
1 
 

Current knowledge and recent advances in understanding metabolism of the 1 

model cyanobacterium Synechocystis sp. PCC 6803 2 

 3 

Lauren A. Mills1, Alistair J. McCormick2,3, David J. Lea-Smith1,*  4 

 
5 

1School of Biological Sciences, University of East Anglia, Norwich Research Park, 6 

Norwich, NR4 7TJ, United Kingdom 7 

2Institute of Molecular Plant Sciences, School of Biological Sciences, University of 8 

Edinburgh, EH9 3BF, United Kingdom 9 

3Centre for Synthetic and Systems Biology, University of Edinburgh, EH9 3BF, 10 

United Kingdom 11 

 12 

 13 

*Corresponding author email: D.Lea-Smith@uea.ac.uk 14 

 15 

Abstract 16 

Cyanobacteria are key organisms in the global ecosystem, useful models for 17 

studying metabolic and physiological processes conserved in photosynthetic 18 

organisms, and potential renewable platforms for production of chemicals. 19 

Characterising cyanobacterial metabolism and physiology is key to understanding 20 

their role in the environment and unlocking their potential for biotechnology 21 

applications.  Many aspects of cyanobacterial biology differ from heterotrophic 22 

bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid 23 

membranes where both oxygenic photosynthesis and respiration occur, while CO2 24 

fixation takes place in specialised compartments termed carboxysomes. In this 25 

review, we provide a comprehensive summary of our knowledge on cyanobacterial 26 

physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) 27 

involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, 28 

cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to 29 

the proteins involved in metabolite transport. While some pathways are conserved 30 

between model cyanobacteria, such as Synechocystis, and model heterotrophic 31 

bacteria like Escherichia coli, many enzymes and/or pathways involved in the 32 

biosynthesis of key metabolites in cyanobacteria have not been completely 33 

characterised. These include pathways required for biosynthesis of chorismate and 34 
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membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and 35 

isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our 36 

understanding of photorespiration, lipopolysaccharide assembly and transport, and 37 

degradation of lipids, sucrose, most vitamins and amino acids, and heme, is 38 

incomplete. We discuss tools that may aid characterisation of cyanobacterial 39 

metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis 40 

mutants, which will significantly accelerate characterisation of individual proteins. 41 

 42 

1. Introduction 43 

Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis. Since 44 

their appearance >2.4 billion years ago (1), cyanobacteria have profoundly impacted 45 

Earth’s climate and ecosystem, most notably in generation of an oxygenic 46 

atmosphere (2). In the current ecosystem, cyanobacteria are a diverse phylum of 47 

photosynthetic prokaryotes that account for approximately a quarter of global carbon 48 

fixation (3) and a high proportion of marine nitrogen fixation (4, 5). Some species 49 

also show great potential as biotechnology platforms for synthesis of 50 

pharmaceuticals, industrial compounds and biofuels, due to their highly efficient 51 

conversion of water and CO2 to biomass using solar energy (6-8). Others are used in 52 

the food, dye, cosmetics and nutraceutical industries with their global market 53 

projected to be worth >£1.5bn by 2026 (9). Certain species are also sources of 54 

natural products, including antifungal, antibacterial and anti-cancer compounds, and 55 

toxins deleterious to human and animal health (10, 11). Chloroplasts likely descend 56 

from an internalised cyanobacterium (12), thus certain physiological and biochemical 57 

features are conserved in higher photosynthetic organisms, making cyanobacteria 58 

excellent chassis for production of plant-derived natural products, like terpenes. 59 

Many key processes conserved throughout the photosynthetic lineages were first 60 

characterised in cyanobacteria (13, 14) and there is significant interest in 61 

engineering cyanobacterial enzymes and CO2-concentrating mechanisms into crop 62 

plants (15-19).  63 

 64 

Despite their importance, our understanding of many key features of cyanobacterial 65 

physiology and biochemistry is poor. For example, in Synechocystis sp. PCC 6803 66 

(Synechocystis), the most widely studied cyanobacterium, less than 1,200 coding 67 
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sequences (~30%) have assigned function (469 in metabolism and 115 in transport: 68 

Highlighted in red in Table 1; ~558 in other cellular processes (including transposons 69 

and transposon related functions): Highlighted in red in Table 3), which is less than 70 

half compared to Escherichia coli (20). Of these coding sequences, only a small 71 

proportion have been characterised in a cyanobacterium (21), with the majority of 72 

assigned functions based on studies of homologues in other bacteria, even though 73 

the function, catalytic activity and importance of characterised genes may differ 74 

significantly between phototrophic and heterotrophic bacteria. It is also likely that a 75 

proportion of these coding sequences have incorrectly assigned functions. Several 76 

examples of Synechocystis genes which were experimentally validated as having 77 

functions different to the original assigned function, based on homology with genes 78 

from heterotrophic bacteria, are discussed throughout the review. 79 

 80 

In this review we will provide a detailed overview of the metabolic biochemistry and 81 

transport processes found in cyanobacteria, with a focus on the model unicellular 82 

species Synechocystis and to a lesser degree, Synechococcus elongatus PCC 7942 83 

(Synechococcus). In each section we will highlight recent findings pertaining to each 84 

particular metabolic pathway, including central carbon and sugar metabolism, amino 85 

acid, nucleotide, cofactor and vitamin, lipid and membrane components, isoprenoid 86 

and pigment biosynthesis, and the transporters localised in the different membrane 87 

compartments. While many cyanobacteria are filamentous, with some incorporating 88 

heterocysts (specialised nitrogen fixing cells), describing the additional level of 89 

physiological complexity in these species is beyond the scope of this review (For an 90 

excellent recent review see (22)). Other aspects of cyanobacteria, such as 91 

photosynthesis and electron transport, have also been the subject of a recent review 92 

(23), and will not be discussed, except when electron transport chain components 93 

are involved in metabolism.  94 

 95 

In the interests of brevity, the majority of enzymatic steps will not be mentioned in the 96 

text but outlined in subsequent figures. Steps to which an enzyme from 97 

Synechocystis has not been assigned are indicated by only an arrow with no 98 

abbreviated protein name in close proximity. The discussion will primarily focus on 99 

reactions that differ in cyanobacteria compared to model heterotrophs, or have been 100 

specifically investigated in model cyanobacteria. In most cases, only the abbreviated 101 
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protein name is included in the text, although full names are outlined in Table 1 102 

(Column C). We have also incorporated four tables, to help guide future work on 103 

identifying homologues and assigning putative protein function. Table 1 lists the 104 

Synechocystis proteins in each metabolic process, in the order outlined in the text. 105 

Also shown are the E. coli K12 proteins demonstrating the highest sequence 106 

similarity to individual Synechocystis proteins. Table 2 is in the opposite format, and 107 

includes a list of E. coli K12 proteins with assigned functions, and the Synechocystis 108 

proteins with the highest homology to each E. coli protein. Table 3 includes a list of 109 

Synechocystis proteins potentially involved in processes other than metabolism and 110 

transport, while Table 4 includes all remaining Synechocystis proteins which have no 111 

assigned function. We will also highlight the aspects of cyanobacterial physiology 112 

and biochemistry that have yet to be elucidated and some tools in development, 113 

most notably CyanoSource, a mutant library and plasmid resource for 114 

Synechocystis, which will accelerate research efforts in this field. 115 

 116 

2. The physiology of Synechocystis sp. PCC 6803 117 

In order to understand cyanobacterial metabolism, it is first necessary to describe 118 

their physiology, which is more complex than most other prokaryotes. The majority of 119 

cyanobacterial species incorporate an array of internal thylakoid membranes (TM) 120 

enclosing the thylakoid lumen, in addition to a cell envelope consisting of the plasma 121 

membrane (PM), peptidoglycan layer and outer membrane (OM) (24) (Fig. 1). In 122 

Synechocystis and some other cyanobacteria, the S-layer, a paracrystalline protein 123 

layer, surrounds the OM (25). TMs may contain perforations allowing transport of 124 

molecules or proteins through the array (26). Cytoplasmic localised compartments 125 

such as the carboxysome, the site of carbon fixation, and various storage bodies 126 

accumulating glycogen, cyanophycin, polyhydroxybutyrate, lipids and 127 

polyphosphate, are predominantly distributed in the central area of the cell (27, 28). 128 

 129 

Only the primordial cyanobacterial species, Gloeobacter kilaueensis JS1 and 130 

Gloeobacter violaceus PCC 7421, both of which are extremely slow growing, lack 131 

TMs (29, 30). Therefore, there must be clear advantages in incorporating a series of 132 

internal membranes. The most obvious is the increased area available to 133 

accommodate photosynthetic complexes, in addition to incorporating a compartment 134 

that can be optimised for specialised functions. In Synechocystis it has been 135 
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demonstrated that the majority of characterised TM localised proteins are involved in 136 

photosynthetic and respiratory energy generation, suggesting that this is the primary 137 

function of this compartment (31, 32). In turn, these advantages must outweigh 138 

potential burdens arising from the additional complexity imposed on the cell. These 139 

burdens include the requirement for specialised cellular systems to target proteins 140 

and metabolites to the correct compartment, organise and pack TMs within the cell, 141 

and to partition TMs between daughter cells during division. 142 

 143 

In Synechococcus, TMs are arranged in orderly sheets parallel to the PM with areas 144 

of convergence between the two compartments at various points (33). Whether the 145 

TM and PM are two separate compartments is yet to be confirmed. TM arrangement 146 

in Synechocystis is more complicated with individual sheets often displaying 147 

disparate patterns. Three dimensional imaging demonstrates that the majority of 148 

TMs arrange in stacks of parallel sheets which converge in distinct structures near 149 

the PM (34). However, in contrast to earlier reports, the thylakoid and plasma 150 

membranes were shown to be two separate compartments, although the distance 151 

between them was sometimes as little as 2 nm. This suggests that processes 152 

occurring in the two compartments are spatially separated. A dense material was 153 

observed between this junction which may play a role in ‘attachment’ of the 154 

thylakoids to the cell wall but the exact process and the proteins/compounds 155 

involved, has not been determined. 156 

 157 

3. Central metabolism  158 

In this review, cyanobacterial central metabolism will include glycolysis/ 159 

gluconeogenesis, the tricarboxylic acid (TCA) cycle, the pentose phosphate (PP) 160 

pathway and the Calvin-Benson-Bassham (CBB) cycle, including carbon fixation, in 161 

addition to pathways for production of storage compounds, fermentation products 162 

and chorismate, a key intermediate for other pathways (Fig. 2). Many enzymes 163 

involved in these pathways are conserved between Synechocystis and E. coli (Table 164 

1). Therefore, research related to protein function has primarily focused on the 165 

processes and enzymatic steps that differ in cyanobacteria compared to model 166 

heterotrophs. 167 

 168 

3.1 Catabolism of glucose and glycogen 169 
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Carbon based inputs into central metabolism can be derived from carbon fixation, 170 

catabolism of glycogen or via import of glucose. The ability to import glucose enables 171 

some cyanobacteria, including certain Synechocystis substrains, to grow 172 

heterotrophically or mixotrophically (35). Glucose is imported into the cell via the 173 

transporter, GlcP (36). There are three proposed degradation pathways, which may 174 

be active under different environmental conditions (37). Enzymes in the first two, 175 

glycolysis (the Embden-Meyerhof-Parnas (EMP) pathway) and the oxidative PP 176 

pathway, are generally highly conserved between Synechocystis and E. coli (Table 177 

