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Abstract
China is confrontedwith an unprecedentedwater crisis regarding its quantity and quality. In this
study, we quantified the dynamics of China’s embodiedwater use and chemical oxygen demand
(COD) discharge from2010 to 2015. The analysis was conductedwith the latest available water use
data across sectors in primary, secondary and tertiary industries and input–outputmodels. The results
showed that (1)China’s water crisis was alleviated under urbanisation. Urban consumption occupied
the largest percentages (over 30%) of embodiedwater use andCODdischarge, but embodiedwater
intensities in urban consumptionwere far lower than those in rural consumption. (2)The ‘new
normal’ phasewitnessed the optimisation of China’s water use structures. Embodiedwater use in
light-manufacturing and tertiary sectors increasedwhile those in heavy-manufacturing sectors (except
chemicals and transport equipment) dropped. (3)Transformation ofChina’s internationalmarket
brought positive effects on its domestic water use. China’s water use (116–80 billion tonnes (Bts))9 and
CODdischarge (3.95–2.22million tonnes (Mts)) embodied in export tremendously decreasedwhile
its total export values (11–25 trillionCNY) soared. Furthermore, embodiedwater use andCOD
discharge in relatively low-end sectors, such as textile, started to transfer from international to
domesticmarkets when a part of China’s production activities had been relocated to other developing
countries.

1. Introduction

Water crisis has been announced as the 4th global risk
with regard to its impact on the society (WorldEconomic
Forum, 2019). Theworld’s per capita freshwater capacity
has dropped 26% within 25 years (1992–2017) (Ripple
et al 2017), whereas the water demand was projected to
increase by 55% from 2015 to 2050 (IRENA 2015). In
2015, diseases caused by water pollution and unsafe
water sources have claimed responsibility for approxi-
mately 1.8million deaths globally (Landrigan et al 2018).

China, particularly, is facing perilous water challenges.
China’s remarkable achievements in its accelerating
economy sacrifice aquatic environments, attributing to
serious resource depletion and water pollution (Guan
et al 2014, Zhang et al2019). By 2018, 27.6%of its surface
water sites had not met Grade III quality standards, the
threshold of water quality that enables human beings to
swim in (MEEC2018).

Meanwhile, China has been undergoing profound
transitions over the past decade. Its rapid urbanisation
since the 1980s has been labelled as ‘China’s growth
miracle’ with approximately 1.05% of annual urban
population growth from 1980 to 2015 (19.39%–

56.10%), which has greatly stimulated China’s economy
(Zhao andZhang, 2018,Wang et al2019). In 2014,China

OPEN ACCESS

RECEIVED

24 July 2019

REVISED

6October 2019

ACCEPTED FOR PUBLICATION

16October 2019

PUBLISHED

19November 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

9
Throughout this study, when the authors put two values in one

parentheses as (a), (b), value a and b represent water use or COD
discharge, or export values in 2010 and 2015, respectively, in order
to better reveal their changing patterns.

© 2019TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/1748-9326/ab4e54
mailto:jing.j.meng@ucl.ac.uk
mailto:yangll@sustc.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab4e54&domain=pdf&date_stamp=2019-11-19
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab4e54&domain=pdf&date_stamp=2019-11-19
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


has stepped into the ‘new normal’ phase, and achieved
optimisation of economic structures (Mi et al 2017). It
means that China’s development was no longer driven
by investment but innovation and environmentally-
friendly technology, and the transitions have accom-
plished fromhigh-speed tomedium-high-speed growth,
and from rapid growth of scale to intensive- and quality-
increasing growth (Meng et al 2019, Zhang et al 2019, Li
et al 2019a). Additionally, as the world’s largest exporter,
China also has its economydriven by international trade.
Since the 2008 global financial crisis, its traditional inter-
national markets have transformed in order to tackle
increasing trade barriers against China (Chandra, 2016).
Confronting with more south–south trade in the new
phase of globalisation, China has also relocated a part of
its production activities to other developing countries
(Meng et al 2018). Given that water shortage and water
pollution are crucial constraints for economic prosper-
ity, China’s water quantity and quality require further
investigation (RaoandChandrasekharam2019).

