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Abstract: 

Background: 

Prostate cancer exhibits severe clinical heterogeneity and there is a critical need for clinically 

implementable tools able to precisely and non-invasively identify patients that can either be 

safely removed from treatment pathways, or those requiring further follow up.  Our objectives 

were to develop a multivariable risk prediction model through the integration of clinical, urine-

derived cell-free mRNA (cf-RNA) and urine cell DNA methylation data capable of non-

invasively detecting significant prostate cancer in biopsy naïve patients. 

Methods: 

Post-digital rectal examination urine samples previously analysed separately for both cellular 

methylation and cf-RNA expression within the Movember GAP1 urine biomarker cohort were 

selected for a fully integrated analysis (n = 207). A robust feature selection framework, based on 
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bootstrap resampling and permutation was utilised to find the optimal combination of clinical 

and urinary markers in a random forest model, deemed ExoMeth. Out-of-bag-predictions from 

ExoMeth were used for diagnostic evaluation in men with a clinical suspicion of prostate cancer 

(PSA 4 ng/mL, adverse DRE, age, or lower urinary tract symptoms). 

Results: 

As ExoMeth Risk Score (range 0-1) increased, the likelihood of high-grade disease being 

detected on biopsy was significantly greater (OR = 2.04 per 0.1 ExoMeth increase, 95% CI: 1.78 

- 2.35). On an initial TRUS biopsy, ExoMeth accurately predicted the presence of Gleason score 

3+4, AUC = 0.89 (95% CI: 0.84 - 0.93) and was additionally capable of detecting any cancer 

on biopsy, AUC = 0.91 (95% CI: 0.87 - 0.95). Application of ExoMeth provided a net benefit 

over current standards of care and has the potential to reduce unnecessary biopsies by 66% when 

a risk threshold of 0.25 is accepted. 

Conclusion: 

Integration of urinary biomarkers across multiple assay methods has greater diagnostic ability 

than either method in isolation, providing superior predictive ability of biopsy outcomes. 

ExoMeth represents a more holistic view of urinary biomarkers and has the potential to result in 

substantial changes to how patients suspected of harbouring prostate cancer are diagnosed. 
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Introduction 

Prostate cancer exhibits extreme clinical heterogeneity; 10-year survival rates following 

diagnosis approach 84%, yet prostate cancer is still responsible for 13% of all cancer deaths in 

men in the UK (1). Coupled with the high rates of diagnosis, prostate cancer is more often a 

disease that men die with rather than from. This illustrates the need for clinically implementable 

tools able to selectively identify those men that can be safely removed from treatment pathways 

without missing those men harbouring disease that requires intervention. 

An opportune point to intervene or supplement current clinical practices would be prior to an 

initial biopsy in men suspected of having prostate cancer, reducing costs to men, healthcare 

systems and providers alike. In current clinical practice men are selected for further 

investigations for prostate cancer if they have an elevated PSA (≥4 ng/mL) and an adverse 

finding on digital rectal examination (DRE) or lower urinary tract symptoms; other factors such 

as age and ethnicity are also considered (2–4). However, the rates of negative biopsies in men 

with a clinical suspicion of prostate cancer are overwhelming; a recent population-level study of 

419,582 men from Martin et al observed that 60% of all biopsies in the control arm of the 

Cluster Randomized Trial of PSA Testing for Prostate Cancer (CAP) were negative for prostate 

cancer (5), similar to the rates observed by Donovan et al as part of the ProtecT trial (6). Needle 

biopsy is invasive, and not without complications: 44% of patients report pain, and detection of 

clinically insignificant disease can result in years of monitoring, causing patients undue stress 

(4). Multiparametric MRI (MP-MRI) has been developed as a triage tool to reduce the rates of 

negative biopsy and its use has become increasingly widespread since its validation (7). 

However, MP-MRI is relatively expensive and has shown a high rate of inter-operator and inter-
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machine variability, leading to mpMRI missing up to 28% of clinically significant diseases in 

practice (4,8–10). 

