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Abstract 

We adopt an empirical approach to analyse, measure and decompose Inequality of 

Opportunity (IOp) in health, based on a latent class model. This addresses some of 

the limitations that affect earlier work in this literature concerning the definition 

of types, such as partial observability, the ad hoc selection of circumstances, the 

curse of dimensionality and unobserved type-specific heterogeneity that may lead 

to biased estimates of IOp. We apply our latent class approach to measure IOp in 

allostatic load, a composite measure of biomarker data. Using data from 

Understanding Society (UKHLS), we find that a latent class model with three 

latent types best fits the data, with the corresponding types characterised in terms 

of differences in their observed circumstances. Decomposition analysis shows that 

about two-thirds of the total inequality in allostatic load can be attributed to the 

direct and indirect contribution of circumstances and that the direct contribution of 

effort is small. Further analysis conditional on age-sex groups reveals that the 

relative (percentage) contribution of circumstances to the total inequalities remains 

mostly unaffected and the direct contribution of effort remains small.  
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1    Introduction 
 

Based on Roemer’s (1998, 2002) influential formalisation of the concept, a large 

body of empirical research has dealt with the assessment of inequality of 

opportunity (IOp) for a variety of measures of well-being. The IOp literature argues 

that the egalitarian framework does not necessarily dictate equality of the 

distribution of outcomes per se but emphasises the role of individual responsibility 

in defining a “fair” distribution. Early contributions to the IOp literature have 

focused mainly on income (see Ramos and van de Gaer (2016) and Roemer and 

Trannoy (2016) for reviews). More recently, a growing literature has addressed the 

measurement of IOp in other relevant dimensions of individual well-being such as 

education (Ferreira and Gignoux, 2013) and health (e.g., Rosa Dias, 2009; Rosa 

Dias, 2010; Trannoy et al., 2010; Jusot, et al., 2013; García-Gómez et al., 2015; 

Deutsch et al., 2018; Davillas and Jones, 2020).  

 

This literature separates the factors associated with an outcome of interest into 

two components: ‘circumstances’, which are not under individual responsibility and 

are viewed as an illegitimate or unfair source of inequality, and ‘efforts’ for which, 

to some extent, individuals are held responsible and that are viewed as a 

legitimate source of inequality. Following Roemer (1998, 2002), the IOp literature 

often defines types as a group of individuals who share the same set of 

circumstances, such as parental background and early life circumstances (e.g., 

Aaberge et al., 2011; Carrieri and Jones, 2018; Fleurbaey and Peragine, 2013; 

Ramos and van de Gaer, 2016; Trannoy et al., 2010). In the context of health 

equity, Fleurbaey and Schokkaert (2009, 2012) take a broader perspective that 

uses the responsibility cut to distinguish factors that are seen as fair sources of 

inequality of outcomes and those that are seen as unfair, with  the health 

variations attributed to the latter is regarded as health inequity. In this study, we 

adopt a social perspective and draw on the socio-legal context of the UK health 

system to define the sources of the unfair variation.  

 

A key empirical challenge in these analyses is the definition of types. It is difficult 

to devise a criterion to make the Roemer model operational, especially because the 

original model does not provide practical guidance for either the number or the 

combination of circumstances that should be used to define social types (Li Donni 

et al., 2015). This implies that a large part of the existing empirical research in IOp 

may have a number of limitations. First, researchers may observe only a limited 

set of circumstances, with the partial observability of the circumstances is often a 

common feature of IOp studies (see Brunori et al., 2019 and Li Donni et al., 2015 

for relevant discussions). This may lead to an underestimation of the share of 

illegitimate inequality. Second, researchers often rely on ad hoc definitions of types 

according to exposure to a small number of circumstances which, although they 

may be guided by the norms and conventions of the society being analysed, are 
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more or less arbitrarily selected by the researcher (Li Donni et al., 2015, Brunori et 

al., 2019). Third, the combination of selected circumstances into types may result 

in a trade-off between the number of types and the sample size for each type. For 

example, the high correlation between different measures of parental 

socioeconomic status can make it hard to define clear cut and mutually exclusive 

categories, resulting in types with few observations, which may lead to 

overestimates in the measurement of IOp due to sampling variance in the 

distribution of type means (Brunori et al., 2019).  Researchers often address these 

problems by using a limited number of circumstances or an arbitrary aggregation 

of socioeconomic categories. The curse of dimensionality may imply severe 

limitations given that stochastic dominance tests, often employed as a first stage to 

identify the presence of IOp, are highly sensitive to the choice of circumstance 

variables, as are results from analyses that involve separate regressions by type 

(e.g., Bourguignon et al., 2007; Carrieri and Jones, 2018; Garcia-Gomez et al., 

2015). Beyond nonparametric analysis, reliability of parametric IOp estimates may 

also require a sufficient number of observations in each category to characterize 

circumstances (Brunori et al., 2019).     

 

Building on the work of Bago d’Uva et al. (2009) on horizontal inequity in health 

care, Balia and Jones (2011) on IOp in mortality, and Li Donni et al. (2015) on IOp 

in life satisfaction, we use an semiparametric empirical approach to quantify and 

decompose IOp in health based on latent class models. We employ data from 

Understanding Society: the UK Household Longitudinal Study (UKHLS), a 

nationally representative study that allows for objectively measured nurse-

collected and blood-based biomarker data, and for a rich set of circumstance and 

effort variables. Specifically, we apply finite mixture models (FMMs), a 

semiparametric approach to model unobserved heterogeneity regarding type 

membership, which, unlike most of the existing IOp studies, avoids a priori 

grouping of individuals into types. Instead, FMMs are a semiparametric method to 

classify individuals into latent classes (types), and allows the likelihood of latent 

class membership to be a function of the set of observed circumstance variables. 

This analysis allows us to select the optimal number of latent classes (types) that 

are consistent with the data generation process.  

 

A potential disadvantage of defining social types in terms of latent classes is that 

they are treated as a “black box”, which may be hard to interpret and to assign a 

normative significance. We therefore augment our FMM analysis with post-

estimation analysis to help characterise the latent types in terms of the 

combination of observed circumstances that each of them may reflect, and classify 

individuals into the different latent types based on the estimated posterior 

probabilities of class membership.  

  

Capitalising on this useful feature of FMMs to classify individuals into latent 

types, we adopt and extend a recently developed decomposition technique to 
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decompose health inequality (Carrieri and Jones, 2018). This analysis allows us to 

decompose total inequality in health into the direct contribution of circumstances, 

their indirect contribution via the heterogenous association of efforts with health 

by type and the direct contribution of efforts themselves. To the best of our 

knowledge, this is the first study that combines the inequality decomposition 

analysis of Carrieri and Jones (2018) with the FMM semiparametric technique to 

address the curse of dimensionality. This curse of dimensionality is likely to be a 

problem for any approach to the measurement of IOp that defines types 

“nonparametrically”. The “nonparametric” approaches define types by using a 

unique combination of the values of the circumstance variables and, then, condition 

their analysis on these types. The curse of dimensionality arises as the number of 

types can become prohibitively large even with relatively few circumstance 

variables; for example, with just five circumstance variables, each having five 

categories, there would be 55=3,125 unique types; our latent class approach helps 

to reduce the dimensionality of this problem. 

 

Specifically, by extending FMM analysis to decompose health inequality and 

identify the role of IOp, our study offers a number of advantages and contributions 

compared to earlier work in this literature concerning the definition of types. Our 

analysis allows the optimal number of types and the particular combination of 

circumstances that are used to define each type to be determined by our model and 

reflect the data generation process. This avoids arbitrary combinations of 

circumstance variables to define types or the use of an excessive number of types 

that may impose upward bias in the IOp measurement (Brunori et al., 2019). The 

FMM methodology is also helpful here since it accounts for unobserved type-

specific heterogeneity in the sense of exploring differences in the association 

between efforts and the health outcome by latent type. Dealing with unobserved 

heterogeneity regarding type membership and simultaneously allowing for 

heterogeneous effort-health outcome associations by types is of critical importance 

for measuring IOp and better understanding its underlying sources.  

 

Finally, this paper further contributes to the health equity literature by being one 

of the few studies that is not based on self-reported measures to proxy individual 

health.1 We use a composite cardinal biological measure that captures several 

 
1 Self-assessed health (SAH), one of the most popular self-reported health measures, is an 

inherently categorical and ordinal measure and may be subject to misreporting and is 

associated with comparability problems at both the individual level and between countries 

(eg., Bago d’Uva et al. 2008). This reporting bias has been shown to vary systematically 

with a number of socioeconomic characteristics that are often used to explore health 

inequalities, which raises doubts about the robustness of studies based on self-reported 

health indicators (e.g., Bago d’Uva et al., 2009; Crossley and Kennedy, 2002). More 

fundamentally, the ordinal scaling of SAH is not compatible with the majority of the 

inequality indices that can be used as they require cardinal outcomes. However, recent 

work by Bond and Lang (2019) highlights that any attempts to cardinalize ordinal data 



4 

 

health dimensions, spanning adiposity, blood pressure, inflammation, blood sugar 

levels and cholesterol levels. Similar measures are used to capture so-called 

allostatic load and are considered as measures of “wear and tear” of the body that 

accumulates as individuals are exposed to chronic psychosocial stressors (Davillas 

and Pudney, 2017; Howard and Sparks, 2016; Seeman et al., 2004). As such, 

allostatic load is cardinal health measure that is ideal for the purpose of the 

measurement of IOp because it captures physiological responses that are 

associated with stress and the process through which economic and social 

circumstances may get “under the skin” across the lifespan (McEwen, 2015; 

Seeman et al., 2004). 