A series of studies have been conducted to under-
stand the quantity and quality of China’s water resour-
ces (Jiang, 2009, Han et al 2016, Udimal et al 2017).
However, most existing research has concentrated
more on quantity and quality of direct water (produc-
tion perspective) rather than embodied water (demand
perspective), and the negligence would result in emer-
ging water conflicts (De Angelis et al 2017). Embodied
water captures the total volume of water used to pro-
duce products, including both direct and indirect water
in the full production chain (Sun and Fang 2019).
Embodied water can be categorised by final demands
from a demand perspective, which incorporate final
consumption (rural consumption, urban consumption
and government expenditures) and capital formation
(fixed capital formation and inventory change) that can
be redistributed as primary inputs to the economy, and
export (Wu et al 2018, Wu et al 2019a, Chen et al
2019b). In recent years, increasing attention has been
paid toChina’s embodiedwater (Guan et al 2014), espe-
cially water embodied in the inter-regional trade for
agriculture (Dalin et al 2014, Zhao et al 2015, Guo et al
2016) and for the whole supply chain (Cai et al 2017,
Hou et al 2018, Tian et al 2018, Zhao et al 2019). These
studies haveprovided insights intoChina’swater and its
contamination from demand perspectives before 2010.
Fan et al (2019) analysed driving forces of China’s
embodied water withdrawal categorised by different
final demands by 2012.Wu et al (2019b) exploredwater
use embodied in China’s final consumption and trade
balance in 2014 in a global context. Unfortunately,
these studies excluded water quality indicators. Thus,
we studied China’s embodied water quantity and qual-
ity from 2010 to 2015, which could greatly benefit Chi-
na’swater studies andpolicies.

This study successfully bridges the research gaps by
obtaining the quantification of the latest available
(2010–2015) embodied water quantity and quality in
China’s economic system. The aims of our study are to:

(1) uncover the dynamics of China’s embodied water
under the above-mentioned backgrounds; (2) quantify
the changing patterns of sectoral water structures in
input–output analysis to avert emerging water conflicts
and to achieve fairer allocation of social responsibilities;
and (3) provide holistic points of view towards water pol-
icy implications to prevent further environmental dete-
rioration and to improve resilience and mitigation
mechanisms based on our analysis. Furthermore, the
international relevance in this national-level research lies
in the following aspects: (1) Freshwater and water pollu-
tants can be transferred naturally via water run-off (Chen
et al 2019a) so China’s water crisis has an instinct bond
with other countries; (2) As the world’s largest trade
exporter and international environmental ‘vandal’, China
has claimed responsibility for exporting low value-added
water- and pollutant- intensive products to imported
countries (Cai et al 2017), and therefore China’s water
issues should be prioritised globally to better balance
water budgets and catalyse collaboration (Han et al 2017);
(3)China’s case study canbe referred inother countries as
the methods are replicable, and political implications to
address its water crisis can also be mirrored, especially in
countrieswith a similar developing trajectory.

2.Methods and data

2.1.Methods
We conducted environmentally-extended input–out-
put analysis for China in 2010, 2012 and 2015 based on
corresponding national input–output tables obtained
fromChinese Input–output Association. Themethods
have been partly elaborated in our previous study (Li
et al 2019b). In each input–output table, n sectors are
included (n=42) as attached in the appendix. Zij
represents transactions between pairs of sectors from
sector i to sector j. And xi, yi, mi and fi can then be
denoted as total output, final demands, import and
water or COD intensity in sector i. I indicates a
42×42 diagonal matrix with 1 on its main diagonal,
and aij, technological coefficient, is calculated as
aij=Zij/xj. L symbolises Leontief inverse matrix.
They can bewritten as,
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We first converted all the input–output tables to
2010 constant prices and removed inflation with the
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double deflation method, where yearly producer price
indexes (PPI)were sourced in Chinese Statistical Year-
books. The lack of PPI in tertiary sectors was dealt with
as follows: (1) PPI was not applicable in scientific
research (S36), water conservancy (S37) and public
management (S42) as the government services do not
comply with market disciplines so their Z remain
unchanged. (2) In other tertiary sectors, PPI was
replaced by consumer price index. Given the pi
denotes the ratio of the current price and the base year
price, di indicates the reciprocal price ratio, or the
deflator in sector i, as di=1/pi. Then Z in 2012 and
2015 can be adjusted by multiplying the deflators in
each sector.

