-

tionally, we use the adjusted HRs for all-cause mortality of heart attack survivors,

from Gitsels et al. [2017], as a substitute for HRs for CVD sufferers. These HRs are

given in Table 1. The proportional hazards assumption was checked by Grambsch

and Therneau’s test [Therneau and Grambsch, 2000] and was found valid.

5.2 Fitting Gompertz distributions to the period life ta-

ble data

In this Subsection we demonstrate that the Gompertz distribution provides an ade-

quate model for all-cause mortality, for the England and Wales population. We use

the period life table by Townsend score (TS) quintiles centered at 2010 provided by

Office of National Statistics [2017] (ONS). Log-hazard ratios and fitted regression

lines for males and females between the ages 60 − 90 by TS quintiles are depicted

in Figure 1. The linearity of the log-hazard increase by age is evidence of good ap-

proximation by a Gompertz distribution. We used the robust regression program rlm

from R package MASS.

The hazards clearly differ among the TS quintiles, from the highest at TS quintile

5 (most deprived) to the lowest at TS quintile 1 (least deprived), and by gender
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Figure 1: Log-hazard ratios between the ages 70 − 90 from the ONS period life table

centered at 2010 (circles) and fitted regression lines by Townsend score quintiles and sex.

(higher for males), resulting in corresponding differences in life expectancy.

Using the Gompertz distributions with the estimated regressions coefficients (a, b),

we calculated the LEs from Equation (6) and compared them with the LEs from the

ONS life table at ages 70 and 75. The differences were at most 0.3 year. Since the

deaths are assumed to have occurred in the middle of each interval in the life tables,

we added a correction c ≤ 0.5 to age x when estimating the coefficients (a, b). The

optimum corrections (from 0.2 to 0.5) differ somewhat by sex and TS quintile, and

result in an absolute difference of at most 0.1 year between the calculated LE and the

ONS LE at ages 70 and 75, see columns 4 and 5 in Table 2. These age corrections had

no visible effect on the estimated differences in LE with/without statins. Table A.3

lists the parameters of the fitted distributions.

5.3 Verifying the Gompertz assumption for the data on

statins

To evaluate the fit of the Gompertz distribution to the survival distribution in the

statins study, we first obtain the predicted baseline survival function Ŝ0(t) from

the Cox regression with the baseline values of all predictors, using survfit func-

tion from survival package in R. The estimated cumulative baseline hazard M̂0(t) =

− log(S0(t)). This results in a step function with steps at the event times. The top
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Figure 2: Top: estimated baseline cumulative hazard function M̂0(t). Bottom: smoothed

baseline hazard µ̂0(t) (black) and fitted linear regression line (red) for the statins survival

study. Time is age in years.

panel of Figure 2 depicts this function for baseline age 65. The baseline hazard µ0(t)

is the derivative of M0(t), but the estimated cumulative hazard M̂0(t) needs to be

smoothed prior to numerical differentiation. We used the LOESS (locally estimated

scatterplot smoothing) method implemented in the program loess from R package

stats, with span 0.65. The derivative was calculated as the slope of the smoothed

cumulative hazard function between consecutive event times. The logarithm of this

derivative (i.e. the log of the estimated baseline hazard function) is plotted in the

bottom panel of Figure 2 (black line). The solid red line is the fitted linear regression

line for ages 65-85. Overall, the log baseline hazard is very well approximated by a

straight line, so the Gompertz distribution is a suitable assumption.
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5.4 Changes in effective age due to statins

For England and Wales in 2009-11, the increase b in the Gompertz annual hazard of

mortality between ages 70-90 was approximately 0.1034 for men and 0.1108 for women

(calculated from the ONS period life table centered at 2010.). As the Gompertz

and proportional hazards assumptions hold, we used the theorem on effective age in

Section 3.2 to calculate the number of years lost or gained in effective age for cardiac

risk group j by sex g as:

∆tj ≈ log(HRj)/ log(bg), (10)

where log(HRj) = α1 + γ1j is the log hazard ratio of statin prescription on all-cause

mortality for a patient in risk group j, cf (3), and bg is the increase in the annual

hazard of mortality for sex g. The HRj values for statins are given in Table 1.

The longevity improvement associated with statin prescription translates to a

reduction in effective age of up to three years. The reduction is largest for 70-year

old male heart attack survivors (2.91 years). Overall, statins result in larger changes

in effective age at higher ages and for higher cardiac risk groups. They appear to

result in greater changes in effective age in males than in females. This is solely due to

different rates of increase b in the annual hazards of mortality for males and females

as the HR of statins was exactly the same for both sexes (there were no interactions

between statins effects and sex in our analysis).

