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Abstract 16 

Global climate models are central tools for understanding past and future climate change. 17 

The assessment of model skill, in turn, can benefit from modern data science approaches. 18 

Here we apply causal discovery algorithms to sea level pressure data from a large set of 19 

climate model simulations and, as a proxy for observations, meteorological reanalyses. We 20 

demonstrate how the resulting causal networks (fingerprints) offer an objective pathway for 21 

process-oriented model evaluation. Models with fingerprints closer to observations better 22 

reproduce important precipitation patterns over highly populated areas such as the Indian 23 

subcontinent, Africa, East Asia, Europe and North America. We further identify expected 24 

model-interdependencies due to shared development backgrounds. Finally, our network 25 

metrics provide stronger relationships for constraining precipitation projections under 26 

climate change as compared to traditional evaluation metrics for storm tracks or precipitation 27 

itself. Such emergent relationships highlight the potential of causal networks to constrain 28 

longstanding uncertainties in climate change projections. 29 
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Introduction 30 

State-of-the-art climate and Earth system models represent an enormous scientific achievement and 31 

are central tools to understand past climates as well as to project future climate change. More than 32 

forty modelling centres worldwide undertake climate model development1–3 and have rapidly 33 

elevated their level of sophistication. Nowadays, many models simulate not only fundamental 34 

physical laws of fluid motion, energy and momentum conservation but also include interactive carbon 35 

cycle, aerosol and atmospheric chemistry schemes, or resolve the entire stratosphere4–10. However, 36 

while all climate models are based on the same physical principles, there are development-specific 37 

choices that lead to significant model differences, in particular related to subgrid-scale 38 

parameterizations of clouds, convection and aerosols11–13. These contribute to persistent 39 

discrepancies between models and observations as well as among model projections, for example 40 

regarding precipitation changes1,14,15. Multi-model evaluation and intercomparison is often based on 41 

the mean and variance of aggregate quantities such as temperature, or spectral properties and 42 

(auto-)correlation measures16–18. One issue with such metrics is that models can be right for the 43 

wrong reasons due to offsetting biases11,12,16. 44 

 Here we introduce causal model evaluation (CME) as a type of process-oriented model 45 

evaluation11,18–20. CME deploys recently developed causal discovery methods21–23 adapted for 46 

applications to climate data23–27. Within the CME framework, we evaluate the ability of models from 47 

the Coupled Model Intercomparison Project Phase 5 (CMIP5) to simulate atmospheric dynamical 48 

interactions  classically measured as lagged correlations between climate variables at remote 49 

locations28–31. Causal discovery algorithms go beyond correlation-based measures by systematically 50 

excluding common driver effects and indirect links22,26,32,33. We show that characteristic causal 51 

fingerprints can be learned from climate datasets, which are robust among ensemble members of 52 

the same model and, for example, can identify shared model development backgrounds. Fingerprints 53 

closer to observations are also associated with smaller precipitation biases in climate models. 54 

Finally, we highlight the potential of our approach to offer a pathway to reducing uncertainties in 55 

climate change projections, as well as to understand differences between models and observations.  56 
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Results 57 

Causal model evaluation framework. To characterize the network of global dynamical interactions, 58 

we use a causal discovery algorithm to reconstruct directed, time-lagged interdependency networks 59 

from global climate datasets. Figure 1 provides an overview of the individual steps of the CME 60 

framework (see Methods for details). 61 

 The selection of components defining the network nodes will typically be guided by expert 62 

knowledge in conjunction with dimension reduction techniques. Here we use components obtained 63 

through Varimax-rotated principal component analysis34,35 (PCA) applied to sea level pressure 64 

anomaly data (Figure 1a; Methods). For sea level pressure data, PCA-Varimax components can be 65 

interpreted as major modes of climate variability25,28,36,37. Due to the seasonal character of interaction 66 

pathways28,38, we construct individual components, and in the next step networks, for the four 67 

meteorological seasons: December, January, February (DJF); March, April, May (MAM); June, July, 68 

August (JJA); September, October, November (SON). We select fifty components for each season 69 

(Methods) whose geographic locations for DJF are indicated in Figure 1b (for all seasons see 70 

Supplementary Fig. 1). PCA-Varimax can identify the major modes of variability37, for example 71 

related to the El Niño Southern Oscillation (ENSO) in the East, West and Central Pacific39 72 

