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Abstract 

African swine fever (ASF) is a lethal haemorrhagic disease of domestic pigs caused by infection 

with African swine fever virus (ASFV). An outbreak in Russia in 2007 has since advanced into 

Europe and the Far East. With the spread of ASF expected to continue, the requirement for 

effective vaccines has become critical. The prospects for vaccine development are promising as 

infection with attenuated strains of ASFV can offer protection against closely related virulent 

strains. 

Autophagy is an essential cell process that sequesters cytoplasmic cargo into double-membrane 

vesicles called autophagosomes for degradation via lysosomes. Autophagy regulates multiple 

pathways that are vital to mounting an effective immune response and viruses specifically target 

this pathway for modulation. Experiments have shown that inhibiting the ability of viruses to 

regulate autophagy can lead to enhanced immune responses. The work in this thesis shows that 

autophagy is actively inhibited by ASFV and is not required for virus replication. Further 

investigation revealed that ASFV activates Akt and mTORC1 which causes a block in 

autophagosome assembly. Pharmacological studies show that autophagy can be induced during the 

very early stages of viral replication but at later times, additional measures of modulation are 

implemented, most likely via virally encoded genes.  

ASFV encodes A179L which binds to the key autophagy protein Beclin 1 leading to the inhibition 

of autophagosome formation. However, this work has demonstrated that additional protein 

modulators are also encoded. A gene library screen was conducted to identify these and 

unexpectedly, the results showed that some ASFV genes are able to stimulate elements of the 

autophagy pathway which was investigated further.  

This research will expand our understanding of the interaction between ASFV and the autophagy 

pathway with the potential that a low virulent ASFV strain with an altered ability to modulate 

autophagy will provide enhanced immunity against virulent isolates. 
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Nothing in the world can take the place of persistence. 

Talent will not; nothing is more common than unsuccessful men with talent. 

Genius will not; unrewarded genius is almost a proverb. 

Education will not; the world is full of educated derelicts. 

Persistence and determination alone are omnipotent. 

-    Calvin Coolidge 
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1 Introduction 

1.1 African swine fever 

African swine fever (ASF) is an infectious disease of domestic pigs and wild boar. ASF can inflict 

severe economic losses due not only to livestock mortality but also to the enforcement of trade 

restrictions. Efforts to control the disease are challenging owing in part to its complex 

epidemiology. This has contributed to significant spread of ASF in sub-Saharan Africa, Europe and 

Asia. With the likelihood that the distribution of ASF will expand, the importance of conducting 

fundamental research on its biology is paramount.   

1.1.1 Historical perspectives 

ASF was provisionally identified in Kenya by RE. Montgomery in 1910, and first published later in 

1921 (Montgomery, 1921). Montgomery noted that in most disease cases the presence of wild pig, 

chiefly the warthog (Phacochoerus spp) was known in the vicinity of affected farms. In describing 

the severity of the disease, he wrote, “…as available statistics show, an owner, should his herd 

contract infection, must be prepared for a practically total loss…” In addition, Montgomery 

determined that ASF was caused by a virus – African swine fever virus (ASFV). Work conducted 

in South Africa a few years later confirmed Montgomery’s findings and proved that warthogs and 

bushpigs (Potamochoerus spp) were a reservoir for the virus (Plowright, 1986). Not long after, it 

was discovered that employing a strict stamping out policy was an effective control measure which 

led to the eradication of the disease from Cape Province in South Africa by 1939 (Pini and Hurter, 

1975).  

Although it was widely accepted that warthogs and bushpigs were the most likely culprits 

responsible for the emergence of disease in domestic pigs, it was also known that contact between 

domestic and wild pig populations was rare. Furthermore, experiments aimed at transmitting the 

virus from infected warthogs to the domestic host had not been successful (Parker et al., 1969). 

Major breakthroughs came in 1963 when ASFV was detected in a tick (Ornithodoros erraticus) in 

Spain (Sanchez-Botija, 1963) and in 1969 when Plowright and colleagues isolated ASFV from 

ticks (Ornithodoros moubata) that inhabited the burrows of warthogs (Plowright et al., 1969). 

Following these initial discoveries, it was determined that ASFV replicated in the tick (Plowright et 

al., 1970b), that both transovarial and sexual transmission of ASFV in ticks was possible 

(Plowright et al., 1974, Plowright et al., 1970a) and that infected ticks could transmit the disease to 

domestic pigs under experimental conditions (Plowright et al., 1970b). Additionally, it was 

proposed that ticks could harbour the virus for life and serve as a long term reservoir without 

repeated exposure to a viraemic host (Plowright et al., 1970b). This not only provided an 

explanation for the mechanism behind transfer of virus from the wild pig to its domestic 

counterpart but also served to explain how the disease suddenly re-appeared in regions that had 

since been declared free from disease.  



21 

 

1.1.2 Distribution and impact   

ASF remains endemic in most of sub-Saharan Africa. The first spread of ASF outside of Africa 

occurred in 1957 when waste from airline flights was fed to pigs located near Lisbon airport 

(Boinas et al., 2011). Although the disease was rapidly eradicated, its re-introduction into Portugal 

in 1960 preceded a 30-year period of outbreaks within the Iberian Peninsula (Costard et al., 2009). 

In Sardinia, the disease has remained endemic since 1978 (EFSA, 2010). ASF was also reported in 

The Americas in the 1960’s, however was eradicated during the 1980’s (Sanchez-Vizcaino et al., 

2012). In April 2007, ASF emerged in the Caucasus region near the port of Poti on the Black Sea 

(Rowlands et al., 2008). Believed to have been introduced through infected meat products 

transported on international ships, the disease has since spread into the Russian Federation, China, 

Vietnam, Laos, Mongolia and much of Eastern Europe. ASF was detected for the first time in 

Western Europe in September 2018 in wild boar located in Belgium. Figure 1.1 shows the 

distribution of ASF outbreaks as reported by the World Organisation for Animal Health (OIE). 

At least twenty-two distinct genotypes of ASF have been defined, each of which are not uniformly 

geographically distributed (Dixon et al., 2013). Genotype I comprises viruses sampled from 

Europe, South America, the Caribbean and West Africa. Analysis revealed that it was virus 

belonging to genotype I that spread from Africa to Portugal in 1957 and 1960 (Bastos et al., 2003). 

Virus introduced to the Caucasus in 2007 belongs to genotype II which circulates in south-eastern 

Africa (Rowlands et al., 2008).  

ASF is considered one of the most important diseases of swine due to the severe socioeconomic 

consequences of an outbreak. Depending on the infecting strain, mortality rates can be as high as 

100% (Hubalek et al., 2014). An estimated 296 000 pigs were destroyed in the North Caucasus and 

Russian Federation between 2007 and 2012 as part of disease control measures (Gogin et al., 2013) 

and in Vietnam more than 1.2 million pigs, 4% of the national herd, have now died or been killed 

(Normile, 2019). Due to their complex nature, eradication programs are costly. An estimated $92 

million was spent by the Spanish authorities during the final five years alone of an eradication 

program that lasted ten years (Arias and Sánchez-Vizcaíno, 2002a, Arias and Sánchez-Vizcaíno, 

2002b). ASF is an OIE notifiable disease and as such, countries experiencing an outbreak or 

countries considered to be ASF endemic are subject to trade restrictions on swine and swine 

products. Countries that are free from ASF take significant precautions against introducing the 

disease. Many countries in Africa, Eastern Europe and Asia have a high proportion of small-scale 

and subsistence farmers whose livelihoods depend on the sale and consumption of products from 

tiny herds. The death or destruction of their animals, in most cases in the absence of financial 

compensation, is particularly devastating. 
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Figure 1.1 Distribution of ASF outbreaks  

Distribution of ASF outbreaks reported to the OIE in Europe (Panel A) and Asia (Panel B) from 

January to July 2019. (Obtained from www.oie.int/)  
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1.1.3 Clinical features 

The incubation period, clinical presentations and pathological findings of ASF vary significantly 

depending on the infecting virus strain, the route and dose of infection as well as host 

characteristics (Sanchez-Vizcaino et al., 2015). ASFV is classified according to virulence. In 

general, highly virulent strains cause the peracute and acute forms of ASF while moderately 

virulent strains lead to the acute and sub-acute forms. In addition, chronic forms are usually caused 

from moderate-to-low virulent strains. The acute form has an incubation period of 3-4 days but in 

other forms of ASF this can be up to 20 days (Sanchez-Vizcaino et al., 2015). Typical 

haemorrhagic clinical signs of the peracute and acute forms of ASF have led to its description as a 

haemorrhagic disease. Haemorrhaging can be widespread including petechiae, epistaxis and lesions 

of lymphoid and non-lymphoid organs (Rodriguez et al., 1996). Other presentations of disease seen 

in the chronic and aclinical forms have been described that exclude this characteristic feature. In 

fact, in most cases non-specific clinical signs are seen such as loss of appetite, vomiting, diarrhoea, 

depression, huddling and fever (Sanchez-Vizcaino et al., 2015). Duration of illness varies 

considerably with subacute forms lasting 5-30 days. Chronic forms can develop over 15 months in 

some cases. As ASF is clinically similar to other diseases such as classical swine fever and 

salmonellosis, laboratory testing is essential for definitive diagnosis. In warthogs and bushpigs, a 

transient viraemia is detected but these animals do not show any clinical disease (Jori and Bastos, 

2009).        

1.1.4 Transmission and pathogenesis 

In domestic populations, ASF is mainly spread via the oro-nasal route. Transmission can also occur 

by consumption of contaminated material such as swill, by contact with materials and fomites 

contaminated with the excreta from infected animals and by bites from infected ticks (Guinat et al., 

2016). Infected pigs may shed virus up to 48 hours before the onset of clinical signs (Penrith and 

Vosloo, 2009). One study has reported the mechanical transmission of ASF by large biting flies 

experimentally (Mellor et al., 1987) but there have been no reports of this in the field. Airborne 

transmission is possible but over very short distances and is likely to only be a problem in intensive 

farming units (Wilkinson et al., 1977). There is no reliable evidence pointing to trans-placental 

transmission. Recent research has shown that recovered pigs were able to transmit the virus to 

susceptible populations three months after infection, suggesting a role for carrier animals in the 

maintenance of disease in endemic regions (Gallardo et al., 2015).   

In the vertebrate host, ASFV predominantly infects monocytes and macrophages (Gomez-

Villamandos et al., 2013), however in later stages of disease several other cell types including 

lymphocytes and neutrophils can also be infected (Carrasco et al., 1996a, Carrasco et al., 1996b). In 

the case of oro-nasal transmission, primary infection occurs in monocytes and macrophages of the 

tonsils and mandibular lymph nodes (Greig, 1972). From there, it spreads to target organs via the 
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blood and draining lymph nodes. As the principal sites of secondary replication, this includes bone 

marrow, liver, lungs, spleen, kidneys and lymphatic tissue (Blome et al., 2013). Upon infection, 

several macrophage subpopulations demonstrate secretory and phagocytic activation. This leads to 

a dramatic increase in pro-inflammatory cytokine release, in particular IL-1, IL-6 and TNF-α which 

coincides with fever and vascular damage (Salguero et al., 2002). Indeed, it is generally accepted 

that haemorrhagic lesions result from cytokine interactions rather than by virus-induced cell 

damage (Blome et al., 2013). 

1.1.5 Control of ASF 

ASF is regarded as one of the most complex infectious diseases of swine. The fact that ASF exists 

in an ancient sylvatic cycle means that the virus is maintained in regions in which warthogs and 

ticks co-exist. Therefore, preventing the spread of disease into domestic pig populations is centred 

on eliminating contact with wild suids and the ticks in contact with them. In regions with wild boar 

populations such as Europe, additional considerations need to be made on the potential for 

comparatively long distance disease dissemination. In fact the recent spread of ASF into domestic 

pigs in the Russian Federation is attributed to direct contact between wild boar and free-ranging 

pigs (Gogin et al., 2013). In addition, ASFV is remarkably stable in protein environments, 

consequently virus has been detected in a number of meat products (McKercher et al., 1978). 

Collectively, these factors contribute to making the control of ASF a challenging task.   

Effective control of ASF can however be achieved through a combination of slaughter, quarantine 

and stringent biosecurity measures. For example, this can include limiting the movement of 

vehicles and people between premises and banning the feeding of swill to livestock. These and 

other strict sanitary measures were instrumental in the eradication of ASF from Spain in 1995 

(Arias and Sánchez-Vizcaíno, 2002b). Currently, there is no commercial ASF vaccine available 

although many researchers consider the prospects for vaccine development to be promising. While 

inactivated virus does not confer protection (Blome et al., 2014), low virulent strains can provide a 

degree of protection against closely related virulent strains (King et al., 2011, Leitao et al., 2001). 

In the past, a number of vaccine strategies have been tested including the use of live-attenuated 

vaccines (O'Donnell et al., 2015, Reis et al., 2016) and several types of subunit vaccine (Argilaguet 

et al., 2012, Ivanov et al., 2011, Neilan et al., 2004, Netherton et al., 2019). While many of these 

candidate vaccines have shown potential, none have advanced to commercial production. This is 

partly due to a lack of complete understanding of the required elements for immune protection in 

the host.   

The role of antibodies in protection against ASF is keenly debated (Escribano et al., 2013). 

Research has shown that neutralisation of virulent isolates can be achieved in vitro using 

convalescent pig serum or monoclonal antibodies raised against neutralizing epitopes (Borca et al., 

1994, Zsak et al., 1993). However, exploiting this as a means of immunity in the in vivo setting has 
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not been reliably demonstrated (Barderas et al., 2001, Neilan et al., 2004, Onisk et al., 1994). This 

would indicate that taken in isolation, the humoral response is not sufficient to confer protection. 

Indeed, the cellular immune response including natural killer cells and cytotoxic T lymphocytes has 

been shown to be undoubtedly important (Oura et al., 2005, Takamatsu et al., 2013). 

1.2 African swine fever virus 

1.2.1 Classification 

ASFV was initially classified as a myxovirus (Andrewes, 1963, Breese and DeBoer, 1966) then 

later, based on the icosahedral morphology of the capsid, reclassified as a member of the 

Iridoviridae (Kelly and Robertson, 1973). However, further research revealed that in several 

important aspects such as genome structure, ASFV more closely resembled poxviruses (Dixon, 

1986). In 2001 the virus was reclassified for a second time as the only known member of the family 

Asfarviridae in the genus Asfivirus (Fauquet and Mayo, 2001). The Asfarviridae family belongs to 

the nucleo-cytoplasmic large DNA virus super-family (NCLDV) which also includes Poxviridae, 

Iridoviridae, Phycodnaviridae, Mimiviridae and other giant virus families (Iyer et al., 2006). 

Phylogenetic analysis reveals that ASFV is located in a distinct clade between the Poxviridae and 

Iridoviridae (Raoult et al., 2004).  

At present, ASFV is the only known true DNA arbovirus. Despite some evidence for the role of 

Ixodid ticks in the transmission of lumpy skin disease virus (Tuppurainen et al., 2013, Tuppurainen 

et al., 2011), replication within the tick host is yet to be demonstrated (Tuppurainen et al., 2015). 

1.2.2 Morphology 

The ASFV virion is icosahedral in shape and approximately 200 nm in diameter (Breese and 

DeBoer, 1966, Carrascosa et al., 1984). The triangulation number of the capsid is 189-217, 

corresponding to 1892-2172 capsomers (Carrascosa et al., 1984). The virion comprises at least 68 

proteins arranged into four concentric domains, named as the nucleoid; matrix/core; inner envelope 

and capsid (Alejo et al., 2018, Salas and Andres, 2013). Additionally, each virion acquires an 

external envelope upon budding through the plasma membrane (Breese and DeBoer, 1966). Figure 

1.2 depicts a graphical representation of the ASFV virion structure.    

The B646L gene product p72 is considered the major capsid protein and constitutes one third of the 

virion mass (Andres et al., 1997). Beneath the protein capsid lies the inner lipid membrane. Initially 

this was believed to be a double membrane (Andres et al., 1998, Rouiller et al., 1998) however, 

using a novel method of sample preparation for electron microscopy, Hawes and colleagues 

showed a single lipid bilayer formed from the collapse of the endoplasmic reticulum (ER) cisternae 

(Hawes et al., 2008). Another structural protein - p54 (J13L) is present within the inner envelope 

and is thought to be an important factor in the mechanism of ER collapse (Windsor et al., 2012). 

The protein products from the cleavage of two polyproteins – pp220 and pp62, form a protein layer 
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approximately 30 nm in size referred to as the matrix/core shell. Collectively, these protein 

products account for 32% of the virion mass (Andres et al., 2002). Cleavage of the polyproteins is 

carried out by the viral protease – pS273R, also located in the matrix/core shell (Andres et al., 

2001a). The nucleoid is a dense region of approximately 80 nm in size and contains the viral 

genome (Andres et al., 1997), nucleoproteins and transcriptional machinery including RNA 

polymerase and early transcription factors (Salas and Andres, 2013). 

 

Figure 1.2 Virion structure of ASFV  

Image displays the morphology of the ASFV virion - approximately 200 nm in diameter. Arranged 

into four concentric domains, starting from the centre - the nucleoid containing the condensed viral 

DNA; the matrix/core shell; the inner membrane derived from the ER; the p72 capsid and finally 

the outer envelope acquired from budding through the plasma membrane. The triangulation number 

of the icosahedral capsid is 189-217, corresponding to 1892-2172 capsomers. Obtained from 

ViralZone, Swiss Institute of Bioinformatics (ViralZone, 2019). 

 

1.2.3 Genome organisation 

The ASFV genome comprises a single linear, double-stranded AT rich DNA molecule that varies 

in length from approximately 170 to 193 kbp depending on the virus isolate (Chapman et al., 2008, 

de Villiers et al., 2010, Yanez et al., 1995). Between 151 and 167 closely spaced open reading 

frames (ORFs) are encoded in both directions (Yanez et al., 1995). The majority of these genes 

have no known or predicted function at present (Chapman et al., 2008). In similarity to poxvirus 

DNA, the ends of the ASFV genome contain hairpin loops which are inverted and complimentary 

to each other (Goebel et al., 1990, Gonzalez et al., 1986). In further resemblance to poxviruses, 

these hairpin loops are adjacent to tandem inverted repeats (TIR) (Sogo et al., 1984, Yanez et al., 

1995). The dissimilarity in genome length between ASFV isolates can be due to variation in the 

number of TIRs (Blasco et al., 1989, Dixon et al., 1990) however, variation is predominantly due to 

the loss or gain of members of the five multigene families (MGFs); MGF 100, 110, 300, 360 and 
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505/530 which are positioned towards the terminal ends of the genome (Chapman et al., 2008, de la 

Vega et al., 1990, Portugal et al., 2015). In addition, some genes that do not belong to MGFs such 

as DP96R and E66L demonstrate a variable isolate-specific presence. These two genes are present 

in Ba71V but not Malawi Lil20/1 (Yanez et al., 1995). Some genes such as DP71L can exist as a 

long form (184AA) or a short form (71AA) which also contributes to changes in genome length 

(Goatley et al., 1999). The presence or absence of members of MGF360 and MGF505/530 

significantly influences the observed differences in pathogenicity between isolates (Neilan et al., 

2002, Portugal et al., 2015). 

1.2.4 Replication and infection cycle 

Viral replication of ASFV is a highly orchestrated process. ASFV displays a tropism for cells of the 

monocyte-macrophage lineage both in vivo and in vitro (Fernandez et al., 1992, Malmquist and 

Hay, 1960). In order to initiate an infection, viruses are required to bind to the surface of a target 

cell, transverse the plasma membrane and gain entry to the relevant cell compartment to begin 

replication. Receptor-mediated endocytosis is believed to be a major route of entry for ASFV 

(Alcami et al., 1989), however the precise receptor(s) used are yet to be determined. Work 

conducted by Galindo and colleagues pointed to proteins as the major class of receptor as opposed 

to lipids or carbohydrates (Galindo et al., 1997). Other studies have linked cell permissiveness with 

the presence of specific cell surface markers, including CD203a+ (McCullough et al., 1999); 

porcine CD163 (Sanchez-Torres et al., 2003) and CD45 and MHCII (Lithgow et al., 2014). While 

these molecules may have a role as receptors, it remains unknown if they are essential for infection. 

One of multiple investigations into the entry of ASFV has revealed a dependence on dynamin and 

presents clathrin-mediated endocytosis as the most likely entry mechanism (Hernaez and Alonso, 

2010). In contrast, ASFV infection was impaired following treatment of cells with a sodium/proton 

exchange inhibitor which is regarded as a hallmark of macropinocytosis (Sanchez et al., 2012). 

Further to this, work carried out by Basta and colleagues implicated phagocytosis as the primary 

means of ASFV entry into macrophages (Basta et al., 2010). Following these studies there has been 

no conclusive evidence to exclusively support one hypothesis over another although a recent 

investigation concluded that ASFV uses both clathrin-mediated endocytosis and macropinocytosis 

(Hernaez et al., 2016). Hernaez and colleagues found that macropinocytosis was not specifically 

stimulated by the virus suggesting that internalisation of the virus via this route was more likely the 

result of constitutive sampling of the environment by the cell.        

Despite the existence of multiple theories on virus entry, it is believed that only virus which enters 

the endocytic pathway results in a productive infection as intraluminal acidification of endosomes 

is essential for virus un-coating (Cuesta-Geijo et al., 2012). Similarly, a loss of integrity of the 

endocytic pathway, inhibiting the maturation of early endosomes into late endosomes results in 

reduced infectivity (Cuesta-Geijo et al., 2012). After capsid un-coating the viral inner membrane 
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fuses with the endosomal membrane and delivers the viral core particle into the cytosol (Hernaez et 

al., 2016). 

 

Figure 1.3 ASFV replication cycle 

ASFV enters susceptible host cells by (1) macropinocytosis, (2) clathrin mediated endocytosis or 

(3) phagocytosis and enters the early endosome (EE) (4). Maturation of the early endosome 

produces the late endosome (LE) (5) where dis-encapsidation occurs followed by release of the 

partially uncoated core particle by fusion of the inner membrane and endosomal membrane. Early 

transcription begins in the partially uncoated core whilst the initial phase of DNA replication 

occurs in the nucleus (6). Later in infection, replication and assembly of the virion occurs in the 

virus factory (VF) (7). Fully assembled virus particles are transported to the cell surface along 

microtubules (8) and are released either by budding (9) or travelling along actin projections (10). 

(Obtained from Dr Claire Barber, (Barber, 2015)) 

   

Following release into the cytosol, the core relocates to within close proximity of the microtubule 

organising centre (MTOC) in the perinuclear region (Hernaez et al., 2006). This relies on the 

interaction between the structural protein p54 and dynein motor proteins to facilitate transport 

along the microtubule network (Alonso et al., 2001). Viral DNA replication occurs in two phases. 

The first is a nuclear phase which produces short DNA fragments which can be seen budding into 

the cytoplasm (Garcia-Beato et al., 1992). The second phase is cytoplasmic resulting in longer 

DNA fragments which are the precursor molecules of mature viral DNA (Rojo et al., 1999). 
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Production of genomic DNA occurs in a similar manner to poxviruses through the formation of 

head to head concatemeric subunits which are then resolved into units of genomic length (Moss, 

2013, Rojo et al., 1999). The exact purpose of the nuclear phase of replication remains unclear. 

Destabilisation of the nuclear membrane is a bystander effect which may aid access to the host 

RNA polymerase II which is inactivated and degraded by the virus (Ballester et al., 2011).  

ASFV gene expression is divided into distinct phases of transcription in the viral replication cycle 

(Rodriguez and Salas, 2013). Genes are classified as immediate-early, early, intermediate and late.  

The classes are based on experimental conditions rather than time per se. Immediate-early 

transcripts are synthesised in the presence of cycloheximide and so do not require protein synthesis. 

Early transcripts are not sensitive to DNA synthesis inhibitors whereas both intermediate and late 

are. Transcription and DNA replication are closely co-ordinated with a decline in early gene 

expression observed at the onset of DNA replication (Rodriguez and Salas, 2013) although there 

are two types of early transcripts, those that are turned off after DNA replication begins and those 

that are not. The ASFV virion contains sufficient transcriptional machinery, thought to be at least 

20 genes, to synthesise mature transcripts with transcription commencing at AT rich promotor 

sequences upstream of each gene (Rodriguez and Salas, 2013). In contrast, ASFV is entirely reliant 

on the host translational machinery for viral protein production as is the case for most viruses. 

Infection leads to increased assembly of the host translation complex EIF4F (Castello et al., 2009). 

Interestingly, the virus has developed strategies to favour the synthesis of viral proteins for 

example by impairing the nuclear export of cellular mRNA’s (Castello et al., 2009). ASFV also 

encodes a gene (DP71L) that ensures global protein synthesis is maintained in the face of cellular 

innate immune responses by dephosphorylating EIF2α (Zhang et al., 2010).   

Assembly of virions takes place in structures called virus factories located close to the MTOC and 

first observed in the cell at 8 hpi (Brookes et al., 1996). The microtubule network has a significant 

role in the formation of these structures by facilitating the transport of various essential components 

(Rojo et al., 1998, Stefanovic et al., 2005). Each viral factory consists of structural proteins, viral 

membranes, immature and mature virions and viral DNA enclosed in a vimentin cage (Cobbold et 

al., 1996, Rouiller et al., 1998, Stefanovic et al., 2005). To the periphery are an abundant number of 

mitochondria (Rojo et al., 1998). Also recruited to the viral factories is EIF4F and other elements 

of the host translation machinery (Castello et al., 2009). In the absence of p54, viral factories are 

generated that lack membrane precursors (Rodriguez et al., 2004). Indeed, p54 is essential in the 

recruitment of structural proteins as well as ER membranes to the viral factory and therefore 

represents a key factor in the morphogenesis of ASFV.  

Morphogenesis begins with the modification of ER membrane to form the precursors of the inner 

envelope. These are initially observed as laminar structures upon which the protein core is 

assembled on the concave face and the capsid on the convex surface creating immature polyhedral 

virions (Andres et al., 1997, Garcia-Escudero et al., 1998). A number of viral proteins play 
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important roles in the production of mature virions. Capsid-associated protein 80 (CAP80), the 

B602L gene product is a chaperone protein required for the conformational maturation of the major 

capsid protein p72 (Cobbold et al., 2001). Formation of capsid vertices is reliant on the structural 

protein pB438L which is a crucial component to attaining the correct icosahedral capsid structure 

(Epifano et al., 2006) while the virus core is formed from products resulting from the processing of 

the polyproteins p220 and p62 (Andres et al., 2002). The concluding steps of ASFV morphogenesis 

occur when viral DNA condenses outside of, and adjacent to empty particles to form a pronucleoid 

before being inserted into the maturing capsid (Brookes et al., 1996). Closure of the capsid vertex 

and condensation of the particle completes the process (Brookes et al., 1996). Mature virions are 

transported to the plasma membrane along microtubules in a conventional kinesin-dependent 

manner (Jouvenet et al., 2004), a process in which the viral protein pE120R is essential (Andres et 

al., 2001b). Egress of the virus primarily occurs through budding of the plasma membrane (Breese 

and DeBoer, 1966), however at later time points in infection cells may undergo lysis (Breese and 

DeBoer, 1966). 

1.3 Autophagy 

In the early 1960’s, researchers began to describe observations of a mechanism in living cells of 

bulk segregation and digestion of portions of the cells’ own cytoplasm (De Duve and Wattiaux, 

1966). The term ‘autophagy’ was coined in 1963 by Christian de Duve (De Duve, 1963) and 

derives from the Greek word meaning self-eating. In distinguishing this from proteasomal 

degradation, autophagy specifically refers to the catabolic process that leads to elimination of 

cytosolic cell constituents by delivery to mammalian lysosomes or plant and yeast vacuoles (Boya 

et al., 2013). Products resulting from this breakdown are re-used to manufacture new macro-

molecules or provide an energy source to maintain metabolism under nutrient deprivation.  

To date, three distinct types of autophagy have been described. Microautophagy involves inward 

invagination, protrusion or septation of the lysosomal membrane which leads to engulfment of 

cytoplasmic contents for degradation (Li et al., 2012). Chaperone-mediated autophagy relies on the 

use of chaperone proteins to mediate the passage of proteins across the lysosomal membrane and 

into the lysosomal lumen (Cuervo, 2011). Microautophagy and chaperone-mediated autophagy are 

processes in which comparatively smaller cytoplasmic objects or molecules are degraded. In 

contrast, macroautophagy was the designation suggested by Mortimore et al to distinguish bulk 

segregation of cytoplasm as originally described by de Duve from other mechanisms of autophagy 

(De Duve, 1963, Mortimore et al., 1983). The process of macroautophagy (hereafter referred to as 

autophagy) is centred on the incorporation of cargo into specialised vesicular organelles called 

autophagosomes. These migrate to and fuse with lysosomes containing acid hydrolases that carry 

out breakdown of the cargo which can include damaged organelles, long-lived proteins, and even 

invasive pathogens. 
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1.3.1 Macroautophagy 

Autophagosomes, although not named as such at the time, were first visualised by electron 

microscopy in the late 1950’s (Clark, 1957, Novikoff et al., 1956). Clark described in mouse 

kidney cells vacuoles containing dense inclusions which ‘may possess the structural characteristics 

of mitochondria’. Since then, autophagy has been reported in a wide array of cells in animals, 

plants and fungi suggesting that autophagy is a highly conserved pathway through evolution. 

Autophagy is a complex process involving at least 30 autophagy-related (Atg) gene products 

(Mizushima et al., 2011). In contrast to most other intracellular trafficking pathways, induction of 

autophagy involves de novo formation of double-membrane vesicles (autophagosomes) i.e. vesicles 

that do not bud from a pre-existing organelle although there is evidence to suggest that several 

organelles can contribute membrane including mitochondria (Hailey et al., 2010), Golgi apparatus 

(Geng and Klionsky, 2010) and the ER (Yla-Anttila et al., 2009). The autophagy process is 

summarised in Figure 1.4 and can be broadly divided into three events – initiation; vesicle 

elongation (forming the complete autophagosome) and maturation (fusion with the lysosome). In 

yeast, autophagosomes are formed by elongation of the isolation membrane in a process that takes 

place at the pre-autophagosomal structure (PAS) (Suzuki and Ohsumi, 2010). In mammals, 

autophagosomes are nucleated within a membrane compartment called the omegasome that is 

dynamically connected to the ER (Axe et al., 2008). Described below are two protein complexes 

and two conjugation systems which are critical to the autophagy pathway. 

1.3.1.1 Target of rapamycin  

The target of rapamycin (TOR) protein plays a major regulatory role in autophagy induction 

(Sengupta et al., 2010). The mammalian homolog is known as mTOR. TOR forms a protein 

complex that under nutrient-rich conditions is active and inhibits autophagy whereas under nutrient 

deprivation or rapamycin treatment, TOR is inhibited allowing for an increase in autophagic 

activity (Noda and Ohsumi, 1998). This function is mediated through interaction with the Atg1-

Atg13-Atg17 kinase complex possibly in combination with other Atg proteins such as Atg11; 

Atg20; Atg24; Atg29 and Atg30. More specifically, TOR regulates the phosphorylation state of 

Atg13 (Kamada et al., 2000). Upon inactivation of TOR, Atg13 is rapidly dephosphorylated 

resulting in increased affinity for Atg1 and Atg17. The interaction of Atg1 with Atg13 and Atg17 

triggers activation of Atg1 kinase activity. The kinase activity of Atg1 is essential for autophagy 

although its exact downstream functions remain unclear (Cheong et al., 2008). The functionally 

equivalent mammalian homologs of yeast Atg1 are the uncoordinated 51-like kinases 1 and 2 

(ULK1 and ULK2). Knockdown of ULK1 inhibits autophagy in a step downstream of mTOR 

(Chan et al., 2007).  
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Figure 1.4 Autophagy pathway 

Regulation of autophagy occurs via a set of autophagy-related proteins (Atg proteins). Nutrient 

deprivation leads to inactivation of TOR resulting in activation of downstream Atg proteins. In 

combination with other factors, these events are required for initiation, membrane nucleation and 

elongation and finally, maturation and fusion of the autophagosome with the lysosome leading to 

degradation of cargo. Adapted from Gelino and Hansen (2012). 

 

1.3.1.2 Vacuolar protein sorting 34 

The vacuolar protein sorting 34 (Vps34) lipid kinase complex is also essential in the autophagy 

pathway (Funderburk et al., 2010). Vps34 comprises a class III phosphatidylinositol 3 kinase 

complexed with Vps30/Atg6; Vps15 and Atg14. The mammalian homologs of Vps30/Atg6 and 

Vps15 are Beclin 1 and h150 respectively. The function of Beclin 1 is controlled by Bcl-2 (B-cell 

lymphoma/leukemia-2), an anti-apoptotic protein that binds to and sequesters Beclin 1 to inhibit 

autophagy under nutrient-replete conditions. Dissociation of Bcl-2 from Beclin 1 is required for 

autophagy induction (He and Klionsky, 2009). The Vps34 complex generates phosphatidylinositol 

3-phosphate (PtdIns3P) which is crucial for the biogenesis of the autophagosome (Petiot et al., 

2000). A possibility is that production of PtdIns3P recruits PtdIns3P-binding proteins which in turn 

recruit additional downstream effector proteins to the site of autophagosome assembly. One such 

effector protein in humans is the WD-repeat protein interacting with phosphoinositides (WIPI) 

which is considered important in the lipidation of LC3 (see below for LC3 lipidation process) 
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(Proikas-Cezanne et al., 2015). Of the four human WIPI members, WIPI1, 2 and 4 have been 

shown to be essential for autophagosome formation while the function of WIPI3 remains unknown.  