Second, we ensured the effects of intermediate
imports were eliminated with equation (1) (Dietzen-
bacher et al 2013). Asα in each sector was negative, no
measures need to be further taken to remove re-
export.

åa = - -
=

( )m Z y . 1i i
k

n

ik i
1

Third, we removed imports imbedded in China’s
competitive input–output tables to estimate water
used or COD discharged solely due to demand by
assuming the same proportions of sectoral imports
(βi in equation (2)) were deducted in individual
economic sectors and final demands. We can then
isolate Zi and yi in domestic supply chain, Zi

d and y ,
i
d

as expressed in equations (3) and (4) (Meng et al 2015).

b = + = +( ) ( ) ( )/ /m x m m Z y , 2i i i i i i i

b= -( ) ( )Z Z 1 , 3i
d

i i

b= -( ) ( )y y 1 . 4
i
d

i i

And Ad can be further obtained in equation (5),
where the prime indicates the transposition of the vec-
tor x.

= ¢ ( )/A Z x . 5d d

Then, China’s embodied water use (W) and COD
discharge (C) can be calculated with equations (6) and
(7) in 2010, 2012 and 2015, respectively, denoted with
their corresponding subscriptsw and c,

= = - -( ) ( )f L y f I A yW , 6w
d d

w
d d1

= = - -( ) ( )f L y f I A yC . 7c
d d

c
d d1

Here, f is direct water (fw) or COD (fc) intensity,
which represents direct water use or COD discharge
associated with one unit industry output. And ε is
embodied water or COD intensity, a row vector with
each element εi denoting both direct and indirect
water used or COD generated throughout the supply
chain to produce per unit of product or service in sec-
tor i (Meng et al 2015). Thus, ε can be written in
equation (8) as,

e = - -( ) ( )f I A . 8d 1

Lastly, we converted 42 sectors into 18 sectors,
attached in the appendix. As for water intensities, we
tookweighted averages of direct water intensities (with
total outputs) and embodied intensities (with total
demand) across converted sectors, respectively.

2.2.Data
With regard to direct water use, the total amounts of
China’s domestic water use in agriculture, industry
(except construction) and residential areas (consists of
construction, tertiary industry, and rural and urban
consumption) were obtained from China Water
Resources Bulletins, and water use across industrial
sectors (except construction) were down-scaled based
on sectoral industrial water use from Annual Statistic
Reports on Environment in China (as the total
industrial water use in Annual Statistic Reports on
Environment in China included water reuse, which
was inconsistent with that in China Water Resources
Bulletins). The average ratios of water use in construc-
tion, tertiary industry and rural/urban consumption
in China’s 259 cities were calculated as 20.2%, 6.8%
and 73% of the total residential water use according to
China’s provincial and city-level water resource bulle-
tins and statistical yearbooks.We used the ratios above
to allocate water use in construction and tertiary
industry, and then distributed the water use in tertiary
industry into each sector on the basis of the corresp-
onding employee numbers sourced fromChina Statis-
tical Yearbooks.