The interconnected nature of the male urological system makes it an ideal candidate for liquid 

biopsy and non-invasive biomarkers for prostate cancer. There is sizeable interest in the 

development of such non-invasive tests and classifiers capable of reducing the rates of initial 

biopsy in men, whilst retaining the sensitivity to detect aggressive disease. Single-gene or 

expression panels of few genes, such as the PCA3 (11), SelectMDx (12), ExoDx 

Prostate(IntelliScore) (13) tests have published promising results to date for the non-invasive 

detection of significant disease (Gleason score (Gs) ≥7). Similarly, several urine methylation 

panels have been developed; the ProCUrE assay from Zhao et al quantifies the methylation of 

HOXD4 and GSTP1 for the detection of CAPRA score 3 – 10 disease (14), whilst Brikun et al 

assessed the binary presence/absence of CpG island methylation associated with 18 genes to 

predict the presence of any prostate cancer on biopsy (15). However, these biomarker panels 

have yet to be widely implemented in clinical settings, and none are currently recommended 

within the NICE guidelines (4), suggesting that improvements are required. Other studies have 

aimed to detect the most aggressive cancers by utilising tissue samples taken at the time of 

biopsy, resulting in moderate success and wider clinical adoption (16–18). However, due to their 

proposed implementation within current clinical pathways, these tests may not take into 

consideration the considerable economic, psychological and societal costs of unnecessarily 

subjecting men with low volume, indolent disease to biopsy (19–21). 

In 2012, the Movember Global Action Plan 1 (GAP1) initiative was launched, a collaborative 

effort between multiple institutes focusing on prostate cancer biomarkers in urine, plasma, serum 

and extracellular vesicles. The prime aim of the GAP1 initiative was to develop a multi-modal 
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urine biomarker panel for the discrimination of disease state. The authors have previously 

published analyses from two of the GAP1 studies that measured differing molecular aspects 

within urine; epiCaPture assayed hypermethylation of urinary cell DNA (22), and PUR assessed 

transcript levels in cell-free extracellular vesicle mRNA (cf-RNA) using NanoString (23). Both 

of these tests were able to discriminate some level of clinically significant disease and exhibited 

differing characteristics; where epiCaPture was well suited to detecting the highest grade disease 

(Gleason score ≥8), PUR was better matched to the deconvolution of lower risk and indolent 

disease, as detailed by its prognostic ability in active surveillance use. With a suitable overlap in 

the numbers of patient samples analysed by both methods, we hypothesised that these two 

methods could be complementary, and the integration of both datasets could result in a more 

holistic model with predictive ability greater than the sum of its parts, able to encapsulate the 

clinical heterogeneity of prostate cancer and reach the levels of accuracy and utility required for 

widespread adoption. In this study, we report the diagnostic accuracy of such an integrated 

model, determined by the ability to predict the presence of Gs ≥7 and Gs ≥4+3 disease on 

biopsy, both critical distinctions, where patients with Gs ≥ 7 are recommended radical therapy 

(4), whilst patients with Gs 4+3 have significantly worse outcomes than Gs 3+4 patients (24). 

Mindful that many cancer biomarkers fail to translate to the clinic, the development of the 

presented model has been carried out adhering to the transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis (TRIPOD) guidelines (25). 
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Materials and Methods 

Patient population and characteristics 

The full Movember GAP1 urine cohort comprises of 1,257 first-catch post-DRE, pre-TRUS 

biopsy urine samples collected between 2009 and 2015 from urology clinics at multiple sites. 

Samples within the Movember cohort that were analysed for both methylation and cf-RNA were 

eligible for selection for model development in the current study (n = 207). 

Exclusion criteria for model development included a recent prostate biopsy or trans-urethral 

resection of the prostate (<6 weeks) and metastatic disease (confirmed by a positive bone-scan or 

PSA >100 ng/mL), resulting in a cohort of 197 samples, deemed the ExoMeth cohort. The 

samples analysed in the ExoMeth cohort were collected from the Norfolk and Norwich 

University Hospital (NNUH, Norwich, UK, n = 181) and St. James’s Hospital (SJH, Dublin, 

Republic of Ireland, n = 16). 