 

We find that a latent class model with three unobserved types provides the best fit 

with our data. The profiles of these types can be characterised in terms of 

differences in their observed demographic and parental circumstances. After 

classifying individuals into classes using modal assignments, post-estimation 

decomposition analysis shows that about 50% of the total inequality in our 

composite health measure (allostatic load) is attributed to the direct contribution of 

demographic and parental circumstances. Circumstances exert an indirect 

contribution to the total inequalities of around 13%, though differences in the 

association between our effort variables and allostatic load across types. This 

indicates that about two thirds of the total inequality may be attributed to 

circumstances. However, the direct contribution of efforts is much less important, 

having a contribution of around 3%. Further decomposition analysis conditional on 

selected age-sex groups reveals that, although the observed variation in the total 

inequality in allostatic load differs, the relative (percentage) contribution of 

circumstances to the total inequalities remains similar and the direct contribution 

of observed efforts remains small for all groups. 

 

 

 

2   Methods  
 

Following the seminal work of Roemer (1998, 2002), the IOp literature assumes a 

responsibility cut by which factors associated with individual attainments can be 

grouped into two categories: a) effort factors, for which individuals should be held 

partially responsible, and b) circumstances which are beyond individuals’ control. 

In the case of health, following the IOp literature (e.g., Carrieri and Jones, 2018, 

Jusot et al., 2013, Rosa Dias, 2010), a generalised health production function for 

individual health outcomes (ℎ𝑖) can be defined as a function of a vector of 

circumstances 𝑐𝑖 and of efforts 𝑒𝑖. Assuming that circumstances are not affected by 

 
may impose significant complications given the sensitivity of empirical  results drawn from 

ordinal data to the scaling imposed on it. 
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efforts, while efforts may be influenced by circumstances (Roemer, 1998, 2002), we 

can write: 

  

ℎ𝑖 = ℎ(𝑐𝑖 , 𝑒(𝑐𝑖 , 𝑣𝑖), 𝑢𝑖)                             (1) 

 

where 𝑣𝑖 and 𝑢𝑖  are unobserved error terms which capture the random variation in 

the realised outcomes. This reflects the fact that observed realisations of health 

outcomes are inherently random, sometimes labelled as ‘luck’ in the IOp literature 

(Lefranc et al., 2009; Lefranc and Trannoy, 2017). To be specific, 𝑣𝑖  represents 

random variation in effort that is independent of c and 𝑢𝑖 represents random 

variation in the outcome that is independent of c and e. The latent class 

specification we propose below is used to model the conditional density function 

𝑓(ℎ𝑖|𝒄𝒊, 𝒆𝒊) that is implied by equation (1).  

 

A fundamental feature of the Roemer approach is the fact that the distribution of 

effort within each type is itself a characteristic of that type and, since this is 

assumed to be beyond individual responsibility, it constitutes a circumstance itself. 

This implies that, in addition to assuming a partitioning between c and e, the IOp 

model assumes that effort is a function of circumstances, with circumstances being 

pre-determined. Effort, therefore, mediates the relationship between circumstances 

and outcomes, and it is meaningful to consider the direct and the indirect 

contribution of circumstances to the inequality in outcomes. One of the strengths of 

our FMM specification and associated decomposition analysis, is that it allows us 

to explore the type-specific unobserved heterogeneity in the association between 

our health measure and efforts and identify the direct and indirect role of 

circumstances on shaping inequalities in our health outcome.  

 

Researchers interested in quantifying IOp in outcomes (including health), typically 

define social types, i.e., groups of individuals who share exposure to the same 

circumstances, and then measure IOp between these types (e.g., Aaberge et al., 

2011; Carrieri and Jones, 2018; Fleurbaey and Peragine, 2013; Ramos and Van de 

Gaer, 2016; Trannoy et al., 2010). Roemer (2002) defines social types consisting of 

individuals who share exposure to the same set of circumstances. Although the 

theoretical framework for the concept of types is well developed, implementation in 

applied work is less straightforward. As discussed in the introduction, types are 

often defined in an ad hoc way in empirical work and they are partially observable 

to researchers (Li Donni et al., 2015).  

 

In this context, latent class or, specifically, FMMs offer a number of important 

advantages (Bago d’Uva and Jones, 2009; Bago d’Uva et al., 2009; Balia and Jones, 

2011; Li Donni et al, 2015). FMMs provide an intuitive representation of 

unobserved heterogeneity that may exist in the data by classifying the population 

into a parsimonious number of latent classes. Parsimony is important as the 

nonparametric approach to IOp, that defines a separate dummy variable for each 
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unique combination of values of observed circumstance variables, is likely to suffer 

from a curse of dimensionality. In the FMM specification the prior probabilities of 

membership of the latent classes can be parameterized to depend on observed 

circumstance variables, and the latent classes can be interpreted as unobserved 

types in the context of the IOp framework. Additionally, FMMs are particularly 

flexible because they do not require the researcher to assume, ex-ante, the number 

of latent classes, nor to provide any a-priori grouping based on observed 

circumstance variables. Another advantage of FMMs is that they are 

semiparametric and do not require distributional assumptions for the mixing 

distribution.  

 

To put our latent class FMM specification, and its relationship to the 

decomposition proposed by Carrieri and Jones (2018), in context, we begin with a 

simple linear parametric specification of the ex post model implied by equation (1). 

For clarity of exposition, and without loss of generality, assume that there is only 

one circumstance and one effort variable. Then the model consists of an equation 

for the health outcome as a function of observed circumstance and effort variables 

and the error term: 

ℎ𝑖 = 𝛽0 + 𝛽1𝑐𝑖 + 𝛽2𝑒𝑖 + 𝑢𝑖                            (2) 

 

and an equation for effort as a function of the circumstance variable and the error 

term: 

𝑒𝑖 = 𝛾0 + 𝛾1𝑐𝑖 + 𝑣𝑖                             (3) 

 

In equation (2), 𝛽1𝑐𝑖  is the direct contribution of circumstances to the outcome and 

𝛽2𝑒𝑖  is the direct contribution of effort. Estimates of (2) can therefore provide a 

decomposition of IOp into these components. 

 

Equation (3) can be substituted into (2) to solve for the reduced form: 

 

ℎ𝑖 = (𝛽0 + 𝛽2𝛾0) + (𝛽1 + 𝛽2𝛾1)𝑐𝑖 + (𝑢𝑖 + 𝛽2𝑣𝑖) =  𝛼0 + 𝛼1𝑐𝑖 + 𝜀𝑖        (4) 

 

The coefficient on 𝑐𝑖 is the total contribution of circumstances, i.e. the sum of direct 

and indirect contributions. This total contribution can be obtained directly by 

estimating the reduced form (eq. 4). Alternatively, it can be obtained by a two-step 

procedure that replaces the observed circumstances in equation (2) with the error 

term from equation (3) (e.g. Bourguignon et al., 2007; Jusot et al., 2013). This two-

step approach provides a link to the decomposition proposed by Carrieri and Jones 

(2018). First note that, from (3): 

�̅�𝑐 = 𝐸(𝑒𝑖|𝑐𝑖) = 𝛾0 + 𝛾1𝑐𝑖                             (5) 

and: 

   𝑣𝑖 = 𝑒𝑖 − (𝛾0 + 𝛾1𝑐𝑖) =  𝑒𝑖 − �̅�𝑐                        (6) 

 

Equation (2) can then be rewritten as: 
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ℎ𝑖 = 𝛽0 + 𝛽1𝑐𝑖 + 𝛽2�̅�𝑐 + 𝛽2𝑣𝑖 + 𝑢𝑖                      (7) 

or, in expanded form:  

 

ℎ𝑖 = 𝛽0 + 𝛽1𝑐𝑖 + 𝛽2(𝛾0 + 𝛾1𝑐𝑖) + 𝛽2𝑣𝑖 + 𝑢𝑖 =  𝛼0 + 𝛼1𝑐𝑖 + 𝛽2𝑣𝑖 + 𝑢𝑖           (8) 

 

In equation (8), the coefficient on 𝑐𝑖 gives the total contribution of circumstances 

and the coefficient on 𝑣𝑖 again gives the direct contribution of effort. This provides 

a connection with the Carrieri and Jones (2018) decomposition which uses 

variation in  𝑐𝑖  to measure the direct contribution of circumstances, variation in 

�̅�𝑐  to measure the indirect contribution of circumstances, and variation in 𝑒𝑖 − �̅�𝑐  to 

measure the direct contribution of effort. 

 

In this paper, we use the variance as an inequality measure, given the fact that 

recent contributions to the IOp literature have favoured the variance as an 

absolute measure of health inequality (see e.g., Fleurbaey and Schokkaert, 2009, 

2012; Jusot, et al., 2013; Carrieri and Jones, 2018). Applying the Shorrocks (1982) 

decomposition of the variance to equation (7) gives (e.g., Carrieri and Jones, 2018): 

 

                       Var(h) = cov(𝛽1𝑐𝑖 , h) + cov(𝛽2�̅�𝑐 , h) + cov(𝛽2(𝑒𝑖 − �̅�𝑐), h) + cov(𝑢𝑖 , h)        (9) 

 

where the first term on the right-hand side relates to the direct contribution of 

observed circumstances, the second to the indirect contribution of circumstances 

through effort and the third to the direct contribution of observed effort. In practice 

�̅�𝑐 would be estimated from equation (3). 