Following previous research, COD discharge was
taken as the parameter to determine water quality
(Guan et al 2014, Zhao et al 2016, Cai et al 2019, Li et al
2019a). Fundamentally, COD indicates the amount of
oxidant consumed during oxidation of organic sub-
stance present in water samples. Regarding COD dis-
charge, the total amounts in agriculture and
residential areas, and data across industrial sectors
(except construction) were all accessed in Annual Sta-
tistic Reports on Environment in China. And the total
COD amounts in construction and tertiary industry
were estimated by China’s total population, employee
numbers and their average working hours (8 h). The
total COD discharge in tertiary industry was further
down-scaled into individual tertiary sectors with the
number of employees. The main limitation of this
method lied in the rough estimation of water use and
COD discharge in tertiary industry. In addition, COD
accounted for approximately 15% and 92%of the total
water pollutants in primary and secondary industries,
respectively (NBS 2010), so the water pollution in pri-
mary and tertiary industries was more likely to be
underestimated.
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3. Results

3.1. China’swater use fromproduction anddemand
perspectives
3.1.1. Direct water use versus embodiedwater use
Producer sectors represent water suppliers (that trans-
fer water to other sectors via trade) in the supply chain,
with their direct water use outweighing their embo-
died water use. On the contrary, consumer sectors are
water consumers (that consume water transferred
from other sectors via trade) in the supply chain, and
these sectors occupy more embodied water use than
direct water use.

Figure 1 compares direct and embodied water use
across sectors in primary, secondary and tertiary indus-
tries in 2010 and 2015. Overall, consumer sectors out-
weighed producer sectors. Agriculture was the most
significant producer sector. Its direct water use accoun-
ted for approximately 70% (369 Bts/534 Bts in 2010
and 385/540 Bts in 2015) of China’s total amounts, but
embodied water use in this sector only took up about
20% (110/534 Bts in 2010 and 103/540 Bts in 2015) of
the total, which underlined the irreplaceable role that
agriculture played as a dominant producer sector in the
virtual water supply chain. Electricity and gas andwater
was the second largest producer sector (especially elec-
tricity), followed by metal and nonmetal products
(metallurgy in particular), chemicals and other manu-
facturing. Conversely, food and tobacco and construc-
tion were dominant consumer sectors, followed by
textiles and garments and other services. In addition, all
sectors in tertiary industrywerewater consumers.

From 2010 to 2015, gaps of direct and embodied
water use have experienced changes in several sectors.
As for producer sectors, agriculture’s direct water use
increased by 16 Bts while its embodied water use
declined by 7 Bts. Direct (33–38 Bts) and embodied
(12–8 Bts) water use in metal and nonmetal products
also showed similar patterns. In contrast, direct water
use in electricity and gas and water experienced sharp
reduction (62–46 Bts)with its embodied water use fluc-
tuating around 7–8 Bts. Regarding consumer sectors,
construction’s embodied water use soared (65–92 Bts)

while its direct water use remained at around 5 Bts.
Similar patternswere also presented inwoodandpaper,
sanitation andother services.

3.1.2. Direct water intensities versus embodied water
intensities
Figure 2 depicts the comparison between direct and
embodied water intensities. Overall, embodied water
intensities outweighed direct water intensities, and
both direct and embodied water intensities presented
downward trends from2010 to 2015.

Agriculture occupied the largest direct and embo-
died water intensities, and the reduction of its inten-
sities was the sharpest, by approximately 40%. It was
previously shown that its direct water use was three
times the amounts of its embodied water, but its
embodied water intensities (724–447 tonne/10 000
CNY) were larger than its direct water intensities
(533–330 tonne/10 000 CNY). Electricity and gas and
water was ranked as a producer sector with the second
largest direct water intensities (129–66 tonne/10 000
CNY), but its embodied water intensities were still lar-
ger (188–100 tonne/10 000 CNY). On the contrary,
food and tobacco had the second largest embodied
water intensities (386–248 tonne/10 000CNY) but the
ranking for its direct water intensities wasmuch lower.
Construction and textiles and garments also had far
larger embodied water intensities than their direct
water intensities. Yet embodied water intensities in
construction were smaller than those in textiles and
garments even though the amounts of embodiedwater
use in constructionwere larger.