1), and consequently these processes have not been extensively investigated in 178 

cyanobacteria. However, there are some differences and additional enzymes found 179 

in cyanobacteria. For example, homology between the Synechocystis and E. coli 180 

PdhA and PdhB subunits of pyruvate dehydrogenase is low (E value = 0.007 and 181 

5.66E-04, respectively), and this complex has not been characterised in a 182 

cyanobacterium. E. coli encodes only a class II fructose-1,6-bisphophosphate 183 

aldolase (Fbp2) for glycolysis, while Synechocystis also encodes a class I isoform 184 

(Fbp1). While the role of Fbp1 has not been determined in Synechocystis, 185 

expression of Fbp1 from the cyanobacterium Halothece sp. PCC 7418 in 186 

Synechococcus has been demonstrated to confer salt tolerance on this species (38). 187 

The Synechocystis genome also encodes a protein, OpcA, which is not present in E. 188 

coli and has been suggested to be key for glucose-6-phosphate dehydrogenase 189 

(Zwf) activity, the first step of the oxidative PP pathway (39). However, glucose-6-190 

phosphate dehydrogenase activity was similar to wild-type when OpcA was deleted 191 

in Synechocystis (40). Recently, a third glycolytic pathway was identified in 192 

Synechocystis (the Entner-Doudoroff (ED) pathway) (37). This pathway allows 193 

conversion of glucose to the oxidative PP intermediate 6-P-gluconate, which is then 194 

converted to glyceraldehyde-3-P. The ED pathway is required for optimal 195 

photoautotrophic growth and glycogen catabolism, and possibly also optimal activity 196 

of the CBB cycle (41). 197 

 198 

3.2 Carbon fixation and the Calvin-Benson-Bassham cycle 199 

As the enzymes of the CBB cycle are not isolated in a sub-cellular organelle as in 200 

eukaryotes (i.e. the chloroplast), some reactions are shared with EMP and OPP 201 

pathways. The CBB cycle can be divided into two stages: 1) Conversion of ribulose-202 

1,5-P and CO2 into two molecules of glycerate-3-P via ribulose-1,5-P 203 
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carboxylase/oxygenase (RuBisCO), which is located in carboxysomes; 2) 204 

Regeneration of the precursor, ribulose-1,5-P, consuming ATP and NADPH 205 

predominantly derived from photosynthesis. The requirement to regenerate ribulose-206 

1,5-P leads to one major difference in the EMP pathway between cyanobacteria and 207 

heterotrophs. In E. coli, glyceraldehyde-3-P dehydrogenase (Gap) catalyses the 208 

reversible oxidative phosphorylation of glyceraldehyde-3-P to glycerate-1,3-P, 209 

resulting in interconversion between NAD+ to NADH. In contrast, Synechocystis 210 

Gap1 displays only glycolytic activity and a strict affinity for NAD+. A second isoform, 211 

Gap2, catalyses the reverse reaction required for the CBB cycle using NADH and 212 

potentially also NADPH, which is generated in large amounts via photosynthesis 213 

(42).  214 

 215 

3.3 Photorespiration 216 

RuBisCO can assimilate O2 instead of CO2, resulting in the production of one 217 

molecule each of glycerate-3-P and glycolate-2-P. The latter product is toxic to 218 

chloroplast metabolism in photosynthetic eukaryotes and likely also to Synechocystis 219 

at high concentrations (43). Therefore, glycolate-2-P is converted to glycerate-3-P 220 

via the photorespiratory salvage pathway, a multi-step process conserved in most 221 

organisms that perform oxygenic photosynthesis (44). Glycolate-2-P is first 222 

converted to glyoxylate by GlcD1 or GlcD2. Three subsequent photorespiratory 223 

pathways for catabolism of glyoxylate have been proposed in Synechocystis and 224 

deletion of genes in each pathway results in a mutant that requires high CO2 225 

conditions for survival (43). The first involves conversion of glyoxylate to glycerate-3-226 

P via tartonic semialdehyde biosynthesis, the second, conversion of glyoxylate to 227 

glycerate-3-P via glycine and L-serine interconversion, and the third conversion of 228 

glyoxylate to oxalate, which is subsequently converted to formate. The enzymes 229 

involved in several of these pathways have been predominantly identified in 230 

Arabidopsis thaliana, with putative homologs present in cyanobacteria (45). Of these, 231 

Shm, involved in the second pathway, and GlcD1, have been shown to display 232 

similar enzymatic activity to their A. thaliana homologs (45). Deletion of GlcD1 and 233 

GlcD2 in Synechocystis results in a complete loss of photorespiratory activity (43). 234 

However, the role of the other putative cyanobacterial homologs has not been 235 

determined and many proteins currently assigned to photorespiration, as outlined in 236 
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Eisenhut et al (43), have been suggested to catalyse alternative reactions. Moreover, 237 

in the third pathway, only one putative enzyme, Odc, has been identified. 238 

 239 

3.4 Synthesis of carbon storage compounds 240 

Cyanobacteria require carbon storage compounds for periods when photosynthesis 241 

is not sufficient for the cells energy and metabolic requirements. In Synechocystis, 242 

under conditions where cells are accumulating excess sugars, a high proportion of 243 

glycerate-3-P generated via CO2 fixation is converted to glycogen (reviewed in (46)). 244 

In E. coli, ADP-glucose is used as the substrate to generate the primary, unbranched 245 

polymer via GlgA. However, two GlgA isoforms are present in Synechocystis with 246 

likely roles in elongating the polymer at varying length (47). Glycogen catabolism in 247 

Synechocystis is catalysed by two isoforms of GlgX (GlgX1 and GlgX2) and GlgP 248 

(GlgP1 and GlgP2). The role of GlgX1 and GlgX2 has not been determined. The 249 

GlgP proteins perform the same catalytic activity under different environmental 250 

conditions, cleavage of glycogen to individual glucose-1-P residues (48). When 251 

Synechocystis is exposed to certain stress conditions, an additional carbon storage 252 

compound, the polymer polyhydroxybutyrate, is synthesised from acetyl-CoA via 253 

PhaA, PhaB, and the PhaC/PhaE complex (49-51). 254 

 255 

3.5 The tricarboxylic acid cycle 256 

The tricarboxylic acid (TCA) cycle differs in cyanobacteria compared to heterotrophic 257 

bacteria, as highlighted by recent work in the last decade. Cyanobacteria lack the 258 

enzyme α-ketoglutarate dehydrogenase, which catalyses the fourth step of the TCA 259 

pathway in E. coli: conversion of α-ketoglutarate to succinyl-CoA. Instead, some 260 

cyanobacteria, including Synechocystis, have genes encoding two enzymes, α-261 

ketoglutarate decarboxylase (2-OGDC) and succinic semialdehyde dehydrogenase 262 

(SSADH), which convert α-ketoglutarate to succinic semialdehyde, then succinic 263 

semialdehyde to succinate, respectively (52). Compared to the standard TCA cycle, 264 

where conversion of α-ketoglutarate to succinate results in production of one NADH 265 

and one GTP, the 2-OGDC/SSADH pathway results in production of one NADPH 266 

(52). Only the soluble subunits of succinate dehydrogenase, catalysing the sixth 267 

step, have been identified in cyanobacteria (23). Succinate dehydrogenase is 268 

integrated into the thylakoid membrane interlinked photosynthetic and respiratory 269 

electron chain (53). Synechocystis also encodes a succinyl-CoA synthetase complex 270 
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(SucC/SucD), which likely catalyses the reversible conversion of succinate to 271 

succinyl-CoA in cyanobacteria (54), required for biosynthesis of methionine and 272 

lysine. Several recent papers have investigated the enzymatic properties of TCA 273 

enzymes conserved between cyanobacteria and heterotrophic bacteria (55-57). In 274 

contrast to many heterotrophic bacteria, Synechocystis citrate synthase (GltA) was 275 

shown only to catalyse generation of citrate, not its cleavage. Synechocystis GltA 276 

has a lower substrate affinity and turnover rate than the E. coli homologue, is not 277 

inhibited by ATP and NADH, but is inhibited by phosphoenolpyruvate (55).  278 

 279 

3.6 Alternate biosynthetic pathways linking metabolites of the tricarboxylic 280 

acid cycle, photorespiration and glycolysis 281 

A range of additional pathways link the TCA cycle with glycolysis and 282 

photorespiration. Glyoxylate, produced via photorespiration, also plays a role in the 283 

glyoxylate cycle. This cycle consists of three TCA enzymes and two additional 284 

enzymes unique to this pathway: the first, isocitrate lyase (Icl), converts the TCA 285 

cycle intermediate isocitrate to succinate and glyoxylate; the second, malate 286 

synthase (Msy), converts glyoxylate and acetyl-CoA to the TCA cycle intermediate, 287 

malate. While activity of glyoxylate cycle enzymes has been detected in some 288 

cyanobacteria (reviewed in (58)), it is unclear whether Synechocystis encodes active 289 

variants of Icl and Msy. 290 

 291 

Phosphoenolpyruvate carboxylase (PepC) catalyses the conversion of 292 

phosphoenolpyruvate, a glycolysis intermediate, and HCO3
- to oxaloacetate, a TCA 293 

intermediate (59). PepC can therefore be considered an inorganic carbon fixing 294 

enzyme (i.e. akin to RuBisCO). Metabolic flux analysis has shown that as much as 295 

25% of all inorganic carbon fixation occurs via PepC in Synechocystis cultured under 296 

mixotrophic or heterotrophic conditions (60). An additional protein, malic enzyme 297 

(ME), catalyses the reversible conversion of malate, a TCA intermediate, and 298 

pyruvate (61). Deletion of ME in Synechocystis results in a mutant that displays poor 299 

growth when exposed to continuous but not diurnal light (62). It was hypothesised 300 

that ME is required for pyruvate biosynthesis under continuous light. 301 

 302 

3.7 Fermentation pathways 303 
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Three possible fermentation pathways are present in Synechocystis that generate D-304 

lactate, acetate or succinate, respectively. Presumably fermentation plays a role in 305 

energy generation when cyanobacteria are exposed to long periods of darkness 306 

under anoxic conditions, but the importance of these pathways during changing 307 

environmental conditions has not been determined. D-lactate, acetate and succinate 308 

production has been observed in wild-type Synechocystis cells but only after three 309 

days growth under dark, anaerobic conditions (63). A homolog of lactate 310 

dehydrogenase (Ddh), which converts pyruvate and NADH to lactate and NAD+, is 311 

encoded by Synechocystis. Two possible pathways for acetate production may be 312 

present in Synechocystis: 1) Conversion of acetyl-CoA to acetyl-P, then acetate, via 313 

phosphotransacetylase (Pta) and acetate kinase (Ack), respectively; 2) Direct 314 

reversible conversion of acetyl-CoA to acetate via acetyl-CoA synthetase (Acs) (63). 315 