Sample Processing and analysis 

Urine samples were processed according to the Movember GAP1 standard operating procedure 

(Supplementary Methods). Hypermethylation at the 5’-regulatory regions of six genes (GSTP1, 

SFRP2, IGFBP3, IGFBP7, APC and PTSG2) in urinary cell-pellet DNA was assessed using 

quantitative methylation-specific PCR as described by O’Reilly et al (2019). Cell-free mRNA 

was isolated and quantified from urinary extracellular vesicles using NanoString technology, 

with 167 gene-probes (Supplementary Table 1), as described in Connell et al (2019), with the 

modification that NanoString data were normalised according to NanoString guidelines using 

NanoString internal positive controls, and log2 transformed. Clinical variables that were 
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considered are serum PSA, age at sample collection, DRE impression and urine volume 

collected. 

Statistical Analysis 

All analyses, model construction and data preparation were undertaken in R version 3.5.3 (26), 

and unless otherwise stated, utilised base R and default parameters.. 

Feature Selection 

In total 177 variables available for prediction (cf-RNA (n = 167), methylation (n = 6) and clinical 

variables (n = 4). For full list see Supplementary Data), making feature selection a key task for 

minimising model overfitting and increasing the robustness of trained models. To avoid dataset-

specific features being positively selected (27)we implemented a robust feature selection 

workflow utilising the Boruta algorithm (28) and bootstrap resampling. Boruta is a random 

forest-based algorithm that iteratively compares feature importance against random predictors, 

deemed “shadow features”. Features that perform significantly worse compared to the maximally 

performing shadow feature at each permutation, (p ≤ 0.01, calculated by Z-score difference in 

mean accuracy decrease) are consecutively dropped until only confirmed, stable features remain. 

Boruta was applied on 1,000 datasets generated by resampling with replacement. Features were 

only positively selected for model construction when confirmed as stable features in ≥ 90% of 

resampled Boruta runs. 

Additional methylation information from four genes (HOXD3, TGF2, KLK10 and TBX15), was 

available for a subset of the ExoMeth cohort from previous analyses by Zhao et al (n = 144), 
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however these genes did not add additional information in preliminary analysis and were not 

included in further analyses (data not shown). 

Comparator Models 

To evaluate potential clinical utility, additional models were trained as comparators using subsets 

of the available variables across the patient population: a clinical standard of care (SoC) model 

was trained by incorporating age, PSA, T-staging and clinician DRE impression; a model using 

only the available DNA methylation probes (Methylation, n = 6); and a model only using 

NanoString gene-probe information (ExoRNA, n = 167). The fully integrated ExoMeth model 

was trained by incorporating information from all of the above variables (n = 177). Each set of 

variables for comparator models were independently selected via the bootstrapped Boruta feature 

selection process described above to select the most optimal subset of variables possible for each 

predictive model. 

Model Construction 

All models were trained via the random forest algorithm (29), using the randomForest package 

(30) with default parameters except for: resampling without replacement and 401 trees being 

grown per model. Risk scores from trained models are presented as the out-of-bag predictions; 

the aggregated outputs from decision trees within the forest where the sample in question has not 

been included within the resampled dataset (29). Bootstrap resamples were identical for feature 

selection and model training for all models and used the same random seed. 

Models were trained on a modified continuous label, based by binning samples on biopsy 

outcome and constructed as follows: samples were scored on a continuous scale (range: 0 – 1) 

according to Gleason score: where no evidence of cancer on biopsy are scored 0, patients with 
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predominantly Gleason pattern 3 disease are assigned 0.5 and predominantly Gleason 4 (or 5) are 

assigned to 1. Further treating this label as a continuous variable recognises that two patients 

with the same Gleason scored TRUS-biopsy detected cancer may not share the exact same 

proportions of tumour pattern, or overall disease burden within their prostate. This scale is solely 

used for model training and is not represented in any clinical endpoint measurements, or for 

determining predictive ability and clinical utility. 