1.3.1.3 The Atg12 conjugation system 

The Atg12 conjugation system is responsible for the covalent attachment of Atg12 to Atg5 which is 

catalysed by Atg7 and Atg10. Atg7 hydrolyses ATP leading to activation of Atg12 via formation of 

a high energy bond. Subsequently, the activated Atg12 is transferred directly to Atg10 and then 

finally to Atg5 to form the final conjugate. With Atg5 further bound non-covalently to Atg16, this 

conjugation results in an Atg12-Atg5-Atg16 multimeric structure (Atg16 complex). This complex 

is functionally vital for autophagy and specifies the site of LC3 lipidation (Fujita et al., 2008). 

1.3.1.4 The Atg8/LC3 lipidation system 

The mammalian homologs of Atg8 constitute a family of proteins that are subdivided into two 

major subfamilies: microtubule-associated protein 1 light chain 3 (MAP1LC3 or LC3) and γ-

aminobutyric acid receptor-associated protein (GABARAP). Both are essential to the autophagy 

pathway where LC3 functions in the elongation of the autophagosome membrane and GABARAP 

functions in autophagosome maturation (Weidberg et al., 2010). Multiple isoforms of LC3 have 

been described including LC3A, B, B2 and C which exhibit variable tissue distributions (He et al., 

2003). Newly synthesised LC3 (LC3-I) is conjugated to a membrane lipid, 

phosphatidylethanolamine (PE) to form LC3-II (Ichimura et al., 2000). LC3-I is first protealytically 

cleaved by Atg4 exposing a glycine residue at amino acid position 120. This glycine residue is then 

bound to Atg7 before being transferred to Atg3. Finally, an amide bond is formed between the 

same glycine residue and PE.  

During autophagosome formation, both the Atg16 complex and LC3-II are localised to the PAS 

and are intimately associated with the expanding autophagosome (Suzuki et al., 2001). While the 

Atg16 complex can be identified on the outer surface of the membrane (Mizushima et al., 2003), 

LC3-II is found on both the inner and outer surfaces (Kabeya et al., 2000). The Atg16 complex is 

released into the cytoplasm around the time of autophagosome completion as the outer LC3-II is 

also cleaved off. The LC3-II on the inner surface remains intact and is degraded following fusion 

of the autophagosome and lysosome. LC3 is often used to monitor autophagic activity and in 

mammals, LC3B is the most prevalent and well-established autophagosome marker (Klionsky et 

al., 2016). LC3-I is predominantly cytosolic but upon activation of autophagy, the conversion to 

LC3-II is accompanied by a redistribution into punctate structures representative of 

autophagosomes.  

1.3.2 The PI3K/Akt/mTOR axis 

Autophagy can be activated in response to a number of cell stressors including but not limited to 

nutrient deprivation, ER stress, oxidative stress and pathogen infection. As described above, TOR 
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is a central regulator of autophagy. In mammalian cells, mTOR exists as two functionally distinct 

complexes, mTORC1 and mTORC2 (Sengupta et al., 2010). It has been proposed that mTORC1 

directly senses and is phosphorylated in response to nutrient signals (Long et al., 2005), although a 

role for Rag proteins in mTORC1 activation has also been described (Kim et al., 2008).  

Another major route of mTORC1 activation is via the PI3K/Akt signalling cascade in response to 

growth factors, cytokines and hormones such as insulin (Chan et al., 1999). Upon binding of these 

molecules to receptor tyrosine kinases (RTKs) at the cell surface, recruitment and binding of class I 

PI3K results in the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) from 

phosphatidylinositol (4,5)-bisphosphate (PIP2). Accumulation of PIP3 leads to the recruitment of 

both protein kinase B (PKB)/Akt and its activator phosphoinositide-dependent protein kinase 1 

(PDK1) which is responsible for the phosphorylation and activation of Akt at residue T308. 

Phosphorylation at residue S473 of Akt by mTORC2 is required for its complete activation 

(Sarbassov et al., 2005). Activated Akt promotes the phosphorylation and inactivation of the 

tuberous sclerosis complex 2 (TSC2) protein which is a negative regulator of mTORC1 leading to 

mTORC1 activation and the inhibition of autophagy. When hormones are absent, mTORC1 is 

inactivated allowing for the activation of autophagy. Additionally, the 3′-phosphoinositide 

phosphatase PTEN reverses the PIP2 to PIP3 reaction which decreases downstream Akt signalling 

and positively regulates autophagy (Arico et al., 2001). The PI3K/Akt pathway not only influences 

the induction of autophagy but also protein translation via the mTORC1 mediated activation of 

p70-S6K, a translation activator, and the mTORC1 mediated suppression of 4E-BP1, a translation 

repressor (Ma and Blenis, 2009). Finally, it is important to highlight that Akt can inhibit autophagy 

independently of mTORC1 via the phosphorylation and inactivation of Beclin 1 (Wang et al., 

2012) and that Akt can also inhibit the activation of TSC2 by suppressing the activity of 5′-AMP-

activated protein kinase (AMPK) during low cellular energy status (Hahn-Windgassen et al., 2005, 

Inoki et al., 2003). The PI3K/Akt/mTOR axis is presented schematically in Figure 1.5.   
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Figure 1.5 PI3K/Akt/mTOR axis 

Binding of signalling molecules such as insulin to receptor tyrosine kinases (RTKs) at the cell 

surface leads to the downstream recruitment of PI3K which catalyses the conversion of PIP2 to 

PIP3. Accumulation of PIP3 results in the translocation of Akt to the plasma membrane where it is 

activated via phosphorylation at T308 and S473 by PDK1 and mTORC2 respectively. Active Akt 

leads to activation of mTORC1 via phosphorylation and inactivation of the mTORC1 repressor, 

TSC2. The activation of mTORC1 results in the inhibition of autophagy via the ULK1 complex 

and the promotion of protein translation via p70-S6K and 4E-BP1. Inactivation of mTORC1 can be 

achieved by starvation or activation of TSC2 via AMPK. Adapted from Batra (2016). 
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1.4 Virus/host interactions 

1.4.1 Autophagy and immunity 

Research on autophagy has uncovered an array of diverse functions that go beyond turnover of 

long-lived organelles or responding to nutrient deprivation. Autophagy has also been implicated in 

cell development and differentiation (Li et al., 2015) and is even thought to play a role in life span 

extension (Madeo et al., 2015). In addition, the role of autophagy in neurodegenerative diseases 

such as Alzheimers and Parkinsons (Kiriyama and Nochi, 2015) as well as cancer (Ozpolat and 

Benbrook, 2015) is the subject of increasing interest. Traditionally, autophagy has been considered 

to be a non-selective pathway, however recent findings have challenged this thinking. A vital 

function of autophagy is the clearance of aggregated proteins and cytosolic ubiquitinated 

substrates. Studies suggest that this degradative process is also selective and mediated through the 

mammalian protein p62/sequestosome 1 (Bjorkoy et al., 2005). Ubiquitinated cargo is bound by 

p62 via its ubiquitin-associated domain which is then targeted to autophagosomes by the binding of 

p62 to LC3 located on the inner surface of the autophagosome (Pankiv et al., 2007). Binding of p62 

to LC3 occurs via its LC3-interacting region (LIR) motif and LIR motifs have been identified in 

several other autophagy receptor molecules (Birgisdottir et al., 2013). The selective degradation of 

damaged or superfluous mitochondria via the autophagy pathway, known as mitophagy, is 

mediated by the Atg32 receptor (Okamoto et al., 2009) and bacterial pathogens are known to be 

targeted by the autophagy receptors NDP52 and optineurin (Thurston et al., 2009, Wild et al., 

2011).       

One of the first indications that autophagy is used by cells to degrade pathogens was the 

observation by Smith and colleagues of herpes simplex virus (HSV) and human cytomegalovirus 

(HCMV) located inside autophagosomes (Smith and de Harven, 1978). Since then, a tremendous 

amount of research has been conducted on this subject which is referred to as xenophagy – the 

degradation of foreign entities including viruses, bacteria and parasites (Gomes and Dikic, 2014). 

In fact, studies have revealed that autophagy is implicated in diverse aspects of immunity, 

functioning in both the innate and adaptive immune responses.  

In its most basic form, autophagy acts as an intrinsic defence mechanism by degrading cytosolic or 

vacuole-containing microbes (Levine, 2005). Alternatively, following cell invasion by microbes, 

pattern recognition receptors such as toll-like receptors (TLRs) recognize molecules called DAMPs 

(damage-associated molecular patterns) and PAMPs (pathogen-associated molecular patterns). 

DAMPs are cell-derived molecules able to generate signals following cell stress or damage while 

PAMPs are pathogen derived molecules that are encountered during infection. Recognition of these 

molecules by TLRs activates pro-inflammatory responses in some cases accompanied by interferon 

production (Janeway and Medzhitov, 2002). Research conducted by Shi and colleagues 

demonstrated that TLR4 activation led to the release of Beclin 1 from Bcl-2 via binding to TLR 
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adaptor proteins which initiated an autophagy response (Shi and Kehrl, 2008). Additionally, 

evidence suggests that considerable cross-talk exists between autophagy and the interferon 

response (Tian et al., 2019). For example, expression of RNA-dependent eIF2α protein kinase 

(PKR), an important interferon-stimulated gene (ISG) product is essential for autophagic 

degradation of HSV-1 (Talloczy et al., 2006). Collectively, studies such as these demonstrate an 

integral role of autophagy in innate immunity.  

The function of autophagy in adaptive immunity has also been extensively examined. Cytosolic 

proteins have been shown to be constitutively delivered to multi-vesicular MHC class II-loading 

compartments via fusion with autophagosomes. In this way, targeting of the influenza matrix 

protein 1 to autophagosomes led to strongly enhanced MHC class II presentation to CD4+ T cell 

clones (Schmid et al., 2007). Autophagy can also influence MHC class I presentation and was 

shown to enhance the presentation of endogenous viral antigens during HSV-1 infection (English et 

al., 2009). The role that autophagy plays in immunity is summarised in Figure 1.6. 

It is important to note that autophagy proteins such as LC3 may have anti-viral functions which are 

independent of their function in canonical autophagy. Indeed, evidence of LC3 lipidation on other 

macroendocytic vacuole membranes has been described and is required for lysosomal-mediated 

degradation of engulfed cargo (Florey and Overholtzer, 2012). Non-canonical autophagy refers to 

the process of targeting LC3 to a single membrane in contrast to the double membrane of the 

autophagosome (Florey and Overholtzer, 2012). An example of this is LC3 lipidation at 

single‐membrane phagosomes in a process called LC3‐associated phagocytosis (LAP) following 

the engulfment of pathogens (Sanjuan et al., 2007, Sanjuan et al., 2009). Depending on cell type, 

LAP can promote a more rapid maturation of the phagosome in response to TLR signalling leading 

to accelerated loading and presentation on MHC-II (Sanjuan et al., 2009, Schille et al., 2018). 

1.4.2 Modulation of autophagy by viruses 

With such an important role in the host response to infection, it is unsurprising that autophagy is 

modulated by numerous viruses. Viruses are known to encode genes that specifically inhibit the 

autophagy pathway. Some of these inhibitors act on stimulatory cell signal pathways, for example 

the HSV-1 Us11 protein has been shown to inhibit PKR-mediated induction of autophagy 

(Lussignol et al., 2013). Other inhibitors have a direct interaction with the autophagy machinery - 

the ICP34.5 protein of HSV-1 was the first to be described (Orvedahl et al., 2007). ICP34.5 is able 

to bind to the key autophagy protein Beclin 1 and inhibit its autophagy function. Beclin 1 is a 

common target for virus modulation, indeed ASFV also encodes a Beclin 1 binding protein called 

A179L which has a high degree of sequence homology to the proto-oncogene Bcl-2, an apoptosis 

antagonist (Hernaez et al., 2013, Kroemer, 1997, Neilan et al., 1993). Beclin 1 is a Bcl-2 interacting 

protein and denotes an important point of convergence between the apoptosis and autophagy 

pathways perhaps making it a particularly useful target for inhibition by viruses (Liang et al., 
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1998). ASFV seems to exploit this cross-over as exogenous expression of A179L leads to the 

inhibition of both apoptosis and the formation of autophagosomes (Hernaez et al., 2013, Revilla et 

al., 1997).      

 

Figure 1.6 The role of autophagy in the innate and adaptive immune responses 

a) Intracellular pathogens (viruses, bacteria and parasites) that are either free inside the cytosol or 

contained within intracellular compartments such as phagosomes are engulfed into 

autophagosomes and degraded following fusion with lysosomes. b) Autophagy is used to transport 

viral nucleic acids to intracellular compartments containing Toll-like receptor 7 (TLR7) which 

signals the production of Type I interferon. c) Following engulfment into autophagosomes, 

antigens are delivered to MHC class II molecules by fusion of the autophagosome with late 

endosomes (MIIC’s). Antigens can then be presented to CD4+ T cells. Cytosolic antigens can also 

be directly imported into MIIC’s by chaperone mediated autophagy. Taken from Levine and 

Deretic (2007). 
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In the context of infectious disease, it is likely that in most circumstances, induction of autophagy 

would favour the immune response. Nevertheless, there are instances in which certain 

microorganisms benefit from increased autophagic activity (Kirkegaard et al., 2004). In the case of 

viral infections, autophagy can act as a source of intracellular membrane that serves as a scaffold 

for the generation of viral replication complexes (Kirkegaard, 2009). For this reason, knockdown of 

autophagy related gene products results in reduced viral yields of poliovirus (Jackson et al., 2005) 

and mouse hepatitis virus (Prentice et al., 2004). Parvovirus-B19 has been shown to activate 

autophagy which mediates prolonged survival of infected cells, potentially allowing more time for 

viral replication (Nakashima et al., 2006). Autophagy can also be exploited for viral release as 

poliovirus has been shown to exit infected cells using a non-lytic mechanism that is autophagy 

dependent (Bird et al., 2014). It is important to highlight that in many cases the stimulation of 

autophagy during virus infection does not necessarily lead to progression through the entire 

pathway. For example, influenza virus triggers autophagosome formation but inhibits the fusion of 

autophagosomes with lysosomes presumably to limit any anti-viral effects (Zhang et al., 2014).    

The PI3K/Akt signalling cascade which is intimately connected to the autophagy pathway and 

involved in multiple cell functions including metabolism, growth, survival and proliferation is also 

commonly targeted by viruses (Dunn and Connor, 2012, Hemmings and Restuccia, 2012). With 

such far-reaching influence in the cell, PI3K/Akt signalling can be crucial for viral replication. 

Viral growth in response to PI3/Akt activation is likely to be directly linked to mTORC1 activity 

due to the role that mTORC1 plays in protein translation via the downstream effectors p70-S6K 

and 4E-BP1. For this reason, viruses that rely on cap-dependent translation such as mammalian 

DNA viruses require active mTORC1 to maintain protein translation. Indeed, the activation of the 

PI3K/Akt pathway by vaccinia virus (VACV) was shown to be required for viral growth although 

this was also linked to the inhibition of apoptosis (Soares et al., 2009). Similarly, Flaviviruses such 

as dengue virus (DENV) and Japanese encephalitis virus (JEV) activate the PI3K/Akt pathway 

which has an anti-apoptotic effect, as a block in this activation induced apoptotic cell death in the 

early stages of infection (Lee et al., 2005). Human Papillomavirus has been shown to activate the 

PI3K/Akt pathway, leading to the activation of mTORC1 and the inhibition of autophagy which 

benefits viral replication (Surviladze et al., 2013).  

Modifying the ability of viruses to control the autophagy response can significantly alter the 

outcome of infection. For example, stimulation of autophagy using rapamycin results in significant 

reductions of virus titre during DENV infection of monocytic cells (Panyasrivanit et al., 2011). 

Using a genetic approach, an HSV-1 mutant virus lacking the Beclin 1-binding domain of ICP34.5 

was shown to lose the ability to control autophagy (Orvedahl et al., 2007). Infection of mice with 

the aforementioned mutant virus resulted in reduced mortality, demonstrating the potential for 

exploiting autophagy as a means of viral attenuation. The basis of this attenuation may be linked to 

an altered host immune response, as a separate study using this virus showed that infection resulted 
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in a significantly stronger CD4+ T-cell response as well as increased gamma interferon and 

interleukin-2 production (Leib et al., 2009). Interestingly, gamma interferon is an important 

correlate of protection against ASFV (King et al., 2011) and therefore methods aimed at increasing 

secretion levels in response to vaccination may prove to be important. For example, the 

immunogenicity of vaccine strain viruses could be enhanced by limiting the ability of the virus to 

modulate autophagy which may lead to increased antigen presentation and a greater T-cell 

response.   

1.5 Research Aims 

African swine fever is a significant disease of livestock that negatively impacts livelihoods and 

economies. In the face of continued spread into new regions including Europe and Asia, the 

requirement for commercially offered vaccines has now reached a critical level. Thus far, research 

has been conducted to delineate the intricacies of the host response to ASFV in an effort to harness 

this interaction for use as a vaccine model. This has been accompanied by an elevated interest in 

rationally attenuated vaccines (Borca et al., 1998, Lewis et al., 2000, Zsak et al., 1998). Within the 

vaccine design process, methods aimed at enhancing the host immune response will prove to be 

particularly useful. A potential barrier to this approach is the lack of knowledge surrounding the 

sizeable repertoire of ASFV genes and their functions.  

Induction of autophagy during ASFV entry reduces viral replication (Hernaez et al., 2013), but the 

importance of autophagy in the ASFV life cycle is unclear. ASFV replication has not been reported 

to induce autophagosome formation during infection (Hernaez et al., 2013), and pre-treatment of 

cells with 3-methyladenine that inhibits autophagy does not greatly affect viral replication (Basta et 

al., 2010). The purpose of this project is firstly to characterise the modulation of the ubiquitous cell 

process of autophagy by ASFV and secondly to investigate which viral mechanisms are involved. 

This includes screening for virally encoded autophagy modulators, the identification of which may 

offer an opportunity to alter modulatory outcomes for the purpose of improving vaccine efficacy. 

Low virulent strains of ASFV that lack autophagy modulators may provide enhanced immunity 

against virulent isolates of the virus. This research could therefore contribute to rational vaccine 

design and offer an approach to accelerating acquirement of effective ASFV vaccines.    
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2 Materials and methods 

2.1 Cell culture 

Vero cells (ECACC 84113001) were maintained in tissue culture flasks in Dulbecco’s Modified 

Eagle’s Medium (DMEM-GlutaMAX™, ThermoFisher Scientific) supplemented with 10% (v/v) 

heat inactivated Foetal Calf Serum (FCS, Life Science Production) and Penicillin (100 U/ml)-

Streptomycin (100 µg/ml) (ThermoFisher Scientific). Porcine bone marrow derived macrophages 

were maintained in Earle’s Balanced Salt Solution (EBSS; ThermoFisher Scientific) supplemented 

with 4 mM HEPES (ThermoFisher Scientific), 10% (v/v) porcine serum (Biosera) and Penicillin 

(100 U/ml)-Streptomycin (100 µg/ml). Mouse embryo fibroblast cells (MEFs) were maintained in 

DMEM supplemented with non-essential amino acids (Sigma) and Penicillin (100 U/ml)-

Streptomycin (100 µg/ml). HEK293 (ECACC 85120602) cells were maintained in DMEM 

supplemented with 10% (v/v) FCS and Penicillin (100 U/ml)-Streptomycin (100 µg/ml). All cells 

were kept at 37°C with 5% CO2. 

Vero cells were passaged by removing the growth medium and washing the cells twice with 

phosphate buffered saline without CaMg (PBS [-]; ThermoFisher Scientific) before incubating with 

trypsin EDTA (ThermoFisher Scientific) at 37°C for approximately 5 minutes to allow cell 

detachment. Cells were then transferred to a 30 ml universal tube containing growth medium and 

centrifuged at 340 × g for 5 minutes. The supernatant was then removed and cells were 

resuspended in growth medium before transferring an appropriate volume of the cell suspension to 

a new flask containing fresh medium. Finally, cells were incubated at 37°C and grown until 

confluent. 

For use in experiments, viable cells were identified using the trypan blue exclusion method, (trypan 

blue acquired from Sigma) and counted using a 0.2 mm depth improved Neubauer 

haemocytometer. Cells were subsequently seeded into 6-, 24- or 96-well tissue culture microtitre 

plates (Nunc) at an appropriate density. 

To cryopreserve cells, the confluent cell layer was removed using trypsin EDTA as above and cells 

were centrifuged at 340 × g for 5 minutes. Cell pellets were resuspended in freezing medium 

consisting of 10% (v/v) DMSO (Sigma) and 90% (v/v) FCS. Finally, cells were transferred to cryo-

freezing tubes (Nunc) and stored at -80°C. 

Porcine bone marrow derived macrophages were harvested from the long bones of pigs. Bones 

were cut into small fragments and incubated in PBS supplemented with 1% (v/v) FCS and 

Penicillin (100 U/ml)-Streptomycin (100 µg/ml) at 35°C for 90 minutes. The bone marrow 

suspension was then filtered through muslin to remove the bone fragments and centrifuged at 350 

× g for 10 minutes. Supernatant was discarded and the cell pellet was washed in PBS. After 

repeating the centrifugation step, the cell pellet which contained the bone marrow derived 
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macrophages plus additional cell types was resuspended in the appropriate cell medium and cells 

were counted and seeded into flasks.   

To harvest blood derived macrophages, erythrocytes were sedimented from whole pig blood by 

incubation with an equal volume of 6% dextran (Sigma) solution for 30 minutes at 37°C. White 

blood cells were concentrated from the supernatant by centrifugation and washed several times 

with PBS before plating 2 x 10
7
 cells per 6-well plate in DMEM supplemented with 30% (v/v) pig 

serum and Penicillin (100 U/ml)-Streptomycin (100 µg/ml). Cells were cultured overnight to allow 

monocytes to adhere and then the media was changed. Two days after this cells were used in 

experiments. 

2.2 Growth, maintenance and titration of virus stocks 

2.2.1 Virus isolates 

The parental virus strain Ba71V and recombinant Ba71V virus lacking the A179L gene (A179L 

KO) (generated by Dr Claire Barber) were used to infect Vero cells. BA71V is a non-pathogenic 

tissue-culture adapted virus derived from a virulent parental strain isolated in 1971 from a pig near 

Badajoz, Spain (Enjuanes et al., 1976). The attenuated Uganda isolate was used to infect MEFs 

(Hess et al., 1965) and the virulent field isolate OURT88/1 (Boinas et al., 2004) was used to infect 

blood derived macrophages. 

2.2.2 Growth of virus stocks 

Vero cells were cultured in T175 flasks such that they reached approximately 80% confluence prior 

to inoculation with parental, recombinant Ba71V or attenuated Uganda. Flasks were then incubated 

for 3 - 5 days at 37°C in the presence of CO2. The contents of the flask were transferred to a 50 ml 

Falcon tube (BD Falcon) and centrifuged at 3500 × g for 15 minutes before harvesting the 

supernatant. Clarified supernatant was stored at -80°C.  

Growth of the OURT88/1 isolate was carried out on bone marrow derived macrophages. T175 

flasks were seeded with 50-75 ml of cells at a concentration of approximately 1.6 x 10
7
 cells/ml 

and incubated at 37°C in the presence of CO2. After 3 days, inoculum was added and cells were 

incubated until at least 90% of cells had detached before harvesting. Cell debris was pelleted for 10 

minutes at 1000 × g and clarified supernatant was removed. Cell pellet was vortexed and subjected 

to three freeze/thaw cycles at -80°C before a final centrifugation step. Supernatant was removed 

and combined with the previously harvested supernatant before storage at -80°C.    

2.2.3 Virus infection of cells 

The virus inoculum was diluted in 2% FCS or porcine serum media and then added to pre-plated 

cells or cells seeded onto glass coverslips at an appropriate multiplicity of infection (MOI). Virus 

was left to adsorb for 1 hour at 37°C with CO2. The inoculum was subsequently removed and cells 
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washed in media. Cells were then incubated in 2% FCS or porcine serum media at 37°C with CO2 

for the required length of time.  

2.2.4  Endpoint titration of virus 

Vero cells were seeded onto 96 well plates (Nunc) in 100 µl of media containing 1 x 10
5
 cells/ml in 

each well. The following day a ten-fold dilution series of the virus from 10
-1

 to 10
-8

 was prepared in 

2% FCS culture medium and added to the cells in their existing culture media. This was applied in 

quadruplicate at 50 µl per well. The plate was sealed with a plate sealer and the plate incubated at 

37°C with CO2 for 3 days. The culture media/virus was removed and the cells were washed once 

with PBS (-) prior to fixation in 4% paraformaldehyde (PFA). 

After 1 hour, cells were washed with PBS (-) and then incubated in PBS containing 0.2% Triton X-

100 (Sigma) for 10 minutes. The PBS/Triton mix was discarded, and the plate incubated in block 

buffer consisting of 10% (v/v) TBS, 0.2% (v/v) NaN3 and 0.2% (v/v) fish skin gelatin (Sigma) for 

30 minutes. The block buffer was discarded, and the cells incubated with primary antibody against 

viral protein p30 (clone C18, Pirbright Institute) diluted 1:1000 in block buffer for 1 hour. 

Following incubation with the primary antibody the plate was washed three times in PBS (-).  

For evaluation by immunofluorescence cells were incubated for 1 hour in the presence of goat anti-

mouse Alexa Fluor 488 (Life Technologies) diluted 1:500 in block buffer. Plates were subsequently 

washed three times in PBS (-) and the plates read using an inverted microscope. 

The TCID50 was determined using the Spearman Kärber method (Kärber, 1931). 

Titration of the Uganda and OURT88/1 strains was carried out essentially using the same method 

except that bone marrow derived macrophages were used instead of Vero cells. Additionally, plates 

were read by counting wells that demonstrated red blood cell rosettes instead of immunofluorescent 

labelling of the virus (Malmquist and Hay, 1960).    

2.2.5 Virus purification 

Ba71V virus stocks were grown in tissue culture roller bottles (Fisher Scientific) and harvested as 

per the method in section 2.2.2. Following this, clarified supernatants were centrifuged at 24 000 × 

g for 1.5 hours and the resulting virus pellets were then purified by two consecutive Percoll density 

gradients as described (Carrascosa et al., 1985). Purified virus stocks were titrated using the 

method in section 2.2.4. The purity of the virus preparation was analysed by negative stain electron 

microscopy.   
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2.3 DNA techniques 

2.3.1  PCR 

A179L was cloned into the pcDNA3.1 HA-N expression vector using PCR amplification of codon-

optimised A179L (ordered from ThermoFisher Scientific). PCR reactions were carried out using an 

Eppendorf MasterCycler or Nexus thermal cycler. Primers used to amplify A179L were ordered 

from Sigma and encoded XhoI and PstI cut sites on the forward and reverse primers respectively 

(see Table 2.1). Components were assembled as follows; 100 - 150 ng of A179L template DNA, 5 

µl of 10X PCR buffer for KOD Hot Start DNA Polymerase, 5 µl dNTPs, 3 µl 25 mM MgSO4, 10 

µl of Q-solution (Qiagen), primers to a final concentration of 100 nM and 1 µl of KOD Hot Start 

DNA Polymerase. The reaction volume was made up to 50 µl with nuclease-free water. The PCR 

program was carried out at 95°C for 4 minutes, followed by 30 cycles consisting of 95°C for 30 

seconds, 50°C for 30 seconds, 70°C for 20 seconds, with a final step of 70°C for 5 minutes. 

Following PCR, samples were stored at -20°C or immediately analysed on an agarose gel. 

Table 2.1 PCR primers 

Primer Sequence (5’ – 3’) 

A179L FOR AACCAACTCGAGCATGGAAGGCGAGGAACTGATCTACCAC 

A179L REV ACATACCTGCAGTCAGATCAGGTTGCAGTTCCGCAG 

 

2.3.2 Restriction endonuclease digests and DNA purification and ligation 

Restriction endonuclease digest of the A179L PCR amplicons was carried out in a total volume of 

30 µl using NEB buffer 3 (New England Biolabs) according to the manufacturer’s instructions. 

Restriction enzyme XhoI was supplied by New England Biolabs and PstI was supplied by 

Promega. Restriction digest of the pcDNA3.1 HA-N destination vector included 15 minute 

treatment with temperature sensitive alkaline phosphatase (Promega) to remove terminal phosphate 

groups. Samples were analysed by agarose gel electrophoresis before being purified using an 

illustra™ GFX™ PCR DNA and Gel Band Purification Kit (GE, UK) by following the 

manufacturer’s protocol. DNA was eluted in 30 µl nuclease free water and stored at -20°C until 

needed. The A179L amplicon was ligated into the pcDNA3.1 HA-N destination vector in a total 

reaction volume of 10 µl using 0.5 µl T4 DNA ligase (Promega) in a T4 ligase buffer solution 

(Promega). This was carried out using a vector:insert molar ratio of 1:3, where the vector 

concentration was approximately 100 - 150 ng. Ligations were conducted at 16°C overnight and 

were subsequently used to transform chemically competent E.coli. 
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2.3.3 Transformation of competent cells and isolation of DNA 

Frozen TOP10 competent cells were gently thawed on ice for 5 - 10 minutes. 50 ng of DNA was 

pipetted in to 50 µl of thawed cells and gently stirred, then left to incubate on ice for 20 minutes. 

The cells were then heat shocked in a water bath at 42°C for 35 seconds, and returned to ice for a 

further 2 minutes. 300 µl of SOC medium was added and the cells were incubated in an orbital 

incubator for 90 minutes at 37°C with continuous shaking at 200 rpm. Afterwards, the cells were 

plated on to Luria broth (LB) agar plates containing ampicillin at 100 µg/ml. The plates were then 

incubated overnight at 37°C until colonies were seen. Following this, either small scale (2.5 ml) or 

large scale (400 ml) bacterial cultures were set up in LB broth. DNA was extracted using either a 

QIAprep Spin Miniprep kit or Qiagen Plasmid Maxi Kit following the manufacturer’s protocols. 

The concentration of eluted DNA was analysed using a Nanodrop 1000, which was set to measure 

the optical density of a given sample at 260 nm. 

2.3.4 DNA Sequencing 

Purified DNA was sequenced using a BigDye® Terminator v3.1 Cycle Sequencing Kit, (Applied 

Biosystems, UK) using the primers listed in Table 2.2. This system uses four‐colour fluorophore 

conjugated dideoxy-nucleotides in a terminator cycle sequencing reaction. Sequencing reactions 

were ethanol precipitated, then re‐suspended in 20 µl of HI‐DI formamide. Samples were run on an 

ABI 3730 DNA analyser. Sequences were analysed using Vector NTI Advance (version 11.5.4). 

Table 2.2 Sequencing primers 

Primer Sequence (5’ – 3’) 

CMV FOR GCAAATGGGCGGTAGGCGTG 

BGH REV TAGAAGGCACAGTCGAGG 

 

2.3.5 A179L mutagenesis 

Mutation of the A179L ligand binding groove was carried out using site-directed mutagenesis in 

sequential stages in which the valine residue at position 73 was first mutated to tyrosine followed 

by mutation of the glycine residue at position 89 also to tyrosine. Site-specific primers were 

designed using the QuickChange Primer Design webpage (Agilent) (see Table 2.3). Mutagenesis 

was carried out using 50 ng of the pcDNA3.1 HA-A179L construct as a template in a PCR reaction 

using the same conditions described in section 2.3.1. Following amplification, 1 µl of DpnI (New 

England Biolabs) was added to each reaction to digest the parental DNA template and to select for 

mutation-containing synthesized DNA. Constructs encoding mutant A179L were transformed into 

E.coli then isolated from bacterial cultures and sequenced as previously described in sections 2.3.3 

and 2.3.4.       
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Table 2.3 A179L mutagenesis primers 

Primer Sequence (5’ – 3’) 

V73Y FOR CCCAGTTCACCGGCTACGTGACCGAGCTGT 

V73Y REV ACAGCTCGGTCACGTAGCCGGTGAACTGGG 

G89Y FOR GCTGAACACGATGAAGTAGCAGATCCGGCCCCAG 

G89Y REV CTGGGGCCGGATCTGCTACTTCATCGTGTTCAGC 

 

2.3.6 Generation of adenovirus vectors 

Adenovirus expressing wild-type (WT) A179L or mutant (YY) A179L were engineered using 

Gateway® Technology (ThermoFisher Scientific). Each gene was initially cloned into an entry 

vector using restriction digest. DNA encoding WT or YY A179L was excised from the pcDNA3.1 

HA-N constructs (see section 2.3.1) using KpnI and PmeI (New England Biolabs). Similarly, the 

p2022 entry vector was cut using KpnI and StuI (New England Biolabs) and all digests were 

carried out using Cutsmart buffer (New England Biolabs). Digests were gel purified and samples 

were ligated using the methods described in section 2.3.2 followed by plasmid purification from 

bacterial culture as described in section 2.3.3. 