Production of succinate relies primarily on phosphoenolpyruvate as the initial 316 

substrate, which is subsequently converted to oxaloacetate via PepC and then fed 317 

into the reverse TCA cycle (64).  318 

 319 

3.8 Chorismate biosynthesis 320 

Chorismate is the precursor for biosynthesis of a range of amino acids and cofactors, 321 

and has further importance in cyanobacteria as the substrate for production of 322 

phylloquinone, plastoquinone, phenylalanine, tyrosine, folate and molybdopterin, in 323 

addition to tocopherols and carotenoids. The glycolytic and PP pathway 324 

intermediates phosphenolpyruvate and erythrose-4-P are the substrates for 325 

production of chorismate via a 7-step pathway in E. coli. However, the enzyme 326 

catalysing the first step, condensation of phosphoenolpyruvate and erythrose-4-P, 327 

has not been identified in Synechocystis (65). Synechocystis proteins demonstrating 328 

high sequence similarity to five other enzymes in the E. coli pathway have been 329 

identified (Table 1) with the exception of the third enzyme, AroQ (No BLAST match). 330 

It is unclear from the literature how function was assigned to Synechocystis AroQ, 331 

encoded by sll1112 in the KEGG database. 332 

 333 

4. Metabolism and degradation of nucleotide sugars and sugar osmolytes 334 

A range of nucleotide sugars required for lipopolysaccharide (LPS) biosynthesis or 335 

as cofactors for other reactions (i.e. UDP-glucose), are synthesised by 336 

Synechocystis  (Fig. 3). LPSs contain a range of sugar residues including rhamnose, 337 
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galactose, glucosamine, mannose and fucose, which in Synechocystis are 338 

incorporated as 2,3-di-methyl-fucose and 2-methyl-fucose. 2-methylxylose has also 339 

been reported in Synechocystis (66). Only some of the biosynthetic pathways 340 

synthesising the LPS sugar precursors have been identified in cyanobacteria, 341 

although predominantly on the basis of identifying proteins with high sequence 342 

similarity to characterised enzymes from heterotrophic bacteria. TDP-β-L-rhamnose 343 

is synthesised by a four step pathway from glucose-1-P. There are two potential 344 

homologs in Synechocystis for the last three enzymes in the pathway, RfbB, RfbC 345 

and RfbD, but the function of these isoenzymes has not been determined. UDP-N-346 

acetylglucosamine is synthesised by a three step pathway from fructose-6-P and is 347 

the precursor not just for LPSs but also peptidoglycan. UDP-glucose is synthesised 348 

from glucose-1-P by CugP, a non-GalU UDP-glucose pyrophosphorylase, which 349 

differs from the GalU UDP-glucose pyrophosphorylase reaction conducted in most 350 

proteobacteria, including E. coli (67). A UDP-glucose 4-epimerase (GalE) then 351 

catalyses the conversion of UDP-glucose to UDP-galactose. GDP-mannose is 352 

synthesised from fructose-6-P by a three step reaction and GDP-fucose from GDP-353 

mannose by a two-step pathway. None of the proteins in these pathways have been 354 

characterised in cyanobacteria although deletion of the last gene in this pathway in 355 

Synechocystis, WcaG, resulted in production of carotenoids lacking fucose (68). 356 

 357 

Several sugars act as osmolytes, notably sucrose and glucosylglycerol. Osmolytes 358 

play a role in Synechocystis in salt tolerance (69, 70). In Synechocystis, sucrose is 359 

synthesised from UDP-glucose (or ADP-glucose) and fructose-6-P by two enzymes, 360 

SpsA and Spp (71, 72). Sucrose breakdown in Synechocystis is catalysed by an 361 

invertase (Inv) (73), resulting in production of glucose and fructose, which are likely 362 

phosphorylated to glucose-6-P by Glk and fructose-6-P by FrkA, and cycled back 363 

into glycolysis. A putative glucose kinase and fructose kinase are encoded in the 364 

Synechocystis genome, but have not been characterised. Glucosylglycerol is 365 

synthesised from ADP-glucose and glycerol-3-P via two enzymes, GgpS and GgpP 366 

(74). Glycerol-3-P is derived from either the TCA cycle intermediate glycerine-3-P or 367 

possibly imported. 368 

 369 

5. Amino acid biosynthesis and degradation 370 
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Synechocystis synthesises twenty L-amino acids and two D-amino acids (Fig. 4). 371 

The majority of enzymes involved in amino acid biosynthesis display high sequence 372 

similarity between Synechocystis and E. coli (Table 1). Amino acids are synthesised 373 

from a range of substrates, including pyruvate, the TCA cycle intermediates α-374 

ketoglutarate and oxaloacetate, chorismate, the nucleotide intermediate, 5-375 

phosphoribosyl-1-pyrophosphate (discussed in section 6), and glycerate-3-P or 376 

glyoxylate. Biosynthesis of amino acids is divided into sections below based on the 377 

substrates utilised. 378 

 379 

5.1 Isoleucine, valine and leucine biosynthesis 380 

α-ketobutyrate (synthesised from L-threonine by IlvA) and pyruvate are the 381 

substrates for biosynthesis of L-isoleucine, while pyruvate is the sole substrate for L-382 

valine and L-leucine biosynthesis. The enzymatic steps in Synechocystis are similar 383 

to those in E. coli, with the exception of the first step. In E. coli biosynthesis of α-384 

acetolactate and α-aceto-β-hydroxybutyrate are typically catalysed by the IlvB/IlvN 385 

complex. However, in Synechocystis, the homologue for IlvB was identified as 2-386 

OGDC in the TCA cycle (Section 3.5) (52). An alternate acetolactate synthase, IlvG, 387 

demonstrates high sequence similarity to E. coli IlvG (E value = 0). IlvG may form a 388 

complex with IlvN and catalyse this step (75) but this requires further verification. 389 

 390 

5.2 Glutamate, glutamine and proline biosynthesis 391 

The TCA cycle intermediate α-ketoglutarate is the substrate for L-glutamate 392 

biosynthesis which in turn is the substrate for production of L-glutamine, D-glutamate 393 

and L-proline. D-glutamate is synthesised by MurI and is incorporated into 394 

peptidoglycan. Two different glutamine synthetases, GlnA and GlnN, convert L-395 

glutamate to L-glutamine (76), and in the process incorporate ammonia into amino 396 

acid biosynthesis. Alternatively, several enzymes catalyse the opposite reaction 397 

where L-glutamine is converted to L-glutamate, including an NAD(P)H or possibly 398 

ferredoxin-dependent glutamate synthase (GltB/GltD) and a ferredoxin-dependent 399 

glutamate synthase (GlsF) (77). L-proline is synthesised via three enzymes (ProA, 400 

ProB, ProC). Synechocystis also encodes a putative proline oxidase, PutA, which 401 

catabolised L-proline to L-glutamate, reducing NADP+ and possibly a quinone in the 402 

process (78). 403 

 404 
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5.3 Arginine biosynthesis 405 

L-arginine is synthesised from L-glutamate via eight enzymatic steps, the sixth 406 

requiring carbomyl-P, which is synthesised from L-glutamine via CarA/CarB. This 407 

pathway is very similar to that in E. coli. However, Synechocystis does not encode 408 

ArgA or ArgE, catalysing the first and fifth steps of the pathway. Instead, it encodes 409 

ArgJ, a bifunctional enzyme which catalyses both these enzymatic reactions. 410 

Recently, an ornithine-ammonia cycle was identified in Synechocystis (79). This 411 

cycle utilises ArgF, ArgG, ArgH, and an additional enzyme, AgrE. AgrE converts L-412 

arginine to L-ornithine, releasing ammonia in the process (80). Synechocystis also 413 

encodes two putative SpeA and two putative SpeB proteins, which play a role in 414 

degradation of L-arginine to putrescine, a polyamine. In E. coli, putrescine can be 415 

used as a nitrogen and carbon source via conversion to succinate (80). Whether 416 

putrescine has a similar role in cyanobacteria has not been determined. 417 

 418 

5.4 Aspartate, cyanophycin and lysine biosynthesis 419 

L-aspartate is synthesised from oxaloacetate and L-glutamate by AspC. L-aspartate 420 

and L-arginine are the substrates for cyanophycin, a nitrogen storage polymer. 421 

Cyanophycin is synthesised by CphA and then converted back to L-aspartate and L-422 

arginine by CphB and LadC (81). L-aspartate is converted to aspartate-4-423 

semialdehyde, which is the substrate for biosynthesis of L-threonine and L-lysine. 424 

Synechocystis encodes all the enzymes in the five step diaminopimelate 425 

aminotransferase pathway required for L-lysine biosynthesis (82, 83). The third 426 

reaction, conversion of tetrahydrodipicolinate to L,L-diaminopimelate, is catalysed by 427 

DapL. In contrast, E. coli requires three enzymes, DapC, DapD and DapE, for this 428 

conversion. L-lysine is the substrate for production of the siderophore cadaverine by 429 

Cad. Three enzymes, ThrA, ThrB and ThrC, convert aspartate-4-semialdehyde to L-430 

threonine by a pathway similar to that in E. coli.  431 

 432 

5.5 Methionine biosynthesis 433 

In E. coli, L-methionine is also synthesised from aspartate-4-semialdehyde. 434 

However, the Synechocystis genome does not encode homologues to MetA, MetB 435 

or MetC (Table 2), the first three enzymes in the pathway. However, the genome 436 

does encode a putative MetH enzyme, which catalyses the last step, conversion of 437 

homocysteine to L-methionine. The enzymatic steps prior to this have not been 438 
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determined, nor has the original substrate from which L-methionine is synthesised. 439 

The Synechocystis genome also encodes a putative MetK enzyme, which converts 440 

L-methionine to S-adenosyl-L-methionine, a cofactor utilised in many other reactions, 441 

most notably in biosynthesis of cyanocobalamin (Vitamin B12; Section 10.4). A 442 

putative AhcY enzyme is also encoded, which converts S-adenosyl-L-homocysteine, 443 

the product of reactions which use S-adenosyl-L-methionine as a cofactor, back to 444 

homocysteine.  445 

 446 

5.6 Tryptophan, phenylalanine and tyrosine biosynthesis 447 

Chorismate is the substrate for L-tryptophan, L-phenylalanine and L-tyrosine 448 

biosynthesis. The majority of enzymes involved in L-tryptophan biosynthesis are 449 

highly conserved between E. coli and Synechocystis. Attempts to generate an 450 

auxotrophic mutant of TrpB, one of the subunits catalysing the final step of L-451 

tryptophan biosynthesesis, were unsuccessful (84), suggesting that it cannot be 452 

imported from the external environment. The pathway for L-phenylalanine and L-453 

tyrosine biosynthesis differs between the two species and has not been completely 454 

determined in cyanobacteria. Both amino acids are synthesised from prephenate. 455 

However, only the second step of tyrosine biosynthesis, conversion of arogenate to 456 

L-tyrosine, has been determined, although sll1662 (PheA) has been speculated to 457 

catalyse the first step of L-phenylalanine biosynthesis, conversion of prephenate to 458 

prenylpyruvate (85). 459 

 460 

5.7 Histidine biosynthesis 461 

L-histidine, synthesised from the nucleotide precursor, 5-phosphoribosyl-1-462 

pyrophosphate, is synthesised via a nine-step pathway in E. coli. Proteins 463 

demonstrating high sequence similarity to all characterised histidine biosynthetic 464 

enzymes in E. coli have been identified in Synechocystis. However, there are two 465 

putative HisC and HisD enzymes in Synechocystis. The function of these 466 

isoenzymes has not been determined. 467 

 468 

5.8 Serine, glycine, cysteine and alanine biosynthesis 469 

L-serine can potentially be synthesised via two routes. The first is via a three step 470 

light-independent pathway, which has been characterised in Synechocystis (86). 471 