 

So far equation (2) has been interpreted as a “parametric” specification that is 

linear in the observed circumstance and effort variables. In contrast the 

“nonparametric approach” to IOp creates a dummy variable for each Roemerian 

type  (𝜏), i.e. for each unique combination of the values of the circumstance 

variables, and conditions the regression model on these dummy variables rather 

than the original circumstance variables (e.g., Checchi and Peragine, 2010; Hufe 

and Peichl, 2015). This is where the curse of dimensionality arises as the number of 

types can become prohibitively large even with relatively few circumstance 

variables; for example, with just five circumstance variables, each having five 

categories, there would be 55 = 3,125 unique types. The main advantage of our 

latent class approach is that it can help to reduce the dimensionality of this 

problem.  

 

Carrieri and Jones (2018) propose a semiparametric approach in which 

circumstances are handled nonparametrically by splitting the sample into the 

separate types (𝜏) and then using linear regressions of health outcomes on effort 

variables within those types. To illustrate the connection between their approach 

and equations (2) and (3) consider the case where there is a single circumstance 

variable that has only two categories (say, male and female). In this case, the two 
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types correspond to the two values of 𝑐𝑖 ∈ [0,1]. Then, using equation (7), the direct 

contribution of circumstances, 𝛽0 + 𝛽1𝑐𝑖, can take two values according to type: 𝛽0 

and 𝛽0 + 𝛽1. Similarly, the indirect contribution of circumstances, 𝛽2�̅�𝑐, takes two 

values: 𝛽2𝛾0 and 𝛽2(𝛾0 + 𝛾1); as does the direct contribution of effort, 𝛽2𝑣𝑖 : 𝛽2(𝑒𝑖 −

𝛾0) and 𝛽2(𝑒𝑖 − 𝛾0 − 𝛾1). In fact, the specification proposed by Carrieri and Jones 

(2018) implies greater flexibility in the direct contribution of effort, such that the 

slope term is allowed to vary over types. In terms of linear models this implies 

modifying equation (2) to give: 

 

ℎ𝑖 = 𝛽0 + 𝛽1𝑐𝑖 + 𝛽2𝑒𝑖 + 𝛽3𝑐𝑖𝑒𝑖 + 𝑢𝑖                      (10) 

 

Then, for example, the direct contribution of effort takes the two values 𝛽2(𝑒𝑖 − 𝛾0) 

and (𝛽2 + 𝛽3)(𝑒𝑖 − 𝛾0 − 𝛾1). The gist of this specification implies a linear 

relationship between health outcomes and effort in which both the intercept and 

slopes vary across types. 

 

In the context of the analysis of Carrieri and Jones (2018), this linear model can be 

extended to a semiparametric specification. Specifically, they partition the sample 

into distinct types (denoted by 𝜏) for individuals within type 𝜏 it is assumed that 

there is a linear relation between health outcomes and effort: 

 

ℎ𝑖 = 𝜃0𝜏 + 𝜃1𝜏𝑒𝑖 + 𝑢𝑖𝜏 = 𝜃0𝜏 + 𝐸𝑖𝜏 + 𝑢𝑖𝜏                   (11) 

 

This specification allows inequality indices, such as the Gini coefficient and the 

variance, to be decomposed. For example, applying the Shorrocks (1982) 

decomposition of the variance gives the decomposition proposed by Carrieri and 

Jones (2018): 

 

    Var(h) = cov(𝜃0𝜏 − �̅�0, h) + cov((E̅𝜏 − E̅), h) + cov((Ei − E̅𝜏), h) + cov(𝑢𝑖𝜏 , ℎ)         (12) 

The first term in equation (12) is the contribution of the variation of the intercepts 

θ0τ across types, centred at the pooled mean across types. This term measures the 

direct contribution of circumstances to the overall inequality. The second term 

reflects the indirect contribution of circumstances to overall inequality, capturing 

variation in the average level of effort within each type around the pooled mean of 

effort. The third term is the contribution of the within-type variation in effort to 

the overall health inequality. In normative terms, this represents the contribution 

of effort. The final term measures the contribution of residual factors u to overall 

inequality. Each of these terms are analogous to those derived from the linear 

model with heterogeneous slopes given by equation (10). 

 

The Carrieri and Jones (2018) specification is fully nonparametric in the way that 

it handles circumstances, but this comes at the cost of the curse of dimensionality 

which can limit its applicability. In this paper we propose using a latent class 
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specification to limit the number of types that are modelled, while maintaining the 

decomposition given by equation (12) based on these latent types. The latent class 

specification is implemented as a FMM. In the FMM, the conditional density of our 

health outcome variable, allostatic load, is assumed to be drawn from a population 

characterised as an additive mixture of 𝐾 (𝑗=1,…,K) distinct classes in proportions 

𝜌𝑗, where, 0 ≤ 𝜌𝑗 ≤ 1, ∑ 𝜌𝑗 = 1𝐾
𝑗=1  . Membership of the latent types is unobservable 

but the mixture probabilities of class membership 𝜌𝑗 are assumed to be a function 

of the set of observed circumstance variables (𝒄𝒊):   

 

𝑓(ℎ𝑖|𝒄𝒊, 𝒆𝒊) = ∑ 𝜌𝑗(𝒄𝒊)𝑓𝑗(ℎ𝑖|𝒆𝒊, 𝜽𝒋)𝐾
𝑗=1                                         (13) 

 

𝜽𝒋 stands for the vector of parameters describing the conditional density function 𝑓𝑗 

within each type and 𝒆𝒊 is the vector of effort variables.  

 

In FMMs, the prior probability for the jth latent class can be expressed as a function 

of observed circumstance variables using a multinomial logit transformation. For 

our analysis, we estimate FMMs assuming that the outcome variable (allostatic 

load) is a mixture of a number of normal distributions, each with its own mean and 

variance. The normal provides a good fit for our measure of allostatic load. 

Effectively this fits linear regressions of ℎ𝑖 on 𝑒𝑖  for each latent type and the 

estimates can then be used in the decomposition formula (12). The log-likelihood 

for the full model is: 

 

𝐿𝑜𝑔𝐿 = ∑ 𝑙𝑛𝑛
𝑖=1 {𝑓(ℎ𝑖|𝒄𝒊, 𝒆𝒊)} = ∑ 𝑙𝑛𝑛

𝑖=1 {∑ 𝜌𝑗(𝒄𝒊)𝑓𝑗(ℎ𝑖|𝒆𝒊, 𝜽𝒋)}𝐾
𝑗=1            (14) 

 

For a given value of 𝛫, the parameters of the model are estimated jointly by full 

information maximum likelihood (FIML) using the EM algorithm to refine the 

starting values. 

 

The choice of the appropriate number of latent types (𝛫) is crucial for FMMs; we 

use statistical information criteria to identify the FMM with the number of classes 

that makes the best statistical fit (Cameron and Trivedi, 2010). A caveat for the 

use of FMMs is the risk that outliers in the data may be captured by additional 

mixture components. Hence, it is desirable that FMM estimation results in latent 

classes that account for a sufficient number of observations as well as having 

meaningful posterior differences in outcomes across the different latent classes 

(Cameron and Trivedi, 2010; Deb et al., 2011).  

 

Once the number of latent classes (types), 𝐾, is selected we can use the parameter 

estimates from the model to calculate the posterior probability of each individual 

being assigned to a given latent class 𝑗 = 1,2 … 𝐾. The posterior probability of 

membership in each latent class (type) is calculated conditional on all 𝑐, 𝑒 and the 

outcome variable (ℎ) as: 
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Pr(𝑦𝑖 ∈ 𝑡𝑦𝑝𝑒 𝜏| 𝜽, ℎ𝑖 , 𝑐𝑖 , 𝑒𝑖) =
𝜌𝜏(𝑐𝑖)𝑓𝜏(ℎ𝑖|𝒆𝒊,𝜽𝝂)

∑ 𝜌𝑗(𝑐𝑖)𝑓𝑗(ℎ𝑖|𝑒𝑖,𝜽𝒋)𝐾
𝑗=1

, ∀  𝜏 = 1,2, … 𝐾.                   (15) 

 

For each individual (𝑖), K posterior probabilities are estimated, one for the 

membership of each type. Following the common practice in the literature (e.g., 

Deb et al., 2011; Li Donni et al., 2015), we assign each individual to the type with 

the highest posterior probability (known as modal assignment). Given this modal 

assignment to types we then apply the decomposition analysis based on equation 

(12) using the parameters estimated for the mixture model2.  