3.2.Quantity and quality of China’s embodied
water use
3.2.1. Embodied water use categorised by final demands
From 2010 to 2015, China’s total embodied water
use fluctuated within a reasonable range from 2010
(534 Bts), 2012 (548 Bts) to 2015 (540 Bts), and its
embodied COD discharge dropped gradually during
the period (17.74–15.29 Mts). Yet embodied water
intensities (113–67 tonne/10 000CNY) and embodied

Figure 1.Direct and embodiedwater use across sectors in primary, secondary and tertiary industries in 2010 and 2015. Blue and
orange bars represent producer and consumer sectors, respectively. Bars with dark blue/orange and light blue/orange indicatewater
use data in 2010 and 2015, respectively.
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COD intensities (38–19 tonne/10–8 CNY) both
declined tremendously during the period.

Figure 3 demonstrates embodied water use and
COD discharge contributed by different final
demands. Among all the final demands, urban con-
sumption had the largest amounts of embodied water
use (169–195 Bts) and embodied COD discharge
(5.88–5.78 Mts), followed by capital formation, while
government expenditures was the smallest embodied
water user (32–40 Bts) and embodied COD discharger

(1.50–1.41 Mts). And the dynamics showed that the
percentages of water use and COD discharge embo-
died in export declined dramatically (by 7%)while the
percentages in urban consumption grew fast (by 4%–

5%). However, government expenditure contributed
more for embodied COD discharge (8%–9%) than for
embodied water use (6%–7%). Conversely, capital
formation held larger percentages in embodied water
use (26%–28%) than in embodied COD discharge
(22%–24%).

Figure 2.Direct and embodiedwater intensities across primary, secondary and tertiary industries in 2010, 2012 and 2015. (2A) direct
water intensities. (2B) embodiedwater intensities.

Figure 3.Embodiedwater use andCODdischarge, and their embodied intensities categorised by final demands. (3A) and (3C) depict
embodiedwater used andCODdischarged in each final demand, respectively, where the concentric circles from interior to exterior
represent 2010, 2012 and 2015, respectively. (3B) and (3D) illustrate embodiedwater andCOD intensities infinal demands, indicating
embodiedwater use andCODdischarge per unit of eachfinal demand. The dotted black line (TTL) represents total embodiedwater or
COD intensities, calculated as total embodiedwater use or CODdischarge divided by total demand. Colours highlight the final
demands remain the same in four graphs.
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Moreover, embodied water and COD intensities
in final demands all reduced. Compared with previous
research conducted from 1992 to 2010 (Guan et al
2014), the overall reduction rates of embodied water
and COD intensities tended to be steadier. From 2010
to 2015, the reduction of embodied water and COD
intensities during 2012–2015 furthermore slowed
compared with 2010–2012, especially in export
(117–57 tonnes/10 000 CNY). The dotted black lines
(TTLs) represent total embodied water and COD
intensities. Embodied water and COD intensities in
certain final demand that were higher/lower than
these bars meant that it required and generated more/
less embodied water use and COD discharge to meet
per unit of demand than average national levels. It was
clear that only urban and rural consumption sat above
the dotted black lines (TTLs), but embodied water and
COD intensities were much larger in rural consump-
tion than in urban consumption. Below the TTLs were
export, capital formation and government expendi-
tures. Export had the third largest embodied water and
COD intensities, and government expenditures and
capital formation ranked last in embodied water and
COD intensities, respectively.

3.2.2. Sectoral water use embodied in domestic demand
and export
Figure 4 presents embodied water use and COD
discharge across sectors in domestic demand (includ-
ing rural and urban consumption, government expen-
ditures and capital formation) and in export in 2010,
2012 and 2015. Regarding domestic demand, agricul-
ture, food and tobacco and construction were the
largest embodied water users and COD dischargers.
Agriculture experienced ups-and-downs in both
embodied water use (103–99 Bts) and embodied COD
discharge (3.46–2.77 Bts). And embodied water use
(by 26 Bts) and embodied COD discharge (by 0.51
Mts) in construction surged. Besides these sectors,

textiles and garments, sanitation, transport equip-
ment, hotels and restaurants, public management,
wood and paper also had large amounts of both
embodied water use and COD discharge. However,
general and specialist equipment was a large embodied
water user but not a large embodied COD discharger,
while education discharged large amounts of embo-
died COD but the amounts of its embodied water use
were relatively small.