However, the second enzyme in this pathway, SerC has also been suggested to 472 
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catalyse the transanimation reaction in photorespiration (Section 3.3) (43). In the 473 

second pathway, L-serine (and also glycine) is synthesised from glyoxylate via the 474 

photorespiratory pathway or glyoxylate cycle in those species that encode the 475 

relevant enzymes. L-cysteine is then produced from L-serine via a two step pathway, 476 

the second of which could potentially be catalysed by either CysK or CysM. L-477 

cysteine is subsequently desulfonated to produce L-alanine by Csd (87), which is 478 

subsequently converted to D-alanine, a component of peptidoglycan, via Alr. 479 

 480 

5.9 Glutathione biosynthesis 481 

L-cysteine and L-glutamate are the substrates for the first step of glutathione 482 

biosynthesis. Glutathione is a thiol that plays a key role in metal detoxification and 483 

tolerance of oxidative stress in Synechocystis (88). The first step of glutathione 484 

biosynthesis is catalysed by GshA, encoded by an essential gene in Synechocystis 485 

(89). In contrast, the enzyme catalysing the second step, GshB is non-essential, 486 

suggesting that glutathione is not required for Synechocystis viability but that the 487 

precursor, L-γ-glutamyl-L-cysteine, is required (89). 488 

 489 

5.10 Iron-sulfur cluster biosynthesis 490 

Conversion of L-cysteine to L-alanine by Csd releases sulfur which is incorporated 491 

into iron-sulfur clusters. Two additional cysteine desulfarases have been identified in 492 

Synechocystis but unlike Csd, neither are essential (90-92). Iron-sulfur clusters are 493 

incorporated into many proteins involved in photosynthesis, respiration and nitrogen 494 

fixation (93). Figure 4 outlines iron-sulfur biosynthesis (highlighted in green) and 495 

subsequent transfer to proteins, based on characterisation of proteins in other 496 

bacterial species (94). SufE acts as a sulfur donor, and IscA as a Fe2+ donor to the 497 

scaffold proteins required for cluster formation (SufA/NifU) (95). Additional subunits 498 

(SufB/SufC/SufD) aid in transfer of the iron-sulfur cluster to proteins. NifU is possibly 499 

involved in repairing iron-sulfur clusters in proteins but has not been characterised in 500 

cyanobacteria. 501 

 502 

6. Nucleotide biosynthesis  503 

Enzymes involved in nucleotide biosynthesis (Fig. 5) are highly conserved between 504 

E. coli and Synechocystis (Table 1), and therefore this pathway has not been 505 

investigated in great detail in cyanobacteria. Pyrimidines and purines require the 506 
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same precursor, 5-phosophoribosyl-1-pyrophosphate, which is synthesised from the 507 

PP pathway intermediate, ribose-5P, after which the pathways diverge.  508 

 509 

6.1 Purine biosynthesis 510 

In E. coli, purine biosynthesis requires eleven enzymatic steps for production of 511 

inosine monophosphate, the precursor of guanosine and adenosine based 512 

nucleotides (reviewed in (96)). Synechocystis encodes genes with high homology to 513 

all the purine biosynthetic enzymes required for inosine monophosphate in E. coli, 514 

including PurN and PurT, which are both capable of catalysing the third step (Table 515 

1). Both PurB and PurH catalyse two different steps in the pathway. In E. coli, 516 

inosine monophosphate is converted to guanosine diphosphate by GuaB, GuaA and 517 

GmpK, and adenosine diphosphate by PurA, PurB and AmpK (97). All nucleoside-518 

diphosphates are converted to nucleoside-triphosphates via NdkR (98) and to 519 

deoxyribonucleotides via the NrdA/NrdF complex (99). All these enzymes are highly 520 

conserved between E. coli and Synechocystis (Table 1). 521 

 522 

6.2 Pyrimidine biosynthesis 523 

In E. coli, pyrimidine biosynthesis requires six enzymatic steps for production of 524 

uridine diphosphate, the precursor of cytosine-, uridine- and thymidine-based 525 

nucleotides. Carbomyl-P, synthesised from glutamine and bicarbonate by 526 

CarA/CarB, is the initial substrate. Carbomyl-P is converted to orotate via a three 527 

step pathway. Orotate phosophoribosyltransferase (PyrE) transfers a ribosyl group 528 

from 5-phosophoribosyl-1-pyrophosphate to orotate, forming oritidine-5-P, which is 529 

subsequently converted to uridine diphosphate via PyrF and PyrH. In E. coli, uridine 530 

diphosphate is converted to uridine triphosphate via NdkR, then cytosine 531 

triphosphate via PyrG (100). The NrdA/NrdF complex then converts cytosine 532 

triphosphate to deoxycytosine triphosphate. The pathway for biosynthesis of 533 

deoxythymidine nucleotides has not been determined. However, enzymes 534 

homologous to those identified in the Lactococcus lactis pathway are conserved in 535 

Synechocystis (101). Via this pathway, deoxycytosine triphosphate is converted to 536 

deoxyuridine monophosphate via Dcd, which is subsequently converted to 537 

deoxythymidine monophosphate via ThyX, which in turn is converted to 538 

deoxythymidine diphosphate via Tmk. However, experimental evidence is required to 539 

confirm whether this pathway is utilised by Synechocystis. 540 
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 541 

6.3 Nucleotide salvage pathways 542 

Synechocystis also encodes a number of enzymes that display high sequence 543 

similarity to E. coli proteins involved in the nucleotide salvage pathway (100). 544 

However, the role of the salvage pathway in cyanobacteria and how nucleotides are 545 

catabolised has not been investigated. 546 

 547 

7. Cofactor biosynthesis 548 

Unlike many cyanobacterial species, Synechocystis does not require the addition of 549 

any vitamins or cofactors for growth, suggesting that it encodes complete 550 

biosynthetic pathways for each essential compound. However, these pathways have 551 

not been extensively investigated. The majority of proteins in these pathways (Fig. 6) 552 

have been assigned a function in cyanobacteria based on their homology to 553 

characterised enzymes from E. coli, with only a few enzymes characterised in 554 

Synechocystis or other model cyanobacterial species. Tocopherol biosynthesis is 555 

discussed in section 9.4, since this cofactor is synthesised from the same initial 556 

substrates as other isoprenoids. Pseudocobalamin (Vitamin B12) biosynthesis is 557 

discussed in section 10.4, since this cofactor is synthesised from the same initial 558 

substrates as bilins and chlorophyll. 559 

 560 

7.1 Biotin biosynthesis 561 

In Synechocystis, biotin (vitamin B7) is an essential cofactor required by acetyl-CoA 562 

carboxylase (AccA/AccB/AccC/AccD; Section 8.1), which is involved in fatty acid 563 

biosynthesis (102). The biotin biosynthetic pathway has been determined in E. coli 564 

(103). In E. coli, biotin is synthesised from malonyl-ACP-methyl ester, which 565 

undergoes two cycles of fatty elongation to form pimeloyl-ACP-methyl ester. This is 566 

subsequently converted to biotin via five enzymatic steps. Synthesis of the pimeloyl-567 

ACP precursor has not been determined in Synechocystis (104). Putative 568 

homologues of only three enzymes in the biotin biosynthetic pathway, BioF, BioD 569 

and BioB (and not BioH, BioC and BioA) are encoded in the Synechocystis genome 570 

(Fig. 6A) (103). Recently, a novel enzyme, BioU, was demonstrated to catalyse the 571 

same reaction as BioA, conversion of 8-amino-7-oxononoate to 7,8-572 

diaminononanoate (105). The enzymatic activity of BioU is different from BioA. BioU 573 

utilises then reforms NADPH, consumes CO2, and acts as a suicide enzyme, 574 
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meaning it catalyses only a single reaction due to loss of a lysine group. 575 

Synechocystis also encodes a putative BirA protein, which reacts with biotin to form 576 

a biotin-BirA complex that represses biotin biosynthesis (104). 577 

 578 

7.2 NAD+ and NADP+ biosynthesis 579 

Nicotinamide adenine dinucleotide (NAD+) is synthesised in cyanobacteria from L-580 

aspartate by a five-step pathway encoded by most bacterial species (Fig. 6B) (106). 581 

The last two enzymes in the pathway, NadD and NadE, have low sequence similarity 582 

to the equivalent E. coli proteins but the activity of the enzymes has been confirmed 583 

in Synechocystis (107). A second two-step pathway for NAD+ biosynthesis from 584 

nicotinamide has also been proposed (107, 108), although how nicotinamide is 585 

produced has not been determined. NAD+ is converted to NADP+, required as an 586 

electron acceptor in linear photosynthetic electron transport, by NAD kinases, of 587 

which two are present in Synechocystis (NadK1, NadK2) (109). The NAD+/NADP+ 
588 

ratio is regulated by pyridine nucleotide transhydrogenase (PntA/PntB), which 589 

catalyses electron transfer between the two compounds (110). 590 

 591 

7.3 Folate biosynthesis 592 

Folate (vitamin B9) based cofactors (e.g. tetrahydrofolate, 5-methyl tetrahydrofolate, 593 

5,10-methylene tetrahydrofolate) are required in certain enzymatic reactions for 594 

biosynthesis of the amino acids L-methionine, L-serine and glycine (Fig. 4), the 595 

cofactors pantothenate and coenzyme A (Fig. 6G), purine nucleotides and 596 

thymidylate pyrimidines (Fig. 5) and certain tRNAs (111). Folate is synthesised from 597 

the precursors, chorismate and guanosine triphosphate (Fig. 6C). A two-step 598 

pathway (PabB/PabC) results in conversion of chorismate to 4-aminobenzoate. A 599 

four step pathway (FolE/FolB/FolK and possible FolQ) catalyses the conversion of 600 

guanosine triphosphate to 6-hydroxymethyl-7,8-dihydropteroate-PP, which together 601 

with 4-aminobenzoate, catalyses the formation of 7,8-dihydropteroate. FolQ 602 

(Designated as NudB in E. coli) (112) has not been characterised in Synechocystis 603 

but slr0920 shows low sequence similarity to NudB (e value = 4.56E-06) and may 604 

perform FolQ enzymatic activity (Table 2). 7,8-dihydropteroate is subsequently 605 

converted to the different folate variants, although only one enzyme catalysing these 606 

steps, FolC, has been identified. Whether 5-methyl tetrahydrofolate is synthesised by 607 
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Synechocystis is unknown, since the genome does not encode MetF, which 608 

synthesises this compound from 5,10-methylene tetrahydrofolate in E. coli (111). 609 

 610 

7.4 Molybdenum cofactor biosynthesis 611 

Molybdenum cofactors (molybdopterin guanine dinucleotide or molybdopterin-Mo) 612 

act as catalytic centres in a range of enzymes. In Synechococcus, a molybdenum 613 

cofactor is required for nitrate reductase (NarB; Section 11.1) activity (113). If any 614 

other enzymes in cyanobacteria also require molybdenum cofactors has not been 615 

determined. Molybdenum cofactors are synthesised from guanosine triphosphate 616 

(Fig. 6D). This pathway has been characterised in E. coli and proteins demonstrating 617 

high sequence similarity to each enzyme have been identified in Synechocystis 618 