To generate adenovirus expression clones, a recombination reaction was performed using the entry 

vector cloned above and a Gateway® destination vector (p664) encoding adenovirus human type 5 

(AdH5). This system uses specific recombination sequences, att L sites in the entry vector and att R 

sites in the destination vector, and the proprietary enzyme mix ‘LR Clonase’ to catalyse the transfer 

of the gene of interest from the entry vector to the destination vector. Separate reactions for WT 

A179L and YY A179L were set up in 10 µl volumes that contained 150 ng of each of the entry and 

destination vectors in addition to 6 µl of TE buffer pH 8.0 and 2 µl of LR Clonase™ II Enzyme 

Mix (ThermoFisher Scientific). Reactions were incubated overnight at room temperature and the 

resulting constructs were used to transform E.coli. DNA was purified from bacterial cultures and 

sequenced as described in sections 2.3.3 and 2.3.4.  

To prepare the AdH5 expression constructs for cell transfection, DNA was linearised using PacI 

(New England Biolabs) and Cutsmart buffer. Following this, samples were heated at 65°C for 25 

minutes to inactivate the restriction enzyme. Transfections were carried out on HEK293 cells 

which is an immortalized line of primary human embryonic kidney cells transformed by sheared 

human AdH5 DNA. The cells harbour the E1A and E1B region of the adenoviral genome, that 

complement, in trans, the deletion of the E1 region in the recombinant adenovirus. Cells were 

cultured to a confluency of approximately 80% in 6 well plates prior to transfection using 

Lipofectamine™ 2000 (ThermoFisher Scientific) following the manufacturer’s protocol. Cells 
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were incubated overnight at 37°C and then incubated in fresh cell media for a further 3 days. Cells 

were detached from the plate using TrypLE™ Express (ThermoFisher Scientific) and transferred 

into a T75 tissue culture flask and monitored for CPE. When greater than 80% CPE was evident, 

cells were harvested by pelleting at 1500 × g for 5 minutes. Cell pellets were resuspended in lysis 

buffer (10 mM Tris, 1 mM MgCl2, pH 7.8) and subjected to three freeze/thaw cycles at -20°C to 

release cell-associated virus.  

Master AdH5 stocks were prepared by inoculating a T175 flask of HEK293 cells with each of the 

A179L adenoviruses and harvesting the cells using the described method after complete CPE was 

evident. Finally, master stocks were tested for expression by transducing Vero cells and analysing 

the cells by confocal microscopy using an anti-HA tag antibody.                         

2.4  Protein methods  

2.4.1 SDS-PAGE 

Proteins from cell lysates were resolved by SDS-PAGE (sodium dodecyl sulfate polyacrylamide 

gel electrophoresis), using 10 - 15% resolving gels, overlaid with a 4% stacking gel on a Hoefer 

Mighty Small II electrophoresis unit. Cell lysates were harvested in sample preparation buffer 

containing loading buffer. Following denaturation at 98°C for 5 minutes, 10 - 20 µl of the sample 

was subsequently loaded onto the gel alongside a Full-Range Rainbow Molecular Weight Marker 

(GE Healthcare). Gels were run in NuPAGE MES running buffer (ThermoFisher Scientific) with 

the exception of LC3 analysing gels that were run in NuPAGE MOPS running buffer 

(ThermoFisher Scientific) at 100 V until the dye front reached the end of the gel. 

2.4.2 Western blotting 

Proteins were transferred onto nitrocellulose membranes (Hybond PVDF membrane, GE 

Healthcare) using Mini Protean II slab cell Western blot apparatus (Bio-Rad) by running at 100 V 

for 1 hour in transfer buffer (25 mM Trizma, 190 mM glycine, 20% methanol). The membrane was 

removed and incubated in blocking buffer consisting of TBS with 0.2% (v/v) Tween (TBS-T) and 

5% (w/v) milk powder for 1 hour, prior to overnight incubation with primary antibody diluted in 

blocking buffer. Membranes were washed three times in TBS-T, prior to incubation with 

appropriate HRP-conjugated secondary antibodies, which had been diluted in blocking buffer, for 1 

hour. Membranes were washed a further three times in TBS-T prior to detection of 

chemiluminescence by incubating the membrane with Pierce ECL western blotting substrate 

(ThermoFisher Scientific) for 3 minutes. Membranes were then imaged using a G:Box Chemi 

system (Syngene). 
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2.5 ASFV gene library 

Plasmid libraries were supplied by Dr Claire Barber (The Pirbright Institute) and Dr Chris 

Netherton (The Pirbright Institute). 25 plasmids encoded genes from the Georgia 2007/1 isolate in 

pCMVi-LS (-H-P) CIM with a HA tag (YPYDVPDYA) at the 5’ end and a Myc tag 

(EQKLISEEDL) at the 3’ end. A further 25 genes from the OURT88/3 strain and the DP148R gene 

from the Benin 1997/1 strain had been cloned into pcDNA3.1zeo with a HA tag at the 3’ end 

except for MGF110-4L and MGF110-5L that had no tags and R298L that had a HA tag at the 5’ 

end. The adenovirus library was supplied by Dr Chris Netherton and consisted of 22 genes from the 

OURT88/3 strain and EP153R and MGF360-11L from the Benin1997/1 strain. All of these genes 

were cloned with a HA tag at 3’ end except for CP196L that had no tag. The A179L plasmids and 

adenoviruses were cloned separately and contained a HA tag at the 5’ end (see sections 2.3.1 to 

2.3.6)       

2.6 Transfection and transduction of mammalian cell lines 

Cells were seeded at 2.5 x 10
4
 cells/cm

2
 on appropriate culture ware 16 hours prior to transfection 

as per the TransIT-LT1 transfection reagent protocol (Mirus). In brief, plasmid DNA and TransIT-

LT1 reagent were added to OptiMEM (Gibco) at a ratio of 1 µg DNA to 3 µl transfection reagent. 

Following gentle agitation the mix was allowed to incubate for 25 minutes. The TransIT-LT1 

reagent-DNA complex was added dropwise to cells that were gently rocked and returned to 

incubate at 37°C. To avoid tubulovesicular autophagosomes (TVAs) which are induced during the 

transfection process, cells were passaged after 24 hours and re-seeded onto coverslips. Cells were 

incubated at 37°C for 24 hours before starving and fixing. 

To transduce cells using adenovirus, sufficient virus for MOI 100 was added directly to the cell 

media and incubated at 37°C for 24 hours to allow gene expression before starving and fixing. 

2.7 Confocal microscopy 

Cells were seeded at 2.5 x 10
4
 cells/cm

2
 onto glass coverslips (VWR) prior to infection, 

transfection or other relevant treatment. At the experimental end point, cells were washed with PBS 

and fixed and permeabilised with methanol for 6 minutes for assays analysing LC3 and WIPI 

except when GFP and LC3 were analysed in combination in which case cells were first fixed in 4% 

PFA for 30 minutes to preserve GFP signal followed by permeabilisation using methanol. 

Alternatively, experiments that did not include analysis of LC3 or WIPI were fixed using PFA only 

for 30 minutes and permeabilised for 10 minutes using PBS + 0.2% Triton X-100 (Sigma). 

Coverslips were washed three times with PBS then incubated for 1 hour in block buffer consisting 

of 10% (v/v) TBS, 0.2% (v/v) NaN3 and 0.2% (v/v) fish skin gelatin (Sigma). Coverslips were then 

incubated for a further hour in primary antibody diluted in block buffer and then washed three 

times for 5 minutes in PBS (-) to remove excess antibody. Next, coverslips were incubated for 1 
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hour with an appropriate Alexa Fluor (Life Technologies) secondary antibody diluted in block 

buffer and then washed three times in PBS (-) before incubation with DAPI nuclear stain (4’, 6-

Diamidino-2-Phenylindole, Dihydrochrolide, 10 mg/ml, Sigma) diluted 1:10 000 in ddH2O for 10 

minutes. Alternatively, nuclei were stained using TO-PRO-3 (ThermoFisher Scientific) diluted 

1:8000 in PBS for 15 minutes. Finally, coverslips were washed twice in ddH2O and then mounted 

in Vectashield (Vector Laboratories) on glass slides, and sealed using nail varnish. 

Cells were visualised using a Leica confocal laser scanning microscope, and data analysed using 

LAS X (Leica Confocal Software). 

2.8 Imaris analysis 

To enumerate LC3 or WIPI puncta, confocal images were analysed in Imaris (version 9.2.1) using 

the ‘Cells’ analysis function. Cells were detected using either cytoplasmic LC3 staining, WIPI 

staining, or labelling of protein expression following infection or transduction. Detection thresholds 

were adjusted to cover each cell to the cell boundary. The software was set to detect puncta of 

approximately 0.5 µM in diameter and cells were visually inspected to ensure that the software had 

accurately identified visible puncta. Analysis was carried out for 30 cells per experimental 

condition and data was subsequently analysed in Graphpad Prism (version 7).      

2.9 Electron microscopy 

For analysis of purified virus preparations, virus was inactivated by 1:1 volume dilution in 2% 

glutaraldehyde in phosphate buffer (Agar Scientific) for 30 minutes at room temperature. A 7 µl 

sample of the fixed virus suspension was placed onto Formvar coated, glow discharged copper 200 

mesh EM grids (Agar Scientific) and left to attach for 2 minutes at room temperature. Excess 

sample was then removed using filter paper. After a brief wash in ddH2O, grids were placed on 

droplets of 3% aqueous uranyl acetate (Agar Scientific) for 1 minute before excess stain was 

removed with filter paper and grids were left to dry.  

For analysis of transduced cells, Vero cells were seeded onto Thermanox coverslips (ThermoFisher 

Scientific) at 2.5 x 10
4
 cells/cm

2
 and incubated at 37°C until 90% confluence had been reached. 

Cells were transduced with AdH5 vectors encoding either E183L or E199L (MOI 100) and were 

incubated at 37°C for 24 hours to allow protein expression. Samples were fixed in 2% 

glutaraldehyde in phosphate buffer (Agar Scientific) for 1 hour before being fixed for a further 

hour in aqueous 1% osmium tetroxide (Agar Scientific). The samples were dehydrated in an 

ethanol series; 70% for 30 minutes, 90% for 15 minutes and 100% three times for 10 minutes each. 

A transitional step of 10 minutes in propylene oxide (Agar Scientific) was undertaken before the 

samples were infiltrated with a 50:50 mix of propylene oxide and epoxy resin (Agar Scientific) for 

1 hour. After a final infiltration of 100% epoxy resin for 1 hour, the samples were embedded in 
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moulds and polymerised overnight at 60°C. Thin sections of 80 µm were cut, collected onto glow 

discharged copper 200 mesh EM grids (Agar Scientific) and grid stained using Leica EM AC20.   

All samples were imaged at 100 kV in a FEI T12 TEM using a Tietz F214 CMOS camera. 

2.10 Mass spectrometry 

2.10.1 Sample preparation 

Vero cells were seeded onto 90 mm petri dishes (Fisher Scientific) at 16.5 x 10
5
 cells/dish and left 

to grow to 90% confluency. Cells were transduced using E199L-HA AdH5 at MOI 100 and 

incubated overnight at 37°C. Negative control samples were generated using non-transduced Vero 

cells that were maintained under the same conditions. Three replicate petri dishes were set up for 

each of the transduced and non-transduced samples. Cell media was removed and cells were 

washed twice in PBS. Cells were then suspended in 1 ml lysis buffer consisting of 10 mM Tris/Cl 

pH 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.5% Igepal CA-630 and Halt protease and phosphatase 

inhibitor (ThermoFisher Scientific) before incubation on ice for 30 minutes. Samples were then 

centrifuged for 5 minutes at 16 000 × g and supernatants were transferred to separate tubes. To 

each tube containing the supernatant, 150 µl of anti-HA affinity matrix (Roche) was added and 

incubated overnight at 4°C on a tube rotator. Samples were pulse centrifuged for 20 seconds and 

supernatants were removed to waste. Next, samples were washed three times in wash buffer 

consisting of 10 mM Tris/Cl pH 7.5; 150 mM NaCl and 0.5 mM EDTA. Elution of proteins was 

carried out by adding 300 µl of glycine buffer, pH 2.5 and incubating for 10 minutes at room 

temperature. Samples were pulse centrifuged for 20 seconds and eluent was removed to a fresh 

tube containing 30 µl Tris buffer, pH 11. A total of four elutions was carried and eluents from each 

sample were pooled into a single tube. Finally, 24 µl of the eluted samples were analysed by 

western blot for the presence of E199L-HA. Eluent and affinity matrix from each sample was then 

processed for mass spectrometry analysis by Dr Stuart Armstrong at University of Liverpool.   

2.10.2 Sample processing 

IP analysis is similar to that described by García-Dorival (Garcia-Dorival et al., 2014). Eluted 

proteins were mixed with 50 mM ammonium bicarbonate in a 1:1 volume dilution. Proteins were 

reduced by addition of dithiothreitol (Sigma) (3 mM final concentration) and heated at 60°C for 10 

minutes. The samples were returned to room temperature, and iodoacetamide (Sigma) (9 mM final 

concentration) was added for 30 minutes in the dark to alkylate the proteins. Proteins were digested 

with 0.2 μg of proteomic grade trypsin (Sigma) and left to incubate at 37°C overnight. The 

resulting peptide samples were then acidified with 1% (v/v) trifluoroacetic (TFA) acid. Peptides 

were concentrated and desalted using C18 Stage tips (ThermoFisher Scientific) and then samples 

dried using a centrifugal vacuum concentrator (Eppendorf). Peptides were re-suspended in 0.1% 

(v/v) trifluoroacetic acid and 5% (v/v) acetonitrile.  
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Affinity matrix (post glycine elution) was mixed with reducing sample buffer (LDS, ThermoFisher 

Scientific) in a 1:1 volume dilution and heated at 70°C for 10 minutes. Samples were separated on 

a 4 - 12% SDS PAGE gel (NuPAGE, ThermoFisher Scientific) and Coomassie stained. The entire 

lane was excised, avoiding antibody fragments and subjected to in-gel digestion with trypsin. 

Peptides were concentrated and desalted as above.    

2.10.3 Mass spectrometry analysis 

Peptides were analysed by on-line nanoflow liquid chromatography (LC) using the Ultimate 3000 

nano system (Dionex/Thermo Fisher Scientific). Samples were loaded onto a trap column (Acclaim 

PepMap 100, 2 cm × 75 μm inner diameter, C18, 3 μm, 100 Å) at 5 μl.minute
−1

 with an aqueous 

solution containing 0.1% (v/v) TFA and 2% (v/v) acetonitrile. After 7 minutes, the trap column was 

set in-line an analytical column (Easy-Spray PepMap® RSLC 50 cm × 75 μm inner diameter, C18, 

2 μm, 100 Å) fused to a silica nano-electrospray emitter (Dionex). The column was operated at a 

constant temperature of 30°C and the LC system coupled to a Q-Exactive HF mass spectrometer 

(Thermo Fisher Scientific). Chromatography was performed with a buffer system consisting of 

0.1% formic acid (buffer A) and 80% acetonitrile in 0.1% formic acid (buffer B). The peptides 

were separated by a linear gradient of 3.8 - 50% buffer B over 30 minutes at a flow rate of 300 

nl/minute. The Q-Exactive HF was operated in data-dependent mode with survey scans acquired at 

a resolution of 60 000 and scan range 350 - 2000 m/z. Up to the top ten most abundant isotope 

patterns with charge states +2 to +5 from the survey scan were selected with an isolation window 

of 2.0 Th and fragmented by higher energy collisional dissociation with normalized collision 

energies of 30. The maximum ion injection times for the survey scan and the MS/MS scans were 

100 and 45 ms respectively, and the ion target value was set to 3E6 for survey scans and 1E5 for 

the MS/MS scans. MS/MS events were acquired at a resolution of 30 000. Repetitive sequencing of 

peptides was minimized through dynamic exclusion of the sequenced peptides for 20 seconds. 

MS spectra data was analysed by label-free quantification (LFQ) using the MaxQuant software (v 

1.6.1.0) (Cox et al., 2014) and searched against either a human protein database (Uniprot release-

2017_10) or Chlorocebus sabaeus protein database (Uniprot release-2017_10) and the ASFV 

E199L bait protein sequence (Uniprot) using the Andromeda search engine. The false discovery 

rate (FDR) was set to 0.01, and a decoy database was included in the search to help identify false-

positives. LFQ results were further processed with Perseus software (v 1.6.1.1) (Tyanova et al., 

2016) to determine significance between resin alone compared to tagged E199L protein. Statistical 

t-test analysis was used to analyse intensity values. Proteins with a p-value <0.05 and a fold change 

>2 were considered statistically significant. 

2.11 Statistics 

Graphs were prepared in Graphpad Prism (version 7) and statistical analysis was performed in 

MiniTab (version 18) using analysis of variance (ANOVA), plus Tukey multiple comparison test to 
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determine statistical differences between groups. Data that did not fit a normal distribution was 

converted to log10 scale prior to conducting the statistical analysis.      

2.12 Antibodies 

Primary and secondary antibodies used for the detection of proteins by Western blot (WB) and 

immunofluorescence (IF) 

Table 2.4 Antibodies 

Name Manufacturer 
Clone/Product 

number 
Species Clonality 

WB 

dilution 

IF  

dilution 

Primary Antibodies 

4E-BP1 
Cell Signaling 

Technology 
9452 Rabbit Polyclonal 1:1000  

P-4E-BP1 
Cell Signaling 

Technology 
9459 Rabbit Polyclonal 1:1000  

Akt 
Cell Signaling 

Technology 
4691 Rabbit Monoclonal 1:1000  

P-Akt 

T308 

Cell Signaling 

Technology 
13038 Rabbit Monoclonal 1:1000  

P-Akt 

S473 

Cell Signaling 

Technology 
4060 Rabbit Monoclonal 1:2000  

Calnexin 
Cell Signaling 

Technology 
2679 Rabbit Monoclonal 1:1000  

Calnexin 
The Pirbright 

Institute 
TW20 Rabbit Monoclonal  1:500 

CHOP 
Cell Signaling 

Technology 
2895 Mouse Monoclonal 1:1000  

GFP Abcam ab290 Rabbit Polyclonal 1:6000  

HA Roche 11867423001 Rat Monoclonal  1:1000 

HA Santa Cruz SC-805 Rabbit Polyclonal  1:500 

HA-HRP Roche 12013819001 Rat Monoclonal 1:1000  

J18L 
The Pirbright 

Institute 
Anti-sera Rabbit Polyclonal 1:1000  

LC3B Sigma L7543 Rabbit Polyclonal  1:1000 

LC3B 
Cell Signaling 

Technology 
2775 Rabbit Polyclonal 1:1000  

MGF110-

4L/5L 

The Pirbright 

Institute 
TEW29 Rabbit Monoclonal  1:500 
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Name Manufacturer 
Clone/Product 

number 
Species Clonality 

WB 

dilution 

IF  

dilution 

p30 
The Pirbright 

Institute 
C18 Mouse Monoclonal 1:1000 1:1000 

p30 
The Pirbright 

Institute 
1D9 Mouse Monoclonal  1:160 

p62 
Cell Signaling 

Technology 
88588 Mouse Monoclonal 1:500  

p70-S6K 
Cell Signaling 

Technology 
9202 Rabbit Polyclonal 1:1000  

P-p70-S6K 
Cell Signaling 

Technology 
9205 Rabbit Polyclonal 1:1000  

γ-tubulin Sigma T6557 Mouse Monoclonal 1:2500  

ULK1 
Cell Signaling 

Technology 
8054 Rabbit Monoclonal 1:1000  

P-ULK1 
Cell Signaling 

Technology 
14202 Rabbit Monoclonal 1:1000  

WIPI2 Abcam ab105459 Mouse Monoclonal  1:1000 

Secondary antibodies 

Mouse-

HRP 
Promega W402B Goat Polyclonal 1:2000  

Rabbit-

HRP 
Santa Cruz SC-2004 Goat Polyclonal 1:2000  

mouse-488 
ThermoFisher 

Scientific 
A11029 Goat Polyclonal  1:500 

mouse-568 
ThermoFisher 

Scientific 
A11004 Goat Polyclonal  1:500 

mouse 

IgG1-568 

ThermoFisher 

Scientific 
A21124 Goat Polyclonal  1:500 

mouse 

IgG2A-488 

ThermoFisher 

Scientific 
A21131 Goat Polyclonal  1:500 

rabbit-405 
ThermoFisher 

Scientific 
A31556 Goat Polyclonal  1:200 

rabbit-488 
ThermoFisher 

Scientific 
A11034 Goat Polyclonal  1:500 

rabbit-568 
ThermoFisher 

Scientific 
A11036 Goat Polyclonal  1:500 

rat-568 
ThermoFisher 

Scientific 
A11077 Goat Polyclonal  1:500 
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2.13 Pharmacological inhibitors 

Pharmacological compounds used as inhibitors  

Table 2.5 Pharmacological inhibitors 

Name Manufacturer 
Product 

number 
Target 

Final 

concentration 

Bafilomycin A1 Enzo BML-CM110 
vacuolar-type 

H+ ATPase 
100 nM 

LY294002 Sigma L9908 PI3K 50 nM 

MK-2206 Seleckchem S1078 Akt1/2/3 5 µM 

Torin1 Generon A11587-10 mTOR 200 nM 

Torin2 Sigma SML1224 mTOR 1 µM 

Tunicamycin Sigma T7765 N-glycosylation 20 µg/ml  
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3   Characterisation of the modulation of autophagy by ASFV 

3.1   Introduction 

Since the first descriptions of autophagy were published, extensive research has transformed our 

understanding of its purpose from what was exclusively regarded as a basic mechanism of 

maintaining adequate cell energy levels to one that is now multi-faceted. In the context of infection, 

autophagy has been shown to play important roles in host defence, from the fundamental intrinsic 

defence mechanism of engulfing cytoplasmic pathogens to the more advanced innate and adaptive 

immune responses (Gomes and Dikic, 2014). Research has also uncovered links between 

autophagy and host cell stress responses such as the unfolded-protein response (UPR) (Senft and 

Ronai, 2015) and apoptosis (Mukhopadhyay et al., 2014). Virus infection and replication inevitably 

lead to cell stress by disrupting and subverting multiple cell pathways to direct resources towards 

the benefit of virus replication. Consideration of its wide-ranging functions means that autophagy 

undoubtedly has a role to play in the cellular response to infection. The ability of the virus to 

propagate is in many ways dependent on its capacity to modulate these cellular stress responses 

including the autophagy response. 

Infection of the cell by ASFV leads to the modification of several organelles in a highly 

orchestrated fashion including the cell cytoskeleton, nucleus, ER and mitochondria  (Netherton and 

Wileman, 2013). Evidence of activation of caspase-12 and the ATF6 pathway of the UPR, regarded 

as key indicators of ER stress induction suggests that ASFV infection induces an ER stress 

response (Galindo et al., 2012). The activation of ER stress and the UPR by ASFV could also be an 

important factor in the induction of apoptosis. This is because signalling through caspase-12 and 

the ATF6 pathway of the UPR can trigger pro-apoptotic signals (Szegezdi et al., 2003, Szegezdi et 

al., 2006). Indeed, apoptosis is induced early on in ASFV infection, evidenced by the activation of 

caspase 3, most likely during virus entry or uncoating (Carrascosa et al., 2002). Critically, ASFV is 

able to delay the final execution step of the apoptotic pathway to allow time for virus replication by 

encoding several apoptosis modulators (Dixon et al., 2017). This includes A179L, a viral Bcl-2 

homologue that has been shown to bind several proapoptotic Bcl-2 proteins including the key 

autophagy protein Beclin 1 (Banjara et al., 2017, Hernaez et al., 2013). Beclin 1, also a Bcl-2 

interacting protein, is regarded as an important point of convergence between autophagy and 

apoptosis and has been shown to undergo caspase-mediated cleavage during apoptosis (Wirawan et 

al., 2010). 

As alluded to above, there is an intricate synergy between autophagy, the UPR and apoptosis which 

has no doubt evolved to provide a potent defence against invading microbes and predictably, 

viruses employ a finely balanced strategy to successfully evade these defences. Herpes simplex 

virus type 1 (HSV-1) which is also a large double-stranded DNA virus, encodes multiple proteins 

that act on the autophagy pathway at different stages (Lussignol et al., 2013, Orvedahl et al., 2007). 
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Inhibition of autophagy is not only mandatory for viral neurovirulence but has also been shown to 

be involved in immune escape via the reduction of viral antigen presentation by dendritic cells 

(Gobeil and Leib, 2012). An engineered mutant of HSV-1 that had lost the ability to interact with 

Beclin 1 was cleared more rapidly by mice and stimulated stronger CD4 T-cell responses and 

enhanced levels of IFN-γ and IL-2 when compared to wild-type virus (Leib et al., 2009). This not 

only highlights the role of autophagy in the innate and adaptive immune response but also 

emphasises the potential importance of viral modulation of the autophagy response.  

As with the regulation of the UPR and apoptosis response by ASFV, one would expect that 

autophagy is tightly controlled by the virus. Work carried out by Hernaez and colleagues has been 

the only contribution on the subject of autophagy in the context of ASFV infection (Hernaez et al., 

2013). This work was mostly focused on characterising the novel interaction between A179L and 

Beclin 1 although the authors also concluded that ASFV does not induce autophagy in infected 

cells due to an observed absence of GFP-LC3 puncta and a non-elevated ratio of LC3-II to LC3-I. 

Gaining further understanding of the interaction between ASFV and autophagy will improve our 

knowledge of how the cell reacts to infection and how ASFV is able to evade the anti-microbial 

activity of autophagy. This may provide opportunities for therapeutic intervention or improved 

vaccine design.  

The aim of this study was to determine whether autophagy occurred during ASFV infection and to 

identify whether the virus exerts an inducing or inhibitory effect on the autophagy pathway at the 

point of autophagosome formation. This was carried out using immunofluorescent microscopy and 

Western blot analysis of the key autophagic marker protein, LC3. Analysis of LC3-II by Western 

blot provides a useful global indication of any changes however, visually assessing intracellular 

changes in the infected cell by confocal microscopy eliminates any potential effects from the un-

infected cell population. As, for example, the presence of the un-infected cell population within 

whole cell lysates could mask changes in LC3-II levels assayed by Western blot. Having said that, 

Western blot analysis is a convenient method of interrogating LC3 changes in cell types such as 

macrophages that are difficult to examine by fluorescent microscopy techniques. In addition to the 

modulation of autophagosome formation, the effect on autophagic flux by ASFV was examined 

using a p62 degradation assay.  

This study also set out to determine whether infection perturbed or modulated autophagy pathways 

to help support replication. Studies included analysis of the virus life cycle comparing replication 

efficiency in autophagy competent and autophagy deficient cell lines. Finally, the potential for 

autophagy proteins to act in an autophagy-independent manner during ASFV infection was 

explored. The results and conclusions of these experiments were further aimed at forming a 

foundation of understanding from which to conduct downstream investigations into the 

mechanisms of autophagy modulation by ASFV which are described later in the thesis.  
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3.2   Results 

3.2.1 ASFV inhibits the induction of autophagosomes in response to starvation  

Starvation of cells in a balanced salt solution that is deficient of any form of energy source is an 

effective means of inducing autophagy. Starvation leads to the inactivation of the nutrient-sensing 

mTORC1 protein leading to the downstream formation of autophagosomes within the cell 

cytoplasm (Yang and Klionsky, 2009). As part of this process, LC3-I is converted to LC3-II, 

moving from a cytoplasmic pool to discreet LC3-II punctate structures as it becomes embedded 

within the expanding autophagosome membrane. This process is essential for autophagosome 

formation as LC3-II serves as a critical structural protein. Visualisation of these punctate structures 

by immunofluorescence is a key method of observing autophagosomes in the cell. Alternatively, 

increased cellular levels of LC3-II visualised by Western blot analysis can also be used to indicate 

the induction of autophagy (see results section 3.2.2).  

To assess the effect of ASFV on autophagy, the number of autophagosomes in ASFV infected cells 

was visualised by confocal microscopy and compared to uninfected and mock infected cells in 

either nutrient replete (Figure 3.1.1) or starvation (Figure 3.1.2) conditions. Vero cells were 

infected for a total period of 4 hours during which cells were incubated for the last 2 hours in either 

complete cell media (non-starved) or Earle’s balanced salt solution (EBSS) (starved) prior to being 

fixed and labelled for immunofluorescence. A 4 hour period of infection was chosen as by this 

stage early virus protein translation has begun and virus replication is commencing. Cells were 

either incubated with complete cell media only (uninfected), mock infected using Vero cell 

supernatant or infected with Ba71V (MOI 5).  

LC3 labelling revealed a predominantly cytoplasmic signal with the occasional bright puncta in 

uninfected cells (Figure 3.1.1A). The puncta represent autophagosomes and the low numbers in 

these cells is typical of what would be expected under nutrient replete conditions. Similar results 

were seen in cells that had been infected with the mock inoculum, suggesting that Vero cell 

supernatant did not induce the formation of autophagosomes (Figure 3.1.1B). A similar pattern was 

observed in cells infected with Ba71V (Figure 3.1.1C). Labelling with the anti-p30 antibody 

identified cells expressing ASFV genes (Figure 3.1.1D), interestingly there were very few LC3 

puncta in these cells. Taken together this showed that ASFV infection did not induce the formation 

of autophagosomes during the early stages of its replication cycle. 
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Figure 3.1.1 ASFV does not induce autophagosomes at 4 hpi 

Vero cells were incubated with media alone (Panel A), mock inoculum (Panel B) or Ba71V (MOI 

5) (Panels C and D) for 1 hour. Inocula were removed and cells were incubated for a total of 4 

hours during which cells were non-starved in complete Vero cell media for the final 2 hours. Cells 

were then fixed and permeabilised in methanol before labelling LC3 shown in green, viral protein 

p30 shown in red and nuclei shown in blue. Panels A, B and D show labelling for p30. Panel C 

shows the same infected cells as Panel D but with the red channel removed to allow for clearer 

observation of LC3 staining. Scale bars represent 10 µM.  

 

Higher numbers of autophagosomes were seen in both uninfected (Figure 3.1.2A) and mock 

infected cells (Figure 3.1.2B) after starvation when compared to cells under nutrient replete 

conditions (Figure 3.1.1). Comparable numbers of autophagosomes were observed in both 

uninfected and mock infected cells suggesting that Vero cell supernatant did not affect induction of 

autophagosomes under starvation conditions. The majority of the cells that had been infected with 

ASFV had cytoplasmic LC3 staining with very few puncta (Figure 3.1.2C). Labelling with anti-p30 
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showed that the cells that did contain puncta did not express viral proteins. This suggests that 

ASFV blocks the formation of starvation-induced autophagosomes at 4 hpi.    

The number of autophagosomes per cell in 30 cells were enumerated using Imaris software for 

each experimental condition (Figure 3.1.3). A comparison between non-starved and starved cells 

revealed a statistically significant increase in the number of autophagosomes per cell following 

starvation in both the uninfected (P < 0.001) and mock infected (P < 0.001) cells, however no 

statistically significant difference was observed between these two conditions respectively (P > 

0.05). A statistically significant decrease in the number of autophagosomes was observed in non-

starved ASFV infected cells when compared to the non-starved uninfected (P < 0.01) and mock 

infected cells (P < 0.01). A statistically significant decrease in autophagosomes was also observed 

in starved ASFV infected cells when compared to starved uninfected (P < 0.001) and mock infected 

(P < 0.001) cells. These results therefore demonstrate the inhibitory effect of the virus on the 

formation of autophagosomes in resting cells under nutrient replete conditions and furthermore 

show that the inhibitory effect becomes more apparent in cells under starvation-induced stress.  

3.2.2 ASFV inhibits accumulation of LC3-II in response to starvation in Vero cells 

The confocal microscopy results described in section 3.2.1 suggests that ASFV does not induce the 

formation of autophagosomes and that ASFV blocks starvation-induced formation of 

autophagosomes at 4 hpi. To support these results LC3-II levels were assessed during early stages 

of the replication cycle by Western blot analysis. 

LC3-I is conjugated to phosphatidylethanolamine (PE) to form LC3-PE (LC3-II) which is 

incorporated into the developing autophagosome (Yang and Klionsky, 2009). The relative amount 

of LC3-II is strongly correlated with the number of autophagosomes and an accumulation of LC3-

II can be an indication of autophagosome accumulation (Kabeya et al., 2000). This is either the 

result of induction of autophagy for example by starvation or the result of a reduction in 

autophagosome turnover for example by blocking fusion with the lysosome. In the case of the 

former, greater LC3-II amounts are observed due to the rate of autophagosome degradation falling 

below the rate at which new autophagosomes are formed. Despite LC3-II having a greater mass in 

comparison to LC3-I, it shows faster electrophoretic mobility in PAGE gels, most likely due to 

increased hydrophobicity (Klionsky et al., 2016). The apparent molecular weight of LC3-I is 

approximately 16-18 kDa and LC3-II is approximately 14-16 kDa.  