(components 1,4,5 in Figure 1b). 73 

 We calculate interactions among these nodes as causal networks from the associated 74 

component time series (Figure 1b). For this step, we use the PCMCI algorithm by Runge et al.23,26, 75 

which is particularly suited for high-dimensional and auto-correlated climate data (Methods). In 76 

contrast to pure correlation measures, causal discovery methods are built to remove spurious links 77 

due to common drivers and indirect pathways from the networks (Figure 1c)22,26. The resulting 78 

networks contain information on the direction and associated time lags of potential causal links, 79 

characterizing the pathways of the global interaction network. PCMCI has been tested extensively 80 

to successfully recover important interactions in the climate system such as the tropical Walker 81 

circulation and predictors of polar vortex states23,24,26,27. Note that, in these network structures, some 82 

established interactions measured traditionally as direct correlations between climate modes can 83 

follow a more complex pathway of indirect links. We illustrate this for the coupling between ENSO 84 

and the Pacific-South American (PSA) pattern29,40 in Supplementary Figure 2. 85 
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86 
Fig. 1 | Sketch of the causal model evaluation framework. a, Gridded Earth system data, here daily-mean sea level pressure from the 87 
NCAR-NCEP reanalysis (approximating observations)41, is dimension-reduced using PCA-Varimax to b, a set of regionally confined 88 
climate modes of variability. The same transformation is subsequently applied to climate model data (Methods). Core component regions 89 
(in this case for the season December-January-February) are indicated in red. Each component is associated with a time series and 90 
serves as one of the network nodes. Here, the component time series are afterwards 3-day-averaged. c, PCMCI estimates directed lagged 91 
links among these nodes giving rise to d, dataset-characteristic causal fingerprints, which can be used for model evaluation and 92 
intercomparison. Node colours in d indicate the level of autocorrelation (auto-MCI) as the self-links of each component and link colours 93 
the interdependency strength (cross-MCI). Link-associated time lags (unit=3 days) are indicated by small labels. Only the around two 94 
hundred most significant links for the reanalysis and for data from four 2climate models are shown. Links with lag zero, for which directions 95 
cannot be easily causally resolved, are not shown. 96 
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 The resulting causal networks effectively represent characteristic causal fingerprints42,43 for 97 

each sea level pressure dataset (Figure 1d), which can be compared using network metrics25. Each 98 

network consists of hundreds of links. Generally, we conduct pair-wise comparisons of all possible 99 

links in a network A to a network B, taking A as the reference network. For example, we test if a link 100 

from component 4 (West Pacific ENSO) to component 1 (East Pacific ENSO) found in observations 101 

is also detected in climate model datasets. We use a modified asymmetric F1-score (Methods) as 102 

the harmonic mean of precision (fraction of links in B that also occur in A) and recall (fraction of links 103 

in A that are detected in B). F1-scores vary between 0 and 1 (perfect network match). The network 104 

comparison results depend on the number of links considered to be statistically significant (Methods). 105 

However, we tested that all conclusions based on the 400-500 most significant links per network 106 

included here are robust to a large range of possible network link densities from a hundred to more 107 

than a thousand links (Supplementary Figs. 3-6; Supplementary Table 1). 108 

Application to pre-industrial simulations. Pre-industrial simulations are well suited for the CME 109 

of atmospheric dynamical interactions due to the many years simulated by each model in the 110 

absence of transient effects caused by anthropogenic forcings1–3. Specifically, we applied the CME 111 

framework to 210 years of global DJF sea level pressure data from each of in total twenty CMIP5 112 

models at a 3-day time resolution (Methods; Figure 2). In our algorithm settings, we include 113 

interactions on a time-scale of up to 30 days (τmax=10; Methods). We split each 210-year dataset into 114 

three 70-year intervals (ensemble members) to study multi-decadal variations44,45. As a result, we 115 

obtain nine possible network comparisons for each pair of models and six distinct comparisons 116 

between ensemble members of the same model. F1-scores for these model intercomparisons are 117 

shown in Figure 2. Three major features highlight the skill of the CME framework. 118 

 Firstly, each model can be recognized individually purely based on its causal fingerprint. 119 

Networks estimated from different ensemble members of the same model are more consistent than 120 

networks estimated from two different models as evident from the high F1-scores on the diagonal of 121 

the matrix in Figure 2a (dark red). Each row in Figure 2a denotes the model used as the reference 122 

against which each column is compared. 123 

 Secondly, models with shared development background can be detected. Many climate 124 

models share software, resulting in important interdependencies among them12,46–50. CME can detect 125 
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such shared backgrounds (highlighted by black squares in Figure 2a). For example, CME identifies 126 

the models HadGEM2-ES, HadGEM2-CC, ACCESS1-0 and ACCESS1-3 as similar, which are all 127 

versions of the HadGEM model family51,52 developed by the UK Met Office. There is a clear 128 

separation between these four and the remaining models, see Figure 2b showing all scores when 129 

HadGEM2-ES networks are taken as the reference. The different models developed by the Institute 130 

Pierre Simon Laplace (IPSL), the Max-Planck Society (MPI) and the Geophysical Fluid Dynamics 131 

Laboratory (GFDL) are also each recognized as subgroups (Figures 2c-e). For the Japanese MIROC 132 

models, two out of three are detected as a subgroup (MIROC-ESM, MIROC-ESM-CHEM), whereas 133 

MIROC5 is even less similar than the multi-model average (gray line in Figure 2f). We conclude that 134 