(113). Moreover, several enzymes in the pathway have been characterised in 619 

Synechococcus (113, 114). MoaC is likely a bifunctional enzyme catalysing the 620 

second step, formation of pyranopterin, and the fifth step, synthesis of the cofactor 621 

molybdopterin guanine dinucleotide. The third step, conversion of cyclic pyranopterin 622 

to molybdopterin is catalysed by MPT synthase (MoaD/MoaE), which is regenerated 623 

by MoeB (115).  624 

 625 

7.5 Riboflavin and flavin adenine dinucleotide biosynthesis 626 

Riboflavin (vitamin B2) and flavin adenine dinucleotide (FAD) are also synthesised 627 

from guanosine triphosphate (Fig. 6E). In cyanobacteria, FAD is a cofactor involved 628 

in flavoprotein-mediated redox reactions. The pathway is similar between E. coli and 629 

Synechocystis and enzymes are highly conserved between the species (Table 1). 630 

Three enzymes, RibA, RibD and RibF, catalyse two separate reactions in the 631 

pathway. 632 

 633 

7.6 Thiamine biosynthesis 634 

Thiamine diphosphate (vitamin B1) is a cofactor for several enzymes, including 635 

pyruvate dehydrogenase (Section 3.1), transketolase in the OPP/CBB pathways 636 

(TktA, Section 3.2), and acetolactate synthase, catalysing the first step of L-valine, L-637 

leucine and L-isoleucine biosynthesis (IlvG/IlvN; Section 5.1) (116). It is synthesised 638 

from the purine biosynthetic intermediate, 5-aminoimidazole ribonucleotide (Section 639 

6.1; Fig. 5), glycine and 1-deoxy-D-xylulose-5-P (Fig. 6F). The pathway has been 640 

largely characterised in E. coli (117), but in Synechocystis, homologues have not 641 
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been identified for every protein in the pathway (Table 1). Notably, there is no protein 642 

in Synechocystis with high sequence similarity to ThiD (Table 2), which catalyses the 643 

second biosynthetic step starting at 5-aminoimidazole ribonucleotide. 644 

 645 

7.7 Pantothenate and coenzyme A biosynthesis 646 

The majority of enzymes involved in biosynthesis of pantothenate (vitamin B5; Fig. 647 

6G) and coenzyme A are highly conserved between E. coli and Synechocystis 648 

(Table 1). Coenzyme A is required for formation of acetyl-CoA and in fatty acid 649 

biosynthesis. Three enzymes convert α-ketoisovalerate, an intermediate required for 650 

L-valine and L-leucine biosynthesis (Section 5.1; Fig. 4), to pantothenate. An 651 

additional enzyme, PanD, catalyses the third step, conversion of L-aspartate to β-652 

alanine (118). The second reaction can be catalysed by PanE, not encoded in the 653 

Synechocystis genome (Table 2) or IlvC, which is also involved in L-isoleucine, L-654 

valine and L-leucine biosynthesis (Fig. 4). Coenzyme A is synthesised from 655 

pantothenate via five enzymatic steps (118). Only the first step (conversion of 656 

pantophenate to 4-phosphopantophenate) is catalysed by a different enzyme from 657 

that in the E. coli pathway, specifically a type III pantophenate kinase (CoaX) (119). 658 

 659 

7.8 Pyridoxal-5P biosyntheis 660 

Pyridoxal-5-P (vitamin B6) is a cofactor required by a range of enzymes involved in 661 

amino acid biosynthesis and catabolism, iron, cell wall component and carbon 662 

metabolism, and biosynthesis of other cofactors (For a full list refer to (120)). 663 

Biosynthesis of pyridoxal-5-P in E. coli utilises 1-deoxy-D-xylulose-5-P and 3-amino-664 

2-oxopropyl phosphate as substrates, and is catalysed via PdxA/PdxJ, then PdxH 665 

(Fig. 6H) (121). PdxA, PdxJ and PdxH are conserved in Synechocystis but the three 666 

enzyme pathway for 3-amino-2-oxopropyl phosphate biosynthesis has not been 667 

determined.  668 

   669 

8. Membrane and cell wall biosynthesis 670 

Cyanobacterial membrane composition differs from that of heterotrophic bacteria. 671 

Five classes of lipids accumulate in Synechocystis plasma and thylakoid 672 

membranes: Phosphatidylglycerol, monogalactosyl-diacylglycerol, digalactosyl-673 

diacylglycerol, sulfoquinovosyl-diacylglycerol and hydrocarbons (122, 123). Like 674 
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other Gram-negative prokaryotes, cyanobacteria are encompassed by a 675 

peptidoglycan layer and an OM containing lipopolysaccharides (LPSs). 676 

 677 

8.1 Lipid biosynthesis 678 

Cyanobacterial lipids are synthesised from acyl-ACPs (acyl carrier proteins), which in 679 

turn are synthesised from acetyl-CoA by a pathway similar to that in E. coli (Table 1; 680 

Fig. 7). Predominantly C16 and C18 acyl-ACPs are synthesised with various 681 

degrees of saturation catalysed by four possible desaturases (DesA, DesB, DesC, 682 

DesD) (124). A PM associated protein, Aas (32), mediates import of acyl-ACPs and 683 

fatty acids from the PM and periplasm (125, 126). 684 

 685 

Hydrocarbons are synthesised directly from acyl-ACPs (127, 128), with the majority 686 

of cyanobacteria (including Synechocystis) producing C15 or C17 alkanes via a two-687 

step pathway (Aar/Ado) (129), while the remainder produce C17 or C19 alkenes via 688 

a polyketide synthase (Ols) (130). The other lipids are synthesised from 1,2-diacyl-689 

glycerol-3-P, which is produced from acyl-ACPs via three enzymes (PlsX, PlsY, 690 

PlsC) (131). A further three enzymatic steps are required for phosphatidylglycerol 691 

biosynthesis. The enzyme catalysing the second step, PgsA, is non-essential in 692 

Synechocystis, when the mutant is supplemented with phosphatidylglycerol (132). 693 

There is no Synechocystis protein with any sequence similarity to PgpB, the enzyme 694 

in E. coli that catalyses the third step (Table 2). 695 

 696 

1,2-diacyl-glycerol-3-P is likely converted to diacylglycerol, the common substrate for 697 

synthesis of the other membrane lipids. The enzyme catalysing this step has not 698 

been identified. The reverse reaction is likely catalysed by DgkA. MgdA catalyses 699 

conversion of diacylglycerol to monoglucosyl-diacylglycerol, which is likely converted 700 

to monogalactosyl-diacylglycerol by an unidentified epimerase (133). 701 

Monogalactosyl-diacylglycerol is then converted to digalactosyl-diacylglycerol by 702 

DgdA (134). Sulfoquinovose, synthesised from UDP-glucose and sulfate by SqdB 703 

(135, 136), is reacted with diacylgycerol by SqdX to form sulfoquinovosyl-704 

diacylglycerol (137). 705 

 706 

The Synechocystis genome encodes no proteins with homology to enzymes involved 707 

in β-oxidation (Table 2), although one report has suggested the capacity for fatty acid 708 
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catabolism is retained (138). If so, there must be an alternate, uncharacterised 709 

pathway responsible for lipid degradation. 710 

 711 

8.2 Lipoic acid biosynthesis 712 

Lipoic acids are cofactors required for a range of enzymes, including pyruvate 713 

dehydrogenase and the glycine cleavage system (GcvH/GcvP/GcvT/GcvL; Fig. 2) 714 

(139). The biosynthestic pathway has been elucidated in E. coli (140). Lipoic acids 715 

are covalently attached to enzymes via LipB and then sulfonated via LipA. In 716 

contrast to E. coli, there are two putative LipA proteins in Synechocystis (Table 1). 717 

 718 

8.3 Peptidoglycan biosynthesis and depolymerisation 719 

The structure of Synechocystis peptidoglycan has not been determined. However, 720 

peptidoglycan in the closely related species, Synechocystis sp. PCC 6714, 721 

incorporates L-alanine, D-alanine, D-glutamate and meso-diaminopimelate into 722 

peptide bridges, which are linked to polymers consisting of alternating 723 

acetylglucosamine and acetylmuramate monomers. The enzymes synthesising 724 

peptidoglycan monomers (acetylglucosamine-N-acetylmuramate-pentapeptides) 725 

from UDP-N-acetylglucosamine are highly conserved between E. coli and 726 

Synechocystis (Table 1). Surprisingly, the last two enzymes in the pathway, MraY 727 

and MurG have been localised to the TM in Synechocystis (31, 32), suggesting that 728 

an additional protein or process must transport these monomers to the PM. The 729 

flippase involved in translocating the acetylglucosamine-N-acetylmuramate-730 

pentapeptide monomers to the periplasmic side of the PM in E. coli (MurJ) has not 731 

been identified in cyanobacteria (141). However, the protein encoded by slr0488 in 732 

Synechocystis demonstrates some sequence similarity to MurJ (E value = 1.06E-28; 733 

Table 1) but its function needs to be confirmed experimentally. 734 

 735 

Polymerization of peptidoglycan is catalysed by the penicillin-binding proteins (PBPs) 736 

1-4 and FtsW (142), while depolymerisation and recycling of peptidoglycan 737 

monomers is catalysed by PBPs 5-8 and AmiA-C (143). Four proteins in E. coli have 738 

been implicated in importing depolymerised peptidoglycan components (NagE, 739 

MurP, AmpG, Opp) (144), but only Opp, an oligopeptide transporter consisting of 740 

four subunits, is encoded in the Synechocystis genome (Table 2). A series of 741 

cytosolic enzymes conserved in Synechocystis (Mpl, NagZ, AnmK, NagK, MurQ) 742 
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likely recycle depolymerised peptidoglycan components back into peptidoglycan 743 

biosynthesis (144). Other E. coli enzymes involved in recycling (NagA, NagB, AmiD, 744 

AmpB) have no homologues in Synechocystis (Table 2). 745 

  746 

8.4 Lipopolysaccharide biosynthesis 747 

LPSs are incorporated into the OM of cyanobacteria, including Synechocystis (66). 748 

Four enzyme synthesise the Lipid A disaccharide core of the LPS and are highly 749 

conserved between E. coli and Synechocystis (Table 1). The protein involved in 750 

translocating Lipid A disaccharide to the periplasmic side of the PM has not been 751 

identified, although four PM localised proteins with high sequence similarity to MsbA 752 

(slr2019: E value = 8.64E-91; sll1276: E value = 2.28E-84; sll1725: E value = 7.22E-753 

83; slr1149: E value = 1.82E-73; Table 2), the characterised Lipid A disaccharide 754 

flippase from E. coli (145), are encoded in the Synechocystis genome (32). 755 

Biosynthesis of the polysaccharide portion of the LPS has not been determined in 756 

cyanobacteria (146). Five PM-localised glycosyltransferases are encoded by the 757 

Synechocystis genome which may play a role in saccharide polymerisation (Table 758 

1). However, the Synechocystis genome encodes no proteins with homology to 759 

those in E. coli involved in transporting polysaccharides across the PM (i.e. 760 

Wzm/Wzt or Wzx), ligation of the polysaccharide to the Lipid A disaccharide core 761 