 

It should be explicitly mentioned here that our paper builds on precedents for the 

use of latent class models in analysis of health equity (e.g., Bago d’Uva et al., 2009, 

Balia and Jones, 2011 and Li Donni et al., 2015) to highlight the role that FMMs 

can play in modelling unobserved heterogeneity (treating Roemerian types as 

unobserved latent classes). However, we view our approach as a complement to 

recent data driven perspectives of statistical learning methods (Brunori et al., 

2018; Hufe et al., 2019). Specifically, the latter focus mainly on an ex ante IOp 

approach and the problem of making a parsimonious selection of variables from the 

observed set of circumstances in a non-arbitrary and data driven way. Our 

motivation in this paper is to start with a set of observed circumstance variables 

that accord with the socio-legal context in the UK (as will be justified below) – a 

normatively driven selection. Then, rather than using the “nonparametric” 

approach to define types – which results in a prohibitively large number of types – 

we use latent class specification as a data-driven way of reducing the number of 

types based on the given set of observed circumstance variables and to address the 

partial observability of circumstances. It should be stressed here that for a LCM a 

key choice is which variables to include in the model specification. The degrees of 

freedom decline not only because of larger number of latent groups but they also 

decrease with the number of regressors included in the specification. While the set 

of circumstances considered is a normative issue, it is also a statistical specification 

issue.  

 

 

3     Data 
  

The data come from UKHLS, a longitudinal, nationally representative study of the 

UK. In this study, we use the General Population Sample (GPS) component of 

 
2 Note that the posterior probabilities use information on all the estimated parameters and 

all of the data, including the outcomes, to predict membership of the latent types. As a 

result, our model fit, and associated decomposition analysis explains a much higher 

proportion of the variation in outcome than using prior probabilities for the modal 

assignment or using conventional parametric or nonparametric approaches to IOp. 
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UKHLS, a random sample of the general population. As part of wave 2 (2010-

2011), nurse-measured and non-fasted blood-based biomarkers were collected for 

the GPS.3 In this study we restricted our sample to adults aged 25 years old and 

above in order to create more meaningful age groups for the purpose of our analysis 

to explore differences in IOp in health and its underlying sources across age-sex 

groups that may reflect different generations; moreover, this allows us to focus on 

individuals that have completed their educational qualifications, as individual’s 

educational qualifications are included as efforts in our sensitivity analysis.4 

Exclusion of missing data on our biomarkers, circumstance and effort variables 

results in a working sample of 5,820 adults.   

 

A multi-system biological risk measure: allostatic load 

We use a cumulative biomarker index often called allostatic load (e.g., Davillas and 

Pudney, 2017; Howard and Sparks, 2016; Seeman et al., 2004). The allostatic load 

is regarded as a biological risk score reflecting the cumulative effects of chronic 

exposure to psychosocial and environmental challenges or stressors that may leads 

to significant physiological dysregulation and increased morbidity and mortality 

risks (Howard and Sparks, 2016; Seeman et al., 2004). As such, allostatic load is of 

particular relevance in our analysis as IOp is based on concerns about a lasting 

effect of circumstances on individuals’ long-term health. 

 

Our index combines biomarkers for adiposity, blood pressure, inflammation, blood 

sugar levels and cholesterol (see Table A.1, appendix for a description of the 

relevant biomarkers). Each of these biomarkers is transformed into standard 

deviation units and then summed to define allostatic load. It has been shown that a 

single measure of the different biomarkers is sufficient to measure allostatic load 

(Howard and Sparks, 2016). Higher values of allostatic load indicate worse health. 

Given that allostatic load is modelled here as a mixture of normals, it is notable 

that the density of allostatic load is unimodal and fairly symmetric (Figure 1). 

 

With respect to allostatic load, to illustrate the magnitudes involved, consider a 

healthy woman with normal waist circumference of 79cm (below the threshold for 

increased health risks; WHO, 2000) and height 162cm (average height), normal 

systolic blood pressure (90mmHg; the lower bound for normal blood pressure) and 

all the other biomarkers (used to define allostatic load) in the population average 

levels; her allostatic load will be around 24.40. A less healthy woman with a higher 

waist circumference of 90 cm (above the 88cm cut-point for elevated health risks) 

and the same body height, high systolic blood pressure 140 mmHg (cut-point for 

hypertension) and all other biomarkers at their mean values will experience 

 
3 Respondents were eligible for nurse visits if they were aged 16+, lived in England, Wales, 

or Scotland, and were not pregnant. Blood sample collections were further restricted to 

those who had no clotting disorders and no history of fits. 
4 It should be explicitly mentioned here that our results remain practically identical when 

no age restriction is imposed on our sample.  



12 

 

allostatic load of, 29.10 i.e., a difference of about 4.70 allostatic load points. The 

range of the allostatic load used in our analysis reflects the individual-level 

differences in the values of all biomarkers used. Table A1 (Appendix) presents the 

summary statistics for the allostatic load variable. 

 

Figure 1. Kernel density for the allostatic load index 

 

 

 

Circumstances  

Our set of circumstance variables embodies the ethical position of the responsibility 

cut, defining illegitimate sources of health inequality. For the choice of 

circumstance variables, we follow the recent literature on health equity along with 

the UK policy and legal context (Davillas and Jones, 2020; Carrieri and Jones, 

2018; Rosa Dias, 2009, 2010; Jusot et al., 2013).  

 

Drawing on the socio-legal context in the UK, we treat sex and age as 

circumstances; sex and age are considered as protected characteristics under the 

Equality Act of 20105.  Specifically, we create three age group dummies (25-44 age 

group; 45-64 age group; and those 65 and above) for males and females (6 age-sex 

dummies).6 Socioeconomic status (SES) in childhood has been an important concern 

of the existing literature on IOp. Childhood SES is regarded as an important source 

of IOp in health, being beyond individual’s control and exerting a lasting effect on 

individual’s adult health (Jusot et al., 2013; Rosa Dias, 2009, 2010). In our analysis 

we use both parental occupational status and parental education to proxy 

childhood SES. Two categorical variables (one for each parent) are used to capture 

 
5 For example, NHS England suggests actions to advance equality of opportunity in health, 

particularly relevant to patient’s age and sex, characteristics that are “protected” under the 

Equality Act (NHS England, 2017).  
6 These age groups are carefully selected to reflect the three generations: generation X and 

millennials, the “baby boomers” and the “silent generation”. However, the cross-sectional 

nature of our data does not allow us to make inferences about  lifecycle and cohort effects.    
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the occupational status of the respondent’s mother and father, when the 

respondent was aged 14: not working (reference category), four occupation skill 

levels and a category for missing data. To construct these variables the 

occupational skill levels are based on the skill level structure of the Standard 

Occupational Classification 2010. Given the high correlation between mother’s and 

father’s education, we combine them creating a measure capturing the highest 

parental education level (Kenkel et al., 2006).7 This is a four-category variable 

measured as: left school with no/some qualification (reference category), post-school 

qualification/certificate (e.g., an apprenticeship), degree (university or other higher-

education degree) and a missing data category.  

 

Efforts  

In the concept of IOp in health, effort variables typically indicate decisions to 

invest in health capital, such as health-related lifestyles (e.g., Balia and Jones, 

2011; Carrieri and Jones, 2018, Rosa Dias, 2010).8 Smoking status is captured by a 

categorical variable: current smoker, ex-smoker and never-smoker (reference 

category). Unhealthy dietary habits are captured by a dummy taking the value of 

one when the individual does not comply with the recommendation of five portions 

of fruits or vegetables per day and zero otherwise and an indicator for usual 

consumption of white (versus non-white) bread. Physical inactivity is captured by a 

dummy for not being a frequent walker (walk less than 5 times per week) and by a 

categorical variable for the frequency of sports participation: 3 and more 

times/week (reference category), 1-3 times/week, once per month or not at all.9 

 
7 Due to the high correlation between mother’s and father’s education we use a combined 

measure of parental education to alleviate multicollinearity concerns relevant to the 

multinomial logit model for (latent) class membership component of our FMM. Existing 

research shows that individuals match on length and type of education, with education 

being one of the most important mechanisms of homogamy (e.g., Nielsen and Svarer, 2009) 

and, thus, the observed high correlation between mother’s and father’s education in our 

sample is not a new finding in the literature. However, we re-estimated our models to test 

the robustness of our results in the case that the categorical mother and father education 

are used separately. The latent type probabilities and decomposition are practically 

identical to those presented in the paper. 
8 As with most of the equity in health literature, our study does not aim to address 

causality but to quantify and decompose IOp in health. However, we should highlight that 

our biological health outcome (allostatic load) captures long-run, systematic exposures to 

harmful situations rather than contemporaneous effects. As such, concerns regarding 

reverence causality may be somewhat alleviated as high allostatic load is not directly 

related to diagnosis of certain current conditions, which may be relevant to GP 

recommendations for adopting a healthier lifestyle. In any case, accounting for reverse 

causality is beyond the scope of our study and our results should be interpreted with this in 

mind. 
9 We experimented with further augmenting our set of effort variables using a binge 

drinking variable. Specifically, we have used data on the number of pints of beer, spirits, 

glasses of wine and alcopop that people drank and its frequency (as per number of days per 

week). We have then transformed these data to alcohol units and created a binge drinking 

dummy (8 units of alcohol for men and 6 units of alcohol for women on a frequent basis). 