CME can detect similar models, a condition often but, as shown here, not always synonymous with 135 

models developed under the same research umbrella. This demonstrates the significant potential of 136 

using CME to assess model interdependencies based on causal networks. 137 

 Thirdly, climate models are recognized to share a physical ground truth. We further compared 138 

all twenty models with two artificial reference cases: Random and Independent (last two 139 

rows/columns in Figure 2a; Methods). For Random, we created fifty randomly coupled and auto-140 

correlated noise time series, i.e. there are links in the system, but these do not follow any Earth 141 

system physics. As evident from Figure 2a, the corresponding networks are self-consistent (diagonal 142 

entry) but achieve very low F1-scores when compared to the actual climate models. For Independent, 143 

we created auto-correlated time series without any significant coupling among them so that any 144 

detected links occur randomly in the system (false positives). CME expectedly finds low scores 145 

throughout for this case. 146 

Causal model evaluation of historical simulations. Motivated by CME's skill to recognize models 147 

with shared development background, we next evaluate the CMIP5 models with NCAR-NCEP 148 

reanalysis data41 as a proxy for recent observations. We calculate fingerprints from twenty CMIP5 149 

simulations covering approximately the historical period from 1st January 1948 to 31st December 150 

2017 (Methods). For better statistical estimates, we only included models for which at least three 151 

ensemble members were available (Supplementary Table 2). To additionally investigate the role of 152 

seasonal variability, we carried out separate analyses for DJF, MAM, JJA and SON. However, all  153 
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154 
Fig. 2 | Pre-industrial network intercomparison scores. a, Matrix of average F1-scores for pair-wise network comparisons between 155 
ensemble members of twenty climate models (labelled following CMIP5 nomenclature in capital letters) using data for December-January-156 
February (DJF) and two surrogate models (Random, Independent). Rows are reference models, columns are the models which are 157 
compared to these references. Higher scores imply better agreement between networks, i.e. that two models are more similar in terms of 158 
their causal fingerprint. b-f, Scatter plots showing each individual network comparison score, with different models taken as reference (as 159 
labelled in the sub-figure titles) that the other models (labelled on the x-axis using capital letters) are compared to. Black crosses (red for 160 
the reference) mark average results also shown in a. Gray dashed lines mark the average score excluding the reference itself. Our causal 161 
model evaluation approach detects the expected similarities between certain model groups as shown in b-f, which are additionally 162 
indicated by inset black squares in a. Source data are provided as a Source Data file. 163 
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seasons yielded very similar results (Supplementary Figs. 3-6) and we focus the discussion on 164 

annual F1-scores averaged over all seasons (Methods). 165 

 We find effectively the same model subgroups as before (inset boxes in Figure 3a). Due to 166 

the slightly different setup, there is an additional subgroup related to the climate model CCSM4 167 

(Supplementary Fig.  7). Taking the NCAR-NCEP reanalysis network as the reference, we obtain an 168 

estimate of how well individual models capture the observed causal fingerprint (Figure 3b; the 169 

models are ordered by average F1-score). The result is a continuum rather than a clear-cut 170 

differentiation between a better and a worse group of models. However, models do exhibit 171 

significantly different causal fingerprints (p-value53 < 10-9). We conducted the same analysis using a 172 

shorter ERA-Interim reanalysis dataset54 to estimate the reference network and obtained almost the 173 

same model order (Supplementary Fig. 8, Supplementary Table 1). 174 

175 

Fig. 3 | Historical network comparisons. a, As Figure 2a, but for climate model simulations spanning approximately the historical period 176 

from 1st January 1948 to 31st December 2017 for which twenty CMIP5 models with up to ten different ensemble members are available. 177 

b, Ordered F1-scores when the causal fingerprint learned from NCAR-NCEP reanalysis data is taken as the reference. Differences in b 178 

are highly statistically significant, with p-values < 9x10-10 for a non-parametric Kruskal-Wallis-test and p < 5x10-30 for a standard one-way 179 

ANOVA F-Test. The model key for b is provided in Supplementary Table 1. We note that similar model rankings have been found regionally 180 

for precipitation, e.g. for China55. Individual network scores (marker colours) in b follow the colour code from a. Source data are provided 181 

as a Source Data file. 182 

Implications for precipitation modelling. Atmospheric dynamical interactions as imprinted here 183 

on the sea level pressure field are well-known drivers of precipitation anomalies in many world 184 

regions28,29. Therefore, we test for relationships between the reanalysis-referenced F1-scores of 185 

CME and Taylor S-scores55,56 for precipitation rates, which measure grid-cell-wise errors in 186 

conjunction with overall discrepancies in precipitation variability across a spatial domain. To calculate 187 

the S-scores, which also range from 0 to 1, we use historical Climatic Research Unit (CRU)57 land 188 
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surface precipitation data from the University of East Anglia, averaged over the years 1948-2017 189 

(Methods). 190 

 We find that better fingerprints are associated with smaller land precipitation biases (F1- and 191 

S-scores are positively correlated; Figure 4a). This is true globally (correlation coefficient R=0.7) as 192 

well as in many world regions known to be influenced by (remote) dynamical interactions, in 193 

particular North America (R=0.7), East Asia (R=0.6), Africa (R=0.5) and South Asia (R=0.5). These 194 

results also hold if we disregard models belonging to the same subgroups as marked in Figure 3a. 195 