5.5 Changes in life expectancy due to statins at ages 70

and 75

Since the mortality rates, the cardiac risk distribution and the statin prescription

rates differ by gender and by socio-economic status (measured by Townsend score

quintiles), we analysed the life tables separately for each TS quintile-by-gender com-

bination.

For each life table, we substitute the LE at age 70 or 75, denoted by eG(a,b) in

Table 2 (obtained from Equation (6) using the fitted Gompertz distribution G(a, b)

with parameters from Table A.3), into the left-hand side of the Equation (5), and

solve for the value of a0(T ). The requisite prevalences of the three cardiac risk groups

(denoted by fj for j = 1, 2, 3) and the prevalences of statin prescription in these

groups in 2010 (the pj,i values) required for the right-hand side of (5) are given in

Tables A.1 and A.2, and the HRs of statins and of the cardiac risk groups themselves

14
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Figure 3: Life expectancy by cardiac risk group with and without statins for ages 70 − 90

based on the ONS period life table centered at 2010 (black line) for males and females.

are given in Table 1.

The resulting a0(T ) values for each sex-by-TS quintile combination are also pro-

vided in Table A.3. These values were used to calculate period life tables for compo-

nent cardiac risk by statin prescription subpopulations for each (i, j) combination.

The resulting component LE values at ages 70 and 75, denoted by eij , and their 95%

confidence intervals are provided in Table 2, and the differences due to statins within

each risk group in Table A.4.

Increase in individual LE due to statins depends on cardiac risk, and is highest

for heart attack survivors (1.41−2.02 years), and is lower in the two QRISK2 groups

(1.14− 1.35 years across ages 70 and 75). The effect of statins increases with depri-

vation, which could be explained by the composition of cardiac risk, where more can

be gained in terms of LE in the higher cardiac risk groups.

We also calculated the period LE and its increase due to statins in each cardiac

risk group for the total England and Wales population by averaging the LE across

all TS quintiles, as in Equation (7), and plotted the results in Figure 3. For men,

the ONS period LE almost coincides with the LE in QRISK2 ≥ 20% group without

statins, probably because this is the most populated group. For women, the ONS LE

is between the LE for the same cardiac risk group with and without statins, probably

due to higher prevalence of statin prescription in women.

We also calculated national life expectancy with and without statins, by averaging
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the LE across cardiac risk groups, taking p = 0 (for no statins) and p = 1 (for statins)

in Equation (5). These values are denoted by e0 and e1, respectively, in Table 2, and

the differences e1 − e0, eONS − e0, and e1 − eONS are provided in Table A.4.

The national life expectancy for women aged 70 or 75 would be increased by up

to 0.91 or 0.79 years, respectively (e1 − eONS values), if all eligible women under

the current guideline of primary and secondary prevention of CVD were prescribed

statins. Similarly, the national life expectancy for men aged 70 or 75 would be

increased by up to 0.79 or 0.63 years (Table A.4). The most improvement would

come from the areas of medium deprivation. We discuss the reliability of these

findings in more detail in the Discussion Section.

6 Discussion

The main objective of this study was to develop a method to evaluate the poten-

tial impact of recent medical advances and/or public health decisions on issues of

actuarial interest. We demonstrated how to incorporate hazard ratios, obtained in

medical studies by the use of the Cox proportional hazards model, into underwriting

individual lives, or into pricing or reserving methodology based on the population

life expectancy. Both Gompertz and Weibull survival distributions, in combination

with the Cox model, can be successfully used for actuarial calculations. The Cox-

Gompertz model appears to be especially suitable for modelling potential changes in

human life expectancy.

We demonstrated our methodology in detail on the important example of survival

benefits of statins. In total, 11.8 million people in the UK (almost all men over 60 and

all women over 75) are currently eligible for statins, Ueda et al. [2017], making new

guidelines on statin eligibility [NICE, 2014] a health intervention on a truly massive

scale. Our results show that life expectancy at ages 70-75 in the newly eligible group

of patients with QRISK2 score of 10− 20% may increase by 1.18 to 1.35 years (95%

confidence interval 0.86− 1.71 years). However, it is unlikely that there will ever be

a 100% statin prescription rate in all eligible patients as it is up to the patient to

decide whether to take statins [Ueda et al., 2017]. Furthermore, statins initiation

does not mean compliance; about half of the patients discontinue statins of which

about 75% restart again [Vinogradova et al., 2016].