14 

 

For the main analysis, we restrict our effort variables to lifestyle indicators in 

order to provide clear results on what is the direct contribution of lifestyle in 

shaping health inequalities and which part of their contribution may operate 

indirectly via the influence of circumstances (such as family socio-economic status 

etc.) on individual’s lifestyle. Broadly, this is consistent with the existing health 

economics research that explored the role of lifestyle as a potential mediating 

factor on the association between socioeconomic status and health (e.g., Balia and 

Jones, 2008; Baum and Ruhm, 2009). Similar effort variables are used by many of 

the existing studies in the IOp in health literature (eg., Balia and Jones, 2011, 

Carrieri and Jones, 2018, Jusot et al., 2013). As stated by Jusot et al. (2013), 

“Lifestyles, such as doing exercise, having a balanced diet, not smoking or not 

drinking too much, are widely accepted as examples of efforts in relation to health, 

representing non-constrained individual choices”. However, as a sensitivity 

analysis, we augment our set of effort variables beyond lifestyle, including 

individuals’ own education, household income and marital status.10    

 

 

4    Results  
 

Table 1 presents the values of the AIC and BIC for each FMM estimated with 

different numbers of types.11 The model with three latent classes is the one that 

minimises the BIC as well as has lower AIC compared to the FMM model with 

either two or four latent types; thus, selected as our preferable model here 

(Cameron and Trivedi, 2010). Although the FMM with five latent classes have 

lower AIC, the BIC value is higher compared to the FMM with three latent classes. 

Following Cameron and Trivedi (2010), further support for the FMM with three 

classes comes from the fact that it results in reliably differentiated latent classes 

(Table 2); each latent class accounts for a sufficient number of observations and the 

 
Our FMM results shows that this variable has no systematic effects (at the 10% level) and 

the decomposition analysis shows that it makes a trivial contribution to the direct role of 

efforts on explaining total inequality in allostatic load (subsections 4.2 and 4.3). Moreover, 

the inclusion of this variable reduces our sample size (due to data availability) by about 

15%. For these reasons, we decided not to include this variable in the model specification 

presented in the paper.  
10 For consistency with the other effort variables presented above, these additional 

variables are coded to reflect a positive association with ill health. Specifically, a categorical 

variable is used to capture individuals’ own education: degree (reference category), A-level 

and equivalent, GCSE and equivalent and no qualification. A dummy variable for not being 

married or cohabiting is also included in our augmented effort variables set. Equivalised 

(using the modified OECD scale) and log transformed household income from all sources is 

also included; for consistency with all other effort variables, the variable is rescaled to 

create an index that is decreasing in  income. 
11 Table A2 (Appendix) shows the corresponding full set of posterior probabilities and mean 

allostatic load values by latent class. 
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mean values of allostatic load (our outcome variables) are distinct across the three 

latent classes (there is no overlap in their confidence intervals). Table A2 

(Appendix) shows that the FMMs with a higher number of latent classes (those 

with four classes and above), have one or more latent classes that account for a 

fairly small part of the population and are characterised by non-distinctive latent 

classes with respect to the predicted allostatic load across types. For example, there 

is a significant overlap in the 95% confidence intervals of the predicted allostatic 

load between the latent types 3 and 4 as well as between latent types 4 and 5 for 

the case of the FMM with four and five latent types, respectively. 

 

Table 1. FMMs for allostatic load: AIC and BIC.  

Number of latent classes (types) AIC BIC 

K=1 29676 29743 

K=2 28619 28879 

K=3 28416 28862 

K=4 28426 29073 

K=5 28377 29183 
Notes: AIC and BIC values for the FMMs with a different 

number of latent classes (types).  

 

Focusing on our preferred FMM with three latent types (Table 2), we find that 

about 19% of our sample is estimated to belong to type 1 (the latent class with the 

lowest health risk, i.e., with the lowest mean allostatic load value), 44% in type 2 

(the latent class with the second-lowest allostatic load) and 37% in type 3 (the type 

with the highest allostatic load).  

 

Table 2. Latent class (types) probabilities and predicted mean allostatic load: FMM 

with three latent types.  

 Latent class probabilities 𝜌𝑗 (%) Predicted mean allostatic load 

Type 1 
19.43 

(16.08; 23.27) 

23.70  

(23.35; 24.04) 

Type 2 
43.96 

(33.12; 55.42) 

26.81 

(26.38; 27.24) 

Type 3 
36.61 

(24.53; 50.64) 

30.09 

(29.33; 30.85) 

Note: 95% confidence intervals in parenthesis 

 

 

4.1 Modal assignment of individuals to the latent types 

 

As described above, for the needs of our IOp decomposition analysis we use the 

modal assignment method to classify individuals into the type with the highest 

posterior probability. Given that it has been shown that modal assignments are 

problematic when, for a substantial number of individuals, the highest and the 

next-highest posterior probabilities of belonging to two or more different types are 

particularly close (e.g., Vermunt and Magidson, 2004), this issue need to be 

explored here.  
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Table 3 presents the mean values of the posterior probabilities of class membership 

conditional on modal type assignment. Focusing on those who are classified into 

type 1 using the modal assignment (“Type 1” column in Table 3), we find that the 

mean posterior probability of belonging to type 1 (Pr (𝑦𝑖 ∈ 𝑡𝑦𝑝𝑒 1)) is around 81%, 

with 90% of those individuals having posterior probabilities to belong to this type 

(i.e., Pr (𝑦𝑖 ∈ 𝑡𝑦𝑝𝑒 1)) of above 57.5% (as shown by the relevant quantile statistics; 

Q10, Q50 and Q90). The corresponding mean posterior probabilities of belonging to 

types 2 (around 17%) and 3 (around 1.7%) are much lower. Similarly, the mean 

posterior probability of belonging to type 2 is around 72% for those who are 

assigned to type 2 using the modal assignment (Table 3, column “Type 2”). Modal 

assignments to type 3 seem sensible also given the very high mean posterior 

probability for type 3 membership (around 82%; Table 4, column “Type 3”).  

 

Overall, these results show that modal assignments across the three types are 

sensible in our analysis. For the vast majority of individuals, there are clear 

differences between the highest posterior probability of belonging to a certain 

latent type and the other two posterior probabilities for the remaining types. 

 

 

Table 3. Posterior latent class (type) membership probabilities conditional on 

modal assignment of individuals into types: FMM with three latent types. 

 Modal assignment into latent classes (types) 

Posterior probabilities  Type 1 Type 2 Type 3 

𝐏𝐫 (𝒚𝒊 ∈ 𝒕𝒚𝒑𝒆 𝟏)    

Mean (i) 81.4% 6.6% 0.0% 

Q10 57.5% 0.0% 0.0% 

Q90 98.4% 26.4% 0.1% 
𝐏𝐫 (𝒚𝒊 ∈ 𝒕𝒚𝒑𝒆 𝟐)    

Mean (ii) 17.0% 71.9% 18.0% 

Q10 1.4% 55.5% 1.4% 

Q90 38.5% 87.3% 44.3% 
𝐏𝐫 (𝒚𝒊 ∈ 𝒕𝒚𝒑𝒆 𝟑)    

Mean (iii) 1.7% 21.5% 82.0% 

Q10 0.1% 6.5% 55.7% 

Q90 4.1% 41.0% 99.9% 

Total (sum of rows i, ii, iii) 100% 100% 100% 

Notes: Q10 and Q90 stand for the 10th and 90th quantiles of the posterior 

probabilities conditional on modal assignment of individuals into types.  

 

 

Figure 2 presents the graphical illustration of the empirical distribution functions 

for allostatic load by types, defined using the modal assignment. The graph shows 

a clear difference in the distribution of allostatic load across types confirming our 

results in Table 2. From an IOp perspective, these distributions can be interpreted 

as representing the opportunity sets facing each of the types, in terms of the 

distribution of health outcomes available to them, bearing in mind that a higher 

score of allostatic load implies worse health risks; it appears to be first order 

stochastic dominance across the three types. The contrast between the 

distributions for types 1, 2 and 3 is striking, with the non-overlapping support for 
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the three distributions suggesting zero order stochastic dominance. As stochastic 

dominance analysis is often used to test for the presence of IOp, Figure 2 highlights 

the existence of systematic IOp in allostatic load. This further motivates our 

analysis below on quantifying and decomposing IOp in allostatic load.  

 

 

Figure 2. Allostatic load distributions by types (defined using the modal assignment): 

FMM with three latent types. 

 

 
 

4.2. Characterising the profile of the latent types 

 

The analysis so far does not characterise the profile of the three latent types in 

terms of the observed circumstances. In the concept of IOp, types are defined on 

the basis of individuals’ exposure to circumstance variables and, thus, identifying 

whether each latent type reflects more or less disadvantaged observed 

circumstances is of particular importance. Table 4 shows, in each row, the mean 

posterior probabilities (along with the relevant 95% confidence intervals) of 

belonging to each of the three latent types (Pr (𝑦𝑖 ∈ 𝑡𝑦𝑝𝑒 1, 2 𝑎𝑛𝑑 3)) conditional on 

selected observed circumstances; these mean values (and the relevant confidence 

intervals) are estimated averaging the individual posterior probabilities for the 

sub-samples of individuals defined based on the observed circumstances (for 

example, having a mother with highest occupational skill level, etc.). Since, by 

construction of the latent class model of type membership, each individual is 

assumed to belong to a single type, the probabilities in each row always add up to 

1. For the  categorical circumstance variables, mean posterior probabilities are 

calculated for the most and least deprived category. It should be noted that our set 
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of circumstance variables are jointly highly significant as determinants of 

individuals’ class membership in the multinomial logit model for class membership 

of our FMM.  

 

Table 4. Posterior type membership probabilities, conditional on observed circumstances: FMM 

with three latent types.  