There are some regional exceptions (e.g. Australia, Indonesia) where we find no significant 196 

correlations. A possible explanation is predominant regional factors17,39 rendering a global network 197 

metric less suitable. In addition, regional correlations are sometimes dependent on the number of 198 

links included in the networks. For example, we find generally higher (lower) correlations for 199 

Europe/North America (Africa) if weaker links are included (excluded), likely because tropical 200 

connections have on average stronger dependencies (Supplementary Figs. 9-13).  201 

 An interesting question is how to interpret the relationship between precipitation and the 202 

causal network skill scores from a physical point of view. Notably, the causal networks are, especially 203 

at stringent significance thresholds, dominated by interactions on a timescale of less than one week 204 

(lag τ≤2; Figure 1d). This timescale is broadly equivalent to dynamical interactions related to storm 205 

tracks58. Simple metrics have been used before to quantify the skill of climate models to capture 206 

storm tracks, e.g. pattern correlations in standard deviations of 2-6-days bandpass-filtered daily 207 

mean sea level pressure data59. Indeed, Taylor S-scores for precipitation are also positively 208 

correlated with such simpler metrics (Supplementary Figs. 18-20), which altogether indicates that a 209 

large part of the links in the causal networks represent dynamical interactions related to storm tracks. 210 

This result is in agreement with earlier work by Ebert-Uphoff and Deng32,33 who constructed networks 211 

from DJF and JJA NCEP-NCAR reanalysis geopotential height data, as well as from equivalent data 212 

from a single climate model. In their network analyses, they also found storm tracks to be a key 213 

driver of network connectivity (see Methods for a comparison of our network methodologies).  214 

 Having highlighted the importance of storm tracks, we also point out that the simpler pattern 215 

correlation storm track metrics generally show smaller and less significant correlations with the 216 

precipitation S-scores on a global as well as on regional scales than our F1-network scores. This 217 
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underlines that our causal networks identify additional relationships which further improve the 218 

correlations with precipitation. Longer time-scale dynamical interactions, for example triggered by 219 

the ENSO and its zonal couplings as well as its effects on the extratropics are prime candidates for 220 

explaining some of the higher skill related to our causal network scores. 221 

 Finally, we find strong indications that our causal metrics could aid in constraining uncertainty 222 

in precipitation projections under climate change. As mentioned above, past model skill in a quantity 223 

does not automatically imply skill for future projections as models can be right for the wrong reasons. 224 

The networks we use here infer rather complex dynamical coupling relationships from sea level 225 

pressure data that are effectively impossible to calibrate against current observations, different from, 226 

for example, quantities such as global surface temperature11. Causal discovery methods could thus 227 

provide more robust insights by identifying dynamical coupling mechanisms arising from underlying 228 

physical processes that are more likely to hold also under future climate change scenarios (see 229 

Discussion). It is therefore interesting to consider our complex causal information quantity in terms 230 

of constraining future precipitation projections. Indeed, we find no relationship between the past 231 

global precipitation skill S-scores and future precipitation rate changes in the CMIP5 projections, but 232 

there appears to be an approximately parabolic relationship between projected CMIP5 global land 233 

precipitation rate changes attained by the period 2050-2100 (relative to 1860-1910; Supplementary 234 

Fig. 16) and F1-scores from historical runs (Figures 4b/c). This implies intermediate model range 235 

land precipitation changes of around 0.0-0.1 mm/day according to the causal fingerprint scores, as 236 

opposed to the most extreme negative and positive changes. We also note that simpler dynamical 237 

metrics, e.g. based on sea level pressure Taylor S-Scores, or the aforementioned storm track skill 238 

scores, and using the same non-parametric Gaussian Process regression (Figure 4b/c; Methods), 239 

do also not yield such emergent relationships (Figure 4b/c, Supplementary Figs. 17-20). 240 

 Any method resting on the assumption that past model skill in a certain metric can be related 241 

to projected future changes necessarily suffers from certain restrictions. Firstly, there could be 242 

processes that are not at all (or not well) represented in climate models today, which might become 243 

important in the future. However, this is true for any emergent relationship based on model evaluation 244 

against past observations. Secondly, not all relevant processes might be well-captured through the 245 