Our methodology based on the Cox-Gompertz model has two components: cal-
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culation of change in effective age for an individual, and calculation of change in LE

for a subpopulation, homogeneous on risk. The change in effective age depends both

on the hazard ratio of mortality due to an intervention, and on the yearly increase in

annual hazard of mortality. However, change in LE can vary substantially with sex,

cardiac risk, and deprivation. This may make the information on changes in effective

age misleading, as seemingly large changes in effective age may correspond to very

modest increases in life expectancy.

Secondly, we developed a method of using the period life table data to obtain

separate survival functions and the LEs for the component subpopulations. This

method uses the proportional hazards assumption of the Cox model to approximate

the Gompertz distribution G(a, b) fitted to the period life table data, by a weighted

sum of component Gompertz distributions G(aij , b), with the same slope b, but with

intercepts aij that depend on the hazard ratios from the Cox model. To facilitate the

use of our methods in actuarial practice, we provide an R program in the Appendix.

Our methodology for calculating component LEs appears to be reliable when the

proportional hazards assumption holds. However, these calculations are considerably

less reliable when pooling these components into a combined life expectancy, say for

all patients on statins. This is because the calculations in question assume constant

weights. In the statins example, this assumption requires a constant cardiac risk

distribution starting from ages 70 or 75. However, cardiac risk clearly increases with

age.

To explore this issue further, Figure 4 compares the ONS period LE, the com-

bined LE reconstructed (using fixed weights) from the component LEs and survival

functions estimated at age 70, and the combined estimated LEs with/without statins.

The true LE from the ONS and the combined LE are close at age 70, but they

diverge at later ages, and the estimated combined LE is noticeably higher because it

assumes a favorable cardiac risk across older ages. Even though these differences are

not huge (the maximum for men is 0.29 year at age 82, and for women it is 0.41 year

at age 85), it would make more sense to use time-dependent weights, and perhaps

time-dependent hazards, in this calculation. We intend to address this more general

setting in our future research.
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Figure 4: Life expectancy from the ONS period life table centered at 2010 (black line),

estimated LEs with/without statins (blue and green lines, respectively), and the combined

as in Equation (7) overall population life expectancy (red line) for males and females.

(Gompertz parameters were fitted at age 70.)

7 Conclusions

Robust projections of life expectancy are essential for sound financing of private-

sector annuities, pensions, and life and long-term care insurance; and for a range of

publicly-funded programmes including state pensions, disability benefits, and state-

financed long-term care. Improvements in longevity increase the number of benefi-

ciaries of such programmes and for tax-financed public schemes, they can also affect

the funding base through increases in the old-age dependency ratio. This paper has

shown that a change in national guidelines for drug prescribing, and the consequent

change in prescription rates, can result in a step change in life expectancy. This

suggests that, where there is a discrete change in national guidance or prescribing

practice, the likely effect on life expectancy needs to be estimated and taken into

account. The analysis in this paper indicates that for projections of future longevity

of people aged over 70 and at increased risk of CVD, statin prescription patterns

should be incorporated as they have a significant effect on mortality. The increase in

life expectancy in this group of up to two years should be incorporated in the pricing

of annuities and life insurance products for them. The increase in the population life

expectancy, which depends on the composition of the population, should be incor-
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porated in reserving of annuities or funding of pension benefits. Our methods and

results could also help with quantifying impact on life expectancy from future drug

development scenarios.
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A.1 Supplementary tables
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Age 70 Age 75

Sex Townsend QRISK2 QRISK2 CVD QRISK2 QRISK2 CVD

deprivation 10− 19% ≥ 20% 10− 19% ≥ 20%

quintile

Women 1st (least) 72% 18% 9% 13% 73% 14%

2nd 68% 22% 10% 10% 74% 15%

3rd 60% 28% 12% 8% 74% 18%

4th 50% 34% 16% 4% 75% 21%

5th (most) 35% 42% 23% 2% 73% 25%

Total 62% 25% 12% 9% 74% 17%

Men 1st (least) 16% 65% 19% 0% 72% 28%

2nd 12% 68% 21% 0% 69% 31%

3rd 9% 66% 25% 0% 67% 33%

4th 5% 66% 29% 0% 65% 35%

5th (most) 1% 69% 29% 0% 60% 40%

Total 11% 66% 23% 0% 68% 32%

Table A.1: Distribution of cardiac risk by sex, age, and deprivation in 2010, from Gitsels

et al. [2016].
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Age 70 Age 75