Statistical evaluation of model predictivity 

Area Under the Receiver-Operator Characteristic curve (AUC) metrics were produced using the 

package (31), with confidence intervals calculated via 1,000 stratified bootstrap resamples. 

Density plots of model risk scores, and all other plots were created using the ggplot2 package 

(32). Cumming estimation plots and calculations were produced using the dabestr package (33) 

and 1,000 bootstrap resamples were used to visualise robust effect size estimates of model 

predictions. 

Decision curve analysis (DCA) (34) examined the potential net benefit of using the developed 

comparator models in the clinic. Standardised net benefit (sNB) was calculated with the rmda 

package (35) and presented throughout our decision curve analyses as it is a more directly 

interpretable metric compared to net benefit (36). In order to ensure DCA was representative of a 

more general population, the prevalence of Gleason scores within the ExoMeth cohort were 

adjusted via bootstrap resampling to match those observed in a population of 219,439 men that 

were in the control arm of the Cluster Randomised Trial of PSA Testing for Prostate Cancer 

(CAP) Trial (37), as described in Connell et al (2019). Briefly, of the biopsied men within this 

CAP cohort, 23.6% were Gs 6, 8.7% Gs 7 and 7.1% Gs ≥8, with 60.6% of biopsies showing no 
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evidence of cancer. These ratios were used to perform stratified bootstrap sampling with 

replacement of the Movember cohort to produce a “new” dataset of 197 samples with risk scores 

from each comparator model. sNB was then calculated for this resampled dataset, and the 

process repeated for a total of 1,000 resamples with replacement. The mean sNB for each risk 

score and the “treat-all” options over all iterations were used to produce the presented figures to 

account for variance in resampling. Net reduction in biopsies, based on the adoption of models 

versus the default treatment option of undertaking biopsy in all men with PSA ≥ 4 ng/mL was 

calculated as: 

𝐵𝑖𝑜𝑝𝑠𝑦𝑁𝑒𝑡𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = (𝑁𝐵𝑀𝑜𝑑𝑒𝑙 − 𝑁𝐵𝐴𝑙𝑙) ×
1 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

Where the decision threshold (Threshold) is determined by accepted patient/clinician risk (34). 

For example, a clinician may accept up to a 25% perceived risk of cancer before recommending 

biopsy to a patient, equating to a decision threshold of 0.25. 

Results 

The ExoMeth development cohort 

Linked methylation and transcriptomic data were available for 197 patients within the Movember 

GAP1 cohort, with the majority originating from the NNUH and forming the ExoMeth 

development cohort (Table 1). The proportion of Gleason ≥7 disease in the ExoMeth cohort was 

49%. 
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Feature selection and model development 

Using a robust feature selection framework four models were produced in total; a standard of 

care (SoC) model using only clinical information (age and PSA), a model using only methylation 

data (Methylation, 6 genes), a model using only cf-RNA information (ExoRNA, 12 gene-probes) 

and the integrated model, deemed ExoMeth (16 variables) (Table 2). The ExoMeth model is a 

multivariable risk prediction model incorporating clinical, methylation and cf-RNA variables. 

When the resampling strategy was applied for feature reduction using Boruta, 16 variables were 

selected for the ExoMeth model. Each of the retained variables were positively selected in every 

resample and notably included information from clinical, methylation and cf-RNA variables 

(Figure 1). Full resample-derived Boruta variable importances for the SoC, Methylation and 

ExoRNA comparator models can be seen in Supplementary Figures 1 – 3, respectively. 

In the SoC comparator model only PSA and age were selected as important predictors. All 

methylation probes were selected as important in both the independent Methylation model and 

the ExoMeth models (Table 2). 12 NanoString gene-probes were selected for the NanoString 

model, notably containing both variants of the ERG gene-probe and TMPRSS2/ERG fusion gene-

probe, alongside PCA3. All features within the ExoMeth model were also selected in one of the 

comparator models. 