chosen metric. Our metric here is focused on dynamical processes (although it might, at least  246 
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Fig. 247 
4 | Historical network scores and precipitation. a, Centre map: Climatic Research Unit (CRU) annual mean precipitation rate 248 
climatology57 in mm day-1. Surrounding: linear correlations between the F1-scores for the CMIP5 models (with the NCAR-NCEP reanalysis 249 
as the reference case) and regional precipitation bias scores (S-scores). Higher S-scores are equivalent to a better representation of 250 
annual mean precipitation in a given model. Correlations are shown for six world regions and for the global land surface (exc luding 251 
Antarctica), as labelled. Blue denotes data for all models; red the case where five models from causally similar sub-groups are excluded 252 
(IPSL-CM5A-LR, ACCESS1-3, HadGEM2-CC, NorESM1-M, MPI-ESM-LR). b Relationship between F1-scores and land precipitation 253 
changes projected by the CMIP5 models. The latter are calculated as the difference between the periods 1860-1910 and 2050-2100 under 254 
the RCP8.5 scenario. The relationship exhibits an approximately parabolic structure, as evident from a Gaussian Process fit t o the data 255 
(log-marginal likelihood: 44.15; Methods). Past model precipitation skill as measured through the global S-score does not provide a strong 256 
relationship (c; log-marginal likelihood=26.35). This result is robust to the use of a different reanalysis, the number of links included in the 257 
network, and can also be demonstrated to be statistically significant in a direct parabolic fit (Supplementary Figs. 14, 15). This implies that 258 
precipitation rate changes (Supplementary Fig. 16) can be constrained using the F1-scores (best estimate is around 0.0-0.1 mm day-1), 259 
whereas past model skill for the same variable does not provide such a constraint; in line with previous demonstrations that past model 260 
biases in simple metrics are not necessarily indicative of future model projections12,62. Other simple dynamical metrics we tested generally 261 
provided lower correlation scores with historical precipitation modelling skill and also did not provide the same emergent relationship for 262 
future projections (Supplementary Figs. 17-19). Source data are provided as a Source Data file. 263 
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indirectly, capture the effects of some thermodynamical processes14,60), whereas, for example, future 264 

changes in soil moisture are probably primarily thermodynamically driven. Future changes in soil 265 

moisture, in turn, could regionally modulate future changes in land precipitation61.  Finally, the 266 

possibilities for future projections are also constrained by the models participating in CMIP5. 267 

Therefore, we can only constrain the relationship within the given data boundaries, and it should be 268 

further verified across other scenarios and ensembles (such as CMIP6).  Similar model evaluation 269 

exercises, also concerning variables other than precipitation and atmospheric dynamical 270 

interactions, could test for similar emergent relationships in the ever-expanding data made available 271 

through observations and climate modelling projects. Such studies might flexibly combine the 272 

blueprint of the method outlined here with other dimension reduction techniques and/or causal 273 

discovery algorithms32,33. 274 

Discussion 275 

We have highlighted causal model evaluation (CME) as a framework to evaluate state-of-the-art 276 

climate models. Based on data-driven causal fingerprints, CME is able to detect models with shared 277 

development backgrounds. By considering a large set of climate models simultaneously, we find that 278 

climate models with more realistic dynamical causal fingerprints also have smaller precipitation 279 

biases globally, and over highly populated areas such as North America, India and China. More 280 

realistic fingerprints appear to also have implications for projected future changes in land surface 281 

precipitation. Causal network analyses could therefore be a promising tool to constrain climate 282 

change projections. The underlying premise is that physical processes (e.g., convection, cloud 283 

formation, the large-scale circulation) lead to dynamical coupling mechanisms in Earth’s 284 

atmosphere. CME aims at statistically representing these couplings in the form causal networks, 285 

which in turn are, as we show here, indicative of modelling skill in precipitation. It appears intuitive 286 

that modelling skill as captured through our causal fingerprint scores is therefore also relevant for 287 

modelling future changes in precipitation, at least so far as the physical processes relevant for 288 

present-day precipitation remain important in future climates. 289 

 Our work builds on several previous causal network studies in climate science, which were 290 

typically focused on network algorithm applications to individual climate modelling or reanalysis 291 

datasets, or on the evaluation of dynamical interactions within individual climate models (e.g. refs. 292 
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27,32,33,63). Our results also add to work on global patterns of precipitation co-organization64, 293 

suggesting atmospheric dynamical interactions as a key driver of important regional climate model 294 

errors. We see great scope in using our framework to better understand differences between models 295 

and observations, or among climate models, especially regarding causal interdependencies26. 296 

Finally, we hope that our work will stimulate the use of novel model evaluation metrics. Causal 297 

discovery algorithms have the potential to be at the forefront of this effort as they are able to detect 298 

central features of Earth system dynamics such as the direction and time-lag associated with a global 299 

teleconnection, opening the door for more in-depth causal interpretation studies26. CME could be 300 

used to evaluate many other model systems, or could help tracking the impact of model development 301 

over time. Ideally, CME will increasingly complement current evaluation approaches65 and tools66, 302 

and will help constraining uncertainties in climate change projections67,68, also for climate variables 303 

other than global land surface precipitation (Supplementary Fig. 21). The ever expanding use and 304 

development of machine learning techniques in the scientific community63,69–72, as well as the 305 

upcoming CMIP63, will greatly accelerate this movement. As such we consider our work as an 306 

important stepping-stone for a range of machine learning and other data-driven methods aimed at 307 

improving the state-of-the-art of climate modelling and complex system understanding. 308 

Methods 309 

F1 scores for network comparisons. The network comparisons are purely based on the existence 310 

or non-existence of links in a network relative to a given reference network, assuming a certain 311 

statistical significance threshold in the PCMCI method (α-level). The resulting true links are typically 312 

only a small fraction (3-10%; depending on the α-level) of all possible lagged connections (N*(N-313 

1)*τmax=24,500) so that the binary (link vs. no link) network comparison becomes an imbalanced 314 

classification problem. The F1-score is a widely used, however necessarily imperfect73, metric for 315 

such problems. It balances the statistical precision (P) and recall (R). It is defined by  316 

