Breaking of Josephson junction oscillations and onset of quantum turbulence in Bose-Einstein condensates

Griffin, Adam, Nazarenko, Sergey and Proment, Davide (2020) Breaking of Josephson junction oscillations and onset of quantum turbulence in Bose-Einstein condensates. Journal of Physics A: Mathematical and Theoretical, 53 (17). ISSN 1751-8113

[img]
Preview
PDF (Accepted_Manuscript) - Submitted Version
Available under License Creative Commons Attribution.

Download (9MB) | Preview

Abstract

We analyse the formation and the dynamics of quantum turbulence in a two-dimensional Bose-Einstein condensate with a Josephson junction barrier modeled using the Gross-Pitaevskii equation. We show that a sufficiently high initial superfluid density imbalance leads to randomisation of the dynamics and generation of turbulence, namely, the formation of a quasi-1D dispersive shock consisting of a train of grey solitons that eventually breakup into chains of distinct quantised vortices of alternating vorticity followed by random turbulent flow. The Josephson junction barrier allows us to create two turbulent regimes: acoustic turbulence on one side and vortex turbulence on the other. Throughout the dynamics, a key mechanism for mixing these two regimes is the transmission of vortex dipoles through the barrier: we analyse this scattering process in terms of the barrier parameters, sound emission and vortex annihilation. Finally, we discuss how the vortex turbulence evolves for long times, presenting the optimal configurations for the density imbalance and barrier height in order to create the desired turbulent regimes which last as long as possible.

Item Type: Article
Uncontrolled Keywords: bose-einstein condensate,josephson junction,vortex,quantum vortices,superfluids,turbulence,vortex decay
Faculty \ School: Faculty of Science > School of Mathematics
Depositing User: LivePure Connector
Date Deposited: 02 Apr 2020 00:47
Last Modified: 25 May 2020 00:04
URI: https://ueaeprints.uea.ac.uk/id/eprint/74692
DOI: 10.1088/1751-8121/ab7ad0

Actions (login required)

View Item View Item