Levels of LC3-II were assessed at 4 hpi under nutrient rich and starvation conditions in uninfected, 

mock infected and ASFV infected Vero cells. Samples were then prepared from cells for analysis 

by immunoblotting and probed using anti-LC3 (which detects both LC3-I and LC3-II), anti-p30 

viral protein and anti-γ tubulin antibodies. 
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Figure 3.1.2 ASFV has an inhibitory effect on autophagy 

Vero cells were incubated with media alone (Panel A), mock inoculum (Panel B) or Ba71V (MOI 

5) (Panels C and D) for 1 hour. Inocula were removed and cells were incubated for a total of 4 

hours during which cells were starved in EBSS for the final 2 hours. Cells were then fixed and 

permeabilised in methanol before labelling LC3 shown in green, viral protein p30 shown in red and 

nuclei shown in blue. Panels A, B and D show labelling for p30. Panel C shows the same infected 

cells as Panel D but with the red channel removed to allow for clearer observation of LC3 staining. 

Scale bars represent 10 µM. 
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Figure 3.1.3 Imaris analysis confirms that ASFV inhibits the induction of autophagosomes 

in response to starvation 

The number of LC3 puncta per cell for 30 individual cells per indicated experimental condition was 

quantified by Imaris analysis of confocal images. Vero cells were either uninfected, mock infected 

or infected with ASFV for a total of 4 hours. Prior to fixation, cells were either non-starved in 

complete cell media (NS) or starved in EBSS (ST) for 2 hours to induce autophagy. Centre lines 

show the medians. Statistical analysis was carried out in Minitab using analysis of variance with 

Tukey multiple comparisons test. Asterisks represent significant differences in value between NS 

and ST conditions and between the indicated infection status of the cells (** = P value of <0.01, 

*** = P value of <0.001). 
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Figure 3.2 ASFV inhibits starvation-induced accumulation of LC3-II in Vero cells 

Vero cells were incubated with media alone (uninfected), mock inoculum (mock infected) or 

Ba71V (MOI 5) for 1 hour. Inocula were removed and cells were incubated for a total of 4 hours 

during which cells were either non-starved (NS) in complete cell media or starved (ST) in EBSS 

for the final 2 hours. Cells were then lysed and samples prepared for resolution by bis-Tris PAGE 

before transfer to PVDF membrane. Finally, samples were probed with anti-LC3, anti-p30 and γ-

tubulin antibodies followed by appropriate HRP-conjugated secondary antibodies. The positions of 

molecular mass markers are indicated to the left of the gels.  

 

Expression of viral protein p30 was only detected in ASFV infected cells as expected, however, 

noticeably less protein was detected in starved cells when compared to non-starved cells, 

presumably due to reduced availability of amino acids for viral protein translation. The intensity of 

the band corresponding to LC3-II in the lanes containing samples from uninfected and mock 

infected cells under starvation conditions were much greater than those from non-starved cells 

demonstrating the induction of autophagy. Comparisons between non-starved cells showed less 

LC3-II in the ASFV infected cells compared to the uninfected and mock infected cells suggesting 

that ASFV did not induce LC3-II accumulation at 4 hpi. This was consistent with the absence of 

LC3 puncta in ASFV infected cells at 4 hpi (Figure 3.1.1). Under starvation conditions, the LC3-II 

band was much less intense in ASFV infected cells when compared with LC3-II levels in starved 

uninfected and starved mock infected cells which shows that starvation-induced LC3-II 

accumulation was inhibited by ASFV. This supports the confocal microscopy data that showed a 

block in starvation-induced formation of LC3 puncta at 4 hpi (Figure 3.1.2).  

3.2.3 ASFV inhibits accumulation of LC3-II in response to drug treatment in porcine 

macrophages 

As described previously, starvation is an effective method of inducing autophagosome formation 

via the inactivation of the nutrient sensing complex mTORC1. Using pharmacological inhibitors of 

mTORC1 is an alternative method of inducing the formation of autophagosomes with the 

concomitant accumulation of LC3-II. Torin2, a potent inhibitor of mTORC1 was developed to 
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overcome the rapamycin resistance of a significant subset of mTORC1 functionality (Liu et al., 

2011, Thoreen et al., 2009). 

ASFV inhibits accumulation of LC3-II in response to starvation in Vero cells using the Vero cell 

adapted strain of ASFV, Ba71V (3.2.2). However, porcine macrophages are the natural host cell of 

ASFV, and therefore the ability of the field strain virus OUR T88/1 to modulate autophagy in 

blood derived porcine macrophages was tested. Cells were either mock infected or infected with 

ASFV (MOI 5) for 6 hours. Separately, cells infected for 8 hours were incubated for the final 2 

hours in complete cell media containing either DMSO (solvent control) or 1 μM Torin2 to induce 

LC3-II accumulation. Cell lysates were resolved by bis-Tris PAGE and immunoblotted with LC3 

and anti-γ tubulin antibodies. 

 

Figure 3.3.1 ASFV inhibits drug-induced accumulation of LC3-II in porcine macrophages 

Blood derived porcine macrophages were either mock infected or infected with OUR T88/1 (MOI 

5) for 6 hours (6 hpi). Separately, cells infected for a total of 8 hours were incubated for the final 2 

hours in complete cell media containing DMSO or 1 μM Torin2 to induce an accumulation of LC3-

II. Cells were then lysed and samples prepared for resolution by bis-Tris PAGE before transfer to 

PVDF membrane. Finally, samples were probed with anti-LC3 and γ-tubulin antibodies followed 

by appropriate HRP-conjugated secondary antibodies. The positions of molecular mass markers are 

indicated to the left of the gels. (This work was conducted by Dr Christopher Netherton) 

 

The results showed similar amounts of LC3-II between the mock infected and ASFV infected cells 

at 6 hpi, demonstrating that the virus does not induce any accumulation of LC3-II above the level 

seen in mock infected cells. Cells that were incubated for a further 2 hours in the presence of 

DMSO did not show any appreciable difference in LC3-II band intensity indicating that the DMSO 

solvent alone has little effect on levels of LC3-II. A greater intensity of LC3-II was observed under 

Torin2 treatment of mock infected cells confirming that Torin2 had successfully stimulated the 

autophagy pathway. A comparison of LC3-II levels between mock infected and ASFV infected 

cells under Torin2 treatment showed much less LC3-II in ASFV infected cells demonstrating that 

ASFV had an inhibitory effect on Torin2-induced accumulation of LC3-II.    
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To quantify this effect, the integrated density of the LC3-II and γ-tubulin bands were determined 

using ImageJ. The relative densities of the LC3-II bands in the DMSO and Torin2 treatments were 

calculated by comparison to those at 6 hpi and finally the LC3-II values were normalised to those 

of γ-tubulin. Figure 3.3.2 shows the mean of three experiments where each of the three experiments 

used primary macrophages derived from a separate animal. The densitometry analysis showed 

there was less LC3-II after two hours stimulation with Torin2 in ASFV infected cells when 

compared to mock infected cells (P < 0.001) confirming the inhibitory effect by ASFV. This result 

combined with the results described in Figure 3.2 demonstrates that ASFV inhibits the 

accumulation of LC3-II in response to mTORC1 inactivation using a cell adapted strain or a 

virulent field strain and that this effect is seen in both Vero cells and macrophages.   

 

Figure 3.3.2 Densitometry analysis confirms that ASFV inhibits drug-induced 

accumulation of LC3-II in porcine macrophages 

Densitometry analysis was carried out using ImageJ to determine the relative densities of the LC3-

II bands from Western blot data shown in Figure 3.3.1. The relative densities of the LC3-II bands 

normalised to γ-tubulin in the DMSO and Torin2 treatments were calculated by comparison to 

those at 6 hpi. Data shown is the mean of three experiments and error bars indicate SEM. Statistical 

analysis was carried out in Minitab using analysis of variance with Tukey multiple comparisons 

test. Asterisks represent a significant difference in value between mock infected and ASFV infected 

cells (*** = P value of <0.001). (This work was conducted by Dr Christopher Netherton) 

 

3.2.4 ASFV promotes formation of WIPI complexes  

Sections 3.2.1 and 3.2.2 described the inhibition of starvation-induced LC3 puncta and the 

inhibition of starvation-induced accumulation of LC3-II by ASFV respectively. These results are 

both indicative of a block in the formation of autophagosomes by the virus. To further characterise 

this, a confocal microscopy experiment was conducted to investigate if the formation of WIPI 
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complexes is also inhibited by ASFV. WIPI forms an important effector protein complex upstream 

of autophagosome assembly that is vital for LC3 lipidation (Proikas-Cezanne et al., 2015). 

Vero cells were either mock infected or infected with Ba71V for a period of 4 hours. During the 

final 2 hours, cells were incubated in either complete cell media (Figure 3.4.1) or EBSS starvation 

media (Figure 3.4.2) prior to being fixed and labelled for immunofluorescence. In this way, the 

inhibition or induction of WIPI complexes in mock infected or ASFV infected cells could easily be 

detected. Cells were labelled for WIPI and viral protein p30 to detect infected cells.  

In mock infected cells, WIPI labelling revealed a mostly cytoplasmic signal with sporadic bright 

puncta that are representative of WIPI complexes (Figure 3.4.1A). The small quantity of puncta in 

these cells is typical of what would be expected under nutrient replete conditions. In cells infected 

with Ba71V (Figure 3.4.1B and C), a considerable number of WIPI complexes were detected in the 

vicinity of the nuclear periphery and in close proximity to each other. Anti-p30 labelling identified 

that the WIPI complexes were almost entirely detected in cells expressing ASFV genes (Fig 

3.4.1C). Taken together this demonstrates that ASFV induces the formation of WIPI complexes at 

4 hpi.  

Considerably more WIPI complexes were seen in mock infected cells after starvation (Figure 

3.4.2A) when compared to cells under nutrient rich conditions (Figure 3.4.1A). Visualisation of 

infected cells (Figure 3.4.2B and C) indicated a substantial number of WIPI complexes located in 

very close proximity to one another near the nuclear periphery. Labelling of p30 (Figure 3.4.2C) 

showed that a far greater number of WIPI complexes were detected in cells expressing p30 

compared to those that were not, demonstrating that the WIPI puncta in ASFV infected cells were 

not exclusively formed in response to starvation. In addition, there was a clear contrast between the 

diffusely located WIPI complexes in mock infected cells and the aggregated complexes near the 

nuclear periphery in ASFV infected cells. Collectively, the results described in Figures 3.4.1 and 

3.4.2 suggest that ASFV promotes the formation of WIPI complexes during the early stages of its 

replication cycle in a manner unaffected by nutrient availability.  
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Figure 3.4.1 ASFV promotes the formation of WIPI complexes at 4 hpi under nutrient 

replete conditions 

Vero cells were incubated with mock inoculum (Panel A) or Ba71V (MOI 5) (Panels B and C) for 

1 hour. Inocula were removed and cells were incubated for a total of 4 hours during which cells 

were incubated in complete cell media for the final 2 hours. Cells were then fixed and 

permeabilised in methanol before labelling WIPI shown in green, viral protein p30 shown in red 

and nuclei shown in blue. Panels A and C show labelling for p30. Panel B shows the same infected 

cells as Panel C but with the red channel removed to allow for clearer observation of WIPI staining. 

Scale bars represent 10 µM. 
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Figure 3.4.2 ASFV promotes the formation of WIPI complexes at 4 hpi under starvation 

conditions 

Vero cells were incubated with mock inoculum (Panel A) or Ba71V (MOI 5) (Panels B and C) for 

1 hour. Inocula were removed and cells were incubated for a total of 4 hours during which cells 

were starved in EBSS media for the final 2 hours. Cells were then fixed and permeabilised in 

methanol before labelling WIPI shown in green, viral protein p30 shown in red and nuclei shown in 

blue. Panels A and C show labelling for p30. Panel B shows the same infected cells as Panel C but 

with the red channel removed to allow for clearer observation of WIPI staining. Scale bars 

represent 10 µM. 

 

3.2.5 ASFV inhibits starvation-induced degradation of p62 

The results presented thus far have shown that although ASFV inhibits the formation of 

autophagosomes and inhibits the accumulation of LC3-II in response to inactivation of mTORC1, it 

is also able to stimulate the formation of WIPI complexes. The assembly of WIPI complexes is an 

essential step in the autophagy pathway that is required for the downstream formation of 
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autophagosomes. The induction of WIPI complexes in ASFV infected cells is therefore interesting 

considering that autophagosome formation is suppressed.  

Using LC3-II as an autophagy marker is just one of several techniques that can be applied to 

interrogate the autophagy pathway (Klionsky et al., 2016). Autophagic activity is not only defined 

by the lipidation of LC3 during autophagosome generation, but also by flux through the whole 

system. Autophagic flux refers to the entire process of autophagy, including the formation of the 

autophagosome, fusion to the lysosome, breakdown of cargo and release of macro molecules back 

into the cytosol (Klionsky et al., 2016). Consequently, it is important to assess autophagic flux to 

gain a complete understanding of autophagic status of the cell. Increases in LC3-II or the 

appearance of autophagosomes, are not measures of autophagic flux as such, but can indicate the 

accumulation of autophagosomes due to stimulation of autophagy or inhibition of autophagosome 

clearance. 

One method of evaluating autophagic flux is to quantify the rate of protein breakdown by 

autophagy. SQSTM1 also known as p62 is an autophagy receptor that contains a LIR motif as well 

as a ubiquitin binding domain, allowing it to bind both ubiquitinated substrates and LC3-II. In this 

way, p62 facilitates cargo docking inside the expanding autophagosome and is also incorporated 

into the completed autophagosome (Bjorkoy et al., 2009). Accordingly, p62 gets degraded in 

autolysosomes along with the cargo serving as a useful index of autophagic degradation. Activation 

of autophagy is strongly correlated with a decrease in p62 levels (Bjorkoy et al., 2009) and to test 

this Vero cells were either incubated in complete cell media, starved in EBSS or starved in EBSS in 

the presence of 100 nM bafilomycin A1 for 1 hour. Bafilomycin A1 acts by inhibiting vacuolar H+ 

ATPase (V-ATPase) which prevents fusion between autophagosomes and lysosomes (Yamamoto 

et al., 1998). In this way, bafilomycin A1 can be used to halt the degradation of p62. Following cell 

harvest, samples were probed with anti-p62 and γ-tubulin antibodies.  

The intensity of the p62 band under starvation conditions appeared reduced when compared to cells 

that were incubated under nutrient replete conditions (Figure 3.5.1A). Densitometry analysis of 

three replicate experiments showed that starvation reduced the steady state levels of p62 by 

approximately one half (Figure 3.5.1B; P < 0.05). This demonstrated that autophagy was induced 

in the starved cells and p62 was degraded as a consequence. Levels of p62 after starvation in the 

presence of bafilomycin A1 were similar to cells incubated under nutrient replete conditions (P > 

0.05) showing that starvation-induced degradation of p62 was blocked via the action of 

bafilomycin A1.  
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Figure 3.5.1 Activation of autophagy is strongly correlated with a decrease in p62 

A) Vero cells were either incubated in complete cell media (NS), starved in EBSS (ST) or starved 

in EBSS in the presence of 100 nM bafilomycin A1 (BAF) for 1 hour. Cells were then lysed and 

samples prepared for resolution by bis-Tris PAGE before transfer to PVDF membrane. Finally, 

samples were probed with anti-p62 and γ-tubulin antibodies followed by appropriate HRP-

conjugated secondary antibodies. The positions of molecular mass markers are indicated to the left 

of the gels. B) The relative densities of the p62 bands were calculated by comparison to that of the 

non-starved sample before being normalised to the values of γ-tubulin. Data shown is the mean of 

three experiments and error bars indicate SD. Statistical analysis was carried out in Minitab using 

analysis of variance with Tukey multiple comparisons test. Asterisks represent a significant 

difference in value between the indicated cell treatments (* = P value of <0.05 ** = P value of 

<0.01). 

 

Following on from this, an experiment was conducted to determine if ASFV blocks starvation-

induced degradation of p62. Vero cells were mock infected or infected with the Ba71V strain of 

ASFV (MOI 5) for a period of 4 hours or 12 hours. A 4 hour time point was chosen as previously 

inhibition of autophagosomes was seen at 4 hpi and 12 hours was chosen as by this stage the viral 

factory is well established and mature virions are beginning to appear. In this way, it could be 

tested whether p62 degradation is blocked by the virus at an early and late stage of the virus 

lifecycle. Prior to cell lysis, cells were either incubated in complete cell media or starved in EBSS 

for 2 hours to induce autophagy and the degradation of p62. Lastly, samples were probed with anti-

p62 and γ-tubulin primary antibodies.  
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Figure 3.5.2 ASFV inhibits starvation-induced degradation of p62 

Vero cells were incubated with mock inoculum (Panel A) or Ba71V (MOI 5) (Panel B) for 1 hour. 

Inocula were then removed and replaced with fresh 2% media. Cells were incubated for a total of 4 

hours or 12 hours during which cells were either non-starved (NS) in complete cell media or 

starved (ST) in EBSS for the final 2 hours to induce autophagy and p62 degradation. Cells were 

lysed and samples prepared for resolution by bis-Tris PAGE before transfer to PVDF membrane. 

Finally, samples were probed with anti-p62, anti-p30 and γ-tubulin antibodies followed by 

appropriate HRP-conjugated secondary antibodies. The positions of molecular mass markers are 

indicated to the left of the gels. 

 

Less p62 was seen in the samples derived from mock infected cells that had been starved at 4 hpi 

and 12 hpi when compared to the non-starved samples respectively (Figure 3.5.2A). In contrast, 

comparable levels of p62 were observed between cells that were starved and cells that were 

incubated under nutrient rich conditions at either 4 hpi or 12 hpi after infection with ASFV (Figure 

3.5.2B). Immunoblotting with anti-p30 antibody showed expression of viral proteins in cells that 

were infected with ASFV. Densitometry analysis on three replicate experiments showed that the 

relative densities of the p62 bands in mock infected cells after starvation were roughly half that of 

cells that were non-starved (Figure 3.5.3).  
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Figure 3.5.3 Densitometry analysis confirms that ASFV inhibits starvation-induced 

degradation of p62 at 4 hpi and 12hpi 

Densitometry analysis was conducted using ImageJ to determine the relative densities of the p62 

bands from Western blot data shown in Figure 3.5.2. The relative densities of the p62 bands were 

calculated by comparison to those of the 4 hpi non-starved sample before normalising the values to 

those of γ-tubulin. This was carried out separately on the mock infected and ASFV infected 

samples. Finally, the ratio of starved (ST) to non-starved (NS) values were calculated for mock 

infected and ASFV infected samples at 4 hpi and 12 hpi. Data shown is the mean of three 

experiments and error bars indicate SD. Statistical analysis was carried out in Minitab using 

analysis of variance with Tukey multiple comparisons test. Asterisks represent a significant 

difference in value between the mock infected and ASFV infected cells at 4 hpi and 12 hpi (** = P 

value of <0.01, *** = P value of <0.001). 

 

Levels of p62 were relatively unchanged after starvation in ASFV infected cells at both 4 and 12 

hpi and the difference in the ratio of starved to non-starved samples between mock infected and 

ASFV infected cells were significantly different at both 4 hpi (P < 0.01) and 12 hpi (P < 0.001). 

This clearly demonstrates that p62 is not degraded in ASFV infected cells at 4 hpi or 12 hpi as 

would usually be expected under starvation conditions. Together, the data showing that ASFV 

inhibits starvation-induced p62 degradation and that ASFV inhibits formation of autophagosomes, 

demonstrates that ASFV causes a block in autophagic flux at both early and late stages of infection. 

This suggests that the observed WIPI complexes in infected cells are not related to an induction of 

autophagy.  

3.2.6 ASFV replication does not require the autophagy pathway 

Having established that ASFV inhibits the formation of autophagosomes and blocks autophagic 

flux, it is tempting to speculate that ASFV does not depend on the process of autophagy for virus 

replication. To test this hypothesis, replication of ASFV was monitored following infection of 
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autophagy deficient cells with the attenuated Uganda strain. Generating mouse embryo fibroblasts 

(MEFs) with an Atg5-/- mutation renders them entirely autophagy deficient (Kuma et al., 2004). 

This is because the conjugation of Atg5 to Atg12 is critical to the targeting of LC3 to the isolation 

membrane and the elongation process during autophagosome formation (Mizushima et al., 2001). 

Wild-type (autophagy competent) or Atg5-/- (autophagy deficient) MEFs were infected at MOI 0.1 

and virus replication was monitored over a 72 hour period by virus titration.  

 

Figure 3.6 ASFV replication does not require the autophagy pathway  

Wild-type (blue line) or autophagy deficient Atg5-/- (red line) mouse embryo fibroblasts were 

infected with tissue culture adapted ASFV Uganda (MOI 0.1) and incubated for the indicated time. 

Virus replication was assessed by virus titration calculated as TCID50. Error bars show SEM of 

triplicate wells. Statistical analysis was carried out in Minitab using analysis of variance with 

Tukey multiple comparisons test. No statistical differences in the virus titres were observed 

between wild- type and Atg5-/- cells. 

 

No differences in virus titre at each of the five measured time points were observed between virus 

grown in wild-type or Atg5-/- MEFs showing that the attenuated Uganda strain could replicate 

equally in both cell lines. This experiment was conducted over a 72 hour period which provided 

sufficient time for the virus to progress through all stages of the virus life cycle including virus 

entry, replication and egress from the cell in the Atg5-/- MEFs. Collectively, this data therefore 

suggests that autophagy is not required by ASFV. 

3.2.7 LC3 puncta and WIPI puncta are observed at the viral factory during late ASFV 

infection  

In their study describing the interaction of A179L with Beclin 1, Hernaez and colleagues also 

investigated the distribution of LC3 puncta in ASFV infected Vero cells (Hernaez et al., 2013). 

They reported that structures resembling autophagosomes were detected within and around the 
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viral factory at 16 hpi under nutrient replete conditions although no newly formed virions were 

found to be colocalised with these structures. These results raise a number of questions; firstly, at 

what stage of infection do the LC3 puncta first appear? Secondly, does the appearance of the LC3 

puncta rely on the overexpression of LC3 as the LC3 puncta were previously reported using 

transfected cells overexpressing GFP-LC3? Finally, does the appearance of LC3 puncta coincide 

with the appearance of WIPI puncta? To address these questions, infected Vero cells were analysed 

by confocal microscopy during late infection. Cells were infected with Ba71V (MOI 5) and 

harvested every 2 hours from 10 hpi to 16 hpi. Following fixation, cells were probed with anti-LC3 

or anti-WIPI primary antibodies. In addition, cells were probed with an anti-p30 antibody to 

identify infected cells.     

Visual inspection of the cells at 16 hpi showed the appearance of perinuclear DAPI stain in some 

cells which represents the accumulation of viral DNA and essentially demarcates the boundary of 

the viral factory (Figure 3.7). Labelling of p30 (Figure 3.7B and D) demonstrated ASFV infection 

of the aforementioned cells. The appearance of WIPI puncta could clearly be seen in close 

proximity to and sometimes within the viral factory (Figure 3.7A). Similarly, LC3 puncta were 

observed within and around the viral factory (Figure 3.7C). Examination of earlier time points 

indicated a small number of LC3 puncta appearing in close proximity to the viral factory from 12 

hpi. WIPI puncta started to appear near the viral factory from 14 hpi. LC3 and WIPI puncta became 

more numerous during subsequent time points and were most evident at 16 hpi. These results 

indicate that LC3 puncta can be detected by labelling endogenous LC3 without the requirement for 

over-expression and that the appearance of LC3 puncta is loosely correlated with the appearance of 

WIPI puncta at the viral factory. 

3.2.8 Accumulation of LC3-II is observed during late ASFV infection 

Coronaviruses such as mouse hepatitis virus (MHV) also induce the appearance of LC3 puncta, 

however these double-membrane vesicles were shown to be coated in LC3-I and not LC3-II 

(Reggiori et al., 2010). To investigate whether the LC3 puncta observed in ASFV infected cells 

could be linked to an accumulation of LC3-II, Vero cells were either mock infected or infected 

with Ba71V (MOI 5) and Western blot analysis was carried out to assess LC3-II levels at 12 hpi 

which coincides with the appearance of LC3 puncta at the viral factory. A 4 hour time point was 

also included for comparison as previously it was shown that ASFV did not induce an 

accumulation of LC3-II at 4 hpi (3.2.2). Additionally, control cells were either incubated under 

nutrient replete conditions or starved for 2 hours to demonstrate conventional autophagy-dependent 

accumulation of LC3-II. Lastly, samples were probed with anti-LC3, anti-p30 and anti-γ tubulin 

primary antibodies. 
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Figure 3.7 LC3 puncta and WIPI puncta are observed at the viral factory at 16 hpi 

Vero cells were infected with Ba71V (MOI 5) for 16 hours. Cells were fixed and permeabilised in 

methanol before labelling WIPI and p30 (Panels A and B) or LC3 and p30 (Panels C and D). WIPI 

and LC3 are shown in green, viral protein p30 is shown in red and nuclei and viral factories are 

shown in blue. Panels A and C show the same infected cells as Panels B and D respectively but 

with the red channel removed to allow for clearer observation of WIPI and LC3 staining. Images 

represent a stack of ten overlaid cell section images. Scale bars represent 5 µM.   
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Figure 3.8.1 Accumulation of LC3-II is observed at 12 hpi in ASFV infected cells 

Vero cells were either mock infected (panel A) or infected with Ba71V (MOI 5) (panel B) for a 

total of 4 hours or 12 hours during which cells were non-starved (NS) in complete cell media for 

the final 2 hours. Separately, control cells (Ctrl) were either non-starved in complete cell media or 

starved (ST) in EBSS for 2 hours to induce autophagy and LC3-II accumulation. Cells were lysed 

and samples were prepared for resolution by bis-Tris PAGE before transfer to PVDF membrane. 

Finally, samples were probed with anti-LC3, anti-p30 and γ-tubulin antibodies followed by 

appropriate HRP-conjugated secondary antibodies. The positions of molecular mass markers are 

indicated to the left of the gels. 

 

A greater amount of LC3-II was observed in control cells that were starved compared to control 

cells that were incubated in complete cell media indicating induction of autophagy (Figure 3.8.1A 

and B). The intensity of LC3-II bands were comparable in mock infected cells at 4 hpi and 12 hpi 

suggesting that levels of LC3-II had not increased between these time points (Figure 3.8.1A). In 

contrast, an increase in LC3-II was observed in ASFV infected cells at 12 hpi when compared to 4 

hpi showing that LC3-II accumulation was induced (Figure 3.8.1B). Comparison of the 12 hour 

mock infected and ASFV infected samples to the non-starved control cell sample in each respective 
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blot suggested that the levels of LC3-II in ASFV infected cells at this time point were greater than 

the mock infected cells. Anti-p30 labelling indicated successful ASFV infection. 

 

Figure 3.8.2 Densitometry analysis confirms that ASFV induces an accumulation of LC3-

II at 12 hpi 

Densitometry analysis was conducted using ImageJ to determine the relative densities of the LC3-

II bands from Western blot data shown in Figure 3.8.1. The relative densities of the LC3-II bands 

were calculated by comparison to those of the non-starved control sample before normalising the 

values to those of γ-tubulin. This was carried out separately on the mock infected (graph A) and 

ASFV infected samples (graph B). Data shown is the mean of three experiments and error bars 

indicate SD. NS = non-starved cells. ST = starved cells. Statistical analysis was carried out in 

Minitab using analysis of variance with Tukey multiple comparisons test. Asterisks represent a 

significant difference in value between the indicated cell treatments (*** = P value of <0.001). 

 

Densitometry analysis confirmed a statistically significant difference between the starved and non-

starved control cell samples and is shown in Figure 3.8.2A (P < 0.001) and in Figure 3.8.2B (P < 

0.001) consistent with a successful induction of autophagy in these cells. No statistically significant 

difference was observed between the mock infected cells at 4 hpi and 12 hpi (P > 0.05) (Figure 

3.8.2A) showing that mock infection did not induce an accumulation of LC3-II. Additionally, no 

statistically significant difference was apparent between the 12 hour mock infected sample and the 

non-starved control cell sample (P > 0.05) (Figure 3.8.2A), however a statistically significant 

difference between the non-starved control cell sample and the 12 hour ASFV infected sample was 

apparent (P < 0.001) (Figure 3.8.2B). A statistically significant increase in LC3-II was seen in the 

ASFV infected cells at 12 hpi when compared to 4 hpi (P < 0.001) (Figure 3.8.2B). Collectively, 

these results show that ASFV causes an increase in LC3-II accumulation between 4 and 12 hpi that 

is not observed in mock infected cells. Furthermore, this increase coincides with the appearance of 

LC3 puncta at the viral factory at 12 hpi as described in section 3.2.7. 
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3.3   Discussion 

Manipulation of cellular processes to facilitate replication and avoid innate and adaptive immune 

response are a crucial part of the virus life cycle. ASFV encodes for a number of proteins that 

modulate a variety of different pathways including A179L. The A179L gene encodes for a Bcl-2 

homologue that has been shown to interact with the key autophagy protein Beclin 1 (Hernaez et al., 

2013), therefore it is likely that ASFV may also modulate autophagy considering the central 

importance of this pathway to so many cellular processes. The aim of this investigation was to 

assess the effect of ASFV on autophagy, and specifically whether ASFV promotes or inhibits the 

pathway.  

Initial analysis was conducted using confocal microscopy. Vero cells were used in this experiment 

as they exhibit clear autophagosome staining without the interference of autofluorescence that is 

often observed in primary macrophage cells and support the growth of the Vero cell adapted isolate 

of ASFV, Ba71V. Confocal analysis revealed that few LC3 puncta were observed in uninfected, 

mock infected and ASFV infected Vero cells incubated under nutrient replete conditions suggesting 

that ASFV infection did not promote formation of autophagosomes during early stages of the 

replication cycle (Figure 3.1.1). However, quantitative analysis of the number of autophagosomes 

per cell showed that under nutrient replete conditions ASFV infected cells had significantly less 

autophagosomes than uninfected and mock infected cells (Figure 3.1.3), raising the possibility that 

ASFV may inhibit the formation of autophagosomes. This result is at odds with results reported by 

Hernaez et al (2013) that describe similar amounts of GFP-LC3 puncta between ASFV infected 

and uninfected Vero cells at 12 hpi. This difference may be due to the different time points tested 

or the use of an overexpression model of GFP-LC3 by Hernaez and colleagues. Transient 

overexpression of LC3 can lead to LC3 aggregation in an autophagy-independent manner leading 

to a false representation of autophagosomes within the cytoplasm (Kuma et al., 2007).  

To test for inhibition of autophagy, cells were starved to induce the formation of autophagosomes 

and then labelled for LC3. In uninfected and mock infected cells, a much higher number of 

autophagosomes was observed after starvation (Figure 3.1.2). However, no LC3 puncta were seen 

in infected cells in response to starvation suggesting that ASFV inhibits starvation-induced 

formation of autophagosomes in Vero cells during the early stages of the replication cycle. 

Autophagosome formation is linked to the conversion of LC3-I to LC3-II and therefore to confirm 

the results obtained by confocal microscopy, levels of LC3-II were analysed by Western blot 

(Figure 3.2). Due to a difference in immunoreactivity of LC3-I and LC3-II, in most cases the 

sensitivity of detection of LC3‑II by anti‑LC3 antibodies is much higher (Mizushima and 

Yoshimori, 2007). For this reason, appropriate interpretation of LC3 blots was carried out by 

comparison of LC3-II between samples rather than comparisons between LC3-I and LC3-II. Under 

nutrient replete conditions, comparable levels of LC3-II were detected in uninfected, mock infected 
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and ASFV infected Vero cells at 4 hpi. In both uninfected and mock infected cells that had been 

starved, the intensity of the LC3-II bands were greater than the bands seen in samples taken from 

cells under nutrient replete conditions. However in ASFV infected cells this was not apparent as the 

intensity of the bands were comparable between the starved and non-starved samples. The levels of 

LC3-II in all of the samples tested corresponded to the number of LC3 puncta seen by confocal 

microscopy and taken together confirmed that ASFV inhibits autophagosome formation in Vero 

cells early during the replication cycle.  

ASFV naturally targets cells of the monocyte-macrophage lineage, and hence the ability of a field 

strain of the virus to inhibit autophagy in macrophages was tested. Similar levels of LC3-II were 

observed in infected blood derived macrophages at 6 hpi as were seen in equivalent mock infected 

cells suggesting that the virus does not induce autophagosome formation in macrophages. 

Additionally, LC3-II did not accumulate in infected macrophages after stimulation with Torin2. In 

macrophages, LC3-II accumulation was stimulated by pharmacological inhibition of mTORC1 

using Torin2 whereas previously in Vero cells, LC3-II accumulation was stimulated by starvation 

as macrophages did not tolerate incubation in EBSS well. This demonstrates that the inhibitory 

effect on LC3-II accumulation is independent of the method of autophagy induction. The 

experiment carried out in macrophages was repeated three times to account for potential variability 

between cells harvested from individual animals and densitometry analysis confirmed a consistent 

outcome between replicates (Figure 3.3.2). Taken together this showed that ASFV inhibits LC3-II 

accumulation in a biologically relevant system and that the effect of ASFV on the autophagy 

pathway is independent of both the virus strain and cell type studied. 