ExoMeth predictive ability 

As ExoMeth Risk Score (range 0-1) increased, the likelihood of high-grade disease being 

detected on biopsy was significantly greater (Proportional odds ratio = 2.04per 0.1 ExoMeth 

increase, 95% CI: 1.78 - 2.35; ordinal logistic regression, Figure 2). The median ExoMeth risk 

score was 0.83 for metastatic patients (n = 10). These were excluded from model training and 
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can be considered as a positive control. One metastatic sample had a lower than expected 

ExoMeth score of 0.55: where no methylation was quantified for this sample, which may reflect 

a technical failure of the sample. 

ExoMeth was superior to all other models, returning an AUC of 0.89 (95% CI: 0.84 - 0.93) for 

Gleason ≥3+4 and 0.81 (95% CI: 0.75 - 0.87) for Gleason ≥4+3 (Table 3). As revealed by the 

distributions of risk scores and AUC, ExoMeth achieved a better discrimination of Gleason ≥ 

3+4 disease from other outcomes when compared to any of the other models (ExoMeth all p < 

0.01 bootstrap test, 1,000 resamples, Figure 3). The SoC model, whilst returning respectable 

AUCs, would misclassify more men with indolent disease as warranting further investigation 

than all other models (Figure 3A), for example, to classify 90% of Gleason 7 men correctly, an 

SoC risk score of 0.237 would misclassify 65% of men with less significant disease. The 

methylation comparator model improves upon SoC, by drawing the risk score distribution of Gs 

< 7 men into a more pronounced peak but featured a bimodal risk score distribution extending to 

higher-risk men; almost 50% of men with Gs ≥ 3+4 have risk scores equal to benign patients 

(Figure 3B). The opposite occurred in the NanoString comparator model exhibited a broad 

bimodal distribution for lower-risk men (Figure 3C). This discriminatory ability of the ExoMeth 

model over all comparators was improved when biopsy outcomes are considered as biopsy 

negative, Gleason 6 or 3+4, or Gleason ≥4+3 (Supplementary Figure 4). 

Resampling of ExoMeth predictions via estimation plots allowed for comparisons of mean 

ExoMeth signatures between groups (1,000 bias-corrected and accelerated bootstrap resamples, 

Figure 4). The mean ExoMeth differences between patients with no evidence of cancer were: 

Gleason 6 = 0.22 (95% CI: 0.14 – 0.30), Gleason 3+4 = 0.36 (95% CI: 0.28 – 0.42) and Gleason 

≥4+3 = 0.44 (95% CI: 0.37 – 0.51). Notably, there were no differences in ExoMeth risk 
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signatures of patients with a raised PSA but negative for cancer on biopsy and men with no 

evidence of cancer (mean difference = 0.03 (95% CI: 0.05 – 0.10), Figure 4, Supplementary 

Figure 5). 

Decision curve analysis examined the net benefit of adopting ExoMeth in a population of 

patients suspected with prostate cancer and to have a PSA level suitable to trigger biopsy (≥ 4 

ng/mL). The biopsy of men based upon their ExoMeth risk score consistently provided a net 

benefit over current standards of care across all decision thresholds examined and was the most 

consistent amongst all comparator models across a range of clinically relevant endpoints for 

biopsy (Figure 5). Of the patients with Gs ≥ 7 disease, 95% had an ExoMeth risk score ≥ 0.283. 

At a decision threshold of 0.25, ExoMeth could result in up to 66% fewer unnecessary biopsies 

of men presenting with a suspicion of prostate cancer, without missing substantial numbers of 

men with aggressive disease, whilst if Gleason ≥ 4+3 were considered the threshold of clinical 

significance, the same decision threshold of 0.25 could save 79% of men from receiving an 

unnecessary biopsy (Figure 6). 