(WaaL) or transport of the fully synthesised LPS to the OM (LptA, LptC, LptD, LptE), 762 

with the possible exception of LptB (Table 2). 763 

 764 

9. Isoprenoid, quinol and carotenoid biosynthesis 765 

Isoprenoids play a key role in electron transport, photoprotection, light harvesting, 766 

membrane integrity and organisation, and are incorporated into a range of 767 

compounds including LPSs, peptidoglycan and chlorophyll. 768 

 769 

9.1 Isoprenoid biosynthesis 770 

Isoprenoids, specifically undecaprenyl diphosphate, farnesyl diphosphate and 771 

geranylgeranyl diphosphate, are substrates required for biosynthesis of a wide range 772 

of compounds including hopenes, LPSs, peptidoglycan, carotenoids, phylloquinone, 773 

plastoquinone, chlorophyll and tocopherols. Geranylgeranyl diphosphate is 774 

synthesised from pyruvate and glyceraldehyde-3-P via eight enzymes, all of which 775 

are highly conserved between E. coli and Synechocystis (Table 1; Fig. 8) (147). An 776 
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additional enzyme, Ipi, is involved in isomerisation of isopentenyl diphosphate and 777 

dimethylallyl diphosphate (148). Synechocystis mutants lacking Ipi demonstrate 778 

deficient isoprenoid biosynthesis, smaller cell size and reduced TMs, and an altered 779 

cell wall (149).   780 

 781 

9.2 Hopene biosynthesis 782 

Hopenes are synthesised from farnesyl diphosphate in Synechocystis via two 783 

enzymes, Sqs and Shc (150). While the exact role of hopenes has not been 784 

determined in cyanobacteria, they have been suggested to play a role in membrane 785 

integrity in non-sulfur purple photosynthetic bacteria (151). Hopenes have been 786 

detected in the TM, PM and OM of Synechocystis sp. PCC 6714 (152). Sqs and Shc 787 

are expressed under photoautotrophic conditions in Synechocystis (32). 788 

 789 

9.3 Carotenoid biosynthesis 790 

Geranylgeranyl diphosphate is the substrate for carotenoid biosynthesis. 791 

Carotenoids play a key role in assembly of photosynthetic complexes (153), 792 

membrane integrity and thylakoid organisation (154), and as light harvesting and 793 

photoprotective pigments. Seven carotenoids have been detected in Synechocystis: 794 

synechoxanthin, myxol-2’-dimethylfucoside (myxoxanthophyll), zeaxanthin, 3’-795 

hydroxy-echinenone, cis-zeaxanthin, echinenone and β-carotene (155). The pathway 796 

has not been completely elucidated (156-158), but twelve enzymes have been 797 

demonstrated to play a role in carotenoid biosynthesis. 798 

 799 

9.4 Tocopherol biosynthesis 800 

Tocopherols (Vitamin E) play a role in protecting cyanobacteria from lipid 801 

peroxidation (159), cold tolerance (160) and potentially optimising photosynthetic 802 

activity (161). All tocopherols are synthesised from the precursor 6-methyl-6-phytyl-803 

1,4-benzoquinol, which is synthesised by Hpt utilising the substrates phytyl 804 

diphosphate and homogentisate (162-164). Phytyl diphosphate is synthesised from 805 

geranylgeranyl diphosphate by ChlP (165). Homogentisate is synthesised from 4-806 

hydroxyphenyl-pyruvate (166), which is typically synthesised from prephenate by 807 

TyrA. However, Synechocystis TyrA demonstrates specificity only to arogenate 808 

(167), suggesting that 4-hydroxyphenyl-pyruvate may be synthesised by an alternate 809 

route. Four tocopherols (α, β, δ, γ) are produced by Synechocystis (168), although it 810 
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has not been determined if each has separate roles in the cell. α- and γ- tocopherols 811 

are synthesised from 6-methyl-6-phytyl-1,4-benzoquinol via VTE1, VTE3 and VTE4, 812 

while β and δ tocopherols are synthesised via VTE3 and VTE4 (169). 813 

 814 

9.5 Phylloquinone and plastoquinone biosynthesis 815 

Phylloquinone (Vitamin K1) and plastoquinone are synthesised from chorismate. 816 

Phylloquinone acts as an electron acceptor in photosystem I (170), and while not 817 

essential under photoautotrophic conditions, loss of this compound results in a 818 

severe growth defect when cells are exposed to high light conditions (171). 819 

Phylloquinone is synthesised by ten enzymes of which several have been 820 

characterised in Synechocystis (171, 172). The majority have been identified based 821 

on homology with proteins synthesising menaquinone (Vitamin K2) and characterised 822 

in other bacteria (173). The second last enzyme in the pathway, MenA, utilises phytyl 823 

diphosphate, while the last enzyme requires that dimethylphylloquinone be reduced 824 

via NAD(P)H dehydrogenase NdbB to dimethylphylloquinol, prior to synthesis of 825 

phylloquinone by MenG (174). 826 

 827 

Plastoquinone is an essential electron carrier required for photosynthesis and 828 

respiration (23). Despite the importance of plastoquinone, the entire biosynthetic 829 

pathway has not been determined (175). Catalytic activity of only the first three 830 

enzymes in the pathway, UbiC, UbiA and UbiX, has been determined by expression 831 

of the Synechocystis genes in E. coli (175, 176). Deletion of a putative 4-hydroxy-3-832 

solanesylbenzoate decarboxylases, encoded by sll0936, results in reduced 833 

plastoquinone levels (175), suggesting an uncharacterised role for this protein in its 834 

biosynthesis.  835 

 836 

10. Chlorophyll, phycobilin and pseudocobalamin biosynthesis 837 

Chlorophyll and phycobilins are the light harvesting pigments incorporated into 838 

photosystems and phycobilisomes, respectively. Pseudocobalamin (vitamin B12) is 839 

synthesised from the same precursor substrate, uroporphyrinogen III, and is 840 

therefore included in this section. 841 

 842 

10.1 Heme biosynthesis 843 
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Heme, the precursor of phycobilins, is synthesised from L-glutamate and tRNAGlu via 844 

ten enzymatic steps (Fig. 9). All enzymes, apart from HemJ, are highly conserved 845 

between E. coli and Synechocystis (Table 1) (177). In contrast to E. coli, HemJ, not 846 

HemG or HemY, is the protophyrinogen IX oxidase most commonly found in 847 

cyanobacteria (178). HemJ likely requires plastoquinone as an electron acceptor in 848 

Chlamydomonas reinhardtii (179) and localisation of Synechocystis HemJ to the TM 849 

(32) suggests a similar enzymatic reaction. The Synechocystis genome also 850 

encodes additional enzymes expressed under micro-oxic conditions, including 851 

HemN1 (and possibly HemN2) (180), which can catalyse the eighth enzymatic step 852 

of heme biosynthesis, in addition to Ho2 (181, 182) and ChlA2 (183), which are 853 

involved in bilin and chlorophyll biosynthesis, respectively. It should be noted that 854 

these enzymes still require oxygen for catalytic activity. However, they may bind 855 

oxygen with greater affinity than the enzymes catalysing the same step which are 856 

expressed under non-microoxic conditions. Heme does not accumulate in mutants 857 

deficient in Ho1 and Ho2, which catalyse the first steps in bilin biosynthesis, 858 

suggesting that heme is rapidly degraded by an uncharacterised pathway (182).  859 

 860 

10.2 Bilin biosynthesis 861 

Heme is the substrate for biosynthesis of biliverdin, which in turn is the substrate for 862 

production of the pigments phycocyanobilin and phycoerythrobilin. These pigments 863 

are subsequently incorporated into the light harvesting phycobilisome complex (184). 864 

Synechocystis only produces phycocyanobilin via the enzyme PcyA (184). 865 

Synechocystis also encodes a biliverdin reductase, BvdR, resulting in production of 866 

bilirubin (185). While the exact role of bilirubin has not been determined, deletion of 867 

BvdR results in a mutant with severely attenuated phycobilisomes. 868 

 869 

10.3 Chlorophyll biosynthesis 870 

Chlorophyll, the main pigment in photosystems, is synthesised from protoporphyrin 871 

IX, the immediate precursor of heme, via seven enzymatic steps. The complete 872 

pathway has been characterised in Synechocystis. The first step of chlorophyll 873 

biosynthesis is catalysed by three magnesium chelatase enzymes, ChlD, ChlH and 874 

ChlI, resulting in production of Mg-protoporphyrin IX (186). GUN4 is also essential 875 

for magnesium chelatase activity (187-189). The second step is catalysed by ChlM 876 

(190), while the third is catalysed via ChlA1 (AcsF) or ChlA2 (191). Ycf54 may also 877 
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be required for ChlA1 activity (192). Two independent enzymes, a light-dependent 878 

NADPH:protochlorophyllide reductase (LPOR) or a ferredoxin-dependent DPOR 879 

complex, can catalyse the following step (193), while BciB catalyses the step after 880 

this (194, 195). Geranylgeranyl is incorporated into chlorophyll by ChlG in the 881 

second last step. In a landmark paper, expression of ChlDHI and GUN4, ChlM, 882 

ChlA1, LPOR, BciB, ChlG and ChlP in E. coli was sufficient for chlorophyll 883 

biosynthesis (196), demonstrating that no other enzymes are required in this 884 

pathway.  885 

 886 

10.4 Pseudocobalamin biosynthesis 887 

Cobalamin (Vitamin B12) is required for activity of MetH, involved in methionine 888 

biosynthesis (Fig. 4), and may be required by certain enzymes in the quinone and 889 

folate biosynthesis pathways (197). Cyanobacteria produce an alternate form of 890 

vitamin B12 termed pseudocobalamin (198). Vitamin B12 is synthesised from the 891 

heme biosynthetic intermediate, uroporphyrinogen III. The cob(II)yrinate a,c-diamide 892 

component of vitamin B12 can be synthesise by either an aerobic or anaerobic 893 

pathway, which share certain enzymes (199). These pathways have been 894 

characterised in a range of heterotrophic bacteria (199, 200) but relatively few 895 

cyanobacterial enzymes have been investigated. Synechocystis encodes all the 896 

enzymes in the anaerobic pathway but is missing five in the aerobic pathway (CobG, 897 

CobF, CobK, CobS, CobT), suggesting that this biosynthetic route is not utilised 898 

(Table 1). Several enzymes involved in converting cob(II)yrinate a,c-diamide to 899 

pseudocobalamin (CobO, CobQ, CbiB, CobU, CobV) are potentially encoded in the 900 

Synechocystis genome. However, the exact biosynthetic steps have not been 901 

determined and the pathway in Synechocystis can only be speculated based on 902 

characterised pathways from species that synthesise cobalamin (199). 903 

 904 

Synechocystis also has the genetic potential to produce siroheme from the 905 

pseudocobalamin biosynthetic intermediate, sirohydrochlorin. Siroheme is a cofactor 906 

required for nitrite reductase (201) and possibly for other enzymes. 907 

 908 

11. Transport systems  909 

The majority of proteins potentially involved in metabolite transport localise to the PM 910 

(Fig. 10) (32). However, there are many putative transporters in Synechocystis with 911 
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no assigned function (Table 4), suggesting that our knowledge of cyanobacterial 912 

metabolite transport is still incomplete.  913 

 914 

11.1 Ammonia, nitrate, nitrite and urea transport 915 

A range of transporters are responsible for import of nitrogen-based compounds. 916 

Synechocystis encodes three ammonium transporters (Amt1, Amt2, Amt3), with 917 

Amt1 being responsible for the majority of uptake (202). Another transporter 918 

complex, comprising four subunits, NrtA-D, imports nitrate and nitrite (203-205). 919 

Nitrate is reduced to nitrite by NarB (206), while NirA converts nitrite to ammonium 920 