Observed circumstances  Type 1 Type 2 Type 3 

Mother’s occupational status    
 

Highest group (skill level 4) 
0.407  

[0.378; 0.437] 

0.375 

[0.337; 0.413] 

0.218  

[0.192; 0.244] 

 
Lowest group (unemployed) 

0.132 

[0.121; 0.144] 

0.460 

[0.448;0.472] 

0.407 

[0.393; 0.421] 

Father’s occupational status    

 
Highest group (skill level 4) 

0.302 

[0.276; 0.327] 

0.464 

[0.442; 0.485] 

0.234 

[0.215; 0.254] 

 
Lowest group (unemployed) 

0.169 

[0.132; 0.207] 

0.503 

[0.463; 0.543] 

0.328 

[0.285; 0.371] 

Parental education     

 
Degree 

0.368 

[0.333; 0.402] 

0.464 

[0.435; 0.492] 

0.168 

[0.146; 0.190] 

 
No qualification 

0.145 

[0.135; 0.155] 

0.449 

[0.438; 0.459] 

0.406 

[0.394; 0.419] 

Age-sex profile    

 
Males 25-44 

0.264 

[0.241; 0.287] 

0.513 

[0.492; 0.534] 

0.223 

[0.201; 0.245] 

 
Males 45-64 

0.000 

[0.000; 0.000] 

0.583 

[0.565; 0.602] 

0.417 

[0.398; 0.435] 

 
Males 65+ 

0.000 

[0.000; 0.000] 

0.404 

[0.383; 0.425] 

0.596 

[0.575; 0.617] 

 
Females 25-44 

0.604 

[0.580; 0.628] 

0.260 

[0.244; 0.276] 

0.136 

[0.120; 0.151] 

 
Females 45-64 

0.251 

[0.234; 0.267] 

0.430 

[0.417; 0.445] 

0.319 

[0.301; 0.336] 

 
Females 65+ 

0.001 

[0.001; 0.001] 

0.452 

[0.431; 0.473] 

0.547 

[0.526; 0.568] 

Notes: The mean values (and the relevant confidence intervals) presented in the table are 

estimated averaging the individual posterior probabilities for the sub-samples of individuals 

defined based on the observed circumstances (for example, having a mother with highest 

occupational skill level, etc.). The probabilities in each row add up to 1. 95% confidence intervals 

are in brackets. 

 

 

Younger females, those having a mother (and to lesser extent a father) with higher 

occupational status as well as those with more educated parents are most likely to 

belong to type 1 (Table 4). For example, the posterior probability to belong to type 1 

for an individual who experienced the most advantaged maternal occupational 

status during childhood is higher (i.e., 0.407) as compared to type 2 (0.375) and 

type 3 (0.218). The type 2 latent class lies above the least deprived type (type 1) but 

is not be considered at the most deprived type among the three. Specifically, 

although it is more likely to consist of individuals at earlier to later middle ages, 

those who had a father working in a highly skilled job (skill level 4) and/or at least 

one parent with a degree qualification, we also observe large posterior probabilities 

for those at the lowest parental occupation and educational groups to belong to 

type 2. Type 3 clearly differs from the other two types to the extent that members 
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are more likely to come from those who are older and less likely from those who 

experienced the higher parental occupation and parental educational status during 

their childhood. For example, the posterior probability for belonging to type 3 for 

an individual who experienced the higher parental education (degree) is lower (i.e., 

0.168) compared to type 1 (0.368) and type 2 (0.464). Overall, these results reveal a 

set of three fully characterised latent types, each of which reflects a complex set of 

observed circumstances. This complex profile of types, obtained using latent class 

techniques, indicates what may have been missed if single circumstances were 

chosen to define types.  

 

 

4.3 Decomposition of overall inequality 

 

The analysis so far shows that modal assignments of individuals into the three 

latent types are feasible (subsections 4.1 and 4.2). Beyond the definition of types, 

the FMM analysis also allows us to account for the type-specific heterogeneity in 

the association between effort variables and allostatic load. Both the latter and the 

definition of types are of particular importance in our decomposition of inequality 

analysis.  

 

Specifically, our FMM results show considerable heterogeneity in the association 

between effort variables and allostatic load (Table A.3, Appendix). Overall, all 

variables reflecting less healthy lifestyles (given the reference categories) show a 

positive association with higher allostatic load values indicating higher health 

risks; the associations become more evident in types 2 and 3, which are the types 

reflecting more adverse circumstances compared to type 1. A formal statistical test 

rejects the null hypothesis that the effort coefficients are equal across types (p-

value=0.000).   

 

Table 5 presents the results of the decomposition analysis, allowing us to 

decompose the sources of inequality in allostatic load and the role of IOp on 

shaping these inequalities based on the results from our FMMs. The table shows 

the direct contribution of circumstances, the contribution of efforts as well as the 

indirect contribution of circumstances via efforts to the overall inequality in 

allostatic load.  

 

We find that the latent types account for most of the total inequality, with the 

direct contribution of circumstances being the most important component. 

Specifically, about 50% of the total inequality in our composite health measure is 

attributed to the direct contribution of circumstances. The contribution of the role 

of indirect circumstances via efforts show that circumstances exert an indirect 

contribution to the total inequalities of around 13%, though differences in the 

association between our effort variables and allostatic load across types. The 

detailed decomposition of indirect circumstances show that contributions are 
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positive and indicates that the association between the lifestyle variables and 

allostatic load is larger for the types who have worse health. Lack of frequent 

physical activity, unhealthy food habits and smoking are the first, second and third 

most important indirect mechanisms, respectively. Less important however is the 

direct contribution of the effort variables (within types) in explaining total 

inequality in allostatic load (accounting for around only 3%)12.  

 

 

Table 5. Decomposition of variance in allostatic load based on the FMM with 

three latent types. 

  
Absolute 

contribution† 
% contribution† 

Direct circumstances  5.00 

[4.87; 5.14] 

49.16 % 

 

Indirect circumstances via efforts  

 

 

Smoking
†
 0.22 2.16% 

Non-compliance: 5 fruits/vegetables 0.25 2.47% 

White bread 0.10 1.00% 

Non-frequent walking
†
 0.39 3.83% 

Sports activity
†
 0.39 3.80% 

Total indirect circumstances via efforts 1.35 

[1.31; 1.40] 

13.27% 

 

Direct efforts 

  

Smoking
†
 0.10 0.96% 

Non-compliance: 5 fruits/vegetables/day 0.01 0.10% 

White bread 0.04 0.39% 

Non-frequent walking
†
 0.03 0.29% 

Sports activity
†
 0.15 1.47% 

Total direct efforts 0.32 

[0.27; 0.38] 

3.24% 

Residual 3.50 34.50% 

Total Variance 10.17 

[9.84; 10.50] 

100% 

†Absolute and percentage contributions represent the total contribution of all the categories 
of the relevant categorical variables included in our models.   
The decomposition method is described in detail in section 2. The 95% confidence 
intervals (in brackets) for the direct contribution of circumstances, the total direct 
contribution of efforts as well as the total indirect role of circumstances via efforts are 
calculated using a bootstrap with 500 replications.  

 

 
12 The decomposition presented in Table 5 relies on modal assignment to latent types based 

on posterior probabilities. As these probabilities take account of observed outcomes the 

unexplained variation is much smaller than conventional decomposition methods, with the 

residual contribution only accounting for 34.5% of the total. For comparison we conducted a 

decomposition analysis based on the estimated prior probabilities from the FMM, which 

vary only with observed circumstance variables, and we conducted a decomposition analysis 

for a standard linear model (see equation 9). The unexplained contribution is much greater 

for both of these: , 81%for the linear model and 71% for the FMM-prior specification. This 

larger unexplained component accords with existing decomposition analysis that uses 

conventional “nonparametric” approaches to define types based on the unique combination 

of the values of the circumstance variables (Carrieri and Jones, 2018). However, the direct 

contribution of effort variables remains stable across all three approaches: 3.5% for linear, 

3.8% for FMM-prior and 3.2% for FMM-posterior (our main results presented in Table 5).  
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As discussed above, we conduct a sensitivity analysis by augmenting our set of 

effort variables beyond lifestyle, including individuals’ own education, household 

income and marital status (Table A.5, Appendix). Augmenting our set of effort 

variables we find a small reduction in the direct role of circumstances compared to 

our base case results in Table 5, along with an increase in the indirect role of 

circumstances via efforts. However, these differences are not large enough to 

change the conclusions of our analysis in any substantial way; as in the case of our 

base case results (Table 5), the total (direct and indirect) role of circumstances is 

still around two thirds of the total inequality in allostatic load (Table A.5, 

Appendix).  

 

 

4.4 Decomposition of inequality by age-sex groups  

 

One may argue that although age and sex are not under individual’s control, the 

age-sex variations in allostatic load may be regarded (at least to some extent) as 

natural or biological and, thus, not seen as a source of unfairness. A way to explore 

the role of all other circumstance variables, apart from age and sex, to IOp is to 

undertake post-estimation decomposition analysis in inequalities in allostatic load 

conditional on the different age-sex groups. Specifically, we use the parameter 

estimates from our preferred FMM estimated for the full sample and, then, apply 

the decomposition analysis separately for each of the six mutually exclusive age-

sex sub-samples, which are based on the age-sex dummies used in our regression 

analysis (Data subsection). This allows us to hold sex and age group constant and 

explore the contribution of all other circumstances.13 The results of these analyses 

for the six age-sex groups are presented in this subsection.  