From 2010 to 2015, embodied water use in light-
manufacturing sectors for domestic demand pre-
sented an upward trend. On the contrary, embodied
water use in heavy-manufacturing sectors declined
(except chemicals and transport equipment), where
the embodied water use in metal and nonmetal pro-
ducts dropped at the fastest speed (by 2 Bts), followed
by general and specialist equipment, electrical equip-
ment and electricity and gas andwater. Besides, embo-
died water use in each tertiary sector rose during the
period, especially sanitation (by 6 Bts) and hotels and
restaurants.

With regard to export, it was apparent that textiles
and garments occupied a predominant role in both
embodied water use (31–19 Bts) and embodied COD
discharge (1.28–0.65 Mts). The amounts of embodied
water use and COD discharge were also both large in
chemicals, electronic equipment, food and tobacco
and wood and paper. Yet for metal and nonmetal pro-
ducts, its embodied water use was ranked as the top,
but its embodied COD discharge had a smaller rank-
ing. Furthermore, the largest embodied water users
and COD dischargers in domestic demand included
sectors across primary, secondary and tertiary indus-
tries, while only primary and secondary sectors were
listed as the largest embodied water users and COD
dischargers in export.

During 2010–2015, both embodied water use and
COD discharge for export fell in each sector. The
reduction of embodied water uses (32–19 Bts) and

Figure 4.Embodiedwater use andCODdischarge across sectors in domestic demand and in export. (4A) embodied domestic water
used for domestic demand. (4B)water use embodied in export. (4C) embodied domestic CODdischarged for domestic demand.
(4D)CODdischarge embodied in export.
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embodied COD discharge (1.28–0.65 Mts) in textiles
and garments was the sharpest. In the textile sector,
both water use (21–9 Bts) and COD discharge
(0.86–0.30Mts) embodied in exported products plum-
meted even though its embodied water use (1–3 Bts)
and embodied COD discharge (0.05–0.11 Mts) for
domestic demand increased.

4.Discussions

Agriculture and electricity were the most important
producer sectors in the virtual water supply chain
(figure 1). Despite agricultural product types and
energy types (including renewable energy), irrigation
water use and cooling water use were required. And
direct water used in agricultural products (including
its by-products) and in electricity generation then
benefited other production processes and human
settlements. Heavy-manufacturing was also a vital
producer sector in the virtual water supply chain
because water-intensive final or semi- products in this
sector were often redistributed to other production
lines as raw materials. The above messages can at the
same time explainwhy large-scale sectors, such as food
and tobacco, construction, textile and garments occu-
pied the largest amounts of embodied water use
(figure 1). It was worth mentioning that Wang et al
(2018) found that materials used in construction
triggered a large amount of embodied CO2 emissions.
In this study, we further validated that these materials
in construction also embodied a large amount of water
use. However, changing patterns of water use in these
sectors differed from 2010 to 2015: (1) agriculture
supplied more water to other sectors; (2) electricity
transferred less water to other sectors; (3) construction
used more water from other sectors (figure 1). The
increase of direct and embodied water use in agricul-
ture and construction indicated the growing demand,
which can be reflected in the skyrocketing value-added
GDP in these sectors fromChina Statistical Yearbooks.
Regarding electricity, the reduction of direct water use
in the sector was attributed to higher water efficiency.
We observed from China Statistical Yearbooks that
from 2010 to 2015, the percentage of China’s coal
consumption for electricity generation declined from
76.2% to 72.2%, while natural gas and renewable
energy consumed to generate electricity grew from
4.1% to 4.8%, and from 10.4% to 14.5%, respectively.
As coal required more water use than other energy
types during the overall process of electricity genera-
tion, direct water use in electricity would inevitably
decrease withmore efficient water distribution.