Discussion 

The accurate discrimination of disease state in men prior to a confirmatory initial biopsy would 

mark a significant development and impact large numbers of men suspected of harbouring 

prostate cancer. Up to 75% of men with a raised PSA (≥4 ng/mL) are negative for prostate 

cancer on biopsy (4,5,38). This has resulted in concentrated research efforts to address this 

problem non-invasively, and resulting in the development of several biomarker panels capable of 

detecting Gleason ≥3+4 disease with superior accuracy to current clinically implemented 

methods (11–13,23). However, in each of these examples, only a single quantification method or 
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biological process is assayed and with the molecular heterogeneity of prostate cancer considered 

(39), a more holistic approach is necessary. 

It is becoming apparent from published data that urine can contain a wealth of useful cancer 

biomarkers within RNA, DNA, cell-free DNA, DNA methylation and proteins (14,22,23,40,41). 

However, the analyses presented here are, to the author’s knowledge, the first attempt to 

integrate such biomarker information within the same samples for the detection of prostate 

cancer prior to biopsy. There has recently been reported that a combination of miRNA and 

methylation markers can be used to predict outcome following radical prostatectomy (42). Our 

results show an improved diagnostic marker can be produced from the synergistic relationship of 

information derived from different urine fractions in men suspected to have prostate cancer. The 

methylation of six previously identified genes (22) was quantified via methylation specific 

qPCR, whilst the transcript levels of 167 cell-free mRNAs were quantified using NanoString 

technology. The final model integrating this information with serum PSA levels was deemed 

ExoMeth. Markers selected for the model include well known genes associated with prostate 

cancer and proven in other diagnostic tests, such as HOXC6 (12), PCA3 (11) and the 

TMPRSS2/ERG gene fusion (43). ExoMeth additionally incorporated GJB1 as the most 

important variable for predicting biopsy outcome. Whilst GJB1 is known to be a prognostic 

marker for favourable outcome in renal cancers, there is no current evidence of its use as a 

diagnostic biomarker in prostate cancer (44,45). 

ExoMeth was able to correctly predict the presence of significant prostate cancer on biopsy with 

an AUC of 0.89, representing a significant uplift when compared to other published tests (AUCs 

for Gs ≥7 : PUR = 0.77 (23), ProCUrE = 0.73 (14), ExoDX Prostate IntelliScore = 0.77 (13), 

SelectMDX = 0.78 (12), epiCaPture AUC = 0.73 (Gs ≥4+3) (22)). Furthermore, ExoMeth 
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resulted in accurate predictions even when serum PSA levels alone were inaccurate; where 

patients with a raised PSA but negative biopsy result possessed similar ExoMeth scores as 

clinically benign men, whilst still able to discriminate between Gleason grades (Figure 4). These 

are men that would be unnecessarily subjected to biopsy by current guidelines. Of the three 

patients with no evidence of cancer on biopsy with an ExoMeth risk score >0.55, two were 

positive for the TMPRSS2/ERG fusion transcript in NanoString analyses (data not shown), 

implying that PCa may have been missed and re-biopsy may be necessary (46). Future 

prospective studies plan to utilise template biopsy and more detailed information about each 

biopsy core to account for the ambiguity in TRUS biopsy estimation of Gleason score. 

Whilst every step has been taken to robustly develop ExoMeth to minimise potential overfitting 

and bias through extensive bootstrap resampling and the use of out-of-bag predictions, ExoMeth 

nonetheless was developed on a small dataset and requires validation in an independent cohort 

before its use a clinical marker can be considered. Additionally, as MP-MRI can misrepresent 

disease state in patients, even when rigorous protocols are implemented (7) the clinical utility of 

supplementing MP-MRI with ExoMeth needs to be assessed. For many men harbouring indolent 

prostate cancer, ExoMeth could greatly impact their experience of prostate cancer care when 

compared to current clinical pathways. 
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Figure Legends 

Figure 1. Boruta analysis of variables available for the training of the ExoMeth model. Variable 

importance was determined over 1,000 bootstrap resamples of the available data and the 

decision reached recorded at each resample. Colour indicates the proportion of the 1,000 

resamples a variable was confirmed to be important in. Variables confirmed in at least 90% of 

resamples were selected for predictive modelling. Those variables rejected in every single 

resample are not shown here, but the full list of inputs for all models can be seen in 

Supplementary Table 1. 