Sex Townsend QRISK2 QRISK2 CVD QRISK2 QRISK2 CVD

deprivation 10− 19% ≥ 20% 10− 19% ≥ 20%

quintile

Women 1st (least) 25% 57% 82% 13% 41% 84%

2nd 23% 56% 87% 13% 41% 84%

3rd 22% 54% 88% 15% 45% 88%

4th 24% 56% 86% 9% 45% 86%

5th (most) 25% 59% 88% 6% 50% 90%

Total 23% 56% 86% 13% 43% 86%

Men 1st (least) 19% 46% 91% NA 42% 90%

2nd 12% 46% 89% NA 48% 90%

3rd 18% 44% 90% NA 45% 90%

4th 30% 44% 92% NA 42% 89%

5th (most) 27% 43% 88% NA 53% 91%

Total 18% 45% 90% NA 45% 90%

Table A.2: Rate of statin prescription by sex, age, deprivation, and cardiac risk in 2010,

from Gitsels et al. [2016].
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sex TS age c a b a0 aL aU eONS eG(a,b)

F 1 70 0.4 -13.21 0.12 -13.03 -13.01 -13.05 17.7 17.67

F 2 70 0.4 -12.69 0.12 -12.52 -12.50 -12.54 17.4 17.39

F 3 70 0.4 -12.14 0.11 -11.98 -11.96 -12.00 16.8 16.82

F 4 70 0.4 -11.32 0.10 -11.19 -11.16 -11.21 16.2 16.21

F 5 70 0.4 -10.71 0.10 -10.62 -10.59 -10.64 15.5 15.59

M 1 70 0.5 -12.46 0.12 -12.40 -12.37 -12.42 15.6 15.67

M 2 70 0.5 -11.97 0.11 -11.92 -11.90 -11.95 15.2 15.21

M 3 70 0.5 -11.31 0.11 -11.28 -11.25 -11.31 14.4 14.51

M 4 70 0.5 -10.45 0.10 -10.43 -10.40 -10.46 13.7 13.78

M 5 70 0.5 -9.53 0.09 -9.52 -9.50 -9.55 13.0 13.09

F 1 75 0.2 -13.19 0.12 -13.14 -13.12 -13.16 13.7 13.61

F 2 75 0.2 -12.67 0.12 -12.62 -12.61 -12.64 13.4 13.43

F 3 75 0.2 -12.11 0.11 -12.07 -12.05 -12.09 13.0 13.00

F 4 75 0.2 -11.30 0.10 -11.26 -11.24 -11.29 12.6 12.59

F 5 75 0.2 -10.69 0.10 -10.65 -10.63 -10.68 12.2 12.15

M 1 75 0.4 -12.45 0.12 -12.43 -12.41 -12.46 12.0 11.96

M 2 75 0.4 -11.96 0.11 -11.94 -11.92 -11.97 11.6 11.62

M 3 75 0.4 -11.30 0.11 -11.29 -11.27 -11.32 11.1 11.12

M 4 75 0.2 -10.42 0.10 -10.42 -10.40 -10.45 10.5 10.51

M 5 75 0.2 -9.51 0.09 -9.50 -9.48 -9.53 10.1 10.11

Table A.3: TS, Townsend deprivation quintile with 1 =least and 5 =most. Parameters a

and b and the age correction c for the Gompertz distributions G(a, b) fitted to ONS period

life tables centered at 2010, and the resulting life expectancy values eG(a,b) compared with

the ONS life expectancy eONS. Also the a0 values and their 95% confidence limits (aL and

aU) obtained by solving Equation (2).
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A.2 R procedure to implement life expectancy

calculations for the Cox-Gompertz model

#####de s c r i p t i o n #####

#requ i r ed packages in R: MASS, e xp in t

# qx− p r o b a b i l i t i e s t h a t someone aged x w i l l d i e b e f o r e

age ( x+1) (a vec t o r o f l e n g t h L+1)

# age range−range o f ages in the format x : x+L fo r f i t t i n g

a Gompertz d i s t r i b u t i o n wi th es t imated parameters a

and b to qx va l u e s .

# age co r r e c t i on − c on t i nu i t y co r r e c t i on f o r d i s c r e t e age

i n t e r v a l s , the d e f a u l t va lue i s 0 . 5 .