We also saw that embodied water intensities ten-
ded to surpass direct water intensities in major produ-
cer sectors in the virtual water supply chain even
though direct water use outweighed embodied water
use in these sectors (figure 2). This illustrated our pre-
vious point that major producer sectors, especially

agriculture and electricity, contributed large water
inputs to generate large production outputs. In con-
trast, major consumer sectors had both larger
amounts of embodied water use and embodied water
intensities than their direct water use and direct water
intensities (figure 2). It meant that the large amounts
of embodied water use in these sectors were not only
affected by their huge demand but also large embodied
water intensities. In construction, its embodied water
use soaredwhile its embodiedwater intensities drama-
tically decreased from 2010 to 2015 (figure 2), which
signified the rapid development of China’s infra-
structure construction and real estate, and the role it
played as a solid measure to stimulate economy, espe-
cially in the post financial crisis era (Giang and
Pheng 2011).

The overall changing patterns of embodied water
use and COD discharge, and embodied water and
COD intensities (figure 3)marked the advancement of
water-saving and water pollution control in China.
The slower reduction of embodied water and COD
intensities from 1992 to 2015 (figure 3) was attributed
by long-term water management and recent years’
economic slowdown (Zhang et al 2019). In the future,
technology breakthrough would be the most effective
approach to obtaining faster reduction of embodied
water and COD intensities. From demand perspec-
tives, large amounts of water use and COD discharge
embodied in urban consumption and capital forma-
tion formed prerequisite for advancing urbanisation at
an unprecedented rate (figure 3) (Zheng et al 2019).
Given that urban areas can better manage water use
and control water contamination than rural areas
(figure 3), urbanisation to some extent alleviated Chi-
na’s water issues (Wu et al 2012). China’s plummeted
embodied water use (116–80 Bts) and embodied COD
discharge in export (3.95–2.22 Mts) (figure 3), and
doubled export values (11–25 trillion CNY) from
China Statistical Yearbooks indicated that more high-
value-added products than water-intensive low value-
added products were preferred for export.

We also observed the optimised water use struc-
tures in China, that embodied water use in heavy-
manufacturing sectors (except chemicals and trans-
port equipment) dropped while that in light-manu-
facturing and tertiary sectors increased (figure 4). It
demonstrated the improving water status under
industrial transformation and upgrade within the
country (Mi et al 2017). From international perspec-
tives, textile was the largest water exporter. However,
we found from the Chinese Input–Output Association
that the total outputs for textile’s domestic demand
(68–212 billion CNY) increased while the same indi-
cator for its export (873–607 billion CNY) dropped.
Combined with the water data in textile (figure 4), it
revealed that China’s textile products, along with
water use and COD discharge embodied in these
products, were partly transferred from international
markets to domestic markets in the new phase of
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globalisation, when some of its production activities
have been relocated in other developing countries
(Meng et al 2018). Yet China’s dominant water expor-
ters were still primary and secondary sectors (figure 4).

5. Conclusions

This study explores direct and embodied water
quantity and quality across sectors in primary, second-
ary and tertiary industries by applying China’s input–
output tables in 2010, 2012 and 2015. Based on our
analysis, some key conclusions can be drawn as
follows,

(1) In the virtual water supply chain, agriculture was
the most significant producer sector while food
and tobacco and construction were the most vital
consumer sectors. Embodied water use and COD
discharge in construction skyrocketed during
2010–2015 as developing infrastructure construc-
tion and real estate enabled a boost to the national
economy (Giang and Pheng 2011).

(2) China had the resolution to encourage urbanisa-
tion without jeopardising the aquatic environ-
ment. Urban consumption, as the largest
embodied water users and COD dischargers, laid
foundation for urbanisation, which stimulated
economy and alleviated water crisis with more
effective watermanagement (Wu et al 2012).