Figure 2. Waterfall plot of the ExoMeth risk score for each patient. Each coloured bar 

represents an individual patient’s calculated risk score and their true biopsy outcome, coloured 

according to Gleason score (Gs). Green - No evidence of cancer, Blue – Gs 6, Orange - Gs 3+4, 

Red - Gs ≥ 4+3. 
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Figure 3. Density plots detailing risk score distributions generated from four trained models. 

Models A to D were trained with different input variables; A - SoC clinical risk model, including 

Age and PSA, B - Methylation model, C -ExoRNA model and D - ExoMeth model, combining the 

predictors from all three previous models. The full list of variables in each model is available in 

Table 1. Fill colour shows the risk score distribution of patients with a significant biopsy 

outcome of Gs ≥ 3+4 (Orange) or Gs ≤ 6 (Blue). 

Figure 4. Cumming estimation plot of the ExoMeth risk signature. The top row details individual 

patients as points, separated according to Gleason score on the x-axis and risk score on the y-

axis. Points are coloured according to clinical risk category; NEC - No evidence of cancer, 

Raised PSA - Raised PSA with negative biopsy, L -D’Amico Low-Risk, I - D’Amico Intermediate 

Risk, H - D’Amico High-Risk. Gapped vertical lines detail the mean and standard deviation of 

each group’s risk scores. The lower panel shows the mean differences in risk score of each 

group, as compared to the NEC samples. Mean differences and 95% confidence interval are 

displayed as a point estimate and vertical bar respectively, using the sample density distributions 

calculated from a bias-corrected and accelerated bootstrap analysis from 1,000 resamples. 

Figure 5. Decision curve analysis (DCA) plots detailing the standardised net benefit (sNB) of 

adopting different risk models for aiding the decision to biopsy patients who present with a PSA 

≥ 4 ng/mL. The x-axis details the range of risk a clinician or patient may accept before deciding 

to biopsy. Panels show the sNB based upon the detection of varying levels of disease severity: A 

- detection of Gleason ≥ 4+3, B - detection of Gleason ≥ 3+4, C - any cancer; Blue- biopsy all 

patients with a PSA >4 ng/mL, Orange - biopsy patients according to the SOC model, Green - 

biopsy patients based on the methylation model, Purple - biopsy patients based on the 

NanoString model, Red - biopsy patients based on a the ExoMeth model. To assess the benefit of 
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adopting these risk models in a non-PSA screened population we used data available from the 

control arm of the CAP study (5). DCA curves were calculated from 1,000 bootstrap resamples 

of the available data to match the distribution of disease reported in the CAP trial population. 

Mean sNB from these resampled DCA results are plotted here. See Methods for full details. 

Figure 6. Net percentage reduction in biopsies, as calculated by DCA measuring the benefit of 

adopting different risk models for aiding the decision to biopsy patients who would otherwise 

undergo biopsy by current clinical guidelines. The x-axis details the range of accepted risk a 

clinician or patient may accept before deciding to biopsy. Panels show the reduction in biopsies 

per 100 patients based upon the detection of varying levels of disease severity: A - detection of 

Gleason ≥ 4+3, B - detection of Gleason ≥ 3+4 and C - any cancer. Coloured lines show 

differing comparator models; Blue- biopsy all patients with a PSA >3 ng/mL, Orange - biopsy 

patients by according the to the SoC model, Green - biopsy patients based on the methylation 

model, Purple - biopsy patients based on the ExoRNA model, Red - biopsy patients based on a 

the ExoMeth model. To assess the benefit of adopting these risk models in a non-PSA screened 

population we used data available from the control arm of the CAP study (5). DCA curves were 

calculated from 1,000 bootstrap resamples of the available data to match the distribution of 

disease reported in the CAP trial population. Mean sNB from these resampled DCA results are 

used to calculate the potentially reductions in biopsy rates here. See Methods for full details. 

 

 