 

Figure 3 shows heterogeneity in the magnitude of total inequalities in allostatic 

load for our selected age groups. Overall, inequalities are lower for the two older 

groups of men, while for women an inverse U-shaped pattern is observed. The 

presence of narrower inequalities at older age groups may be broadly in accordance 

with the age-as-level hypothesis, which is frequently cited in the health 

inequalities literature as a hypothesis explaining inequality patterns across  the 

lifecycle (Baum and Ruhm, 2009; Davillas et al, 2017; Davillas and Jones,2020).  

 

 

 
13 This analysis by age-sex groups allows us: a) to explore the role of circumstances other 

than age group and sex; and b) to estimate the coefficients of the other circumstance 

variables (parental socioeconomic background) after accounting for the potentially 

confounding role of age group and sex on how parental socioeconomic status may affects 

individuals’ adult health (Baum and Ruhm, 2009). Given that is unlikely to achieve a 

universal agreement about the treatment of age and sex in the IOp in health literature, our 

split sample decomposition analysis can be used, supplementary to the full sample 

decomposition results, to explore the role of our circumstances, apart from age group and 

sex, in the IOp in health context.  
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Figure 3. Variance of allostatic load across age groups by sex. 

 
 

 
Tables 6 and 7 present the results of the inequality decomposition analysis for the 

different age groups by sex. For women (Table 6), as in the case of the full sample 

(Table 5), we find that a substantial part of the total inequalities is attributed to 

the direct contribution of circumstances across all the age groups. Specifically, the 

total contribution of circumstances ranges between 40% and 50% across the three 

age groups, with the direct contribution of circumstances being lower in magnitude 

in the case of our older age group (accounting for about 40% of the total 

inequalities). The indirect contribution of circumstances via efforts accounts for 

between 7% and 17% of the total inequalities, with a higher contribution among 

younger women. The detailed decomposition of the indirect mechanisms echoes the 

decomposition results of the full sample with lack of frequent physical activity, 

unhealthy food habits and smoking being the first, second and third most 

important contributors, respectively.14 In line with our results from the pooled 

analysis, the direct contribution of efforts is small, ranging from 1.4% to 5.2% 

across the different age groups.  

 
14 Sports activity (but not the walking variable) has a small but negative contribution in the 

case of the oldest age group. This may be due to the small sample size in the case of our 

older age-sex group, which is further split given the three types used in our analysis, as 

well as because older people are less engaged into sports activities in general. Excluding the 

sports activity variable from our analysis does not change the overall decomposition results 

in Tables 6 and 7.  
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Table 6. Decomposition of variance in allostatic load by age group: Females 

 Age group: 25-44 Age group: 45-64 Age group: 65+ 

  
Absolute 

contribution† 

% 

contribution† 

Absolute 

contribution† 

% 

contribution† 

Absolute 

contribution† 

% 

contribution† 

Direct circumstances  4.33 

[3.89; 4.77] 

47.85% 5.19 

[4.90; 5.49] 

50.39% 3.14 

[2.98; 3.31] 

39.90% 

Indirect circumstances via efforts       

Smoking† 0.33 3.65% 0.25 2.43% 0.05 0.64% 

Non-compliance: 5 fruits/vegetables 0.25 2.76% 0.24 2.33% 0.12 1.52% 

White bread 0.07 0.77% 0.09 0.87% 0.09 1.14% 

Non-frequent walking† 0.20 2.21% 0.37 3.59% 0.45 5.70 % 

Sports activity† 0.69 7.62% 0.47 4.56% -0.10 -1.30 % 

Total indirect circumstances via efforts 1.55 

[1.42; 1.67] 

17.13% 1.43 

[1.34; 1.52] 

13.88% 0.52 

[0.49; 0.55] 

6.61% 

Direct efforts       

Smoking† 0.06 0.66% 0.08 0.78% 0.11 1.40% 

Non-compliance: 5 fruits/vegetables/day 0.00 0.00% 0.01 0.10% 0.02 0.25% 

White bread 0.02 0.22% 0.05 0.49% 0.04 0.51% 

Non-frequent walking† 0.00 0.00% 0.04 0.39% 0.09 1.14% 

Sports activity† 0.04 0.44% 0.16 1.55% 0.15 1.91% 

Total direct efforts 0.13 

[0.01; 0.25] 

1.44% 0.34 

[0.22; 0.46] 

3.30% 0.41 

[0.25; 0.56] 

5.21% 

Residual 3.04 33.59% 3.34 32.43% 3.83 48.67% 

Total Variance 9.05 

[8.20; 9.90] 

100.00% 10.30 

[9.58; 11.02] 

100.00% 7.87 

[7.17; 8.57] 

100.00% 

Sample size 990 1,408 848 
†Absolute and percentage contributions represent the total contribution of all the categories of the relevant categorical variables 

included in our models.  

The decomposition method is described in detail in subsection 2.   

The 95% confidence intervals (in brackets) for the direct contribution of circumstances, the total direct contribution of efforts as well 

as the total indirect role of circumstances via efforts are calculated using a bootstrap with 500 replications. 

 

 
Table 7 presents the decomposition results for men. The direct contribution of 

circumstances accounts for a substantial part of the total inequalities across all the 

age groups (ranging from 39% to 47%). The indirect contribution of circumstances 

via efforts has the second highest contribution to the explained inequalities in 

allostatic load ranging between 7% and 13%. Once again the direct contribution of 

efforts accounts for a small part of the total inequalities (ranging between 3% and 

6% across the different age groups).  
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Table 7. Decomposition of variance in allostatic load by age group: Males 

 Age group: 25-44 Age group: 45-64 Age group: 65+ 

  
Absolute 

contribution† 

% 

contribution† 

Absolute 

contribution† 

% 

contribution† 

Absolute 

contribution† 

% 

contribution† 

Direct circumstances  4.17 

[3.75; 4.59] 

46.64% 2.83 

[2.66; 3.02] 

38.19% 3.06 

[2.89; 3.23] 

38.93% 

Indirect circumstances via efforts       

Smoking† 0.25 2.80% 0.07 0.94% 0.10 1.27% 

Non-compliance: 5 fruits/vegetables 0.24 2.68% 0.12 1.62% 0.13 1.65% 

White bread 0.07 0.78% 0.09 1.21% 0.13 1.65% 

Non-frequent walking† 0.25 2.80% 0.37 4.99% 0.36 4.58% 

Sports activity† 0.30 3.36% -0.10 -1.35% -0.10 -1.27% 

Total indirect circumstances via efforts 1.11 

[1.00; 1.22] 

12.42% 0.53 

[0.50; 0.56] 

7.15% 0.62 

[0.59; 0.65] 

7.89% 

Direct efforts       

Smoking† 0.09 1.01% 0.14 1.89% 0.09 1.15% 

Non-compliance: 5 fruits/vegetables/day 0.00 0.00% 0.01 0.13% 0.02 0.25% 

White bread 0.02 0.22% 0.05 0.67% 0.04 0.51% 

Non-frequent walking† 0.00 0.00% 0.04 0.54% 0.05 0.64% 

Sports activity† 0.17 1.90% 0.23 3.10% 0.16 2.04% 

Total direct efforts 0.29 

[0.15; 0.43] 

3.24% 0.45 

[0.34; 0.57] 

6.07% 0.35 

[0.20; 0.48] 

4.45% 

Residual 3.37 37.70% 3.60 48.58% 3.83 48.73% 

Total Variance 8.94 

[8.00; 9.87] 

100.00% 7.41 

[6.77; 8.05] 

100.00% 7.86 

[7.15; 8.57] 

100.00% 

Sample size 678 1,101 795 
†Absolute and percentage contributions represent the total contribution of all the categories of the relevant categorical variables 

included in our models.   

The decomposition method is described in detail in subsection 2. 

The 95% confidence intervals (in brackets) for the direct contribution of circumstances, the total direct contribution of efforts as well 

as the total indirect role of circumstances via efforts are calculated using a bootstrap with 500 replications. 

 

 

   

5  Conclusion 
 

A key empirical and practical challenge in all IOp studies is the definition of types. 

In this paper, we have employed an empirical approach to both analyse and 

decompose IOp in a composite biomarker measure, allostatic load. Our analysis 

addresses some of the limitations that affect earlier work, namely the partial 

observability, the ad hoc selection of circumstances and the curse of dimensionality. 

We use FMMs, a semi-parametric approach to model unobserved heterogeneity 

regarding type membership, which avoids a-priori grouping of individuals into 

types. This analysis facilitates selection of the number of latent classes (types) and 

allows us to characterise the latent types in terms of the combination of observed 

circumstances that they represent, as well as classifying individuals into the 

different latent types.  
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For this study we use nationally representative data from the UKHLS. We combine 

a rich set of nurse-measured and non-fasted blood-based biomarkers to build a 

cumulative risk score index (also known as allostatic load) which takes into account 

the chronic exposure to psychosocial and environmental challenges. This allows us 

to assess the lasting contribution of circumstances and efforts to inequality in long-

term health measures. 

 

Our results show a clear ordering of types with respect to both our composite 

biomarker measure (allostatic load) and the underlying observed circumstances. 

Beyond the definition of types, FMM analysis allows us to explore the type-specific 

unobserved heterogeneity in the association between our health measure and 

efforts, which is crucial for the measurement of ex post IOp. Taking advantage of 

this along with our latent class approach to define types, we have combined the 

latent class analysis with a recently developed decomposition technique on IOp in 

health (Carrieri and Jones, 2018). Our more parsimonious and data-driven 

definition of types (using a latent class model framework) are of importance given 

the recent evidence that a large number of types may create upward bias in the 

IOp measurement (Brunori et al., 2019).  

