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ABSTRACT

We proposed and implemented a disease detection and se-
mantic segmentation pipeline using a modified mask-RCNN
infrastructure model on the EDD2020 dataset!. On the im-
ages provided for the phase-I test dataset, for 'BE’, we
achieved an average precision of 51.14%, for "THGD’ and
"polyp’ it is 50%. However, the detection score for ’suspi-
cious’ and ’cancer’ were low. For phase-I, we achieved a dice
coefficient of 0.4562 and an F2 score of 0.4508. We noticed
the missed and mis-classification was due to the imbalance
between classes. Hence, we applied a selective and balanced
augmentation stage in our architecture to provide more accu-
rate detection and segmentation. We observed an increase in
detection score to 0.29 on phase -II images after balancing the
dataset from our phase-I detection score of 0.24. We achieved
an improved semantic segmentation score of 0.62 from our
phase-I score of 0.52.

1. INTRODUCTION

Endoscopy is an extensively used clinical procedure for the
early detection of cancers in various organs such as esopha-
gus, stomach, colon, and bladder [1]. In recent years, deep
learning methods were used in various endoscopic imag-
ing tasks including esophago-gastro-duodenoscopy (EGD),
colonoscopy, and capsule endoscopy (CE) [2]. Most of these
were inspired by artificial neural network-based solutions
for accurate and consistent localization and segmentation of
diseased region-of-interests enable precise quantification and
mapping of lesions from clinical endoscopy videos. This en-
ables critical and useful detection techniques for monitoring
and surgical planning.

For oesophageal cancer detection, Mendel et al. [3] pro-
posed an automatic approach for early detection of adenocar-
cinoma in the esophagus by using high-definition endoscopic
images (50 cancer, 50 Barrett). They adapted and fed the data
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set to a deep Convolutional Neural Network (CNN) using a
transfer learning approach. The model was evaluated to leave
one patient out cross-validation. With sensitivity and speci-
ficity of 0.94 and 0.88, respectively. Horie et al. [4] reported
Al diagnoses of esophageal cancer including squamous cell
carcinoma (ESCC) and adenocarcinoma (EAC) using CNNS.
The CNN correctly detected esophageal cancer cases with a
sensitivity of 98%. CNN could detect all small cancer lesions
less than 10 mm in size. It has reportedly distinguished super-
ficial esophageal cancer from advanced cancer with an accu-
racy of 98%. Very recently, Gao et al. [5] investigated the fea-
sibility of mask-RCNN (Region-based convolutional neural
network) and YOLOV3 architectures to detect various stages
of squamous cell carcinoma (SCC) cancer in real-time to de-
tect subtle appearance changes. For the detection of SCC, the
reported average accuracy for classification and detection was
85% and 74% respectively.

For colonoscopy, deep neural networks based solutions
were implemented to detect and classify colorectal polyps
in research presented by the authors in reference [6, 7, 8].
For gastric cancer, Wu et al. [9] identified EGC from non-
malignancy with an accuracy of 92.5%, a sensitivity of
94.0%, a specificity of 91.0%, a positive predictive value
of 91.3%, and a negative predictive value of 93.8%, outper-
forming all levels of endoscopists. In real-time unprocessed
EGD videos, the DCNN achieved automated performance for
detecting EGC and monitoring blind spots. Mori et al. [10]
and Min et al. [2] provided a comprehensive review of some
recent literature in this field.

For Endoscopy Disease Detection and Segmentation
Grand Challenge, we proposed and implemented a disease
detection and semantic segmentation pipeline using a mod-
ified mask-RCNN architecture. The rest of the paper is
organized as follows. Section 2 introduces the dataset for
the task. Section 3 presents our proposed architecture with
various settings and procedural stages, with results presented
and discussed in Section 4. Finally, conclusions are drawn in
Section 5.