# age − the age o f i n t e r e s t f o r l i f e expectancy

c a l c u l a t i o n

# alpha1 − hazard r a t i o s o f t reatment on mor t a l i t y in

each o f J r i s k group (a vec t o r o f l e n g t h J)

# be ta − the hazard r a t i o s o f J r i s k groups on mor t a l i t y

( a vec t o r o f l e n g t h J)

# p − preva l ence s o f t reatment p r e s c r i p t i o n at age o f

i n t e r e s t ( a vec t o r o f l e n g t h J)

# f − r i s k groups p reva l ence s at the age o f i n t e r e s t ( a

vec t o r o f l e n g t h J)

# OUTPUT:

# LE0 and LE1 − v e c t o r s o f l e n g t h J o f l i f e e xpe c t anc i e s

wi thou t/with treatment f o r each r i s k group .

l i f e expectancy<−

function ( qx , age range , age , alpha1 , beta , p , f , age c o r r e c t i o n

=0.5){

suppressWarnings ( require (MASS) )
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age range<−age range+age c o r r e c t i o n

rlm model = rlm ( log ( qx )˜age range )

a<−rlm model$coef f ic ients [ [ 1 ] ]

b<−rlm model$coef f ic ients [ [ 2 ] ]

#

################################################################

component s u r v i v a l function<−function (mu, b , a , age , p , f ,

alpha1 , beta )

{

exp(−exp( a )/b∗(exp(b∗age )−1) )−

sum( f∗(1−p)∗exp(−exp(mu+beta )/b∗(exp(b∗age )−1) )+

f∗p∗exp(−exp(mu+alpha1+beta )/b∗(exp(b∗age )−1) ) )/sum( f )

}

#

################################################################

l l =−1000

uu=0

mu<−uniroot ( component s u r v i v a l function ,

c ( l l , uu ) , t o l = 0.0000001 ,

b=b , a=a , age=age ,

p=p , f=f ,

alpha1=alpha1 ,

beta=beta ) [ [ 1 ] ]

#

################################################################

a0<−mu+beta

a1<−mu+alpha1+beta

#

################################################################
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LE<−function ( a , b , age ){

suppressWarnings ( require ( exp int ) )

LE<−(1/b)∗exp(exp( a )/b)∗exp int E1(bˆ(−1)∗exp( a+b∗age ) )/

exp(−exp( a )∗(exp(b∗age )−1)/b)

return (LE)

}

#ca l c u l a t i o n o f l i f e e xpec t anc i e s us ing Gompertz

d i s t r i b u t i o n

LE0<−LE( a0 , b , age )

LE1<−LE( a1 , b , age )

#

################################################################

column names<−rep (NA, t imes=length (p) )

for ( i in 1 : length (p) ){

column names [ i ]=paste ( ” Risk group” , i , sep = ”” )

}

output<−rbind ( rep ( age , t imes=length (p) ) ,LE0)

output<−rbind ( output , LE1)

colnames ( output )<−column names

rownames( output ) <− c ( ”age” , ”LE0” , ”LE1” )

return ( output )

}

#

################################################################

##Example##

##Data from ONS fo r year 2010 , Townsend score q u i n t i l e 1 ,

#Females , age = 70

qx<−c (0 . 00370 , 0 .00401 , 0 .00421 , 0 .00513 , 0 .00527 ,

0 .00618 ,
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0 .00650 , 0 .00716 , 0 .00798 ,

0 . 00912 , 0 . 00978 , 0 . 01086 , 0 . 01255 ,

0 . 01324 , 0 . 01587 , 0 . 01694 , 0 . 01988 , 0 . 02233 , 0 . 02638 , 0 .03073 ,

0 .03446 , 0 .03974 , 0 . 04714 ,0 . 05304 , 0 .06033 , 0 .07061 ,

0 .07943 , 0 .09330 , 0 .10489 , 0 .12199 , 1 .00000)

age range<−60 :90

f<−c ( 0 . 7 2 , 0 . 1 8 , 0 . 0 9 ) # three card iac r i s k groups

p<−c ( 0 . 2 5 , 0 . 5 7 , 0 . 8 2 ) # s t a t i n p r e s c r i p t i o n ra t e s

alpha1<−log ( c ( 0 . 8 4 , 0 . 8 4 , 0 . 7 4 ) )

beta<−log ( c ( 0 . 8 , 1 , 1 . 5 0 ) )

age=70

age c o r r e c t i o n =0.5

r e s<− l i f e expectancy ( qx , age range , age , alpha1 , beta , p , f , age

c o r r e c t i o n )

# Risk group1 Risk group2 Risk group3

#age 70.00000 70.00000 70.0000

#LE0 18.00376 16.52738 13.9726

#LE1 19.18810 17.67704 15.8533
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