(207). Both enzymes require electrons supplied by ferredoxin (201). Synechocystis 921 

can also utilise urea, which is imported into the cell via a transporter complex 922 

composed of five subunits, UrtA-E (208). Urea is converted to two molecules of 923 

ammonia via the urease complex comprising three subunits, UreA-C, which is 924 

assembled by four accessory proteins, UreD-G (209). 925 

 926 

11.2 Amino acid transport 927 

A range of permeases with affinity for different amino acids have been characterised 928 

in Synechocystis in an extensive study conducted by Quintero et al (210). The basic 929 

amino acid transporter encoded by BgtA and BgtB mediates transport of L-arginine, 930 

L-histidine, L-lysine and L-glutamine. Two transporters, the Gtr complex composed 931 

of GtrA-C, and the single protein GltS system, mediate L-glutamate transport. The 932 

neutral amino acid system encoded by NatA-E mediates transport of L-alanine, 933 

glycine, L-leucine, L-proline, L-serine and L-histidine. A separate study also 934 

implicated this transporter in import of L-cysteine (211). Whether these transporters 935 

can export amino acids or transport any of the other ten amino acids is unknown. It is 936 

also possible that uncharacterised permeases may play a role in transport of other 937 

amino acids. 938 

 939 

11.3 Metal ion transport 940 

The Synechocystis genome encodes a range of transporters mediating import of 941 

metal ions into the cytosol, and in the case of Cu+, into the thylakoid lumen. 942 

Additional transporters are also required for metal homeostasis and efflux. 943 

 944 

11.3.1 Copper transport 945 
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Three copper (Cu+) transporters, CtaA, PacS and the Cop complex, have been 946 

characterised in Synechocystis. Cyanobacteria require Cu+ in the thylakoid lumen for 947 

the electron carrier plastocyanin. Proteome mapping of Synechocystis localised 948 

PacS to the PM and CtaA to the TM (32), suggesting these are the main Cu+ 949 

importers in each membrane (212). A chaperone, Atx1, likely localises to the cytosol 950 

but possibly also the the thylakoid lumen, binds Cu+ and delivers it to proteins 951 

requiring it for enzymatic activity (213, 214). The Cop complex, composed of CopA-952 

C, is involved in Cu+ efflux (215). An additional protein, CopM, binds Cu+ in the 953 

periplasm and mutants lacking this protein are highly sensitive to elevated levels of 954 

Cu+ (216). 955 

 956 

11.3.2 Potassium transport 957 

Synechocystis encodes two PM localised potassium (K+) uptake systems, Ktr 958 

(KtrA/KtrB) and Kdp (KdpA, KdpB, KdpC, KdpD) (217). The Ktr system mediates 959 

rapid K+ uptake while the Kdp system maintains K+ levels under limiting conditions in 960 

the environment (217, 218). KtrC was initially incorrectly assigned as a subunit of the 961 

Ktr complex (219), but was later assigned to monoglucosyldiacylglycerol synthesis, 962 

not K+ import (134). A third TM localised transporter, SynK (220), is responsible for 963 

K+ efflux from the thylakoid lumen (221). An additional calcium activated, PM 964 

localised transporter, SynCak, may also be involved in potassium transport (222). 965 

Deletion of SynCak in Synechocystis results in a mutant with altered membrane 966 

potential and greater resistance to zinc. 967 

 968 

11.3.3 Calcium transport 969 

Calcium (Ca2+) transport is not well understood in cyanobacteria. A putative Ca2+/H+ 970 

antiporter, SynCax, has been identified (223, 224), and localises to the TM (32). A 971 

PM localised Ca2+ importer has not been identified. MscL has been proposed to be 972 

involved in Ca2+ export (225). 973 

 974 

11.3.4 Iron transport 975 

Iron is potentially imported into Synechocystis via multiple transporters, although 976 

only the Fut system is essential (226, 227). FeoB, which imports Fe2+, is the main 977 

iron transporter in Synechocystis (228). In the Fut system, a periplasmic protein, 978 

FutA2, bind Fe3+ (229, 230) prior to uptake by the FutB/FutC membrane transporter 979 
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(227). A second futA protein, FutA1, has been postulated to bind Fe3+ in the cytosol 980 

(228), although proteome mapping localised it to the PM (32). Three ExbB-ExbD 981 

complexes identified in Synechocystis, possibly in association with TonB and one to 982 

three putative FhuA OM transporters, are also required for iron uptake (226, 231). 983 

Once imported, iron is stored in ferritin complexes (BfrA, BfrB) in the cytosol (232). 984 

Synechocystis also encodes subunits of a putative Fe3+ dicitrate transporter, 985 

although this system is reportedly less important for iron import (104). 986 

  987 

11.3.5 Manganese, molybdate, zinc and magnesium transport 988 

Manganese (Mn2+) is imported into Synechocystis via the MntABC complex (233), 989 

although other low-affinity transport systems may be present. Mn2+ plays a key role 990 

in the oxygen evolving centre of photosystem II. Mnx, is essential for tolerance of 991 

Synechocystis to high manganese levels and may play a role in exporting Mn2+ from 992 

the cytosol to the thylakoid lumen (234). The Synechocystis genome encodes 993 

proteins (ModA and ModBC) with high homology to the characterised molybdate 994 

transporter of E. coli (E values = 6.32E-37 and 9.94E-51, respectively) (235), but this 995 

complex has not been characterised in a cyanobacterium. The zinc (Zn2+) 996 

transporter, composed of the ZnuA, ZnuB and ZnuC subunits, is highly conserved 997 

between E. coli and Synechocystis (Table 1). Only the ZnuA protein has been 998 

characterised in Synechocystis (236). A separate protein, ZiaA, is involved in Zn2+ 999 

export (237). Atx1 may also act as a Zn2+ chaperone, in addition to its role as a Cu2+ 1000 

chaperone (238). The Synechocystis genome also encode two putative magnesium 1001 

transport proteins, MgtC and MgtE (239), both of which localise to the PM (32). 1002 

 1003 

11.3.6 Cation efflux systems 1004 

A number of cation efflux systems are encoded by the Synechocystis genome. The 1005 

Nrs complex (NrsA, NrsB, NrsC, NrsD) was induced when cells were exposed to 1006 

excess Ni2+, Co2+ and Zn2+, the CoaA transporter when cells were exposed to Co2+ 1007 

and Zn2+, and the ArsB transporter by exposure to arsenic (240). 1008 

 1009 

11.3.7 Sulfate transport 1010 

Sulfate is transported into cells by the SbpA/CysA/CysW/CysT system, which is 1011 

highly conserved between E. coli and Synechocystis (Table 1). Sulfate is converted 1012 

to sulphide by the assimilatory pathway divided into four enzymatic steps. The 1013 
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enzymes catalysing the final three steps are conserved between E. coli and 1014 

Synechocystis. The first enzyme in the pathway, Sat, is widely conserved in bacteria 1015 

capable of sulfate reduction. 1016 

 1017 

11.3.8 Phosphate transport 1018 

Synechocystis contains two systems for phosphate uptake, Pst1 and Pst2, each 1019 

composed of four subunits (241, 242). The PstS subunits of each system, in addition 1020 

to SphX, bind phosphate in the periplasm, prior to uptake (242). Following uptake, 1021 

phosphate can be stored in polyphosphate, which consists of polymers containing 1022 

tens to hundreds of phosphates. Phosphate is converted to polyphosphate by 1023 

polyphosphate kinase (Ppk1), via sequential addition of single residues (243). A 1024 

second Ppk enzyme, Ppk2, homologous to an enzyme characterised in 1025 

Pseudomonas aeruginosa (244), likely synthesises polyphosphate from ATP. Ppx 1026 

catalyses depolymerisation of polyphosphate, releasing inorganic phosphate (243). 1027 

Another enzyme, Ppa, converts diphosphate to phosphate and is essential in 1028 

Synechocystis (243). 1029 

 1030 

11.4 Sodium antiporters 1031 

Synechocystis encodes six putative sodium (Na+) antiporters (245), three of which 1032 

localise to the TM (NhaS1, NhaS3, NhaS6) and two to the PM (NhaS2, NhaS5) (32). 1033 

Only NhaS3 is essential in Synechocystis (246). NhaS3 has been suggested to play 1034 

a role in maintaining not just H+ and Na+, but also K+ homeostasis (247). Deletion of 1035 

the remaining Nha antiporters did not affect growth, even when cells were exposed 1036 

to high salt concentrations, suggesting that these proteins can compensate for loss 1037 

of each other (246). 1038 

 1039 

11.5 Organic and inorganic carbon transport 1040 

Synechocystis encodes transporters that import a range of organic carbon 1041 

compounds. These include GlcP that imports glucose (36) and the Ggt complex, 1042 

which imports glucosylglycerol and possibly sucrose and trehalose (248, 249). A 1043 

number of transporters for inorganic carbon have been characterised in 1044 

Synechocystis. These play a key role in the CO2-concentrating mechanism during 1045 

photosynthesis, and include the Cmp complex (BCT1 transporter) (250, 251), the 1046 

SbtA transporter (252, 253) and the BicA transporter (254). 1047 
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 1048 

11.6 Water transport 1049 

Synechocystis encodes an aquaporin water channel, aqpZ, which is required for 1050 

regulating osmotic stress (255), and is essential for mixotrophic growth (256). 1051 

 1052 

12. Future directions in understanding cyanobacterial metabolism 1053 

Gaining a complete understanding of cyanobacterial metabolism is dependent on 1054 

optimising the slow process of mutant generation and characterisation, or developing 1055 

bioinformatics tools which provide better insight into protein function, in order to 1056 

easily develop enzyme assays. To bypass the laborious step of mutant generation, 1057 

we are developing CyanoSource, a mutant library targeting every gene in 1058 

Synechocystis. Construction of the library is outlined in Gale et al. (257). Building on 1059 

our transformation and Modular Cloning (MoClo) techniques (258, 259), we will 1060 

collaborate with United Kingdom DNA Foundries in Norwich and Edinburgh to 1061 

automate the generation of a whole genome library of gene insertion plasmids 1062 

(representing 3,456 coding sequences (CDSs)), and will transform Synechocystis to 1063 

generate the largest available collection of known and novel cyanobacterial mutant 1064 

strains.  1065 

 1066 

Each CyanoSource plasmid will consist of a pUC19 based backbone into which two 1067 

regions flanking the gene of interest will be inserted. Between these regions a 1068 

positive selectable marker, a cassette conferring resistance to kanamycin (KanR), 1069 

and a counter-selection negative selectable marker based on the cytosine 1070 

deaminase protein CodA (260), will be inserted. Marked mutants will be generated 1071 

by transformation of the plasmid into Synechocystis and growth of the mutant on 1072 

increasing concentrations of kanamycin. If segregated mutants are not obtained on 1073 

agar plates containing kanamycin concentrations of 400 μg/mL, the gene will be 1074 

deemed essential. In this case, other growth conditions may be trialled, in addition to 1075 

growth on different types of metabolites to generate auxotrophic mutants. 1076 

Conditional mutants (i.e., specialised mutants that require an external stimulus to 1077 

repress a gene) will be constructed for essential genes that cannot be removed by 1078 

any of these mechanisms. Only marked mutants will be generated for CyanoSource. 1079 