(3) The changing patterns of embodied water use and
COD discharge also reflected the achievements of
water-saving and water pollution control under
the ‘new normal’ phase. Embodied water and
COD intensities in final demands presented
downward trends. And the reduction rates of
embodied water and COD intensities from 2012
to 2015 were smaller than those during
2010–2012, which was attributed to the transition
from the high- to medium-high growth speed of
the country (Zhang et al 2019). Besides, the overall
trend showed that embodied water use in light-
manufacturing and tertiary sectors grew, while
embodied water use in heavy-manufacturing
sectors (except chemicals and transport equip-
ment) reduced dramatically (especially in metal
and nonmetal products). It signified the optim-
isation of the water use structures and the fulfil-
ment of industrial transformation and upgrade
(Mi et al 2017).

(4) China has obtained highwater efficiency in export
while maintaining the market growth in the post
financial crisis era. From 2010 to 2015, embodied
water use and COD discharge in export plum-
meted (especially in textiles and garments), but
China’s export values still soared. It was because
China has focusedmore onhigh value-added over

low value-added markets since the global finan-
cial crisis in order to sharpen its competitive
edges. In addition, some comparatively low-end
sectors, such as textiles, tended to shift their
embodied water use and COD discharge from
international to domestic markets instead when
some production activities have been transferred
to other developing countries in the new phase of
globalisation (Meng et al 2018).

Chinese government should first fully utilise mar-
ket mechanism and economic leverage in water rights
transaction, and offer subsidies to producer sectors in
the virtual water supply chain, especially agriculture, to
catalyse fairer responsibility allocation forwater use and
water pollution control. Second, the authorities should
grasp the opportunities to reinforce soundurbanisation
while improving water status in rural areas. Third,
under China’s current economic structure, manage-
ment of water-intensive heavy-manufacturing sectors,
chemicals and transport equipment, should be empha-
sised as their embodied water use and COD discharge
still presented upward trends. Fourth, when China
shifts its focus from low-end to high value-added inter-
national markets, or from international to domestic
markets, the priority is to achieve higher water effi-
ciency in its production activities. This can be achieved
by establishing more capital- and technology-oriented
pilot enterprises for the advancement of industries, and
investing more capitals in long-term environmental
gains andwater sustainability.
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Appendix. Converted 18 IO sectors.

Converted

sectors 42 IO sectors

Agriculture S01 Agriculture, forestry, ani-

mal husbandry and fishery

Food and

tobacco

S06 Food processing and

tobaccos

Textiles and

garments

S07; S08 Textiles; Clothing, leather,

fur, etc

Wood and paper S09; S10 Wood processing and fur-

nishing; papermaking,

printing, stationery, etc

Chemicals S12 Chemical industry

Metal and non-

metal products

S13; S14;S15 Nonmetal products;Metal-

lurgy;Metal products

General and spe-

cialist

equipment

S16; S17 Generalmachinery; Specia-

listmachinery

Transport

equipment

S18 Transport equipment

Electrical

equipment

S19 Electrical equipment

Electronic

equipment

S20 Electronic equipment

Electricity and

gas andwater

S25; S26; S27 Electricity and hotwater

production and supply; Gas

production and supply;

Water production and

supply

Othermanu-

facturing

S02; S04; S05 Coalmining;Metal

mining;Nonmetalmining;

S03; S11 Petroleum and gas; Petro-

leum refining, coking, etc

S21; S22; S23; S24 Instrument andmetre;

Othermanufacturing;

Waster and flotsam;Repair

service formetal products,

machinery and equipment

Construction S28 Construction

Hotels and

restaurants

S31 Hotels and restaurants

Education S39 Education

Sanitation S40 Sanitation and social

welfare

Public

management

S42 Publicmanagement and

social organisation

Other service S29; S30; S32; S33;

S34; S35; S36; S37;

S38; S41

Wholesale and retailing;

Transport and storage; Infor-

mation transfer and soft-

ware;Banking;Real estate

trade; Leasing andcommer-

cial services; Scientific

research;Managementof

water conservancy,

(Continued.)

Converted

sectors 42 IO sectors

environment andpublic

establishment;Resident ser-

vices andother services;Cul-

ture, sports and

entertainment
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