As described in the introduction, autophagosome formation is a carefully controlled multi-step 

process. Recruitment of LC3-II to autophagosomes is dependent on WIPI and upon induction of 

autophagy, WIPI forms punctate structures that can be observed by confocal microscopy. In stark 

contrast to LC3 there were many more WIPI puncta in ASFV infected cells compared to mock 

infected cells under both nutrient replete conditions and starvation conditions (Figures 3.4.1 and 

3.4.2). This suggested that ASFV promotes the formation of WIPI complexes at 4 hpi in a manner 

unaffected by nutrient availability.  

The assembly of WIPI complexes is an integral step in the generation of autophagosomes and 

therefore their appearance in ASFV infected cells is interesting considering that the formation of 

autophagosomes is blocked by the virus. To provide clarity on autophagy status in infected cells, a 

p62 degradation assay was used to assess if autophagic flux is blocked by ASFV. Figure 3.5.1 

demonstrates the correlation between starvation-induced activation of autophagy and a reduced 

level of p62. Figure 3.5.2 shows that in mock infected cells, a reduction in p62 levels was observed 

at 4 hpi and 12 hpi following a 2 hour starvation period as would be expected. In contrast, ASFV 

infected cells did not show significantly less p62 under starvation conditions as demonstrated by 

the densitometry analysis of three replicate experiments shown in Figure 3.5.3. It was therefore 
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concluded that ASFV is able to block autophagic flux during early and late infection which 

suggests that ASFV does not use autophagy at any stage of its replication. 

To further substantiate the aforementioned conclusion, virus replication was compared by titration 

of virus grown in Atg5-/- autophagy deficient and autophagy competent MEF cell lines using the 

attenuated Uganda strain. Despite the virus reaching a respectable titre in both cell lines after 72 

hours, the increase in titre from the start of the experiment only represented an approximate 10-fold 

increase. This may suggest that viral growth is in some way limited in the MEF cells. Nevertheless,   

the results shown in Figure 3.6 demonstrate that no statistically significant decrease in replication 

was observed in the autophagy deficient cells which indicates that ASFV does not require the 

autophagy pathway for its replication. This is in agreement with a previous study that tested the 

effect of 3-methyladenine (3-MA) on the replication capacity of ASFV in macrophages and found 

that 3-MA had relatively little influence (Basta et al., 2010). 3-MA is a transient inhibitor of class 

III PI3K which forms part of the vital Vps34 autophagy complex (Wu et al., 2010).                            

The results described in section 3.2.7 reported the appearance of viral factories that were observed 

in close proximity to the nucleus in ASFV infected cells. LC3 puncta were seen forming at the viral 

factory from 12 hpi, becoming more numerous until 16 hpi. Western blot analysis in Figure 3.8.1 

demonstrated that an accumulation of LC3-II is detected in infected cells at 12 hpi which coincides 

precisely with the first appearance of LC3 puncta at the viral factory. Hernaez et al (2013) reported 

the appearance of LC3 puncta at the viral factory at 16 hpi but at 12 hpi described similar amounts 

of LC3 puncta between uninfected and infected cells. The detection of GFP-LC3 as opposed to 

endogenous LC3 could explain the difference in results at 12 hpi as a low transfection efficiency of 

GFP-LC3 may have limited the detection of LC3 puncta.  

Confocal analysis of infected cells also revealed the appearance of WIPI puncta that formed in 

close proximity to and sometimes within the viral factory from 14 hpi becoming more evident at 16 

hpi (Figure 3.7). The close association of WIPI puncta with viral factories is interesting as the WIPI 

puncta that were previously observed at 4 hpi were observed in a perinuclear location which clearly 

contrasted with the diffusely located WIPI complexes in mock infected cells (Figure 3.4.2). This 

could suggest that sub-cellular location of the WIPI complexes at 4 hpi is linked to the 

requirements of virus replication and could be important in the formation of the viral factory. The 

appearance of WIPI puncta at the viral factory may also suggest that the observed LC3 lipidation in 

infected cells is dependent on the formation of WIPI complexes. In the future, conducting an 

experiment to determine whether the observed LC3 and WIPI puncta colocalise around the viral 

factory may point to a link in their formation.  

The previously described block in starvation-induced p62 degradation is evidence of the fact that 

autophagic flux is restricted at 12 hpi. This could mean that formation of autophagosomes is 

induced during late infection, hence the appearance of LC3 puncta at the viral factory, but that they 
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subsequently do not undergo breakdown via lysosome fusion potentially due to a mechanism of 

viral inhibition. A similar effect is seen in cells infected with infectious bronchitis virus (IBV) in 

which the virus promotes the formation of small size-restricted autophagosomes that do not 

undergo autophagosome-lysosome expansion (Cottam et al., 2014). In the case of IBV infection, 

the purpose of this is unknown but it may serve to contribute membranes to sites of virus 

replication.   

Studies on the potential role that autophagy plays during virus infection have revealed other viruses 

such as poliovirus (PV) that also subvert the autophagy pathway to promote their own replication 

(Jackson et al., 2005). Specifically, PV induces formation of LC3 staining double-membrane 

vesicles resembling autophagosomes that are thought to be required for non-lytic virus release from 

cells (Bird et al., 2014). However, formation of these vesicles has been shown to be independent of 

the canonical ULK1 autophagy signalling complex (Corona Velazquez et al., 2018). It has also 

been shown that the formation of LC3-staining double-membrane vesicles in MHV infected cells 

does not rely on autophagy and that MHV replication was shown to be unaffected in Atg5 knock-

out cells (Reggiori et al., 2010, Zhao et al., 2007). Collectively, these examples reveal potential 

autophagy-independent functions of proteins such as LC3 that are vital for successful virus 

infection. The accumulation of LC3-II during late ASFV infection may therefore be a pro-viral 

mechanism that uses lipidated LC3 independently of the canonical autophagy pathway. In support 

of this, ultrastructural studies have not reported the association of double-membrane vesicles with 

ASFV factories (Brookes et al., 1996, Nunes et al., 1975). The study by Hernaez et al (2013) 

reported that no examples of colocalisation between mature virions labelled against p72 and LC3 

puncta were evident.     

Infection with influenza A virus (IAV) causes the accumulation of LC3-II in perinuclear regions 

and at the plasma membrane (Beale et al., 2014). Further research has revealed that IAV‐induced 

LC3 lipidation is driven predominantly by non‐canonical autophagy (Fletcher et al., 2018). It may 

be possible that the appearance of LC3 puncta during late ASFV infection is a non-canonical 

autophagy response to membrane re-arrangements around the viral factory rather than a pro-viral 

mechanism. Crucially however, lipidation of LC3 during non-canonical autophagy is not dependent 

on recruitment of WIPI (Fletcher et al., 2018). If the observed LC3 lipidation in ASFV infection is 

WIPI dependent, this would more likely point to a canonical pathway. In this regard, infecting 

WIPI knock-out cells with ASFV and monitoring for the appearance of LC3 puncta would provide 

valuable insight into their provenance.  

Another possibility is that the appearance of LC3 puncta at the viral factory is entirely non-specific. 

During ASFV infection, other membrane markers such as endosomal markers like Rab7 and 

lysosomal markers like Lamp1 are recruited to the periphery of the viral factory (Cuesta-Geijo et 

al., 2017). Interestingly, addition of the microtubule-depolymerizing drug nocodazole abolished 

this recruitment and also impaired formation of viral factories pointing to a requirement of the 
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microtubule network. In support of this, research has shown that ASFV infection leads to 

disruption of centrosome assembly and function which could mediate the observed re-organisation 

of microtubules (Jouvenet and Wileman, 2005).   

In summary this work has showed that ASFV negatively modulates the formation of 

autophagosomes in Vero cells and primary macrophage cells. In addition, it shows that ASFV is 

able to block autophagic flux and that canonical autophagy is dispensable for virus replication. The 

appearance of LC3 and WIPI puncta at the viral factory has also been described. The fact that 

ASFV modulates autophagy, a pathway that performs such an integral function in host defence, 

could provide new opportunities for disease intervention. It may be possible to exploit the anti-

microbial nature of autophagy by suppressing or entirely abrogating the ability of vaccine strain 

viruses to control it. However this approach would be reliant on a firm understanding of the 

mechanisms of modulation which could guide the selection of viral genes for a targeted mutation 

strategy. In this regard, the chapter presented next was aimed at examining the mechanisms of 

autophagy modulation by ASFV.          
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4   Investigation of the mechanisms of autophagy modulation by ASFV 

4.1   Introduction 

Autophagy can act either at a basal level that functions to maintain cellular homeostasis or can be 

dramatically stimulated in response to externally derived stresses such as starvation, radiation and 

pathogen invasion. In many cases, selective forms of autophagy that rely on an array of autophagy 

receptors which target specific cargo for lysosomal degradation are induced. Selective autophagy 

includes mitophagy and pexophagy to name a few which is the selective degradation of 

mitochondria and peroxisomes respectively. In addition, a targeted anti-microbial form of 

autophagy called xenophagy is an important intrinsic cell defence mechanism and can be induced 

in response to immune-sensing signalling via the action of pattern recognition receptors (PRR) 

such as Toll-like receptors (TLRs) (Deretic, 2011, Gomes and Dikic, 2014). Moreover, autophagy 

can promote MHC class II presentation and generation of antigen-specific CD4+ T cell responses 

(Deretic et al., 2013). With such a multifaceted and potent threat to virus infection, it becomes 

unsurprising that viruses have developed very specialised ways to negatively modulate autophagy.    

Some viruses have evolved a capacity to modulate the signalling pathways that regulate autophagy 

whereas others directly target the host autophagy machinery. Interestingly, HSV-1 conducts both of 

these activities via ICP34.5 which is able to antagonize protein kinase R (PKR)-mediated 

autophagy induction and also inhibit autophagy via its interaction with Beclin 1 (Orvedahl et al., 

2007, Talloczy et al., 2006). Indeed, Beclin 1 seems to be a common target for viral manipulation, 

perhaps due to its integral role as part of the autophagy core machinery or perhaps due to the direct 

involvement of Beclin 1 in autophagy induction in response to TLR signalling (Shi and Kehrl, 

2010). Exogenous expression of the ASFV Beclin 1-interacting protein A179L not only protects 

cells against induced cell death but also inhibits the induction of autophagy in response to 

starvation (Hernaez et al., 2013, Revilla et al., 1997). It is therefore tempting to speculate that 

A179L may play a role in the inhibition of autophagy by ASFV.   

The PI3K-Akt-mTOR axis is a major regulatory pathway. The activation of Akt effects multiple 

cell functions such as cell growth, proliferation and protein translation (Manning and Toker, 2017). 

Signalling via Akt can also suppress apoptosis and modulate the induction of autophagy (Cooray, 

2004, Sengupta et al., 2010). In the case of the latter, Akt is able to phosphorylate and inhibit the 

mTORC1 inhibitor TSC2, leading to the activation of mTORC1 and the inhibition of the autophagy 

pathway. This mechanism can be exploited by viruses, for example HSV-1 encodes the Us3 kinase 

protein that acts in an identical manner to Akt by activating mTORC1 via phosphorylation of TSC2 

leading to stimulation of mRNA translation and viral replication (Chuluunbaatar et al., 2010).    

The aim of this study was to identify potential mechanisms that are responsible for the previously 

described inhibition of autophagosome formation (see Chapter 3). These investigations initially 

looked at the role that A179L might play in blocking starvation-induced autophagosomes. Whereas 
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Hernaez et al (2013) conducted their studies using a model of A179L over-expression which may 

not accurately reflect the level of A179L expression during infection, the study conducted here was 

carried out using a mutant strain of ASFV that lacks A179L. In this way, the effect that the absence 

of A179L has on the induction of autophagy could be examined in the context of infection and any 

potential artefacts of transfection and over-expression could be excluded.  

The vast body of literature reporting the interaction of numerous viruses with the PI3K-Akt-mTOR 

pathway and its vital role in the induction of autophagy pointed to the potential that the block in 

autophagy induction in ASFV infected cells may be mediated via the PI3K-Akt-mTOR pathway. 

The activation status of mTORC1 and Akt was therefore analysed by Western blot over a time 

course of ASFV infection. This also included an experiment to determine if mTORC1 activity was 

likely the result of a viral mechanism of action rather than constitutive activity. Following this, a 

purified virus was used in experiments to analyse mTORC1 and Akt activity to rule out possible 

variations of the results resulting from the method of virus preparation. Finally, investigations were 

carried out using pharmacological inhibitors of Akt and mTOR to determine if ASFV is able to use 

Akt-mTORC1 signalling as a mechanism to negatively modulate autophagy.    

Gaining further insight into how ASFV is able to regulate autophagy could provide opportunity to 

partially disrupt the system of viral control of the host immune response. For example, a strategy of 

targeted viral gene deletion may help to engineer a situation in which the cell is able to counter 

infection via the activation of autophagy. Considering the well-established links between 

autophagy and innate and adaptive immunity, this could lead to viral vaccine strains with improved 

immunogenicity.    

 

4.2   Results 

4.2.1 A mutant virus lacking A179L inhibits formation of starvation-induced 

autophagosomes 

A179L, a viral Bcl2 homolog encoded by ASFV has been shown to interact with Beclin 1 via its 

BH3 homology domain (Hernaez et al., 2013). Furthermore, it was shown that overexpression of 

A179L in HeLa cells caused a reduction in the number of starvation-induced autophagosomes 

when compared to control cells. This suggests that ASFV could potentially modulate the autophagy 

response through a mechanism involving the interaction between A179L and Beclin 1. In other 

studies, it was shown that A179L is able to protect cells against induced cell death (Revilla et al., 

1997) and also inhibit the activation of CHOP during the UPR response (Barber, 2015). As part of 

the work conducted by Barber, a deletion mutant of Ba71V was engineered in which the A179L 

gene was removed and replaced with a reporter gene using homologous recombination.  
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To address the question of whether an A179L knock-out virus (A179L KO) is able to inhibit the 

formation of starvation-induced autophagosomes, an experiment was carried out essentially in the 

same way as described in section 3.2.1. Using the A179L KO virus described above, the number of 

autophagosomes in ASFV infected Vero cells (MOI 5) was visualised by confocal microscopy and 

compared to mock infected cells in either nutrient replete conditions (Figure 4.1.1) or starved 

(Figure 4.1.2) conditions. In this way, any modulation of autophagy by the virus could be analysed. 

Cells were infected for a total period of 4 hours during which cells were incubated for the last 2 

hours in either complete cell media (non-starved) or EBSS (starved) prior to being fixed and 

labelled for immunofluorescence.  

LC3 labelling in mock infected cells (Figure 4.1.1A) showed a mostly diffuse cytoplasmic pattern 

with a small number of sporadic puncta that would be expected under nutrient replete conditions. A 

similar pattern of LC3 staining was observed in ASFV infected cells (Figure 4.1.1B). Labelling of 

viral protein p30 (Figure 4.1.1C) identified cells expressing ASFV genes and interestingly, very 

few puncta were apparent in these cells. This demonstrates that the A179L KO virus does not 

induce the formation of autophagosomes under nutrient replete conditions.  

Mock infected cells under starvation conditions (Figure 4.1.2A) showed a comparably higher 

number of LC3 puncta when compared to mock infected cells under non-starved conditions (Figure 

4.1.1A) indicating that autophagy had been induced in these cells. In contrast, cells that had been 

infected with the A179L KO virus (Figure 4.1.2B) demonstrated a predominantly diffuse pattern of 

LC3 staining with very few puncta under starvation conditions. Labelling of viral protein p30 

(Figure 4.1.2C) showed that LC3 puncta were mainly observed in cells that were not expressing 

ASFV genes. Collectively these results reveal that the A179L KO virus is able to inhibit starvation-

induced formation of autophagosomes. 

Imaris analysis was used to enumerate the total number of autophagosomes per cell in 30 cells for 

each experimental condition (Figure 4.1.3). The number of autophagosomes per cell increased in 

mock infected cells following starvation (P < 0.001). There was no difference in the number of 

autophagosomes between non-starved and starved cells that had been infected with A179L KO (P 

> 0.05). Similar to what was observed with wild-type virus there were less autophagosomes in 

resting cells infected with A179L KO when compared to mock infected cells (P < 0.05) and also 

significantly less autophagosomes in cells infected with A179L KO under starvation conditions 

when compared to starved mock infected cells (P < 0.001). This confirms the inhibitory effect of 

the A179L KO virus on the formation of starvation-induced autophagosomes. 
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Figure 4.1.1 A179L KO virus does not induce the formation of autophagosomes at 4 hpi 

Vero cells were mock infected (Panel A) or infected with A179L KO virus (MOI 5) (Panels B and 

C) for a total of 4 hours during which cells were non-starved in complete Vero cell media for the 

last 2 hours. Cells were then fixed and permeabilised in methanol before labelling LC3 shown in 

green, viral protein p30 shown in red and nuclei shown in blue. Panels A and C were stained with 

anti-p30 antibody and Panel B shows the same infected cells as Panel C but with the red channel 

removed to allow for clearer observation of LC3 staining. Scale bars represent 10 µM. 
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Figure 4.1.2 A179L KO virus has an inhibitory effect on the formation of starvation-

induced autophagosomes at 4 hpi 

Vero cells were mock infected (Panel A) or infected with A179L KO virus (MOI 5) (Panels B and 

C) for a total of 4 hours during which cells were starved in EBSS to induce autophagy for the last 2 

hours. Cells were then fixed and permeabilised in methanol before labelling LC3 shown in green, 

viral protein p30 shown in red and nuclei shown in blue. Panel B shows the same infected cells as 

Panel C but with the red channel removed to allow for clearer observation of LC3 staining. Scale 

bars represent 10 µM. 
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Figure 4.1.3 Imaris analysis confirms that an A179L KO virus inhibits induction of 

autophagosomes in response to starvation 

Imaris analysis was carried out on confocal images to quantify the number of LC3 puncta per cell 

for 30 individual cells per indicated experimental condition. Vero cells were either mock infected 

or infected with the A179L KO virus for a total of 4 hours. Prior to fixation, cells were either non-

starved in complete cell media or starved in EBSS for 2 hours to induce autophagy. Centre lines 

show the medians. NS = Non-starved cells. ST = Starved cells. Statistical analysis was carried out 

in Minitab using analysis of variance with Tukey multiple comparisons test. Asterisks represent 

significant differences in value between NS and ST conditions and between the indicated infection 

status of the cells (* = P value of <0.05, *** = P value of <0.001).  

 

4.2.2 mTORC1 remains active during ASFV infection 

Deleting A179L, the only identified ASFV autophagy-interacting protein, did not abrogate the 

ability of the virus to block starvation-induced formation of autophagosomes. Targeting host 

pathways could involve several viral encoded modulators and thus exhibit some redundancy. For 

example, at least four apoptosis modulators have been described (Dixon et al., 2017). One could 

therefore predict that autophagy is also likely to be modulated by ASFV in a number of ways.  

mTORC1 is a master nutrient sensing kinase that is activated in nutrient rich conditions which 

serves to halt the downstream initiation of autophagy (Yang and Klionsky, 2009). This is mediated 

by mTORC1-dependent phosphorylation of ULK1 which supresses the kinase activity of the ULK1 
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complex. In this way, phosphorylation of ULK1 can be used as a read-out for mTORC1 activity. 

Similarly, mTORC1-dependent phosphorylation of p70-S6K and 4E-BP1 can be used as further 

evidence to demonstrate the activation status of mTORC1. To gain insight into whether mTORC1 

might be involved in the inhibition of autophagosome formation by ASFV, analysis was carried out 

to determine its activation status in infected cells. 

Vero cells were either mock infected or infected with the Ba71V strain of ASFV (MOI 5). Virus 

was added to cells and incubated for 1 hour to allow virus entry. Cells were washed to remove 

residual virus at which stage cells were harvested for the first time point (0 hour time point). 

Remaining cells were incubated in nutrient replete conditions and harvested at multiple time points 

over a 16 hour course of infection. In addition, control cells were incubated in complete cell media 

or starved in EBSS for 3 hours to demonstrate starvation-induced reduction in phosphorylation of 

mTORC1 substrate proteins. Samples were prepared from cells for analysis by immunoblotting and 

probed using anti-ULK1, anti-p70-S6K, anti-4E-BP1, anti-p30 viral protein and anti-γ tubulin 

antibodies. Total protein levels and the phosphorylation status of ULK1, p70-S6K and 4E-BP1 

were analysed.  

Western blot analysis in Figure 4.2 showed that p30 expression was apparent in ASFV infected 

cells from 4 hpi, increasing as infection progressed towards 16 hpi as would be expected. A lower 

level of phosphorylation of ULK1 (P-ULK1), p70-S6K (P-p70-S6K) and 4E-BP1 (P-4E-BP1) was 

seen in the starved control cells when compared to control cells incubated in complete cell media. 

This demonstrates that starvation induced inactivation of mTORC1 leads to reduced 

phosphorylation of mTORC1 target proteins. No major difference in P-ULK1 was observed 

between mock infected cells and ASFV infected cells until 4 hpi at which stage phosphorylation in 

virus infected cells became marginally elevated until 16 hpi. Initially, a greater amount of P-p70-

S6K was seen in virus infected cells at 0 hpi when compared to mock infected cells but this was no 

longer apparent at 1 hpi. From 4 to 16 hpi, P-p70-S6K was dramatically increased above the level 

of mock infected cells. Levels of P-4E-BP1 were unchanged between mock infected and ASFV 

infected cells up to 4 hpi, after which phosphorylation increased in infected cells. Analysis of total 

protein levels of ULK1, p70-S6K and 4E-BP1 consistently demonstrated equivalent levels between 

mock infected and ASFV infected cells for the duration of the time course. 

Phosphorylation of ULK1, p70-S6K and 4E-BP1 was therefore evident throughout a 16 hour time 

course of ASFV infection and was at certain times elevated above the background levels seen in 

mock infected cells. This analysis presents a clear indication that mTORC1 remains active during 

ASFV infection.    



           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 mTORC1 remains active during ASFV infection 

Vero cells were either mock infected or infected with Ba71V (MOI 5) for 1 hr before residual virus 

was washed off and the 0 hr time point was harvested. The remaining cells were incubated in 2% 

media and harvested at multiple time points over a 16 hour time course of infection. Control cells 

were either incubated in complete cell media (NS) or starved (ST) in EBSS for 3 hours to induce 

inactivation of mTORC1. Cells were lysed and samples prepared for resolution by bis-Tris PAGE 

before transfer to PVDF membrane. Finally, samples were probed with ULK1, p70-S6K, 4E-BP1, 

p30 viral protein and anti-γ tubulin antibodies followed by appropriate HRP-conjugated secondary 

antibodies. The positions of molecular mass markers are indicated to the left of the gels. 
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Figure 4.2 mTORC1 remains active during ASFV infection 
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4.2.3 Starvation-induced inactivation of mTORC1 is inhibited by ASFV 

The serine/threonine kinase p70-S6K that targets the S6 ribosomal protein is important in the 

control of translation initiation and one of the most well characterised mTORC1 substrates along 

with 4E-BP1 (Ma and Blenis, 2009). Under nutrient replete conditions, phosphorylation of p70-

S6K by active mTORC1 results in the promotion of protein translation. However, under starvation 

conditions, multiple signals are relayed to mTORC1 in response to nutrient and energy sensing, 

ultimately resulting in its inactivation and the decrease in cell translation via rapid 

dephosphorylation of p70-S6K.  

The results in Figure 4.2 show that p70-S6K phosphorylation levels are not only maintained but 

actually increase during the 16 hour period of infection, indicating the maintenance or possible 

elevation of the active state of mTORC1. This experiment was conducted under nutrient replete 

conditions such that even in the absence of infection, mTORC1 would be expected to be active. In 

this way the aforementioned experiment was more suited to testing for potential inactivation of 

mTORC1 by ASFV. This raises the possibility that the observed active state of mTORC1 in 

infected cells is simply the result of its resting state remaining unchanged although this would seem 

unlikely because mTORC1 would usually be inactivated in response to cell stress resulting from 

infection. Alternatively, the active state of mTORC1 may be the result of a targeted mechanism by 

the virus. To investigate this further, phosphorylation of p70-S6K was analysed in infected cells 

that were placed under starvation conditions to inactivate mTORC1. Vero cells were infected with 

the Ba71V strain of ASFV (MOI 5) and harvested at multiple time points over a 16 hour time 

course of infection. Prior to harvest, cells were starved for 1 hour in EBSS to induce inactivation of 

mTORC1 and the dephosphorylation of p70-S6K. In addition, cells were mock infected and 

harvested at a single 16 hour time point, prior to which cells were either incubated in complete cell 

media or starved in EBSS for 1 hour to demonstrate a reduction in p70-S6K phosphorylation. 

Samples were prepared from cells for analysis by immunoblotting and probed using anti-p70-S6K, 

anti-p30 viral protein and anti-γ tubulin antibodies. Total protein levels for p70-S6K were analysed 

in addition to analysis of phosphorylation levels.  

Samples from mock infected cells that were analysed by Western blot analysis demonstrated 

dramatically less phosphorylated p70-S6K (P-p70-S6K) after 1 hour starvation when compared to 

non-starved conditions at 16 hpi (Figure 4.3). This indicates that 1 hour of starvation is sufficient to 

reduce mTORC1-dependent phosphorylation of its substrate proteins. Slightly greater levels of P-

p70-S6K were apparent in ASFV infected cells at 1 hpi and 2 hpi relative to mock infected cells 

that were incubated under starvation conditions. The P-p70-S6K levels increased in ASFV infected 

cells over time, peaking at 4 hpi and 8 hpi before decreasing again at 16 hpi. Levels of total p70-

S6K were similar between mock infected and ASFV infected cells and also remained unchanged 

throughout the time course of ASFV infection. Labelling of viral protein p30 showed increasing 
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levels of protein expression in ASFV infected cells from 4 hpi indicating that replication proceeded 

as expected during the experiment.  

This data demonstrates that ASFV is able to circumvent starvation-dependent signals that lead to 

mTORC1 inactivation. However, this effect is observed in a time-dependent manner, becoming 

more evident as infection progresses.  

 

Figure 4.3 Starvation-induced inactivation of mTORC1 is inhibited by ASFV 

Vero cells were infected with Ba71V (MOI 5) and harvested at multiple time points over a 16 hour 

time course of infection. Prior to harvest, cells were starved for 1 hour in EBSS. Separately, cells 

were mock infected for a total of 16 hours and either incubated in complete cell media or starved 

for 1 hour in EBSS prior to harvest. Cells were lysed and samples prepared for resolution by bis-

Tris PAGE before transfer to PVDF membrane. Finally, samples were probed with p70-S6K, p30 

viral protein and anti-γ tubulin antibodies followed by appropriate HRP-conjugated secondary 

antibodies. Hours post infection (hpi) are indicated at the top of the gel. The positions of molecular 

mass markers are indicated to the left of the gels. 

 

4.2.4 Akt remains active during ASFV infection             

Akt is a critical upstream mediator of mTORC1. The activation of Akt leads to the activation of 

mTORC1, a mechanism that occurs either directly via the Akt-mediated phosphorylation and 

suppression of the mTORC1 negative regulator, TSC2 or via the negative regulation of AMPK 

which is an activator of the TSC complex (Hahn-Windgassen et al., 2005). The complete activation 

of Akt is accompanied by its phosphorylation on residues T308 and S473 (Alessi et al., 1996). This 

is triggered following the binding of Akt to phospholipids produced by class I PI3K at the plasma 

membrane, a process that can be blocked using the PI3K inhibitor LY294002 (Franke et al., 1995, 

Klippel et al., 1996, Vlahos et al., 1994). Class I PI3K is activated following growth factor and 

insulin stimulation and conversely, the absence of growth factor stimulation can lead to the 

downstream inactivation of Akt (Liao and Hung, 2010).  
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The previous results described in sections 4.2.2 and 4.2.3 revealed that mTORC1 was active in 

ASFV infected cells. To investigate if mTORC1 activity could be linked to that of Akt, an 

investigation was conducted to determine if Akt is also active during infection. Vero cells were 

either mock infected or infected with the Ba71V strain of ASFV (MOI 5). Virus was added to cells 

and incubated for 1 hour to allow virus entry. Cells were washed to remove residual virus at which 

stage cells were harvested for the first time point (0 hour time point). Remaining cells were 

incubated in nutrient replete conditions and harvested at multiple time points over a 16 hour course 

of infection. In addition, control cells were either incubated in complete cell media or starved in 

EBSS for 3 hours to demonstrate the reduced phosphorylation of Akt following removal of growth 

factors. Another set of control cells were incubated in media containing DMSO (solvent control) or 

50 nM LY294002 for 3 hours to demonstrate an additional means of Akt dephosphorylation. 

Samples were prepared from cells for analysis by immunoblotting and probed using anti-Akt, anti-

p30 viral protein and anti-γ tubulin antibodies. Total protein levels for Akt were analysed in 

addition to analysis of phosphorylation at the T308 and S473 sites.  

Western blot analysis in Figure 4.4 showed a substantial reduction of phosphorylated Akt at T308 

and S473 in starved control cells when compared to cells incubated under nutrient replete 

conditions. Control cells that were treated with DMSO showed similar levels of phosphorylated 

Akt to non-starved cells indicating that DMSO alone had no effect on Akt phosphorylation. 

Comparison of the non-starved cells to the cells treated with LY294002 demonstrated a dramatic 

reduction in phosphorylation at T308 and S473 in the latter. Phosphorylated Akt bands under 

LY294002 treatment were also less intense when compared with cells that were starved. 

Collectively, these results indicate that while starvation leads to a moderate reduction in Akt 

phosphorylation, using the PI3K inhibitor LY294002 induces greater levels of dephosphorylation. 

Phosphorylation of Akt at S473 in ASFV infected cells was at an equivalent level to mock infected 

cells up to 1 hpi but from 2 to 8 hpi, an increase above mock was observed. This increase was 

however no longer apparent at 16 hpi when instead similar levels of S473 phosphorylation were 

seen between mock infected and ASFV infected cells. Phosphorylation at T308 remained 

comparable between ASFV and mock infected cells throughout the time course of infection. 

Additionally, no differences in total Akt levels between mock and ASFV infected cells were 

apparent over the duration of the time course. Taken together these results indicate that Akt 

remains active throughout the ASFV replication cycle. Since AKT is upstream of mTORC1, the 

maintenance of the active state of AKT is consistent with the maintenance of active mTORC1 and 

the downstream inactivation of autophagy.   
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Figure 4.4 Akt remains active during ASFV infection 

Vero cells were either mock infected or infected with Ba71V (MOI 5) for 1 hr before residual virus 

was washed off and the 0 hr time point was harvested. The remaining infected cells were incubated 

in 2% media and harvested at multiple time points over a 16 hour time course of infection. Control 

cells were either non-starved (NS) in complete cell media, starved (ST) in EBSS, incubated in 

media containing DMSO or incubated in media containing 50 nM LY294002 for 3 hours. Cells 

were lysed and samples prepared for resolution by bis-Tris PAGE before transfer to PVDF 

membrane. Finally, samples were probed with Akt, p30 viral protein and anti-γ tubulin antibodies 

followed by appropriate HRP-conjugated secondary antibodies. The positions of molecular mass 

markers are indicated to the left of the gels. 
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4.2.5 Purification and electron microscopy analysis of ASFV 

The results described in sections 4.2.2 to 4.2.4 revealed that mTORC1 and Akt remain active 

during ASFV infection, however the mechanism by which this occurs is unknown. Vaccinia virus 

(VACV) has also been shown to activate the PI3K-Akt pathway at early and late times of the 

infection cycle (Soares et al., 2009). Further research showed that this was important for 

endocytosis-dependent virus entry but more specifically that PI3K-Akt activation was linked to β1 

integrin mediated entry (Izmailyan et al., 2012). ASFV has also been shown to use the endocytosis 

pathway for virus entry, however the cell receptor is currently unknown (Cuesta-Geijo et al., 2012). 

Interestingly, a separate study implicated macropinocytosis in virus entry (Sanchez et al., 2012) and 

it was later described that ASFV is internalized into macrophages by both clathrin-mediated 

endocytosis and macropinocytosis (Hernaez et al., 2016). However, it was found that in the case of 

the latter, macropinocytosis was not specifically stimulated by ASFV but rather that the 

internalisation of virions in macropinosomes was the result of constitutive macropinocytosis for 

example via natural sampling of the cells microenvironment (Hernaez et al., 2016). In the 

aforementioned study, the authors hypothesised that the use of a clarified virus inoculum as 

opposed to a purified virus inoculum may influence the stimulation of macropinocytosis due to the 

presence of significant amounts of contaminant cell and viral debris in non-purified virus stocks. 

The previous experiments in sections 4.2.2 to 4.2.4 were conducted using clarified Ba71V virus 

inoculum. As the activation of Akt in VACV models has been shown to be affected by the virus 

entry mechanism, purification of ASFV was undertaken here with the intention of re-examining the 

activity of Akt and mTORC1. Clarified cell supernatant containing Ba71V was either concentrated 

by ultra-centrifugation or concentrated and then purified in a double round of Percoll purification. 