𝐹1 =
2∗𝑃∗𝑅

𝑃+𝑅
  (1) 317 

With precision and recall defined by 318 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 319 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 320 

Where FP (FN) is the number of falsely detected links (not detected links) relative to the reference 321 

model and TP the number of true positive detected links. We further modified the definition of the F1-322 
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score slightly to account for the sign of dependence (positive or negative) and the networks' discrete 323 

time-step nature and the expected natural variance in the precise timing of connections: assuming 324 

a link exists in the reference network A, we tested if a matching link with the same sign of 325 

dependence exists in network B (with the same causal direction) in a time interval of up to ±2 time 326 

lags; equivalent to a time precision of about ± one week (six days). If a link was found at a time lag 327 

not identical with the reference case, the sign of dependence was tested at the original time step. If 328 

also found identical, the link was considered to exist in both networks. Due to this relaxation of the 329 

time-lag constraint, pair-wise network comparison scores do depend on which network is considered 330 

as the reference case. As a result, the scores for pair-wise network comparisons shown in Figures 331 

2a and 3a are not symmetric (cross-diagonal entries are not identical) leading to a larger number of 332 

possible comparisons. F1-scores can be calculated for each season, e.g. DJF as shown in Figure 2. 333 

For the historical networks (Figure 3), an average F1-score was calculated from the individual scores 334 

for each of the four seasons as 335 

𝐹1 =
𝐹1,DJF+𝐹1,MAM+𝐹1,JJA+𝐹1,SON

4
 (4) 336 

S scores for measuring precipitation modelling skill. First suggested by Taylor56, the S-score 337 

measures how well a model captures the behaviour of a given climate variable (e.g. temperature, 338 

precipitation) over a specific spatial domain relative to an observational dataset. It is defined by  339 

𝑆 =
(1+𝑅)4

4(𝑆𝐷𝑅+
1

𝑆𝐷𝑅
)

2 (5) 340 

where R is the pattern correlation coefficient between the models and observations and SDR is the 341 

ratio of spatial standard deviations between models and observations55,56. The calculation of R and 342 

SDR incorporate grid cell area specific weighting with weights w 343 

𝑅 =
1

𝑊

∑ 𝑤𝑖(𝑥𝑖−
1

𝑊
∑ 𝑤𝑗𝑥𝑗

𝑛
𝑗=1 )(𝑦𝑖−

1

𝑊
∑ 𝑤𝑗𝑦𝑗

𝑛
𝑗=1 )𝑛

𝑖=1

𝜎model𝜎ref
 (6) 344 

where xi and yi are values for the same quantity (e.g. precipitation rate; mm day-1) in a given grid cell 345 

i in the two datasets to be compared, n is the number of grid cells, and W is the sum of area weights 346 

𝑊 = ∑ 𝑤𝑗
𝑛
𝑗=1  (7) 347 

The spatially-weighted standard deviations σ (that is σmodel and σref) and the final SDR term are 348 

calculated through 349 

σ2 = 
1

𝑊
∑ 𝑤𝑖 (𝑥𝑖 −

1

𝑊
∑ 𝑤𝑗𝑥𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1 (8) 350 

SDR =  
𝜎model

𝜎ref
    (9) 351 

The S-score thus considers both the pattern similarity over the spatial domain with regard to a given 352 

quantity as well as their amplitude ratios, as both the spatial coherence and magnitude range of a 353 

variable is important for measuring model skill56. 354 
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PCA Varimax. The dimension reduction step (Figure 1b) serves as a data-driven method to extract 355 

large-scale patterns of regional sea level pressure variability that in many cases resemble well-356 

known climatological processes such as the ENSO or the North Atlantic Oscillation (NAO). To extract 357 

climatological processes, we here choose truncated principal component analysis, followed by a 358 

Varimax rotation (PCA-Varimax)34,35. Principal components, often referred to as empirical orthogonal 359 

functions (EOFs) in climate science and meteorology, are frequently used to identify orthogonal, 360 

uncorrelated global modes of climate variability25,28,36,37. To remove noisy components, we then 361 

truncate and keep only the first 100 leading components in terms of their explained variance. The 362 

additional Varimax rotation on these leading components then maximizes the sum of the variances 363 

of the squared weights so that the loading of weights at different grid locations will be either large or 364 

very small. It has been shown that this leads to more physically consistent representations of actual 365 

climate modes, mainly because the Varimax rotation allows spatial patterns associated with the 366 

components to become more localised and their time series of weights to be correlated, as is the 367 

case for actual physical modes25,36,37. Principal components without rotation consecutively maximize 368 

variance and therefore often mix contributions of physically defined modes such ENSO, Pacific 369 