For generation of unmarked mutants, users can easily excise the kanR/CodA 1080 

cassette and the plasmid containing the backbone and flanking regions can be 1081 
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introduced into the marked mutant. Unmarked mutants are selected by growth of 1082 

transformants on agar plates containing 5-fluorocytosine. CodA converts this 1083 

chemical to 5-fluorouracil, which is highly toxic to many bacteria. All strains, including 1084 

knockout, partially segregated, conditional and auxotrophic mutants, and plasmids 1085 

containing the flanking regions interspersed with the positive and negative selectable 1086 

markers, will be made available to the academic and biotechnology community as 1087 

these are constructed throughout 2020/21.  1088 

 1089 

This library will allow us to determine the essential Synechocystis gene set, which 1090 

can be compared to the one generated in Synechococcus via transposon 1091 

mutagenesis (261). This will provide insight into the essential gene set of the phylum. 1092 

CyanoSource may also provide insights into the function of many proteins involved in 1093 

metabolism. Generation of auxotrophic mutants will provide strong evidence that the 1094 

encoded protein is involved in the same pathway as putative characterised 1095 

homologues from other species. However, deletion of these genes may only be 1096 

possible if the metabolite the encoded protein plays a role in synthesising can be 1097 

imported into the cell. Research groups with expertise in enzyme and pathway 1098 

characterisation but lacking expertise in generation of cyanobacterial mutants may 1099 

also be encouraged to investigate the function and enzymatic activity of 1100 

cyanobacterial proteins, especially in light of recent high-impact publications on 1101 

characterisation of Synechocystis enzymes and pathways (79, 105). 1102 

 1103 

A better understanding of Synechocystis metabolism will help to expand on current 1104 

gaps in the metabolic biochemistry, as outlined in this review. Since it is likely that a 1105 

high proportion of these pathways are conserved throughout the phylum, 1106 

understanding  Synechocystis metabolism will aid our understanding of 1107 

cyanobacterial species that play a key role in the environment (e.g. marine 1108 

Prochlorococcus and Synechococcus species) or which have characteristics ideal for 1109 

biotechnology (e.g. the fast growing cyanobacteria, Synechococcus sp. PCC 11901 1110 

(262)). This will be critical in optimisation of biotechnologically relevant species as 1111 

renewable platforms for production of chemicals currently derived from fossil fuels.  1112 

 1113 

Figures 1114 
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Fig. 1: Schematic detailing the ultrastructure of Synechocystis sp. PCC 6803 1115 

showing various subcellular components. Schematic adapted from (32, 34). 1116 

 1117 

Fig. 2: Schematic detailing the pathways involved in central metabolism. 1118 

Biosynthetic steps involved in glycolysis and gluconeogenesis are highlighted in red 1119 

and blue respectively. Steps in the Entner-Doudoroff pathway are highlighted in 1120 

green. Steps involved in the oxidative pentose phosphate pathway and the Calvin-1121 

Benson-Bassham cycle are highlighted in orange and purple, respectively. 1122 

Fermentation pathways are highlighted in pink. Photorespiration pathways are 1123 

highlighted in olive. Where enzymes catalyse reactions in two pathways, the arrows 1124 

are split between their respective colours. The carboyxsome is represented as a 1125 

purple octagon. Cofactors in each reaction are shown with the exception of protons, 1126 

water, oxygen and inorganic phosphate.  1127 

 1128 

Fig. 3: Metabolism and degradation of nucleotide sugars and sugar osmolytes. 1129 

Compounds highlighted in blue are substrates for lipopolysaccharide biosynthesis. 1130 

Steps highlighted in grey are compounds and reactions not involved in these 1131 

pathways but detailed in figure 1. Cofactors in each reaction are shown with the 1132 

exception of protons, water, oxygen and inorganic phosphate. 1133 

 1134 

Fig. 4: Metabolism of amino acids, cyanophycin, glutathione and iron-sulfur 1135 

clusters. The twenty L-amino acids are highlighted in red while amino acids 1136 

incorporated into peptidoglycan are highlighted in blue. The iron-sulfur biosynthetic 1137 

pathways is highlighted in green. Steps highlighted in grey are compounds and 1138 

reactions not involved in these pathways but detailed in figure 1. Cofactors in each 1139 

reaction are shown with the exception of protons, water, oxygen and inorganic 1140 

phosphate. 1141 

 1142 

Fig. 5: Metabolism of nucleotides. The purine and pyrimidine biosynthesis 1143 

pathways are highlighted in red and blue respectively. Possible nucleotide salvage 1144 

pathways are highlighted in green. Cofactors in each reaction are shown with the 1145 

exception of protons, water, oxygen and inorganic phosphate. 1146 

 1147 
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Fig. 6: Metabolism of vitamins and cofactors. Detailed are the pathways for 1148 

biosynthesis of A) Biotin, B) NAD+ and NADP+, C) folate, D) molybdenum cofactors, 1149 

E) riboflavin and FAD, F) thiamine, G) pantothenate and coenzyme A, H) pyridoxal-1150 

5P. Vitamins and cofactors are highlighted in blue. Cofactors in each reaction are 1151 

shown with the exception of protons, water, oxygen and inorganic phosphate. 1152 

 1153 

Fig. 7: Metabolism of membrane lipids, peptidoglycan and 1154 

lipopolysaccharides. Membrane lipids are highlighted in blue. Steps highlighted in 1155 

grey are compounds and reactions not involved in these pathways but detailed in 1156 

figure 1. Cofactors in each reaction are shown with the exception of protons, water, 1157 

oxygen and inorganic phosphate. 1158 

 1159 

Fig. 8: Metabolism of isoprenoids, quinols and carotenoids. Carotenoids are 1160 

highlighted in blue. Cofactors in each reaction are shown with the exception of 1161 

protons, water, oxygen and inorganic phosphate. 1162 

 1163 

Fig. 9: Metabolism of chlorophyll, phycobilin and pseudocobalamin. Proteins 1164 

involved in anaerobic or low oxygen environment enzymatic steps are highlighted in 1165 

blue. Cofactors in each reaction are shown with the exception of protons, water and 1166 

inorganic phosphate. 1167 

 1168 

Fig. 10: Proteins involved in metabolite transport and conversion of nitrogen, 1169 

sulfur and phosphate based compounds. Localisation of transporters in either the 1170 

PM or TM is detailed. Subunits in each complex may not all be membrane localised 1171 

but soluble. Cofactors in each reaction are shown with the exception of protons, 1172 

water, oxygen and inorganic phosphate. 1173 

 1174 

Table 1: Annotated proteins involved in metabolism or transport in 1175 

Synechocystis sp. PCC 6803. Proteins were identified from the literature, the 1176 

KEGG database (263-265) and by using the NCBI BLASTp algorithm (266) to find 1177 

homologs in Escherichia coli K12. KEGG ID relates to the identification system used 1178 

on the KEGG database. The Uniprot ID relates to the identification system used on 1179 

the Uniprot database (267). The Uniprot ID amino acid sequence stored within this 1180 

database was then used during the BLASTp function. All Gene Products, Gene 1181 

D
ow

nloaded from
 https://portlandpress.com

/bioscirep/article-pdf/doi/10.1042/BSR
20193325/869231/bsr-2019-3325c.pdf by U

niversity of East Anglia user on 10 M
arch 2020

Bioscience R
eports. This is an Accepted M

anuscript. You are encouraged to use the Version of R
ecord that, w

hen published, w
ill replace this version. The m

ost up-to-date-version is available at https://doi.org/10.1042/BSR
20193325



36 
 

Name, Other Gene Names, Localisation, Molecular Weight (kDa) and No of TMH's 1182 

are derived from Baers et al (2019) (32). Genes with assigned function are 1183 

highlighted in red in column A. Each blast hit shows the NCBI Accession, in addition 1184 

to the Percentage Identity Score (% Identity), the length of the alignment (AL), 1185 

number of mismatches (M) as well as the number of gaps within the alignment (GO). 1186 

The species start and end refers to the start and end of the alignment within each 1187 

species. The E-value refers to the number of expected hits of a similar quality that 1188 

could be found by chance, the lower the E-value, the less likely the match is down to 1189 

chance. For this analysis, we have only included proteins with an E-value of 1 or 1190 

less. The bit-score is a log2-scaled and normalised raw-score. The larger the bit-1191 

score the better the sequence similarity. AA Length: Amino Acid Length; AL: 1192 

Alignment length; M: Mismatches in the alignment; GO: Gap Open Score; K12 1193 

Start/End: Start/End of the E. coli K12 sequence used for alignment; 6803 1194 

Start/End: Start/End of the Synechocystis sp. PCC 6803 sequence used for 1195 

alignment.   1196 

 1197 

Table 2: Synechocystis sp. PCC 6803 protein matches demonstrating the 1198 

highest sequence similarity to the Escherichia coli K12 proteome. The 1199 

proteome of E. coli K12 from the KEGG database (263-265) was subjected to the 1200 

BLASTp algorithm (267) to identify putative homologs in Synechocystis sp. PCC 1201 

6803. For this analysis, we only included matches with an E-value of 1 or less. AA 1202 

Length: Amino Acid Length; AL: Alignment length; M: Mismatches in the alignment; 1203 

GO: Gap Open Score; K12 Start/End: Start/End of the E. coli K12 sequence used 1204 

for alignment; 6803 Start/End: Start/End of the Synechocystis sp. PCC 6803 1205 

sequence used for alignment.  1206 

 1207 

Table 3: Annotated proteins not involved in central metabolism or transport in 1208 

Synechocystis sp. PCC 6803. Proteins were identified from the KEGG database 1209 

(263-265) and by using the NCBI BLASTp algorithm to identify putative homologs in 1210 

Escherichia coli K12. All Gene Products, Gene Names, Other Gene Names, 1211 

Functional Sub-Category, Functional Category, Localisation, Molecular Weight (kDa) 1212 

and No of TMH's were adapted from Baers et al. (2019) (32). Genes with assigned 1213 
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function are highlighted in red in column A. For this analysis, we have only included 1214 

proteins with an E-value of 1 or less. Func. Sub-Cat.: Functional Sub-Category; 1215 

Func. Cat.: Functional category; AA Length: Amino Acid Length; AL: Alignment 1216 

length; M: Mismatches in the alignment; GO: Gap Open Score; 6803 Start/End: 1217 

Start/End of the Synechocystis sp. PCC 6803 sequence used for alignment; K12 1218 

Start/End: Start/End of the E. coli K12 sequence used for alignment.  1219 

 1220 

Table 4: Uncharacterised proteins in Synechocystis sp. PCC 6803. The NCBI 1221 

BLASTp algorithm was used to identify putative homologs in Escherichia coli K12. All 1222 

Gene Products, Gene Names, Other Gene Names, Functional Sub-Category, 1223 

Functional Category, Localisation, Molecular Weight (kDa) and No of TMH's were 1224 

adapted from Baers et al. (2019) (32). For this analysis, we have only included E. 1225 

coli proteins with an E-value of 1 or less. Func. Sub-Cat.: Functional Sub-Category; 1226 

Func. Cat.: Functional category; AA Length: Amino Acid Length; AL: Alignment 1227 

length; M: Mismatches in the alignment; GO: Gap Open Score; 6803 Start/End: 1228 

Start/End of the Synechocystis sp. PCC 6803 sequence used for alignment; K12 1229 

Start/End: Start/End of the E. coli K12 sequence used for alignment.  1230 

 1231 
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