A detailed method of virus purification is described in section 2.2.5. The concentrated non-purified 

and concentrated purified virus stocks were then fixed using glutaraldehyde and examined by 

negative stain electron microscopy. Electron microscopy methods are described in section 2.9.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Electron microscopy analysis of non-purified and purified virus inocula 

Vero cells were infected with Ba71V (MOI 1) and incubated until complete cell detachment. Cell 

supernatants were harvested and clarified by low-speed centrifugation. Supernatants were either 

concentrated using ultra-centrifugation or concentrated and purified using a double round of Percoll 

purification. Concentrated non-purified (Panel A) and concentrated purified stocks (Panel B) were 

then fixed using glutaraldehyde and analysed by negative stain electron microscopy. Arrows point 

to ASFV virus particles. Scale bars are represented below each panel. 
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Figure 4.5 Electron microscopy analysis of non-purified and purified virus inocula 
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EM analysis of concentrated non-purified Vero cell supernatant containing Ba71V (Figure 4.5A) 

revealed the presence of dark staining geometrically-shaped particles that were either grouped 

together or in isolation. Particle size was estimated by visual inspection to be approximately 200 

nM across. The shape and size of these particles was therefore consistent with ASFV virus 

particles. Large amounts of lighter staining material was dispersed throughout the image. This 

material was of varying size and shape and was therefore inconsistent with virus particles and more 

likely consisted of cell and viral debris. Identical analysis of purified cell supernatant containing 

Ba71V shown in Figure 4.5B also indicated clusters of particles that were consistent in both shape 

and size of ASFV virions. However, evidence of cell and viral debris was no longer apparent 

suggesting that purification of the supernatant successfully removed this material. These results 

therefore revealed that the purified virus was suitable for use in downstream experiments in which 

the potential influence on Akt and mTORC1 activity by the presence of cell debris could be 

excluded.   

4.2.6 Purified ASFV inhibits starvation-induced accumulation of LC3-II 

The investigation carried out in section 3.2.2 showed that at 4 hpi, starvation of mock infected Vero 

cells induced an increase in LC3-II when compared to cells under nutrient rich conditions and that 

the same effect was observed in uninfected cells. In contrast, starvation did not induce any increase 

in LC3-II relative to non-starved conditions in cells infected with a clarified stock of cell 

supernatant containing Ba71V suggesting that the induction of autophagy by starvation is inhibited 

by ASFV. Part of the same experiment but not previously described were cells that were infected 

with purified Ba71V virus (MOI 5). This was aimed at facilitating side-by-side comparison of the 

effects of infection on LC3-II levels between using non-purified and purified virus inocula and 

results from this analysis are described below. Cells were either incubated in complete cell media 

or starved in EBSS for 2 hours prior to harvest at 4 hpi and samples were then prepared from cells 

for analysis by immunoblotting. Finally, samples were probed using anti-LC3, anti-p30 viral 

protein and anti-γ tubulin antibodies. 

Figure 4.6 shows the same Western blot analysis that was previously carried out on uninfected, 

mock infected and non-purified ASFV infected cells in Figure 3.2 but with additional analysis 

indicated of cells infected with purified ASFV. Labelling of p30 revealed comparable levels of 

virus protein expression between non-purified and purified viruses. In similarity to what was 

previously seen using non-purified virus, comparable amounts of LC3-II were also observed 

between starved and non-starved conditions using purified virus. These results therefore 

demonstrate that purified virus acts in the same way as non-purified virus by inhibiting starvation-

induced accumulation of LC3-II. Consequently, the presence of cell and viral debris in non-purified 

virus does not seem to be responsible for the block in autophagy induction but rather points to a 

virus specific mechanism.  
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Figure 4.6 Purified ASFV inhibits starvation-induced accumulation of LC3-II in Vero 

cells 

Vero cells were incubated with media alone (uninfected), mock inoculum (mock infected), non-

purified Ba71V (MOI 5) or purified Ba71V (MOI 5) for 1 hour. Inocula were removed and cells 

were incubated for a total of 4 hours during which cells were either non-starved (NS) in complete 

cell media or starved (ST) in EBSS for the final 2 hours. Cells were then lysed and samples 

prepared for resolution by bis-Tris PAGE before transfer to PVDF membrane. Finally, samples 

were probed with anti-LC3, anti-p30 and γ-tubulin antibodies followed by appropriate HRP-

conjugated secondary antibodies. The positions of molecular mass markers are indicated to the left 

of the gels. 

 

4.2.7 Akt and mTORC1 are active in cells infected with purified ASFV  

In section 4.2.2 it was hypothesised that the observed active state of mTORC1 in infected cells 

could be a means by which ASFV negatively modulates the autophagy pathway. The results in 

section 4.2.4 further established that Akt remains active over a time course of infection which may 

lead to downstream mTORC1 activation. The aforementioned experiments were carried out using 

non-purified Ba71V and in section 4.2.6, Western blot analysis revealed that purified virus acted in 

the same way as non-purified virus with regard to inhibition of starvation-induced LC3-II 

accumulation. It could therefore be expected that Akt and mTORC1 are likely be active in cells 

infected with purified ASFV as was demonstrated using non-purified virus. To test this, Vero cells 

were either mock infected or infected with purified cell supernatant containing Ba71V (MOI 5) and 

incubated under nutrient replete conditions for a total of 4 hours. Samples were prepared from cells 

for analysis by immunoblotting. Finally, samples were probed using anti-Akt, anti-p70-S6K, anti-

p30 viral protein and anti-γ tubulin antibodies. Total protein levels for Akt and p70-S6K were 

analysed in addition to analysis of phosphorylation of these proteins. 
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Figure 4.7 Akt and mTORC1 are active in cells infected with purified ASFV 

Vero cells were incubated with mock inoculum (mock infected) or purified Ba71V (MOI 5) for 1 

hour. Inocula were removed and cells were incubated for a total of 4 hours. Cells were then lysed 

and samples prepared for resolution by bis-Tris PAGE before transfer to PVDF membrane. Finally, 

samples were probed with anti-Akt, anti-p70-S6K, anti-p30 and γ-tubulin antibodies followed by 

appropriate HRP-conjugated secondary antibodies. The positions of molecular mass markers are 

indicated to the left of the gels. 

 

Western blot analysis of viral protein p30 in Figure 4.7 showed the presence of ASFV gene 

expression in cells infected with purified Ba71V but not in cells that were mock infected. Greater 

amounts of phosphorylated p70-S6K and phosphorylated Akt at S473 were evident in ASFV 

infected cells when compared to mock infected cells, however a similar level of phosphorylated 

Akt at T308 was observed between mock infected and ASFV infected cells. Analysis of total Akt 

and total p70-S6K did not reveal any differences between mock infected and ASFV infected cells. 

Taken together these results demonstrate that Akt and mTORC1 are active following infection with 

purified ASFV which corresponds to the previous result using the non-purified virus. It can 
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therefore be concluded that the presence of cell and viral debris in the non-purified virus does not 

induce the activation of Akt and mTORC1 and that this is more likely a virus specific effect.  

4.2.8 Analysis of the effects of MK-2206 and Torin1 on Akt and mTORC1 substrate       

phosphorylation 

The investigation in section 4.2.2 revealed that an active state of mTORC1 was maintained during 

ASFV infection. Additionally, it was shown in section 4.2.3 that mTORC1 was activated in 

infected cells despite attempting to inactivate it under starvation conditions. Taken together, these 

results suggest that ASFV exerts a modulatory effect on mTORC1. Following the results in section 

4.2.4 that demonstrated the active state of Akt over a time course of ASFV infection, it was 

hypothesised that perhaps the virus drives the activation of mTORC1 via the activity of Akt. This 

model is based on the fact that Akt mediates the activity of mTORC1 via the phosphorylation of 

TSC2, an inhibitor of mTORC1. However, mTORC1 can also be regulated independently of Akt 

via AMPK, a TSC complex activator.  

To provide a potential means of inactivating mTORC1 and Akt, the phosphorylation of Akt and 

mTORC1 substrate protein p70-S6K was analysed in the presence of pharmacological inhibitors, 

Torin1 and MK-2206. Research on Torin1 has revealed that it offers a more potent inhibition of 

mTORC1 when compared to rapamycin treatment and that it also inhibits mTORC2 (Thoreen et 

al., 2009). In similarity to mTORC1, mTORC2 is a large protein kinase comprising the catalytic 

subunit mTOR. However, some of the protein partners of mTORC2 and mTORC1 are different 

(Jhanwar-Uniyal et al., 2019). Whereas mTORC1 acts on the ULK1 autophagy complex and the 

translation factors p70-S6K and 4E-BP1, mTORC2 directly phosphorylates Akt on S473 

facilitating phosphorylation on T308 by PDK1 and the eventual activation of Akt (Sarbassov et al., 

2005). MK-2206 is a highly potent and selective allosteric Akt inhibitor that blocks its activation 

and kinase activity preventing the downstream phosphorylation and inactivation of TSC2 (Yan, 

2009).  

In this experiment, Vero cells were either mock infected or infected with Ba71V (MOI 5) for a total 

of 4 hours. During the final 2 hours of infection cells were incubated in conventional 2% media or 

in 2% media containing either 200 nM Torin1 or 5 µM MK-2206 or a combination of both drugs. 

Separately, cells were also incubated in EBSS containing both drugs to test whether starvation 

alters the effects of the drugs. A 4 hour period of infection was chosen as previously it was at this 

stage of the replication cycle that Akt and mTORC1 demonstrated obvious activity in ASFV 

infected cells. Samples were prepared from cells for analysis by immunoblotting. Finally, samples 

were probed using anti-Akt, anti-p70-S6K, anti-p30 viral protein and anti-γ tubulin antibodies. 

Total protein levels and the phosphorylation status of Akt and p70-S6K were analysed. 
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Figure 4.8 Analysis of the effects of MK-2206 and Torin1 on Akt and mTORC1 substrate 

phosphorylation 

Vero cells were incubated with mock inoculum (mock infected) or Ba71V (MOI 5) for 1 hour. 

Inocula were removed and cells were incubated for a total of 4 hours. During the last 2 hours, cells 

were incubated in regular 2% media or in 2% media containing 200 nM Torin1 or 5 µM MK-2206 

or a combination of both drugs. Separately, cells were starved in EBSS in the presence of both 

drugs. Cells were then lysed and samples prepared for resolution by bis-Tris PAGE before transfer 

to PVDF membrane. Finally, samples were probed with anti-Akt, anti-p70-S6K, anti-p30 and γ-

tubulin antibodies followed by appropriate HRP-conjugated secondary antibodies. The positions of 

molecular mass markers are indicated to the left of the gels. 

 

Western blot analysis in Figure 4.8 showed the expression of viral protein p30 in ASFV infected 

cells only. In conventional 2% media, a greater amount of phosphorylated p70-S6K (P-p70-S6K) 

and phosphorylated Akt on S473 (P-Akt S473) and T308 (P-Akt T308) was evident in ASFV 

infected cells compared to mock infected cells. This shows that Akt and mTORC1 were active in 

ASFV infected cells as previously reported. Almost a complete loss of P-Akt S473 and P-Akt T308 

was observed in mock infected cells in the presence of MK-2206. Interestingly, under the same 

conditions only a moderate loss of P-Akt S473 was observed in ASFV infected cells and a near 

complete loss of P-Akt T308. This could suggest that while MK-2206 alone is sufficient to 

inactivate Akt in mock infected cells, it is only able to partially inactivate Akt in ASFV infected 

cells at the concentration used. Mock infected cells incubated in the presence of Torin1 
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demonstrated a loss of P-p70-S6K and a loss of P-Akt S473 but phosphorylation on Akt T308 was 

still apparent. This shows that Torin1 is able to inactivate mTORC1 preventing the downstream 

phosphorylation of p70-S6K and is also able to inhibit the activity of mTORC2 which 

phosphorylates Akt on S473. Torin1 treatment of ASFV infected cells led to dramatic reductions of 

P-p70-S6K, P-Akt S473 and P-Akt T308 compared to untreated cells however some P-Akt S473 

and P-Akt T308 was still apparent. Treatment of mock infected or ASFV infected cells with both 

MK-2206 and Torin1 facilitated the greatest loss of P-p70-S6K, P-Akt S473 and P-Akt T308 

compared to untreated cells or cells treated with drugs in isolation. Incubating the cells in EBSS 

rather than 2% media did not make any difference to phosphorylation levels. Additionally, analysis 

of total p70-S6K and total Akt did not indicate any differences between mock infected and ASFV 

infected cells or between cell treatments. 

Collectively these results suggest that using MK-2206 and Torin1 in combination provides the 

most effective means of reducing the activity of Akt and mTORC1 in mock infected and ASFV 

infected cells.  

4.2.9 Low numbers of autophagosomes are evident at 4 hpi in ASFV infected cells in the 

presence of Torin1 and MK-2206  

Both Ba71V and Ba71V A179L KO virus were able to inhibit starvation induced formation of 

autophagosomes at 4 hpi (see sections 3.2.1 and 4.2.1). Adding to this, the results in section 4.2.8 

demonstrated that Akt and mTORC1 can be sufficiently inactivated in ASFV infected cells at 4 hpi 

using a combination of Torin1 and MK-2206. This provides an opportunity to explore whether 

Akt-mTORC1 activity is a means by which ASFV negatively modulates the induction of 

autophagy. In this respect, a confocal microscopy experiment was conducted using starvation 

conditions as described in sections 3.2.1 and 4.2.1 but with Torin1 and MK-2206 included. Vero 

cells were mock infected or infected with either Ba71V (MOI 5) or the Ba71V A179L KO virus 

(MOI 5) for a total period of 4 hours during which cells were incubated for the final 2 hours in 

EBSS alone or EBSS containing 200 nM Torin1 and 5 µM MK-2206. Cells were then fixed and 

labelled for LC3 to detect autophagosomes and viral protein p30 to detect infected cells. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.1 Starvation-induced formation of autophagosomes is inhibited in ASFV 

infected cells at 4 hpi 

Vero cells were incubated with mock inoculum (Panel A) or Ba71V (MOI 5) (Panels B and C) or 

Ba71V A179L KO (MOI 5) (Panels D and E) for 1 hour. Inocula were removed and cells were 

incubated for a total of 4 hours during which cells were starved in EBSS media for the final 2 

hours. Cells were then fixed and permeabilised in methanol before labelling LC3 shown in green, 

viral protein p30 shown in red and nuclei shown in blue. Panels C and E are stained with p30. 

Panels B and D show the same infected cells as Panels C and E respectively but with the red 

channel removed to allow for clearer observation of LC3 staining. Scale bars represent 10 µM. 
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Figure 4.9.1 Starvation-induced   formation   of   autophagosomes   is   inhibited   in  ASFV 

infected cells at 4 hpi 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.2 Low numbers of autophagosomes are evident at 4 hpi in ASFV infected cells 

in the presence of Torin1 and MK-2206 

Vero cells were incubated with mock inoculum (Panel A) or Ba71V (MOI 5) (Panels B and C) or 

Ba71V A179L KO (MOI 5) (Panels D and E) for 1 hour. Inocula were removed and cells were 

incubated for a total of 4 hours during which cells were starved in EBSS media containing 200 nM 

Torin1 and 5µM MK-2206 for the final 2 hours. Cells were then fixed and permeabilised in 

methanol before labelling LC3 shown in green, viral protein p30 shown in red and nuclei shown in 

blue. Panels C and E are stained with p30. Panels B and D show the same infected cells as Panels C 

and E respectively but with the red channel removed to allow for clearer observation of LC3 

staining. Scale bars represent 10 µM. 
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Figure 4.9.2 Low numbers of autophagosomes are evident at 4 hpi in ASFV infected cells 

in the presence of Torin1 and MK-2206 
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The immunofluorescence results shown in Figure 4.9.1A demonstrated high numbers of LC3 

puncta in mock infected cells as would be expected under starvation conditions. In contrast, cells 

that had been infected with Ba71V (Figure 4.9.1B) and the A179L KO virus (Figure 4.9.1D) 

showed some cells that contained comparable numbers of LC3 puncta to mock infected cells and 

other cells that showed a near complete absence of LC3 puncta. Labelling of p30 (Figure 4.9.1C 

and E) revealed that cells that demonstrated almost no LC3 puncta were expressing ASFV proteins 

whereas cells with a high number of LC3 puncta were not. Taken together, this data confirms the 

results that were described in sections 3.2.1 and 4.2.1 that indicate that ASFV inhibits the induction 

of autophagy at 4 hpi. 

In cells that were incubated in EBSS in the presence of Torin1 and MK-2206, LC3 labelling 

revealed a high number of autophagosomes in mock infected cells as one would expect under 

starvation conditions (Figure 4.9.2A). LC3 and p30 labelling of cells that had been infected with 

Ba71V (Figure 4.9.2B and C) or the Ba71V A179L KO virus (Figure 4.9.2D and E) indicated that 

cells demonstrating high numbers of LC3 puncta were not expressing ASFV proteins and that cells 

in which low numbers of LC3 puncta were observed labelled positively for p30. Visual inspection 

of the number of LC3 puncta in ASFV infected cells in the presence of Torin1 and MK-2206 

(Figure 4.9.2B and D) seemed to indicate a slightly greater number of puncta compared to cells 

infected with ASFV in the absence of drugs (Figure 4.9.1B and D). Collectively, these results 

suggest that ASFV was perhaps unable to entirely block the formation of autophagosomes in the 

presence of Torin1 and MK-2206 although it was able to still restrict the number of observed 

autophagosomes. 

4.2.10 Autophagosome formation can be stimulated in ASFV infected cells at 2 hpi in the 

presence of Torin1 and MK-2206                 

Overall the results in section 4.2.9 indicated that ASFV is able to restrict the formation of 

autophagosomes at 4 hpi in the presence of Akt and mTORC1 inhibitors although perhaps not 

completely. To investigate if this restriction was related to the timing at which the analysis was 

conducted with regard to the stage of virus replication, the same experiment was conducted but 

analysis was carried out at 2 hpi rather than 4 hpi. A 2 hour time point was used as this marks the 

early stages of viral protein translation and therefore influence from additional viral virulence 

factors could be kept to a minimum. Vero cells were mock infected or infected with Ba71V (MOI 

5) or the Ba71V A179L KO virus (MOI 5) and analysis was carried out under starvation conditions 

whereby cells were starved for 2 hours in EBSS alone or in EBSS containing 200 nM Torin1 and 5 

µM MK-2206 prior to fixing and labelling the cells for immunofluorescence. Cells were labelled 

for LC3 to detect autophagosomes and viral protein p30 to detect infected cells. 

LC3 labelling of mock infected cells under starvation conditions predictably revealed an extensive 

amount of LC3 puncta (Figure 4.10.1A). Cells that had been infected with Ba71V (Figure 4.10.1B 
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and C) showed almost no detectable puncta in p30 expressing cells and in cells not expressing p30, 

similar amounts of LC3 puncta to the mock infected cells were observed. Cells that were infected 

with the A179L KO virus demonstrated a high number of LC3 puncta in cells that were not 

expressing p30 and an absence of puncta in cells expressing p30 (Figure 4.10.1D and E). 

Collectively, these results suggest that the Ba71V strain of ASFV is able to inhibit the induction of 

autophagosomes at 2 hpi as was previously demonstrated at 4 hpi and that the mutant A179L KO 

virus acts in the same way. 

Mock infected cells that had been starved in the presence of Torin1 and MK-2206 (Figure 4.10.2A) 

showed similar amounts of LC3 puncta at 2 hpi compared to mock infected cells that were starved 

in the absence of drugs (Figure 4.10.1A). This shows that Torin1 and MK-2206 had no effect on 

the starvation-induced formation of autophagosomes. LC3 labelling of cells that had been infected 

with Ba71V and starved in the presence of Torin1 and MK-2206 (Figure 4.10.2B) demonstrated a 

substantial number of LC3 puncta at 2 hpi and labelling of p30 indicated that LC3 puncta were 

evident in ASFV infected cells (Figure 4.10.2C). A considerable number of LC3 puncta were also 

observed at 2 hpi in cells that had been infected with the A179L KO virus and starved in the 

presence of Torin1 and MK-2206 (Figure 4.10.2D). Labelling of p30 shown in Figure 4.10.2E 

indicated that LC3 puncta were evident in cells expressing ASFV proteins. Taken together the 

results show that inhibitors of Akt and mTORC1 can effectively induce autophagy, that ASFV 

infection blocks starvation induced or inhibitor induced autophagy, but that this block takes several 

hours to become effective in infected cells.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10.1 ASFV inhibits the formation of autophagosomes at 2 hpi  

Vero cells were incubated with mock inoculum (Panel A) or Ba71V (MOI 5) (Panels B and C) or 

Ba71V A179L KO (MOI 5) (Panels D and E) for 1 hour. Inocula were removed and cells were 

incubated for a total of 2 hours during which cells were starved in EBSS media. Cells were then 

fixed and permeabilised in methanol before labelling LC3 shown in green, viral protein p30 shown 

in red and nuclei shown in blue. Panels C and E are stained with p30. Panels B and D show the 

same infected cells as Panels C and E respectively but with the red channel removed to allow for 

clearer observation of LC3 staining. Scale bars represent 10 µM. 
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Figure 4.10.2 Autophagosomes can be induced in ASFV infected cells at very early stages of 

the replication cycle in the presence of Akt and mTORC1 inhibitors  

Vero cells were incubated with mock inoculum (Panel A) or Ba71V (MOI 5) (Panels B and C) or 

Ba71V A179L KO (MOI 5) (Panels D and E) for 1 hour. Inocula were removed and cells were 

incubated for a total of 2 hours during which cells were starved in EBSS media containing 200 nM 

Torin1 and 5µM MK-2206. Cells were then fixed and permeabilised in methanol before labelling 

LC3 shown in green, viral protein p30 shown in red and nuclei shown in blue. Panels C and E are 

stained with p30. Panels B and D show the same infected cells as Panels C and E respectively but 

with the red channel removed to allow for clearer observation of LC3 staining. Scale bars represent 

10 µM. 
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Figure 4.10.2 Autophagosomes can be induced in ASFV infected cells at very early stages of 

the replication cycle in the presence of Akt and mTORC1 inhibitors  
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4.3   Discussion 

In the previous chapter the inhibition of autophagosome formation by ASFV at an early stage of the 

virus replication cycle was described. The absence of autophagic flux measured by p62 degradation 

was also demonstrated providing confirmation that ASFV blocks autophagy. Experiments were 

then conducted to try to elucidate the potential mechanisms employed by the virus to restrict the 

induction of autophagy. These mechanisms may be centred on the interaction of viral proteins with 

the autophagy machinery or could take the form of a more complex strategy in which signalling 

used by the cell to switch autophagy off is exploited by the virus. Alternatively, ASFV may rely on 

a combination of these mechanisms to ensure that the threat imposed by autophagy is disrupted.     

The A179L gene was considered a likely modulator of autophagy due to its reported interaction 

with the key autophagy protein Beclin 1 (Hernaez et al., 2013) but also because its early expression 

during viral replication coincides with the observed inhibition of autophagy during early virus 

infection. Vero cells were mock infected or infected for 4 hours with the Vero adapted strain 

Ba71V in which A179L had been knocked out by homologous recombination. No difference in the 

number of autophagosomes between mock infected and A179L KO infected cells was apparent 

suggesting that the A179L KO virus did not induce autophagy (Figure 4.1.1). To test whether the 

A179L KO virus could inhibit autophagy, cells were incubated in starvation media to induce the 

appearance of autophagosomes. The results in Figure 4.1.2 revealed that while an extensive number 

of autophagosomes could be observed in mock infected cells, a near complete absence of 

autophagosomes was observed in cells expressing viral protein p30 showing that the A179L KO 

virus is able to inhibit starvation-induced autophagy.  

Quantification of the number of autophagosomes per individual cell demonstrated a statistically 

significant difference between mock infected and ASFV infected cells when separately comparing 

cells under non-starved and starved conditions (Figure 4.1.3). In terms of blocking the formation of 

autophagosomes, the outcome of using the A179L KO virus therefore mirrors what was previously 

observed using the non-mutated Ba71V virus (see section 3.2.1). Consequently, it can be concluded 

that knocking out A179L from ASFV does not abolish its ability to inhibit autophagy. This could 

mean that the previously described inhibition of starvation-induced autophagosomes by A179L is 

an artefact of its overexpression. Indeed, A179L has been shown to have a much greater affinity for 

other Bcl2 proteins when compared to Beclin 1 (Banjara et al., 2017). Alternatively, these results 

could point to a redundancy in the ASFV genome whereby additional genes are encoded that are 

able to replicate the effects of A179L or perhaps the influence of A179L represents just a single 

layer of a multi-layered strategy to perturb the autophagy response in ASFV infected cells. 

The nutrient sensor mTORC1 is a master regulator of autophagy that when activated, inhibits the 

induction of autophagy primarily via phosphorylation of the ULK1 complex. Active mTORC1 also 

leads to the downstream phosphorylation of two key proteins involved in translation, p70-S6K and 
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4E-BP1. The phosphorylation of mTORC1 substrate proteins can be readily detected by Western 

blot analysis providing an effective means of determining the activation status of mTORC1. To try 

to identify additional means by which ASFV could inhibit the induction of autophagy, the 

activation status of mTORC1 was determined in infected cells.  

This experiment was carried out by harvesting cells at multiple time points over a 16 hour time 

course of infection by which time at least one round of virus replication would be complete. At 

each time point the phosphorylation level of ULK1, p70-S6K and 4E-BP1 was analysed and the 

results in Figure 4.2 showed that phosphorylation of all of these proteins could be detected over the 

entire time course of infection indicating the active state of mTORC1. Accordingly, the active state 

of mTORC1 and the downstream phosphorylation of ULK1 during ASFV infection could be a 

mechanism by which starvation-induced formation of autophagosomes is inhibited by the virus. 

Comparing the level of phosphorylation between mock infected and ASFV infected cells revealed a 

reasonably consistent pattern of greater phosphorylation in ASFV infected cells from 4 hpi. This 

suggests that ASFV is able to induce a degree of mTORC1 activity that is greater than the level of 

constitutive activity perhaps indicating that mTORC1 is purposefully targeted by the virus for 

activation. The fact that this effect was seen from 4 hpi could mean that viral proteins expressed 

during early replication are responsible. Physiological changes in the cell during viral infection 

such as energy and nutrient depletion would usually result in a cell stress response that leads to the 

inactivation of mTORC1 and the activation of autophagy, however in ASFV infected cells 

mTORC1 activity is maintained most likely to also benefit from host cell translation.      

To provide confirmation that the observed activity of mTORC1 is the result of infection rather than 

constitutive activity, a 16 hour time course of ASFV infection was carried out in Vero cells during 

which cells were starved to inactivate mTORC1 (see Figure 4.3). Cells were harvested at multiple 

time points for analysis by Western blot and phosphorylated p70-S6K (P-p70-S6K) was used as a 

readout for mTORC1 activity. Mock infected cells that were subjected to 1 hour of starvation 

demonstrated a near complete loss of P-p70-S6K. In contrast, under the same starvation conditions 

P-p70-S6K was evident in ASFV infected cells and was particularly elevated at 4 and 8 hpi while a 

subsequent reduction at 16 hpi was apparent. It was therefore concluded that ASFV is able to block 

starvation-induced inactivation of mTORC1. The fact that levels of P-p70-S6K in ASFV infected 

cells at 4 hpi, when viral translation has commenced, were at least equivalent to or slightly greater 

than constitutive levels observed in non-starved mock infected cells may indicate that this 

mechanism is dependent on virally encoded factors. The decreased activation of mTORC1 at 16 

hpi could suggest that the aforementioned viral mechanism is no longer required at such late stages 

of infection. Previously in Figure 4.2, it was demonstrated that P-p70-S6K was still evident at 16 

hpi under nutrient replete conditions albeit slightly decreased from 4 and 8 hpi indicating that the 

virus does not inactivate mTORC1 at 16 hpi. Collectively, the results from Figures 4.2 and 4.3 
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provide compelling evidence that mTORC1 is specifically activated during ASFV infection and 

that viral mechanisms are in place to maintain this activity in the face of cell stress responses.  

When considering the mechanisms that ASFV might use to activate mTORC1, numerous studies 

on virus-cell interactions have reported the activation of Akt in infected cells (Benetti and 

Roizman, 2006, Dawson et al., 2003, Esfandiarei et al., 2004, Lee et al., 2005, Thomas et al., 

2002). The activation of Akt can lead to the downstream activation of mTORC1 by directly 

phosphorylating and inactivating TSC2, a negative regulator of mTORC1. Human cytomegalovirus 

(HCMV) which in similarity to ASFV is also a large double-stranded DNA virus was shown to 

maintain mTORC1 activity under amino acid deprivation and that Akt was also activated by 

HCMV encoded proteins in a PI3K-dependent manner (Clippinger et al., 2011, Yu and Alwine, 

2002). Complete activation of Akt is characterised by phosphorylation on residues S473 and T308 

(Alessi et al., 1996). To investigate whether Akt is active in ASFV infected cells, a 16 hour time 

course of infection was carried out in Vero cells during which cells were harvested at multiple time 

points for Western blot analysis. The results presented in Figure 4.4 showed that Akt was 

phosphorylated on both S473 at T308 residues throughout the time course of ASFV infection 

demonstrating its active status. Between 2 and 8 hpi a greater level of phosphorylation on S473 was 

observed in ASFV infected cells when compared to mock infected cells. Phosphorylation on S473 

is carried out by mTORC2 (Sarbassov et al., 2005) which could suggest that mTORC2 activity is 

specifically stimulated by ASFV. Nevertheless, this result provides clear evidence that Akt is 

activated during ASFV infection which could be a mechanism used by the virus to activate 

mTORC1.  

Regulation of mTORC1 can also be achieved through Akt-independent mechanisms. For example, 

low intracellular energy stores can lead to the activation of AMPK which is able to phosphorylate 

and activate the TSC complex leading to the downstream inactivation of mTORC1 (Kimball, 

2006). This response is aimed at stimulating autophagy to raise energy availability to maintain vital 

cell functions. The targeting of AMPK by viruses has been reported. For example HCMV is able to 

circumvent AMPK-mediated inhibition of mTORC1 (Kudchodkar et al., 2007). Another possibility 

is that mTORC1 could be acted upon directly via virally encoded virulence factors. During HSV-1 

infection, mTORC1 signalling was maintained in the presence of Akt inhibitors (Chuluunbaatar et 

al., 2010). An Akt mimic encoded by the virus called Us3 was later shown to be responsible for 

this effect (Chuluunbaatar and Mohr, 2011). One could therefore speculate that ASFV might 

encode a protein with similar function.                

The method of cell entry for ASFV has been the subject of keen debate. Examples of virus entry 

via clathrin-mediated endocytosis and macropinocytosis have been separately reported in the past 

(Cuesta-Geijo et al., 2012, Sanchez et al., 2012). More recently, a study described the 

internalisation of virus particles via clathrin-mediated endocytosis and macropinocytosis into 

macrophages, the natural host cell of ASFV (Hernaez et al., 2016). Using purified virus inoculum, 
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entry via macropinocytosis was found to be non-specific and more likely the result of the cells 

constitutively sampling their environment. The authors speculated that the presence of cell and 

viral debris in non-purified virus inoculum could potentially affect the route of virus entry by 

specifically stimulating macropinocytosis. With this in mind, and following a report describing 

how the activation of Akt during VACV infection was dependent on the viral entry mechanism 

(Izmailyan et al., 2012), it was decided to re-examine the effects of ASFV infection on autophagy 

using a purified virus.   

Purification was carried out using density-gradient separation in a Percoll suspension. Clarified 

virus stocks that had either been concentrated only or concentrated and then purified were visually 

assessed by negative stain electron microscopy. Images of this analysis presented in Figure 4.5 

showed the presence of particles that were consistent in shape and size with ASFV virions in both 

non-purified and purified virus samples. Analysis also demonstrated the presence of substantial 

amounts of cell and viral debris in the non-purified virus sample but that this debris was entirely 

absent in the purified virus sample. Using the Percoll method of purification has the potential to 

lead to samples containing residual amounts of Percoll and it was previously reported that 

macrophages were able to ingest Percoll (Wakefield et al., 1982). However, using a Percoll purified 

virus to infect Vero cells, Hernaez et al (2016) found no evidence of significant induction of 

membrane protrusions at the cell surface demonstrating that the potential presence of Percoll was 

not a factor in stimulating macropinocytosis.  

The purified virus described above was used to infect Vero cells and analysis by Western blot 

showed that at 4 hpi, the starvation-induced accumulation of LC3-II was inhibited in ASFV 

infected cells (see Figure 4.6). Under nutrient replete conditions, a lower amount of LC3-II was 

seen when compared to mock infected cells demonstrating that the purified virus did not induce an 

autophagy response. These results were consistent with what was previously reported using a non-

purified virus (see section 3.2.2). In Figure 4.7, Western blot analysis of Vero cells that had been 

infected with the purified virus for 4 hours showed greater levels of phosphorylated p70-S6K and 

phosphorylated Akt on residue S473 when compared to mock infected cells. A comparable level of 

phosphorylation of Akt on residue T308 was observed between mock infected and ASFV infected 

cells. Once again, these results were consistent with the results reported from experiments using a 

non-purified virus (see sections 4.2.2 and 4.2.4) and demonstrate that mTORC1 and Akt are active 

in cells infected with purified ASFV. It was therefore concluded that the presence of viral and cell 

debris in the non-purified virus was not responsible for the observed block of autophagy induction 

and that similarly these debris were also not responsible for the observed activation of Akt and 

mTORC1 in ASFV infected cells.       