Decadal Oscillation (PDO), or the NAO, whose time-behaviour is not orthogonal, making patterns 370 

more difficult to interpret. We here estimated the spatial pattern (loading) of the Varimax components 371 

from 70-year (1948-2017) daily sea level pressure anomalies of the NCAR-NCEP reanalysis 372 

dataset41 and then used these weights to also consistently extract the Varimax component time 373 

series from the CMIP5 sea level pressure simulations. The motivation behind using sea level 374 

pressure as the variable underlying the networks is that it is a standard variable to characterize large-375 

scale atmospheric dynamics and corresponding variability, e.g. in climate modes or weather 376 

patterns. Therefore, it is also available in virtually any reanalysis dataset or model data archive, 377 

which allowed us to work with the largest possible number of ensemble members for the CMIP5 378 

analysis. The components obtained for the four meteorological seasons for the NCEP data can be 379 

found in Supplementary Figs. 22-421. For the subsequent causal discovery method, we further 380 

filtered weights in terms of their spatial separability and their frequency spectra, leading to a total of 381 

fifty components for each season. For example, we typically excluded components that exhibited a 382 

sudden change in behaviour when entering the satellite era (1979-), which resulted in unresolved 383 

frequency spectra (e.g. DJF components 18, 36, 38, 41 provided as Supplementary Figs. 40, 58, 60, 384 

and 63). Such apparently unphysical component time series changes were in particular found in 385 

Asia, Africa and the Middle East and could therefore be related to a lack of historical data coverage 386 

feeding into the reanalysis in those regions. To further control for the importance of choosing a 387 

certain set of components for the overall results and conclusions, we sometimes included some of 388 

these components for certain seasons (e.g. component 7 for DJF), but we did not find any noticeable 389 

sensitivity of the relative F1-scores to this selection process. A side effect of this selection process, 390 

however, remains a reduced network coverage in those areas. Overall, we found that the global 391 

network metrics were effectively insensitive to the choice of nodes and their geographical 392 

distribution. This is also evident from the relative insensitivity of the model rankings to the specific 393 
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season (Supplementary Figures 1, 3-6 and Supplementary Table 1). The indices of the fifty 394 

components chosen for each season are provided at the beginning of each section in Supplementary 395 

section 2. The component time series were averaged to 3-day-means before the application of 396 

PCMCI. This time-aggregation presents a compromise to resolve short-term interactions in our 397 

intercomparison (a few days), while limiting the increase in dimensionality due to additional time lags 398 

(here 10 time lags for τmax =30). 399 

PCMCI causal discovery method. PCMCI is a time series causal discovery method further 400 

described in ref. 23. Commonly, causal discovery for time series is conducted with Granger causality 401 

which is based on fitting a multivariate autoregressive time series model of a variable Y on its own 402 

past, the past of a potential driver X, and all the remaining variables’ past (up to some maximum 403 

time delay τmax). Then X Granger-causes Y if any of the coefficients corresponding to different time 404 

lags of X is non-zero (typically tested by an F-test). As analyzed in ref. 23, Granger causality, due to 405 

a too high model complexity given finite sample size, has low detection power for causal links (true 406 

positive rate) if too many variables are used and for strong autocorrelation, both of which are relevant 407 

in our analysis. PCMCI avoids conditioning on all variables by an efficient condition-selection step 408 

(PC) that iteratively performs conditional independence tests to identify the typically few relevant 409 

necessary conditions. In a second step, this much smaller set of conditions is used in the momentary 410 

conditional independence (MCI) test that alleviates the problem of strong autocorrelation. In general, 411 

both the PC and MCI step can be implemented with linear or nonlinear conditional independence 412 

tests. Here we focus on the linear case and utilize partial correlation (ParCorr). A causal 413 

interpretation rests on a number of standard assumptions of causal discovery as discussed in ref. 414 

22, such as the Causal Markov assumption, Faithfulness, and stationarity of the causal network over 415 

the time sample considered. The free parameter of PCMCI is the maximum time delay τmax, here 416 

chosen to include atmospheric timescales over which we expect dependencies to be stationary. The 417 

pruning hyper-parameter pc-α in the PC condition-selection step is optimized using the Akaike 418 

information criterion (among pc-α = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5). PCMCI yields a p-value (based on 419 

a two-sided t-test) for every pair of components at different lags. We defined links in the networks 420 

using a strict significance level of 10-4 in the main paper. However, very similar results are found for 421 

other more relaxed or even stricter significance levels; as demonstrated extensively in the 422 

Supplementary Material. 423 

Other network construction methods. As discussed in the main text, causal networks have been 424 

used several times before in the climate context. Two of the most prominent cases of such studies 425 

are those described in refs. 32,33, where Ebert-Uphoff and Deng also discuss remote impacts and 426 

information pathways as well as the role of storm tracks as important drivers of network connectivity. 427 

Their work is further a good demonstration of other possible ways to construct causal networks, the 428 

effect of which might be an interesting topic for future studies. For example, their network approach 429 

was carried out on a grid-cell-wise level rather than using PCA Varimax components. The latter are 430 

designed to capture distinct regional climatological processes while an analysis at the grid-cell level 431 
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is more granular which, however, carries the challenges of higher dimensionality, will have a strong 432 

redundancy among neighbouring grid cells, and grid-level metrics will require handling varying 433 

spatial resolution among datasets. Furthermore, the original PC causal discovery algorithm used in 434 

their work is less suited for the time series case than PCMCI23. They also used another 435 

meteorological variable (500 hPa geopotential height) to construct their networks and compared 436 

aggregate network metrics rather than comparing networks on a link-by-link basis. 437 