 

We find that a latent class model with three unobserved types provides the best fit 

with our data, indicating that a relatively small number of types are enough to 

characterise the sample. Our results show that the characteristics of each of these 

types reflect a complex combination of observed circumstances, which may be 

missed if single circumstances or ad hoc selections of circumstances were chosen to 

define types. After classifying individuals into the latent types using modal 

assignments, we decompose overall inequality in allostatic load. We find that the 

sum of all sources of inequality in allostatic load attributable to these types (direct 

effect of circumstances and indirect via their influence on efforts) is about 63% 

(about 50% due to direct role of circumstances). On the other hand, legitimate 

sources of inequality (the direct contribution of efforts), which are consistent with 

the reward principle, account for only around 3% of the total inequality. Further, 

postestimation inequality decomposition analysis conditional on our selected age-

sex groups reveal that, although total inequalities in allostatic load vary across the 

adult age span, the main conclusions of our study remained mostly unaffected; the 

relative (percentage) contribution of all other circumstance variables (both direct 

and indirect) still account for around two thirds of the total inequalities in 

allostatic load across the different age-sex groups and the direct contribution of 

observed effort is small.  
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Appendix 

 

Table A.1 Description of biomarkers used for allostatic load    

Biomarker Description Mean 
Standard 

deviation 

Lowest 

value 

Highest 

value  

Waist-to-height ratio (WHR) Waist circumference (cm) over height (cm) 0.563 0.077 0.363 0.94 
      

Systolic blood pressure (SBP) 

 

Maximum pressure in an artery when the 

heart is pumping blood (mmHg) 

126.9 16.371 

 

80.5 

 

209.0 

      

C-reactive protein (CRP) 

 

Inflammatory biomarker; rises as part of 

the immune response to infection (mg/L) 

2.049 1.961 

 

0.20 

 

10.0 

      

Fibrinogen  

 

Fibrinogen (g/L) is a glycoprotein that aids 

the body to stop bleeding by promoting 

blood clotting, and is regarded as an 

inflammatory biomarker.  

2.756 0.508 

 

 

1.10 

 

 

5.0 

      

Glycated haemoglobin 

(HbA1c) 

 

Blood sugar biomarker; diagnostic test for 

diabetes. (mmol/mol) 

37.0 6.483 

 

25.0 

 

96.0 

      

Cholesterol ratio 

 

Fat in the blood biomarker; ratio of the total 

cholesterol (mmol/L) over the high-density 

lipoprotein cholesterol (mmol/L). 

3.739 1.310 1.161 11.14 

Allostatic load 

 

Allostatic load is defined as a cumulative 

measure with each of the biomarkers above 

transformed into standard deviation units 

and then summed.  

27.422 3.190 

 

 

19.30 

 

 

36.62 
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Table A.2 Latent class probabilities and predicted mean allostatic load: 

FMMs with different number of latent classes.  

Number of latent 

classes (types) 

Latent class probabilities 

(%) 

Predicted mean of 

allostatic load 

K=2 Type 1 
26.74 

(23.86; 29.84) 

24.43  

(24.20; 24.65) 

 Type 2 
73.26 

(70.16; 76.14) 

28.49 

(28.37; 28.62) 

K=3 Type 1 
19.43 

(16.08; 23.27) 

23.70  

(23.35; 24.04) 

 Type 2 
43.96 

(33.12; 55.42) 

26.81 

(26.38; 27.24) 

 Type 3 
36.61 

(24.53; 50.64) 

30.09 

(29.33; 30.85) 

K=4 Type 1 
19.73 

(16.51; 23.41) 

23.70 

(23.38; 24.04) 

 Type 2 
41.93 

(30.61; 54.16) 

26.80 

(26.35; 27.25) 

 Type 3 
5.56 

(2.26; 13.03) 

29.38 

(28.87; 29.89) 

 Type 4 
32.78 

(20.43; 48.08) 

30.07 

(29.13; 31.00) 

K=5 Type 1 
18.52 

(15.45; 22.06) 

23.59 

(23.20; 23.97) 

 Type 2 
5.07 

(1.54; 15.41) 

26.06 

(25.83; 26.29) 

 Type 3 
43.95 

(32.96; 55.57) 

27.07 

(26.63; 27.51) 

 Type 4 
4.30 

(2.49; 7.33) 

30.13 

(29.38; 30.87) 

 Type 5 
28.16 

(16.19; 44.30) 

30.33 

(29.14; 31.52) 

Notes: 95% Confidence intervals in parenthesis 

 

Table A.3 Heterogeneous association between efforts and allostatic load by latent type: 

regression coefficients (and standard errors). 

 Type 1 Type 2 Type 3 

Current smoker 
0.441** 

(0.171) 

0.820*** 

(0.177) 

1.115*** 

(0.215) 

Ex-smoker 
-0.008 

(0.129) 

0.337*** 

(0.110) 

0.407*** 

(0.154) 

Non-compliance:5 fruits/vegetables/day 
-0.103 

(0.141) 

0.094 

(0.119) 

0.244 

(0.170) 

White bread 
0.284** 

(0.142) 

0.244*** 

(0.131) 

0.543*** 

(0.159) 

Non-frequent walking 
0.111 

(0.119) 

0.063 

(0.130) 

0.688*** 

(0.149) 

Sports activity: 1-3 times/week 
-0.008 

(0.170) 

0.530*** 

(0.180) 

0.122*** 

(0.265) 

Sports activity: at least once/month 
0.106 

(0.186) 

0.921*** 

(0.210) 

0.520*** 

(0.303) 

Sports activity: less frequent/not at all 
0.346** 

(0.176) 

1.142*** 

(0.158) 

1.073*** 

(0.233) 

Constant term 
23.387*** 

(0.200) 

25.579*** 

(0.256) 

28.426*** 

(0.455) 

Standard errors in parenthesis.  

* p-value<0.1; ** p-value<0.05; *** p-value<0.01. 
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Table A.4 Multinomial logit specification for (latent) class membership from the FMM model with three 

latent classes (type 1 base outcome) 

 Type 2 Type 3 

 Coeff. Std. Err.  Coeff. Std. Err.  

Females: Age 45-64 1.356*** 0.179 1.661*** 0.176 

Females: Age 65+ 7.011 7.963 7.793 7.961 

Males : Age 25-44 1.536*** 0.215 1.379*** 0.229 

Males: Age 45-64 19.866*** 0.699 20.156*** 0.805 

Males: Age 65+ 19.131*** 2.725 20.118*** 2.689 

Mother’s occupation: skill 1 (lowest) -0.052 0.244 0.095 0.206 

Mother’s occupation: skill 2 -0.206 0.162 -0.118 0.150 

Mother’s occupation: skill 3 0.048 0.237 -0.160 0.233 

Mother’s occupation: skill 4 (highest) -0.524** 0.224 -0.666*** 0.233 

Mother’s occupation: missing -0.009 0.476 0.144 0.443 

Father’s occupation: skill 1 (lowest) -0.259 0.414 -0.031 0.376 

Father’s occupation: skill 2 -0.595 0.358 -0.350 0.329 

Father’s occupation: skill 3 -0.659** 0.341 -0.472 0.319 

Father’s occupation: skill 4 (highest) -0.965*** 0.365 -1.073*** 0.350 

Father’s occupation: missing -0.537 0.416 -0.027 0.364 

Parental education: post-school qualification -0.129 0.162 -0.193 0.147 

Parental education: degree -0.021 0.230 -0.502** 0.253 

Parental education: missing  -0.147 0.209 -0.018 0.189 

* p-value<0.1; ** p-value<0.05; *** p-value<0.01. 
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Table A.5 Decomposition of variance in allostatic load: Augmented effort 

variables.  

  
Absolute 

contribution† 
% contribution† 

Direct circumstances  4.21 

[4.08; 4.31] 

41.39% 

 

Indirect circumstances via efforts  

 

 

Smoking† 0.21 2.06% 

Non-compliance: 5 fruits/vegetables 0.18 1.77% 

White bread 0.10 0.98% 

Non-frequent walking† 0.40 3.93% 

Sports activity† 0.38 3.74% 

Individual’s education† 0.00 0.00% 

Household Income† 0.63 6.11% 

Married 0.21 2.06% 

Total indirect circumstances via efforts 2.11 

[2.051; 2.17] 

20.65% 

 

Direct efforts 

  

Smoking† 0.07 0.69% 

Non-compliance: 5 fruits/vegetables/day 0.01 0.10% 

White bread 0.02 0.20% 

Non-frequent walking† 0.04 0.39% 

Sports activity† 0.15 1.47% 

Individual’s education† 0.09 0.88% 

Household Income† 0.04 0.39% 

Married 0.02 0.20% 

Total direct efforts 0.44 

[0.37; 0.50] 

4.33% 

Residual 3.42 33.63% 

Total Variance 10.17 

[9.84; 10.50] 

100% 

†Absolute and percentage contributions represent the total contribution of all the categories 
of the relevant categorical variables included in our models.   
The decomposition method is described in detail in subsection 2. The 95% confidence 
intervals (in brackets) for the direct contribution of circumstances, the total direct 

contribution of efforts as well as the total indirect role of circumstances via efforts are 
calculated using a bootstrap with 500 replications.  