To provide a means to study the capacity of ASFV to inhibit autophagy induction in the absence of 

Akt-mTORC1 activity, an investigation was carried out to characterise the effects of 

pharmacological inhibitors on Akt-mTORC1 signalling. Vero cells were either mock infected or 
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infected with ASFV and then incubated in the presence of a combination of the Akt inhibitor MK-

2206 and the mTOR inhibitor Torin1 or in the presence of these drugs in isolation. Torin1 is able to 

block the activity of both mTORC1 and mTORC2. Analysis was carried out by Western blot 

whereby the phosphorylation of Akt on residues S473 and T308 was used to evaluate Akt activity 

and the phosphorylation of p70-S6K was used as a readout for mTORC1 activity. Overall, the 

results in Figure 4.8 showed that Torin1 is an effective inhibitor of mTORC1 activity in both mock 

infected and ASFV infected cells evidenced by a lack of phosphorylated p70-S6K. Additionally, 

using MK-2206 in isolation is an effective means of inhibiting Akt activity in mock infected cells 

but this is not the case in ASFV infected cells when in contrast, using MK-2206 and Torin1 in 

combination was far more effective. The fact that less P-Akt S473 was observed in ASFV infected 

cells treated with Torin1 compared to cells treated with MK-2206 may indicate that ASFV is able 

to drive phosphorylation on S473 via mTORC2 in a manner that overcomes the inhibitory effects 

of MK-2206 at the concentration used. In addition, the clear presence of P-p70-S6K following 

treatment of mock infected and ASFV infected cells with MK-2206 shows that reducing the 

activity of Akt alone is not sufficient to inactivate mTORC1 which could be due to mTORC1 

receiving signals from AMPK independently of Akt.   

The fact that Akt and mTORC1 can be effectively switched off in ASFV infected cells using a 

combination of pharmacological inhibitors provided an opportunity to test whether the activation of 

Akt and mTORC1 constitutes a mechanism by which ASFV inhibits the induction of autophagy. 

To carry out this investigation, Vero cells were either mock infected or infected with Ba71V or the 

A179L KO virus and analysed by confocal microscopy for the appearance of autophagosomes. 

Cells were infected for a total of 4 hours and were starved in either the presence or absence of a 

combination of Torin1 and MK-2206. Cells that had been infected with either wild-type ASFV or 

the A179L KO virus in the absence of the drugs showed a block in the induction of 

autophagosomes (see Figure 4.9.1). This was in contrast to mock infected cells that showed a 

substantial number of autophagosomes that were formed in response to starvation. These results 

confirmed previous observations that ASFV, including the A179L KO mutant virus, is able to 

inhibit autophagy induction at 4 hpi. Interestingly, ASFV infected cells that were starved in the 

presence of Torin1 and MK-2206 seemed to show a slightly elevated level of autophagosome 

formation when compared to infected cells in the absence of the drugs (see Figure 4.9.2). However, 

the number of autophagosomes in these cells appeared to be less than in mock infected cells under 

the same conditions. This suggested that in the presence of Akt and mTOR inhibitors, ASFV was 

unable to restrict the formation of autophagosomes to the same degree as when Akt and mTOR are 

completely active.   

In order to gain further clarity on the effects of MK-2206 and Torin1 during ASFV infection, an 

additional experiment was carried out at 2 hpi rather than at 4 hpi. A 2 hour period of infection was 

chosen in an attempt to limit the effects of potential virally encoded factors that are expressed 



113 

 

during early replication while providing sufficient time of exposure to the Akt-mTOR inhibitors. 

Under starvation conditions and in the absence of the drugs, cells that had been infected with the 

wild-type virus or the A179L KO virus (see Figure 4.10.1) showed a similar level of 

autophagosome inhibition that was seen in ASFV infected cells at 4 hpi. Under starvation 

conditions and in the presence of the drugs, autophagosomes were clearly present in cells that had 

been infected with wild-type ASFV or the A179L KO virus (see Figure 4.10.2). Visually 

comparing the number of autophagosomes between infected cells in the presence or absence of the 

drugs revealed a much higher number of autophagosomes in the drug treated cells. This is therefore 

a clear indication that the activity of Akt and mTOR are able to negatively modulate the induction 

of autophagy in ASFV infected cells. Additionally, a comparison between ASFV infected cells at 2 

hpi and at 4 hpi in the presence of the drugs showed substantially more autophagosomes at 2 hpi. 

This could suggest that viral virulence factors that are expressed between 2 and 4 hpi are also 

implicated in the inhibition of autophagy. However, evidence that the same effect was observed 

using the A179L KO virus, strongly indicates that additional genes are involved.              

In section 4.2.8, Western blot analysis of the effects of MK-2206 and Torin1 revealed that a 

combination of both drugs was required to provide the maximum inhibition of Akt and mTORC1 

activity. This result was also confirmed using confocal microscopy in which autophagosomes were 

most apparent in ASFV infected cells at 2 hpi using a combination of the drugs rather than using 

the drugs in isolation (data not shown). This suggests that the activity of mTORC1 is not solely 

responsible for the inhibition of autophagy induction and that Akt activity is also required for this 

effect. These results potentially highlight a mechanism by which Akt-mediated inhibition of 

autophagy is not only directed via the activation of mTORC1 but also via alternative pathways. 

Indeed, the direct phosphorylation of Beclin 1 by Akt resulting in autophagy inhibition has been 

reported and may offer an explanation (Wang et al., 2012).      

The investigations that were carried out here were aimed at identifying ways in which ASFV exerts 

a block on the induction of autophagy. This strategy was implemented to provide the potential for 

downstream intervention in the interaction between ASFV and autophagy with the hope that having 

the ability to induce an autophagy response to infection could stimulate a potent immune response. 

In summary, the results of this work showed that the combined activity of Akt and mTORC1 in 

ASFV infected cells is sufficient to inhibit autophagy during the early stages of virus replication. 

This means that any attempts to induce autophagy in ASFV infected cells would need to include 

measures to inactivate Akt-mTORC1 signalling or bypass its effects. By 4 hpi additional 

mechanisms of control are implemented by the virus, presumably through the use of virally 

encoded modulators. Using a recombinant virus showed that A179L is not the only protein that 

potentially regulates autophagy and that additional viral proteins must be involved. In order to 

identify these modulators of autophagy, the study that followed this work consisted of screening 

multiple ASFV genes for the inhibition of starvation-induced autophagy.    
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5   Screening an ASFV gene library for potential autophagy modulators  

5.1   Introduction 

The observation that formation of autophagosomes could be induced in ASFV infected cells in the 

presence of pharmacological inhibitors of Akt and mTOR at 2 hpi, but not at 4 hpi, pointed to an 

Akt/mTOR independent mechanism of autophagy inhibition. The timing of this inhibition 

coincides with early viral protein expression and therefore strongly suggests the involvement of 

ASFV encoded protein modulators.  

ASFV encodes a protein called A179L that can block drug-induced cell death (Revilla et al., 1997). 

A179L is a viral Bcl-2 homolog that was shown to be functionally similar to cellular Bcl-2 through 

its capacity to interact with BH3-only pro-apoptotic proteins as well the key autophagy protein 

Beclin1 (Banjara et al., 2017, Galindo et al., 2008, Hernaez et al., 2013). In addition, exogenous 

expression of A179L was shown to inhibit the formation of autophagosomes under starvation 

conditions (Hernaez et al., 2013). However, the results in the previous chapter showed that 

starvation-induced autophagosome formation was still inhibited after infection with an A179L 

deletion mutant indicating that additional viral modulators of autophagy are involved. Further 

evidence to support this theory is the fact that redundancies in gene function are known to occur in 

the ASFV genome as for example multiple apoptosis modulators (Dixon et al., 2017) and interferon 

response modulators (Reis et al., 2017b) have been described.  

To identify additional viral inhibitors of autophagy, a screen was carried out in which individual 

ASFV genes were expressed in Vero cells and tested for their ability to block the formation of 

autophagosomes under starvation conditions. Common methods of monitoring autophagy are 

indirect immunofluorescent labelling of LC3 or the use of GFP-LC3 in direct fluorescence 

microscopy. Using these techniques, the induction of autophagy can be visualised by an increase in 

the number of LC3 puncta (Klionsky et al., 2016). The use of Vero cells in the screen was 

advantageous as starvation leads to very clear redistribution of endogenous LC3 into punctate 

structures representative of autophagosomes. This negated the requirement to use an exogenous 

source of LC3 such as GFP-LC3 which can potentially lead to artefacts as a consequence of over-

expression (Kuma et al., 2007).     

The basis for the selection of ASFV genes that were screened was predominantly centred on two 

criteria. Firstly, Akt/mTOR independent inhibition of autophagy was seen from 4 hpi and therefore 

genes were chosen that are expressed during the early stages of the viral replication cycle. 

Secondly, the inhibition of autophagy by ASFV has been observed across multiple virus strains 

indicating that this ability is highly conserved, perhaps unsurprisingly given the importance of 

autophagy in the immune response. Genes that are highly conserved between ASFV isolates were 

therefore also included in the screen. Previously it was shown that both the Vero adapted strain 

Ba71V (Figure 3.1.2) and the field strain OURT88/1 (Figure 3.3.1) were able to inhibit starvation-
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induced autophagy. The genomes of these ASFV isolates primarily differ in the number of genes 

encoded in the multigene families (MGFs), with Ba71V lacking multiple copies of some MGF 

genes (Chapman et al., 2008). Considerable variation in the number of MGF genes has also been 

reported among other isolates (de la Vega et al., 1990, Portugal et al., 2015) and for this reason, 

MGF genes were mostly excluded from the screen. 

The ASFV gene library was comprised of 76 genes that were cloned into plasmid constructs or into 

adenovirus vectors with an HA tag at either the N or C terminus to facilitate detection of protein 

expression. The majority of the gene sequences were taken from the OURT88/3 strain with the 

remainder from the Georgia and Benin 1997/1 strains. Plasmid constructs were delivered into Vero 

cells using transient transfection and adenovirus vectors were used to transduce the cells, following 

which cells were starved and visually inspected for the inhibition of autophagosome formation. To 

validate this assay, A179L was used as a control gene to demonstrate the detection of 

autophagosome inhibition. Any proteins that altered the typical starvation-induced redistribution of 

LC3 into round punctate structures were subjected to further investigation by confocal microscopy.  

The results from the ASFV gene library screen were aimed at identifying additional ASFV encoded 

autophagy modulators that could be targeted in downstream mutation experiments. For example, 

the previous mutation of Ba71V in which the A179L gene was deleted from the genome was well 

tolerated by the virus and demonstrates the potential to engineer a mutant virus that lacks the ability 

to inhibit the autophagy response. A virus with this characteristic could prove to be a powerful tool 

in the development of a vaccine against ASFV.      

    

5.2   Results 

5.2.1 Plasmid screen optimisation to limit the appearance of transfection-induced 

autophagosomes 

The majority of the ASFV gene library consisted of plasmid constructs that were delivered into 

Vero cells by transient transfection. This was carried out using the lipopolyplex transfection 

reagent TransIT-LT1 (see methods section 2.6 for detailed transfection method). Recently, the 

induction of autophagy in response to gene delivery by lipoplex and polyplex reagents was reported 

(Roberts et al., 2013). The authors found that a lipoplex transfection reagent similar to TransIT-

LT1 activated autophagy and generated autophagosomes following entry to cells by endocytosis. 

Endosomes then became fused with autophagosomes to form large tubulovesicular 

autophagosomes (TVAs) that were positively labelled for LC3 and located close to the nucleus.  

Screening of the ASFV gene library was conducted using a confocal microscopy assay based on 

visually assessing potential inhibition of starvation-induced autophagy by expression of individual 

ASFV genes. In this regard, background levels of autophagy induced by transfection including the 
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formation of TVAs could potentially interfere with the results by masking changes in starvation-

induced levels of autophagy. To address this, an assay was carried out to determine whether 

passaging the cells after transfection would reduce the appearance of autophagosomes resulting 

from the transfection process. Vero cells were mock transfected with TransIT-LT1 using the 

manufacturer’s recommended protocol with the exception that no DNA was included. Cells were 

either incubated for a total of 48 hours or were passaged after 24 hours before incubating the cells 

for a further 24 hours. For 3 hours prior to fixing, cells were incubated in complete cell media to 

minimise potential induction of autophagy through reduced nutrient availability. Cells were then 

labelled for immunofluorescence using an antibody against LC3 and the nuclear marker DAPI.  

 

 

Figure 5.1 Passaging cells after transfection reduces the appearance of transfection-

induced autophagosomes and TVAs 

Vero cells were mock transfected with TransIT-LT1 in the absence of DNA using the 

manufacturer’s protocol and incubated for a total of 48 hours (Panel A) or passaged 24 hours after 

transfection before incubating for a further 24 hours (Panel B). Cells were incubated in complete 

Vero cell media for the final 3 hours prior to being fixed and permeabilised in methanol. Cells were 

then labelled for LC3 shown in green and nuclei shown in blue. White arrows in Panel A indicate 

TVAs. Scale bars represent 10 µM.  

 

Cells that were mock transfected with TransIT-LT1 and incubated for 48 hours without cell 

passaging demonstrated a substantial number of LC3 puncta in the cytoplasm indicating the 

induction of autophagy (Figure 5.1A). Additionally, some very large puncta were apparent in close 

proximity to the cell nuclei and were consistent in appearance with TVAs that were described by 

Roberts et al (2013). In contrast, much fewer puncta were observed in cells that had been mock 

transfected with TransIT-LT1 and passaged after 24 hours (Figure 5.1B) indicating a reduced level 

of autophagy in these cells compared to cells in Figure 5.1A. Additionally, no TVAs were apparent 
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in cells in Figure 5.1B evidenced by a lack of the large LC3-puncta that were seen in cells in Figure 

5.1A. Collectively, these results show that passaging cells following transfection is a suitable 

method to reduce the appearance of autophagosomes that result from the transfection process.  

5.2.2 Characterising the effects of transduction on autophagy using an adenovirus vector  

The use of viral vectors such as adenovirus offers a highly efficient means of gene delivery and a 

proportion of the ASFV gene library that was screened included human adenovirus type 5 (AdH5) 

vectors. The AdH5 vector has been highly modified and adapted for the purpose of gene delivery 

and is replication deficient outside of specific cell lines used for its propagation. Nevertheless, 

reports of the modulation of mTOR activity and the induction of autophagy by adenoviruses have 

been published (O'Shea et al., 2005, Rodriguez-Rocha et al., 2011). Screening of the ASFV gene 

library was based on evaluating the effects of gene expression on levels of starvation-induced 

autophagy and consequently, the induction or inhibition of autophagy by the viral vector itself 

would be problematic as it could mask changes induced by the ASFV gene being investigated. The 

effects of transduction on autophagy using the AdH5 vector was therefore assessed by confocal 

microscopy using a control vector expressing GFP only.  

Vero cells were transduced with AdH5 encoding GFP (see methods section 2.6 for details of the 

transduction method) then incubated for a total of 24 hours to allow time for gene expression. 

During the final 3 hours, cells were either incubated in complete cell media or starved in EBSS to 

induce autophagy. In this way it could be investigated whether the AdH5 vector was able to induce 

or inhibit autophagy. Separately, a set of control cells that had not been transduced were either 

incubated in complete cell media or starved in EBSS. Cells were then fixed in PFA and 

permeabilised in methanol. Finally, cells were labelled for immunofluorescence using an antibody 

against LC3 and the nuclear marker DAPI. 

A very low amount of LC3 puncta representative of autophagosomes were observed in cells that 

had been transduced and incubated in complete cell media (Figure 5.2A). A pattern of diffuse green 

fluorescence was observed in some cells indicating the expression of GFP (Figure 5.2B). Cells 

expressing GFP did not exhibit a greater amount of LC3 puncta compared to cells that were not 

expressing GFP demonstrating that the AdH5 vector alone does not induce the appearance of 

autophagosomes. Cells that had been transduced and starved in EBSS media contained a large 

amount of LC3 puncta (Figure 5.2C), typical of what is usually observed in cells under starvation 

conditions. Analysis of cells expressing GFP showed that comparable amounts of LC3 puncta were 

observed between these cells and cells that were not expressing GFP (Figure 5.2D) demonstrating 

that the AdH5 vector alone does not inhibit the appearance of autophagosomes. Control cells that 

had not been transduced showed a low number of LC3 puncta under nutrient replete conditions and 

a much greater amount of LC3 puncta under starvation conditions as would be expected (data not 

shown).  
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Figure 5.2 An AdH5 vector expressing GFP does not induce or inhibit autophagy  

Vero cells were transduced using an AdH5 vector expressing GFP only and were incubated for a 

total of 24 hours to allow time for gene expression. During the final 3 hours, cells were either 

incubated in complete cell media (Panels A and B) or starved in EBSS media (Panels C and D) 

prior to being fixed in PFA and permeabilised in methanol. Cells were then labelled for LC3 shown 

in red and nuclei shown in blue. GFP expression was visualised in the green channel. Panels A and 

C show the same cells as Panels B and D respectively but with the green channel removed to allow 

for clearer observation of LC3 staining. Scale bars represent 10 µM.  
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5.2.3 Generation of A179L constructs and mutagenesis of the A179L ligand binding 

groove 

To provide confirmation that the confocal microscopy based screening method of the ASFV gene 

library was suitable for the detection of autophagosome inhibition, A179L was used as a control 

gene. A179L is well conserved among ASFV isolates and was previously reported to inhibit the 

induction of starvation-induced autophagosomes in HeLa cells, presumably via an interaction with 

Beclin1 (Hernaez et al., 2013). The A179L sequence taken from the OURT88/3 strain was cloned 

into pcDNA3.1 with an N-terminus HA-tag (cloning methods are described in section 2.3). The C-

terminus of A179L was not considered to be appropriate for insertion of a tag due to the presence 

of a hydrophobic domain that is predicted to be a membrane anchorage region and could be critical 

to protein function.  

Recent investigation of the ability of A179L to inhibit apoptosis revealed that A179L is able to 

bind to all major pro-apoptotic mammalian Bcl-2 proteins (Banjara et al., 2017). Analysis of crystal 

structures of the A179L ligand binding groove suggested a high degree of binding flexibility 

providing an explanation for its promiscuity. To act as a negative control for the screen, a mutant 

version of A179L with a reduced ability to suppress the formation of autophagosomes was 

engineered by mutating two residues that are key to forming the ligand binding groove. Residues 

valine-73 and glycine-89 were mutated to tyrosine residues as it was predicted that the relatively 

greater size of the tyrosine residues would reduce the ligand binding capacity of the protein 

(mutagenesis methods are described in section 2.3.5).  

The position of the binding groove mutations were mapped onto a structural image of A179L 

(Figure 5.3A). One of the Bcl-2 proteins that A179L is able to bind to called Bid is shown in the 

ligand binding groove alongside the residues that were targeted for mutation where residue I is 

glycine-89 and residue II is valine-73. Sequencing of the wild-type and mutant constructs was 

carried out to confirm that cloning and mutagenesis had been carried out correctly. Inspection of 

the sequence traces confirmed that the valine residue encoded at position 73 (Figure 5.3B) and 

glycine residue at position 89 (Figure 5.3D) of the wild-type protein had been correctly mutated to 

tyrosine residues in the mutant protein (Figure 5.3C and E).  
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Figure 5.3 Mutagenesis of the A179L ligand binding groove 

A) Structural image of A179L (grey) with Bid (magenta and green) positioned in the ligand 

binding groove. Residues targeted for mutation are indicated in red where residue I is glycine-89 

and residue II is valine-73. B to E) Sequence traces confirming the mutations of residue 73 from 

valine (B) to tyrosine (C) and residue 89 from glycine (D) to tyrosine (E). 

 

5.2.4 Wild-type A179L suppresses the formation of starvation-induced autophagosomes 

in Vero cells but mutant A179L does not  

To test the effects of A179L expression on starvation-induced autophagy, Vero cells were 

transfected with plasmids encoding either wild-type (WT) A179L or mutant (YY) A179L. 

Following transfection, cells were incubated for 24 hours before passaging the cells and incubating 

them for a further 24 hours. During the final 3 hours, cells were incubated in complete cell media 

or were starved in EBSS media to induce autophagy. Separately, control cells that had not been 

transfected were starved in EBSS or incubated under nutrient replete conditions. Cells were fixed 

and labelled for immunofluorescence using anti-LC3 and anti-HA tag antibodies and the nuclear 

marker DAPI.  

Cells expressing HA-tagged WT A179L (Figure 5.4.1B) showed significantly fewer puncta when 

compared to cells in the same field with no detectable A179L (Figure 5.4.1A). Cells that had been 

transfected with the YY A179L plasmids and incubated under starvation conditions showed a high 

number of LC3 puncta in all of the cells (Figure 5.4.1C) and examination of HA-tagged protein 

expression revealed no difference in the number of LC3 puncta between cells expressing YY 

A179L and cells that were not (Figure 5.4.1D). Collectively these results show that WT A179L is 
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able to suppress starvation-induced autophagosome formation while YY A179L is not. 

Additionally, cells that had been transfected with either the WT or YY A179L constructs and 

incubated under nutrient replete conditions demonstrated no increase in LC3 puncta in cells 

expressing A179L compared to cells that were not showing that expression of these proteins did 

not induce autophagy (data not shown). Finally, control cells that had not been transfected showed 

a low number of LC3 puncta under nutrient replete conditions and a much greater amount of LC3 

puncta under starvation conditions as would be expected (data not shown).  

Transient transfection led to relatively low numbers of cells expressing A179L, therefore in order 

to increase the number of expressing cells, WT A179L and YY A179L sequences were cloned into 

separate AdH5 vectors (see methods section 2.3.6 for generation of adenovirus vectors). The 

adenoviruses were used individually to transduce Vero cells which were then incubated for 24 

hours during which cells were either incubated in nutrient replete conditions or were starved in 

EBSS for the final 3 hours. Separately, control cells that had not been transduced were incubated in 

either complete cell media or were starved in EBSS media for 3 hours to induce autophagy. Cells 

were fixed and labelled for immunofluorescence using anti-LC3 and anti-HA tag antibodies and the 

nuclear marker DAPI.  

Control cells that had been incubated in complete cell media showed mostly cytoplasmic LC3 

staining with the occasional LC3 puncta (Figure 5.4.2A). The low number of autophagosomes in 

these cells is typical of what would be expected under nutrient replete conditions and similar results 

were observed in cells that had been transduced with both WT A179L (Figure 5.4.2B) or YY 

A179L (Figure 5.4.2D). Labelling of HA-tagged protein showed a high number of cells expressing 

either WT A179L (Figure 5.4.2C) or YY A179L (Figure 5.4.2E) and inspection of the number of 

LC3 puncta in these cells revealed similar numbers when compared to the control cells. These 

results demonstrate that transduction of the cells with either WT or YY A179L did not induce the 

formation of autophagosomes.  

A much higher number of LC3 puncta were observed in control cells that had been starved in 

EBSS (Figure 5.4.3A) when compared to the control cells that had been incubated in complete cell 

media (Figure 5.4.2A). This increase in LC3 puncta is indicative of the induction of autophagy. In 

cells that had been transduced with WT A179L, some cells showed high numbers of LC3 puncta 

whereas other cells seemed to demonstrate a reduction in the number of LC3 puncta (Figure 

5.4.3B). Labelling of HA-tagged protein showed that cells demonstrating lower numbers of LC3 

puncta were expressing WT A179L (Figure 5.4.3C). Inspection of cells that had been transduced 

with YY A179L revealed a high number of LC3 puncta in nearly all of the cells (Figure 5.4.3D) 

and labelling of HA-tagged protein indicated cells that were expressing YY A179L (Figure 5.4.3E). 

Assessing the number of LC3 puncta in these cells showed that there were similar numbers of LC3 

puncta in cells that were expressing YY A179L and cells that were not. Collectively, these results 
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indicate that WT A179L is able to suppress the formation of starvation-induced autophagosomes 

but YY A179L is not.  

The number of LC3 puncta per cell was enumerated using Imaris software in 30 cells per 

experimental condition (Figure 5.4.4). This analysis revealed a statistically significant increase in 

the number of LC3 puncta per cell under starvation conditions when compared to non-starved 

conditions in the control cells (P < 0.001) and cells expressing WT A179L (P < 0.05) or YY 

A179L (P < 0.001). This demonstrates that autophagy was induced in the control cells as well as 

cells expressing each of the A179L proteins. However, whereas a comparison between starved 

control cells and starved cells expressing YY A179L did not reveal any statistically significant 

difference (P > 0.05), there was a statistically significant reduction in the number of LC3 puncta in 

starved cells expressing WT A179L when compared to starved control cells (P < 0.001). 

Collectively, these results confirm that expression of WT A179L is able to suppress but not entirely 

inhibit the formation of starvation-induced autophagosomes in Vero cells but that expression of YY 

A179L has no effect.  

In summary, analysis of the effects of A179L expression on starvation-induced autophagy by either 

transfection or transduction methods showed that the confocal microscopy assay can be used to 

screen the ASFV gene library for the detection of changes in the number of LC3 puncta.   
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Figure 5.4.1 Expression of WT A179L suppresses starvation-induced autophagosome 

formation but expression of YY A179L does not  

Vero cells were transfected with plasmids encoding either WT A179L (Panels A and B) or YY 

A179L (Panels C and D) and were incubated for 24 hours before passaging the cells and incubating 

them for a further 24 hours. During the final 3 hours, cells were starved in EBSS media prior to 

being fixed and permeabilised in methanol. Cells were then labelled for LC3 shown in green, HA-

tagged protein shown in red and nuclei shown in blue. Panels A and C show the same cells as 

Panels B and D respectively but with the red channel removed to allow for clearer observation of 

LC3 staining. Scale bars represent 10 µM.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.2 Transduction of Vero cells with either WT or YY A179L does not induce 

autophagy   

Vero cells were transduced with adenoviruses encoding either WT A179L (Panels B and C) or YY 

A179L (Panels D and E) and were incubated for 24 hours during which cells were incubated in 

complete Vero cell media for the final 3 hours. Additionally, control cells that had not been 

transduced were incubated in complete Vero cell media for 3 hours (Panel A). Cells were fixed and 

permeabilised in methanol and then labelled for LC3 shown in green, HA-tagged protein shown in 

red and nuclei shown in blue. Panels B and D show the same cells as Panels C and E respectively 

but with the red channel removed to allow for clearer observation of LC3 staining. Scale bars 

represent 10 µM. 



124 

 

 

Figure 5.4.2 Transduction of Vero cells with either WT or YY A179L does not induce 

autophagy



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.3 WT A179L suppresses the formation of starvation-induced autophagosomes 

but YY A179L does not   

Vero cells were transduced with adenoviruses encoding either WT A179L (Panels B and C) or YY 

A179L (Panels D and E) and were incubated for 24 hours during which cells were starved in EBSS 

media for the final 3 hours. Additionally, control cells that had not been transduced were incubated 

in EBSS media for 3 hours (Panel A). Cells were fixed and permeabilised in methanol and then 

labelled for LC3 shown in green, HA-tagged protein shown in red and nuclei shown in blue. Panels 

B and D show the same cells as Panels C and E respectively but with the red channel removed to 

allow for clearer observation of LC3 staining. Scale bars represent 10 µM. 
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Figure 5.4.3 WT A179L suppresses the formation of starvation-induced autophagosomes 

but YY A179L does not   
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Figure 5.4.4 Imaris analysis confirms that WT A179L suppresses the formation of 

starvation-induced autophagosomes but YY A179L does not   

The number of LC3 puncta per cell for 30 individual cells per indicated experimental condition was 

quantified by Imaris analysis of confocal images. Vero cells were transduced with AdH5 vectors 

encoding either WT A179L or YY A179L and were incubated for a total of 24 hours. Prior to 

fixation, cells were either non-starved in complete cell media (NS) or starved in EBSS (ST) for 3 

hours to induce autophagy. Separately, control cells that had not been transduced were also either 

non-starved in complete cell media (NS) or starved in EBSS (ST) for 3 hours. Centre lines show 

the medians. Statistical analysis was carried out in Minitab using analysis of variance with Tukey 

multiple comparisons test. Asterisks represent significant differences in value between NS and ST 

conditions and between the indicated transduction status of the cells (* = P value of <0.05, *** = P 

value of <0.001). 

 

5.2.5 Screening of the ASFV gene library 

The ASFV gene library was comprised of a combination of plasmid and adenovirus vectors (see 

methods section 2.5 for details) and was therefore screened for the inhibition of starvation-induced 

autophagy using two different methods. Plasmid screening was carried out as described in section 

5.2.1 and adenovirus screening as per section 5.2.2. Both methods included a period of starvation in 

EBSS media for the final 3 hours of incubation to induce autophagy. Cells were labelled for 

immunofluorescence using anti-LC3 and anti-HA tag antibodies and the nuclear marker DAPI, 

except in the case of CP196L, MGF110-4L and MGF110-5L that were labelled using protein-

specific antibodies instead of an anti-HA tag antibody.  
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Table 5.1 Summary of ASFV gene library screening results 

Gene Virus strain Function 
Plasmid/ 

AdH5 

HA 

Tag 
Screening result 

A104R Georgia 
Histone-like 

structural protein 
pCMV N No detectable inhibition 

A118R OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

A151R OURT88/3 
Disulphide bond 

formation 
AdH5 C No detectable inhibition 

A179L OURT88/3 
Bcl2 apoptosis 

inhibitor 
AdH5 N No detectable inhibition 

A224L Georgia Apoptosis inhibitor pCMV N No detectable inhibition 

B66L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

B117L Georgia Unknown pCMV N No detectable inhibition 

B125R Georgia Unknown pCMV N No detectable inhibition 

B175L Georgia 
A1-like late 

transcription factor 
pCMV N No detectable inhibition 

B263R OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

B318L Georgia Prenyltransferase pCMV N No detectable inhibition 

B385R Georgia 
A2-like late 

transcription factor 
pCMV N No detectable inhibition 

B407L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

B475L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

B602L OURT88/3 Chaperone protein AdH5 C No detectable inhibition 

B646L OURT88/3 
p72 structural 

protein 

AdH5/ 

pcDNA3.1 
C 

Inconsistent inhibition.              

See Fig 5.5.1 

C62L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

C84L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

C122R Georgia Unknown pCMV N No detectable inhibition 

C129R OURT88/3 Unknown AdH5 C No detectable inhibition 

C147L Georgia 
RNA polymerase 

subunit 
pCMV N 

Inconsistent inhibition 

See Fig 5.5.2 

C257L Georgia Unknown pCMV N No detectable inhibition 

C315R OURT88/3 
RNA polymerase 

subunit 
pcDNA3.1 C No detectable inhibition 

C475L Georgia Poly(A) polymerase pCMV N No detectable inhibition 

C717R OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

CP123L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

CP196L OURT88/3 
p30 structural 

protein 
AdH5 No tag No detectable inhibition 

CP312R OURT88/3 Known antigen AdH5 C No detectable inhibition 

CP530R OURT88/3 
Polyprotein 

precursor 
AdH5 C No detectable inhibition 

D345L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 
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Gene Virus strain Function 
Plasmid/ 

AdH5 

HA 

Tag 
Screening result 

DP71L Georgia 

EIF2α 

phosphorylation 

modulator 

pCMV N No detectable inhibition 

DP79L Georgia Unknown pCMV N No detectable inhibition 

DP96R Georgia 
Virulence 

determinant 
pCMV N No detectable inhibition 

DP148R Benin 1997/1 
Virulence 

determinant 
pcDNA3.1 C 

Tiny LC3 puncta. 

See Fig 5.5.5 

DP238L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

E146L OURT88/3 Unknown AdH5 C No detectable inhibition 

E165R OURT88/3 dUTPase AdH5 C No detectable inhibition 

E183L OURT88/3 
p54 structural 

protein 
AdH5 C 

Induces LC3 

aggregates. 

See Fig 5.5.3 

E184L OURT88/3 Unknown AdH5 C No detectable inhibition 

E199L OURT88/3 Structural protein AdH5 C 

Induces LC3 

aggregates. 

See Fig 5.5.4 

E248R Georgia 
Essential for early 

post-entry stage 
pCMV N No detectable inhibition 

E301R Georgia 
Proliferating cell 

nuclear antigen 
pCMV N No detectable inhibition 

E423R OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

EP84R Georgia Unknown pCMV N No detectable inhibition 

EP152R OURT88/3 
Interacts with BAG-

6 
pcDNA3.1 C No detectable inhibition 

EP153R Benin 1997/1 

Apoptosis inhibitor. 