CMIP5 data. For the network constructions, we used daily mean sea level pressure data from the 438 

CMIP5 data archive, as stored by the British Atmospheric Data Centre (BADC). An overview of all 439 

models and simulations used is given in Supplementary Table 2. The twenty models used for the 440 

pre-industrial networks are as labelled in Figure 2a. The twenty models used for the historical and 441 

RCP8.5 reference case are as labelled in Figure 3a. Typically, we used the final 210 years of each 442 

pre-industrial simulation, assuming that these years represent the most equilibrated state of each 443 

model. For historical and RCP8.5 simulations, we used at least three ensemble members which 444 

typically covered 70 years between 1st January 1936 and 31st December 2017. Relaxing the left time 445 

boundary by up to twelve years relative to the reanalysis data time period allowed us to include more 446 

models, as some modelling centres ran more historical than RCP8.5 simulations. If sufficient data 447 

was available for both the historical and RCP8.5 simulation, the two simulations were merged on 1st 448 

January 2006; the day after historical simulations ended in most cases. All data (including the 449 

reanalysis datasets) was linearly de-trended on a grid cell basis and seasonally anomalized by 450 

removing the long-term daily mean. Note that sea level pressure data is effectively stationary even 451 

under historically forced climatic conditions so that the de-trending is a prudent step to remove any 452 

potentially occurring small trends to a good approximate degree. Of course, we cannot fully account 453 

for the very long time-scales that may be associated with some climate processes74 beyond the time-454 

scale covered by each individual dataset. Each model dataset was bi-linearly interpolated to a 2.5° 455 

latitude x 2.5° longitude grid in order to extract the component time series based on the Varimax 456 

loading weights computed from the NCAR-NCEP41 reanalysis data. 457 

Precipitation data. As observational reference, we used the land surface CRU TS v4.03 dataset 458 

from the University of East Anglia57, which does not cover Antarctica. CMIP5 precipitation data was 459 

taken from single ensemble members (Supplementary Table 2) of the historical and RCP8.5 460 

simulations, as described above. As for the sea level pressure data, all precipitation data was bi-461 

linearly interpolated to the NCAR-NCEP spatial grid prior to the intercomparison. Climate change-462 

induced differences shown in Figures 4b,c were calculated by subtracting the model-specific land 463 

surface (using an ocean and Antarctica mask equivalent to the one of the CRU dataset) average 464 

precipitation rate for the period 1860-1910 (covered by all models) from the same measure for the 465 

years 2050-2100. 466 

Random and Independent data. The datasets for the Random and Independent case in Figure 2a 467 

were created with Gaussian noise driven multivariate autoregressive models of the same number of 468 

variables as in the original data. For the Independent case only the lag-1 autocorrelation coefficients 469 



18 

 

are non-zero and set to a value of 0.7. Hence, all variables are independent, but due to finite sample 470 

effects, the estimated networks with PCMCI will still contain some cross-links. For the Random case, 471 

we created a random network with a link density of 5%, randomly connecting two components at 472 

lag-1 with a coefficient of 0.1, in addition to autocorrelation coefficients with a value of 0.7 for each 473 

component. Like for the original data, we simulated three datasets (covering 70-year periods of the 474 

210 years) with the same sample size as the original data. 475 

Gaussian Process regression. To estimate the nonlinear dependency between F1/S-scores and 476 

land precipitation changes (Figures 4b,c and Supplementary Figure 14), we used Gaussian 477 

Processes (GP) as a widely used Bayesian non-parametric regression approach75. We implemented 478 

the GP with a standard radial basis function kernel with an added white noise kernel and optimized 479 

the hyperparameters using the log-marginal likelihood. The resulting fit line is approximately 480 

parabolic when using the F1-score. In Supplementary Figure 15 we also directly fit a parabolic 481 

function y=a+bx+cx2. 482 

Data availability. All raw sea level pressure, surface temperature and precipitation rate data is 483 

publicly available. CMIP5 data is available through the Lawrence Livermore Laboratory 484 

(https://pcmdi.llnl.gov/mips/cmip5/availability.html) and many other sources such as the British 485 

Atmospheric Data Centre (BADC, http://www.badc.rl.ac.uk/) as variables 'psl', 'tas' and 'pr', see 486 

Supplementary Table 2 for an overview of all selected simulations. CRU precipitation rate data is 487 

publicly available through e.g. https://crudata.uea.ac.uk/cru/data/hrg/; as is the NCAR-NCEP 488 

reanalysis through https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. ERA-489 

Interim data is accessible via https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-490 

interim. The source data underlying Figures 2a–f, 3a/b, and 4a-c are provided as a Source Data file. 491 

Code Availability. Tigramite source code is available through 492 

https://github.com/jakobrunge/tigramite. Example Jupyter-notebooks and Python code used to carry 493 

out the Varimax and PCMCI analysis here will be made available through 494 

https://github.com/peernow/CME_NCOMMS_2020.  495 
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