Haemadsorption 

enhancer 

AdH5 C No detectable inhibition 

EP364R OURT88/3 Unknown AdH5 C No detectable inhibition 

F317L OURT88/3 Unknown AdH5 C No detectable inhibition 

H108R Georgia Unknown pCMV N No detectable inhibition 

H124R Georgia Unknown pCMV N No detectable inhibition 

H233R Georgia Unknown pCMV N No detectable inhibition 

H339R Georgia Unknown pCMV N No detectable inhibition 

I73R OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

I177L Georgia Unknown pCMV N No detectable inhibition 

I196L Georgia Unknown pCMV N No detectable inhibition 

I215L OURT88/3 
Ubiquitin 

conjugation enzyme 
AdH5 C No detectable inhibition 

I267L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

I329L OURT88/3 
Inhibitor of TLR3 

signalling 
AdH5 C No detectable inhibition 
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Gene Virus strain Function 
Plasmid/ 

AdH5 

HA 

Tag 
Screening result 

K78R OURT88/3 
DNA-binding 

structural protein 
pcDNA3.1 C No detectable inhibition 

KP177R OURT88/3 
p22 structural 

protein 
pcDNA3.1 C No detectable inhibition 

L7L Georgia Unknown pCMV N No detectable inhibition 

L8L OURT88/3 Unknown AdH5 C No detectable inhibition 

L9R Georgia Unknown pCMV N No detectable inhibition 

L10L OURT88/3 p22 family AdH5 C No detectable inhibition 

L60L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

M448R OURT88/3 RNA ligase AdH5 C Inconsistent inhibition 

MGF110-1L OURT88/3 Unknown AdH5 C No detectable inhibition 

MGF110-4L OURT88/3 Unknown pcDNA3.1 No tag No detectable inhibition 

MGF110-5L OURT88/3 Unknown pcDNA3.1 No tag No detectable inhibition 

MGF360-11L Benin 1997/1 Unknown AdH5 C Inconsistent inhibition 

MGF505-4R OURT88/3 Unknown AdH5 C Cell toxicity 

MGF505-5R OURT88/3 Unknown AdH5 C Inconsistent inhibition 

QP383R OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

R298L OURT88/3 Serine protein kinase pcDNA3.1 N Inconsistent inhibition 

S183L OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

X69R OURT88/3 Unknown pcDNA3.1 C No detectable inhibition 

 

The majority of the ASFV genes that were screened showed no detectable inhibition of starvation-

induced autophagosomes. Expression of MGF505-4R led to cell toxicity and therefore the 

detection of LC3 puncta was not possible. Expression of B646L resulted in some cells that 

demonstrated low numbers of autophagosomes while in other cells this was not apparent. To 

investigate this further, Vero cells were transduced with an AdH5 vector encoding B646L and were 

incubated for 24 hours during which cells were either incubated under nutrient replete conditions or 

starvation conditions for the final 3 hours. Cells were fixed and labelled for immunofluorescence 

using anti-LC3 and anti-HA tag antibodies and the nuclear marker DAPI.   

Under nutrient replete conditions, cells showed typically low numbers of LC3 puncta (Figure 

5.5.1A) suggesting that B646L expression did not induce the formation of autophagosomes. 

Labelling of HA-tagged protein did not reveal any difference in protein expression between the 

non-starved (Figure 5.5.1B) and starved cells (Figure 5.5.1D). Protein expression in some cells was 

evident as a diffuse cytoplasmic pattern whereas in others, protein expression was concentrated 

around the nucleus. In some cells, a combination of these patterns was observed. Analysing the 

number of LC3 puncta in the starved cells (Figure 5.5.1C) revealed that cells with protein 

expression concentrated around the nucleus contained almost no LC3 puncta whereas high numbers 

of LC3 puncta were observed in cells with a diffuse pattern of protein expression. Similar results 
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were obtained using plasmid expression (data not shown) demonstrating that these effects were not 

specific to the method of gene delivery. Taken together these results show that B646L expression 

leads to inconsistent inhibition of starvation-induced autophagy that may be linked to protein 

localisation.  

 

Figure 5.5.1 B646L expression leads to inconsistent inhibition of starvation-induced 

autophagy   

Vero cells were transduced with adenovirus encoding B646L and were incubated for 24 hours 

during which cells were incubated in complete Vero cell media (Panels A and B) or were starved in 

EBSS media (Panels C and D) for the final 3 hours. Cells were fixed and permeabilised in 

methanol and then labelled for LC3 shown in green, HA-tagged protein shown in red and nuclei 

shown in blue. Panels A and C show the same cells as Panels B and D respectively but with the red 

channel removed to allow for clearer observation of LC3 staining. Scale bars represent 10 µM. 
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Inconsistent inhibition of autophagosomes was also seen in cells expressing MGF360-11L, 

MGF505-5R and R298L (data not shown). In these cases, cells that showed a reduction in the 

number of autophagosomes often demonstrated very high levels of protein expression which may 

point to a non-specific mechanism of autophagosome inhibition. Expression of C147L also 

demonstrated an inconsistent inhibition of LC3 puncta under starvation conditions and in some 

cases, inhibition was accompanied by an unusual pattern of DAPI staining. In place of normal 

diffuse staining, the nucleus instead showed a segmented pattern of staining (Figure 5.5.2). There 

was no difference in the localisation of C147L when comparing cells with altered patterns of DAPI 

staining and those with no changes in the nucleus.      

 

Figure 5.5.2 C147L expression inhibits starvation induced autophagy in cells that 

demonstrate changes in the nucleus   

Vero cells were transfected with plasmids encoding C147L and were incubated for 24 hours before 

passaging the cells and incubating them for a further 24 hours. During the final 3 hours, cells were 

starved in EBSS media prior to being fixed and permeabilised in methanol. Cells were then labelled 

for LC3 shown in green, HA-tagged protein shown in red and nuclei shown in blue. Panel A shows 

the same cells as Panel B but with the red channel removed to allow for clearer observation of LC3 

staining. The arrow in Panel A indicates unusual pattern of DAPI staining. Scale bars represent 10 

µM. 

 

The screening results of E183L and E199L revealed a pattern of LC3 labelling that was atypical of 

the pattern usually associated with the induction of autophagy. To investigate this further, Vero 

cells were transduced with AdH5 vectors encoding either E183L or E199L and cells were 

incubated for 24 hours during which cells were either incubated in nutrient replete conditions or 

starvation conditions for the final 3 hours. Cells were fixed and labelled for immunofluorescence 

using anti-LC3 and anti-HA tag antibodies and the nuclear marker DAPI.  
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Under nutrient replete conditions, a very low number of LC3 puncta are usually observed in cells 

due to the absence of autophagy induction. However, in cells transduced with E183L (Figure 

5.5.3A), numerous LC3 labelled structures were evident. These were not only present as the round 

punctate structures usually representative of autophagosomes but also as structures in which LC3 

seemed to be aggregated into slightly larger structures. A similar pattern of LC3 labelling was 

observed in cells incubated under starvation conditions (Figure 5.5.3C) and labelling of HA-tagged 

protein revealed that the aforementioned LC3 labelled structures were evident in cells expressing 

E183L (Figure 5.5.3B and D). In cells that were transduced with E199L, much larger LC3 

aggregates were observed when compared to E183L. These were evident in cells that were 

incubated under nutrient replete conditions (Figure 5.5.4A) and starvation conditions (Figure 

5.5.4C). Analysis of cells that were labelled with HA tag antibodies revealed that these large LC3 

aggregates were only evident in cells expressing E199L (Figure 5.5.4B and D). Taken together, 

these results show that expression of E183L and E199L induces the appearance of LC3 labelled 

structures that are not representative of autophagosomes and in a manner that is unaffected by 

nutrient availability.   

The screening results of DP148R revealed an unusual pattern of LC3 labelling which was 

investigated further. Vero cells were transfected with plasmids encoding DP148R and cells were 

incubated for 24 hours before they were passaged. Cells were then incubated for a further 24 hours 

during which cells were either incubated under nutrient replete conditions or starvation conditions 

for the final 3 hours. Finally, cells were fixed and labelled for immunofluorescence using anti-LC3 

and anti-HA tag antibodies and the nuclear marker DAPI.  

Under nutrient replete conditions, some cells demonstrated low levels of autophagosomes as would 

be expected however, in other cells numerous tiny LC3 puncta were observed in the cell cytoplasm 

(Figure 5.5.5A). Labelling of HA-tagged protein revealed that these were predominantly evident in 

cells expressing DP148R (Figure 5.5.5B). Cells that were incubated under starvation conditions 

mostly showed a high number of autophagosomes as would be expected after the induction of 

autophagy although some cells demonstrated LC3 puncta that were much smaller in size (Figure 

5.5.5C). These tiny puncta were comparable to the size of puncta observed under nutrient replete 

conditions. Labelling of HA-tagged protein showed that the tiny LC3 puncta were only present in 

DP148R expressing cells (Figure 5.5.5D) and that cells that were not expressing DP148R 

demonstrated LC3 puncta that were of a size usually representative of autophagosomes. 

Collectively, these results suggest that under nutrient replete conditions DP148R is able to induce 

the formation of LC3 puncta that are smaller in size to autophagosomes and that DP148R is also 

able to inhibit or restrict the formation of autophagosomes under starvation conditions.    
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Figure 5.5.3 E183L expression induces the appearance of LC3 labelled structures 

Vero cells were transduced with adenovirus encoding E183L and were incubated for 24 hours 

during which cells were incubated in complete Vero cell media (Panels A and B) or were starved in 

EBSS media (Panels C and D) for the final 3 hours. Cells were fixed and permeabilised in 

methanol and then labelled for LC3 shown in green, HA-tagged protein shown in red and nuclei 

shown in blue. Panels A and C show the same cells as Panels B and D respectively but with the red 

channel removed to allow for clearer observation of LC3 staining. Scale bars represent 10 µM. 
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Figure 5.5.4 E199L expression induces the appearance of LC3 labelled structures 

Vero cells were transduced with adenovirus encoding E199L and were incubated for 24 hours 

during which cells were incubated in complete Vero cell media (Panels A and B) or were starved in 

EBSS media (Panels C and D) for the final 3 hours. Cells were fixed and permeabilised in 

methanol and then labelled for LC3 shown in green, HA-tagged protein shown in red and nuclei 

shown in blue. Panels A and C show the same cells as Panels B and D respectively but with the red 

channel removed to allow for clearer observation of LC3 staining. Scale bars represent 10 µM. 
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Figure 5.5.5 DP148R expression induces tiny LC3 puncta in Vero cells and restricts the 

formation of starvation-induced autophagosomes 

Vero cells were transfected with plasmids encoding DP148R and were incubated for 24 hours 

before passaging the cells and incubating them for a further 24 hours. During the final 3 hours, 

cells were incubated in complete Vero cell media (Panels A and B) or were starved in EBSS media 

(Panels C and D) prior to being fixed and permeabilised in methanol. Cells were then labelled for 

LC3 shown in green, HA-tagged protein shown in red and nuclei shown in blue. Panels A and C 

show the same cells as Panels B and D but with the red channel removed to allow for clearer 

observation of LC3 staining. Scale bars represent 10 µM. 

 

5.2.6 Characterising the effects of the N-terminus and C-terminus of DP148R on LC3 

recruitment  

The DP148R plasmid that was used in the gene library screen was constructed using the sequence 

from the Benin 1997/1 strain of ASFV. This sequence encodes a protein of 254 amino acids. In 

comparison, the equivalent sequence in the OURT88/3 strain encodes a frame shift which 
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introduces a stop codon essentially dividing the protein into an N and C terminus known as 

MGF360-17R and DP148R respectively. MGF360-17R is 72 amino acids long and DP148R is 148 

amino acids long. An amino acid sequence alignment was carried out to illustrate this (Figure 

5.6.1) and shows MGF360-17R and DP148R of the OURT88/3 strain aligned against DP148R of 

the Benin 1997/1 strain.  

 

Figure 5.6.1 Amino acid sequence alignment of DP148R in Benin 1997/1 and OURT88/3  

The amino acid sequences of MGF360-17R (top) and DP148R (bottom) of the OURT88/3 strain of 

ASFV were aligned to the DP148R sequence of the Benin 1997/1 strain (middle).  

 

Plasmids encoding MGF360-17R or DP148R from the OURT88/3 strain (provided by Dr Ana 

Reis) were used to test for similar effects on LC3 recruitment that were described using full length 

DP148R from the Benin 1997/1 strain. Vero cells were transfected with the aforementioned 

plasmids and cells were incubated for 24 hours before they were passaged. Cells were then 

incubated for a further 24 hours during which cells were either incubated under nutrient replete 

conditions or starvation conditions for the final 3 hours. Finally, cells were fixed and labelled for 

immunofluorescence using anti-LC3 and anti-HA tag antibodies and the nuclear marker DAPI.    

Under nutrient replete conditions, cells that were transfected with MGF360-17R showed typically 

low levels of autophagosomes (Figure 5.6.2A) and labelling of HA-tagged protein revealed that 

cells expressing MGF360-17R displayed similar levels of LC3 puncta compared to cells that were 

not expressing MGF360-17R (Figure 5.6.2B). In cells incubated under starvation conditions, a high 

number of autophagosomes were observed as would be expected (Figure 5.6.2C) and labelling of 

HA-tagged protein revealed that similar numbers of LC3 puncta were evident between cells 

expressing MGF360-17R and cells that were not (Figure 5.6.2D). Collectively these results show 
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that MGF360-17R does not induce LC3 puncta under nutrient replete conditions and does not 

restrict the formation of starvation-induced autophagosomes as was previously seen in cells 

expressing Benin 1997/1-DP148R.   

 

Figure 5.6.2 OURT88/3-MGF360-17R expression does not induce LC3 puncta or restrict 

starvation-induced autophagosome formation   

Vero cells were transfected with plasmids encoding OURT88/3-MGF360-17R and were incubated 

for 24 hours before passaging the cells and incubating them for a further 24 hours. During the final 

3 hours, cells were incubated in complete Vero cell media (Panels A and B) or were starved in 

EBSS media (Panels C and D) prior to being fixed and permeabilised in methanol. Cells were then 

labelled for LC3 shown in green, HA-tagged protein shown in red and nuclei shown in blue. Panels 

A and C show the same cells as Panels B and D but with the red channel removed to allow for 

clearer observation of LC3 staining. Scale bars represent 10 µM. 
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In cells that were transfected with OURT88/3-DP148R under nutrient replete conditions, low 

numbers of LC3 puncta were observed in most cells although a few tiny LC3 puncta were also 

apparent in some of the cells (Figure 5.6.3A). Labelling of HA-tagged protein revealed that some 

of the tiny LC3 puncta were evident in cells expressing DP148R (Figure 5.6.3B). Under starvation 

conditions, a high number of autophagosomes was observed in the cells as would be expected 

(Figure 5.6.3C) and labelling of HA-tagged protein revealed that similar numbers of LC3 puncta 

were evident between cells expressing DP148R and cells that were not (Figure 5.6.3D). Taken 

together, these results suggest that OURT88/3-DP148R may be able to act in a similar way to 

Benin 1997/1-DP148R by inducing tiny LC3 puncta in non-starved cells. However, the number of 

LC3 puncta induced by OURT88/3-DP148R seemed to be less when compared to the amount of 

LC3 puncta that were previously seen in cells expressing Benin 1997/1-DP148R (Figure 5.5.5). In 

addition, the results indicate that OURT88/3-DP148R was not able to restrict the formation of 

starvation-induced autophagosomes as was previously seen in cells expressing Benin 1997/1-

DP148R (Figure 5.5.5). 

5.2.7 DP148R is unlikely to be expressed by the Ba71V strain of ASFV 

To investigate whether DP148R could be acting as a viral modulator of autophagy, analysis of the 

DP148R promotor region and potential translation start sites in Ba71V was carried out and 

compared to the Benin 1997/1 and OURT88/3 strains by DNA sequence alignment (Figure 5.7).  

The ATG start codon at the beginning of Benin 1997/1-DP148R and OURT88/3-MGF360-17R 

(labelled as start codon X) was identified, however the corresponding sequence at this site in 

Ba71V was ATA and therefore did not represent a start codon. Upstream of this start codon, AT 

rich regions consistent with promotor sequences were apparent in Benin 1997/1 and OURT88/3 but 

were absent in Ba71V. Downstream of start codon X, another potential ATG start codon (codon Y) 

was identified in Benin 1997/1 and OURT88/3 however the corresponding sequence in Ba71V was 

TTA. An ATG start codon (codon Z) was identified in the Ba71V strain that aligns with the start 

codon of OURT88/3-DP148R, however no promotor sequence was evident upstream of this 

location indicating that this region is not transcribed in Ba71V. Collectively, these results suggest 

that DP148R is unlikely to be expressed during Ba71V infection.  
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Figure 5.6.3 OURT88/3-DP148R expression induces low numbers of LC3 puncta and does 

not restrict starvation-induced autophagosome formation   

Vero cells were transfected with plasmids encoding OURT88/3-DP148R and were incubated for 24 

hours before passaging the cells and incubating them for a further 24 hours. During the final 3 

hours, cells were incubated in complete Vero cell media (Panels A and B) or were starved in EBSS 

media (Panels C and D) prior to being fixed and permeabilised in methanol. Cells were then 

labelled for LC3 shown in green, HA-tagged protein shown in red and nuclei shown in blue. Panels 

A and C show the same cells as Panels B and D but with the red channel removed to allow for 

clearer observation of LC3 staining. Scale bars represent 10 µM. 
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Figure 5.7 DNA sequence alignment of the DP148R region in Ba71V, Benin 1997/1 and 

OURT88/3 strains  

The DNA sequences of the DP148R region in the Ba71V (top), Benin 1997/1 (middle) and 

OURT88/3 (bottom) strains were aligned. Potential start codons are indicated (X; Y and Z). 

Asterisks indicate the position of identical bases between all three strains. Accumulative number of 

bases for each strain is indicated to the right.      

   

5.3   Discussion 

ASFV inhibits autophagy during the very early stages of infection and it is likely that Akt/mTOR 

activity is responsible for this. By 4 hpi an additional mechanism of inhibition is employed by the 

virus, presumably through the action of viral proteins that are expressed during early replication. 

One of these proteins is possibly the Beclin1 interacting protein A179L, but experiments with an 

A179L KO virus showed that additional proteins must be involved. To attempt to identify these 
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additional modulators of autophagy, a library of ASFV genes was screened for their ability to 

inhibit starvation-induced autophagosomes. 

Optimisation of the plasmid screening process revealed that passaging the cells 24 hours post-

transfection considerably reduced the amount of autophagosomes and TVAs when compared to 

cells that had not been passaged (Figure 5.1). This method of plasmid screening was therefore 

adopted in downstream experiments. Likewise an experiment showed that an AdH5 vector 

expressing GFP alone does not induce autophagy or inhibit starvation-induced autophagosomes 

(Figure 5.2).  A179L was chosen to test whether the confocal microscopy based screening method 

was suitable for identifying genes that could inhibit the formation of autophagosomes. In addition 

to wild-type A179L, a mutant version of A179L was engineered that swapped in two tyrosine 

residues within the ligand binding groove in order to provide a negative control (Figure 5.3).  

Wild-type (WT) and mutant (YY) A179L were each cloned into plasmid and AdH5 vectors and 

tested for their ability to suppress the formation of starvation-induced autophagosomes. Under 

starvation conditions, plasmid expression of WT A179L resulted in fewer autophagosomes when 

compared to cells that did not express WT A179L whereas expression of YY A179L had no effect 

(Figure 5.4.1). Similar results were obtained under starvation conditions in cells that were 

transduced using an AdH5 vector encoding either WT A179L or YY A179L (Figure 5.4.3) and 

these results were confirmed by Imaris quantification (Figure 5.4.4). Interestingly, there was still a 

significant increase in the number of LC3 puncta in WT A179L expressing cells under starvation 

conditions when compared to cells incubated under nutrient replete conditions indicating that 

autophagy had not been entirely inhibited by WT A179L. Taken together, these results showed that 

WT A179L was able to suppress the formation of starvation-induced autophagosomes but YY 

A179L was not. More importantly, the results showed that using the confocal microscopy based 

assay to detect the inhibition of autophagy was a suitable method to screen both the plasmid based 

and adenovirus ASFV gene libraries.   

In total, 76 ASFV genes were screened for which the majority did not exhibit any detectable 

inhibition of autophagy. Expression of MGF505-4R resulted in cell toxicity. The reason for this is 

currently unknown and the function of this protein has not been studied in detail although it may 

play a role in the regulation of the interferon response (Reis et al., 2016). Screening of B646L 

initially showed inhibition in some cells and upon further investigation, it was revealed that cells 

with protein expression concentrated around the nucleus contained almost no LC3 puncta whereas 

typical numbers of LC3 puncta were observed in cells with a diffuse pattern of protein expression 

(Figure 5.5.1). This could suggest that the inhibition seen in some cells may be linked to protein 

localisation or levels of protein expression.  

The B646L gene encodes the major capsid protein of ASFV called p72 and repression of this 

protein severely hinders viral morphogenesis (Garcia-Escudero et al., 1998). A study of the sub-
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cellular localisation of p72 in infected cells revealed that approximately 50% of the intracellular 

pool of p72 was associated with membranes and membrane fractionation showed that newly 

synthesized p72 molecules co-sedimented with ER membranes (Cobbold et al., 1996). 

Furthermore, using immunofluorescence microscopy in the aforementioned study, p72 was shown 

to be colocalised with the ER marker PDI and therefore suggests that the protein which was 

observed around the nucleus in Figure 5.5.1 could also be localised at the ER. The ER is important 

during the biogenesis of autophagosomes, as membrane structures known as omegasomes form on 

the ER surface and provide a compartment in which autophagosomal proteins accumulate (Axe et 

al., 2008). Additionally, evidence suggests that the ER contributes membrane to the forming 

phagophore (Ge et al., 2013). This could explain why inhibition is only seen in cells in which p72 

was observed around the nucleus, as ER-bound protein could interfere with autophagosome 

biogenesis. In the context of autophagosome inhibition in infected cells, B646L was not favoured 

as a candidate to pursue for knock-out studies. This was firstly due to the fact that B646L is an 

essential gene and secondly because B646L is expressed during late stages of the replication cycle 

whereas the inhibition of autophagy was previously observed during the early stages of replication.   

Screening of MGF360-11L, MGF505-5R and R298L resulted in the inhibition of autophagy in only 

some of the cells and in most cases these were cells that demonstrated very high levels of protein 

expression which may point to a non-specific mechanism of autophagosome inhibition. It could be 

possible that high levels of exogenous protein expression alter the internal cell environment to an 

extent where normal cell processes including the autophagy pathway are hindered. Nevertheless, 

the inhibition by R298L is interesting as this gene encodes a serine/threonine-protein kinase 1 

enzyme (Baylis et al., 1993). The phosphorylation of Akt and the downstream activation of 

mTORC1 in ASFV infected cells was previously demonstrated to be a mechanism used by the 

virus to inhibit autophagy during early stages of the replication cycle. R298L is incorporated into 

the mature virion and could therefore be immediately available to influence cell signalling at the 

start of infection (Alejo et al., 2018). Consequently, it may play a role in the observed inhibition of 

autophagy by phosphorylating proteins involved in the signalling cascades that are crucial to the 

induction of autophagy.  

C147L, an RNA polymerase subunit (Lu et al., 1993) also showed inhibition of starvation-induced 

autophagosomes in some cells. Interestingly, inhibition was sometimes evident in cells that 

demonstrated atypical DAPI staining which could indicate morphological changes in the nucleus 

(Figure 5.5.2). The segmented appearance of the nucleus may point to nuclear fragmentation that is 

associated with the onset of apoptosis. Apoptosis has been shown to inhibit autophagy via caspase-

mediated cleavage of Beclin1 (Luo and Rubinsztein, 2010) and may explain the lack of LC3 puncta 

in these cells. In this regard, carrying out an apoptosis detection assay in the future may provide 

clarity as to whether the over-expression of C147L induces this pathway. As is the case for R298L, 

C147L is incorporated into the virus particle which suggests an essential function in the virus life 
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cycle. For this reason, R298L and C147L were not considered favourable targets for downstream 

knock-out experiments.        

The screening results and subsequent investigation of E183L and E199L revealed that these 

proteins are able to induce structures that label positively for LC3 but that are relatively larger 

when compared to typical autophagosomes. This was observed under nutrient replete and 

starvation conditions indicating that this effect is unaffected by nutrient availability. In E199L 

expressing cells (Figure 5.5.4), much larger structures were apparent when compared to cells 

expressing E183L (Figure 5.5.3). The basis for these effects is currently unknown. In the case of 

E199L, this was investigated in detail and results are described in Chapter 6.  

E183L encodes a major structural protein called p54 that has been shown to be essential for the 

recruitment and transformation of ER membranes into the precursors of the viral envelope 

(Rodriguez et al., 2004). In the study by Rodriguez and colleagues, p54 was targeted to the ER 

membrane following transient expression and repression of p54 in infected cells led to the arrest of 

viral morphogenesis. A separate study revealed that transient expression of E183L led to significant 

modifications of the ER including the collapse of ER cisternae (Windsor et al., 2012). It may be 

possible that these extensive changes to the ER are responsible for activating the autophagy 

pathway. Indeed, this has been described in a study that demonstrated the induction of autophagy 

as a countermeasure to ER stress (Ogata et al., 2006). This however does not explain why relatively 

larger aggregated LC3 structures were observed in place of the round punctate structures usually 

associated with autophagosomes. In their study on the effects of E183L expression on the ER, 

Windsor et al (2012) described whorls of ER membrane appearing as disks in the cytoplasm. With 

the ER acting as the site of early autophagosome biogenesis, it may be possible that the induction 

of autophagy in response to ER stress leads to LC3 recruitment to these ER discs which could in 

turn give the appearance of aggregations of LC3.  

Initial screening of DP148R resulted in an unusual pattern of LC3 labelling and further 

investigation revealed the appearance of tiny LC3 puncta under nutrient replete conditions (Figure 

5.5.5). Under starvation conditions, the same tiny LC3 puncta were observed in addition to an 

absence of the relatively larger LC3 puncta that are representative of autophagosomes (Figure 

5.5.5) suggesting that this protein may be able to inhibit the induction of autophagy. DP148R has 

no known function, however research has shown that it is expressed at early times post-infection 

which could indicate a role in the evasion of host cell defence (Reis et al., 2017a).  

The initial investigations of DP148R were conducted using the sequence from the virulent ASFV 

strain Benin 1997/1 which encodes a protein of 254 amino acids. When this was compared to the 

equivalent sequence in the attenuated strain OURT88/3, it was discovered that the latter encoded 

two proteins instead which were separated by a frame-shift mutation (Figure 5.6.1). Expression of 

MGF360-17R, which corresponds to the N-terminus of the Benin DP148R protein, did not result in 
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the same effects on LC3 that were previously observed using the Benin 1997/1 construct under 

nutrient replete or starvation conditions (Figure 5.6.2). However, expression of the OURT88/3 

homologue of DP148R, which corresponds to the C-terminus of the Benin homologue resulted in 

the induction of low numbers of the tiny LC3 puncta that were previously described (Figure 5.6.3). 

Expression of the C-terminus protein did not lead to any change in the number of starvation 

induced autophagosomes suggesting that the full length protein is required for this effect.  

To determine whether DP148R could play a role in the inhibition of autophagy that was observed 

at early times post-infection, the DP148R coding region of the Ba71V genome was compared to the 

Benin 1997/1 and OURT88/3 strains (Figure 5.7). Analysis of a DNA sequence alignment revealed 

that the start codon present in Benin 1997/1 did not correspond to a start codon in Ba71V. This was 

also the case for another potential start codon situated just downstream in the Benin 1997/1 

sequence. Despite the presence of a start codon in Ba71V that corresponded to the start codon of 

DP148R in the OURT88/3 strain, no promotor sequence upstream of this was evident. Research 

carried out by Gwenny Cackett (UCL – data unpublished) showed that RNA sequence analysis of 

the Ba71V transcriptome did not reveal the presence of transcripts encoding DP148R. In 

conjunction with the genome analysis described above, it seems highly unlikely that DP148R is 

expressed in the Ba71V strain.  

With the exception of DP148R, screening of the ASFV gene library did not identify any inhibitors 

of autophagy that could be easily deleted from the virus. DP148R has been successfully knocked 

out of the Benin 1997/1 strain without adversely affecting virus growth in macrophages (Reis et al., 

2017a), indicating that DP148R is not an essential protein. However, the lack of evidence for 

expression of DP148R in Ba71V infected cells argues against a critical role for this protein in 

modulating autophagy. For this reason DP148R was not pursued as a candidate for downstream 

knock-out studies.  

In summary, the results of the gene library screen did not reveal any obvious inhibitors of 

autophagy. In addition to MGF genes that were largely excluded from the screen due to variation 

between isolates, some plasmids were excluded due to a lack of gene expression. It may be possible 

that this group of genes included one or more autophagy inhibitors. In the future, codon optimising 

genes could improve gene expression levels and screening of MGF genes could uncover potential 

inhibitors. The results also highlight a potential barrier to the design of a mutant virus that lacks the 

capacity to modulate autophagy. This is due to the possibility that autophagy is regulated by 

essential virus proteins that cannot be removed from the virus without severely impeding its ability 

to replicate. In this regard, an alternative strategy may need to be adopted and could include 

mutation of protein domains specifically responsible for the modulation of autophagy.  
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6   Investigation of the redistribution of LC3 by E199L 

6.1   Introduction 

The interaction between viruses and autophagy is often very complex and in many cases cannot be 

simply defined as the global inhibition or promotion of the autophagy pathway. For example, 

autophagy is upregulated during human immunodeficiency virus (HIV) infection and some 

autophagy proteins have been shown to act in a pro-viral manner (Brass et al., 2008) raising the 

possibility that autophagosomes could provide a source of membrane for viral replication (Nardacci 

et al., 2017). However, HIV has also been shown to block autophagosome maturation (Kyei et al., 

2009). ASFV has been shown to inhibit the formation of autophagosomes but the appearance of 

WIPI and LC3 puncta at the viral factory suggests that elements of the autophagy machinery may 

be required for virus replication. The results described in section 5.2.5 showed that E199L 

expression in Vero cells induced a redistribution of LC3 into structures that were inconsistent with 

the shape and size typically associated with autophagosomes. These results indicate that E199L 

may interact with or disrupt certain aspects of the autophagy pathway.      

The function of E199L is currently unknown although it shares sequence similarity with protein 

members of the poxvirus entry/fusion complex which suggests that it may be involved in ASFV 

fusion. Initial characterisation of E199L was carried out by Sun and colleagues and showed that 

E199L is well conserved amongst ASFV isolates (Sun et al., 1996). In the Vero adapted strain 

Ba71V, the E199L ORF encodes a protein of 199 amino acids although variation in the length of 

the protein has been observed for example the Malawi LIL20/1 field isolate encodes a protein of 

195 amino acids. E199L is detected from 10 hpi in infected cell lysates and its expression is 

sensitive to the DNA synthesis inhibitor cytosine arabinoside demonstrating that E199L is a late 

protein. Furthermore, E199L was detected by immunofluorescence at perinuclear locations from 10 

hpi (Sun et al., 1996).   

E199L contains a hydrophobic domain near the C-terminus which may anchor the protein in 

membranes. Proteins containing putative transmembrane regions might be incorporated in internal 

or external virion membranes or expressed on the cell surface, all of which are of particular interest 

in the search for immunogenic antigens. Indeed, proteomics analysis confirmed that E199L is 

present in ASFV virions (Alejo et al., 2018) and the possible role that E199L plays in the ASFV 

fusion machinery suggests that it is likely located in the inner viral membrane. E199L can be 

detected using antisera from infected pigs demonstrating that host antibodies are induced against 

E199L (Sun et al., 1996).  

The lipidation of LC3 and assembly of WIPI complexes are both hallmarks of the induction of 

autophagy. To investigate if E199L may be inducing an autophagy response, Western blot analysis 

was carried out to determine if E199L induces the lipidation of LC3 and confocal analysis was used 

to determine whether E199L promotes the formation of WIPI complexes. To assess if there may be 
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a link between E199L expression and the appearance of WIPI and LC3 puncta at the viral factory, 

immunofluorescent labelling of infected cells over a time course of infection was used to examine 

the timing and location of E199L expression. To further investigate the nature of the LC3 labelled 

structures in E199L expressing cells, electron microscopy of transduced cells was conducted. In 

addition, samples were prepared from E199L transduced cells for analysis by mass spectrometry to 

determine if any proteins interacting with E199L belonged to the autophagy pathway. Finally, the 

potential that E199L expression is localised to the ER and causes an ER stress response was 

explored.   

In the pursuit of novel therapeutics against viral infections, uncovering host proteins that play 

essential roles in viral replication can provide key opportunities for intervention. For example, 

rotavirus infection has been shown to induce LC3 lipidation independently of autophagosome 

formation and silencing of Atg7, a protein involved in LC3 lipidation, results in significant 

reduction of viral titres (Arnoldi et al., 2014). If autophagy associated processes such as LC3 

lipidation are required for ASFV replication and furthermore are stimulated via the action of viral 

proteins, a layered strategy of intervention could be implemented in which the functions of either 

host proteins, viral proteins or both are disrupted.     

    

6.2   Results 

6.2.1 E199L expression induces an accumulation of LC3-II in Vero cells 

Previously it was shown that transduced cells expressing E199L demonstrated a redistribution of 

LC3 (See Figure 5.5.4). The aforementioned assay was conducted by confocal microscopy using an 

antibody against LC3 which labels both LC3-I and LC3-II. To investigate whether the observed 

LC3-labelled structures were formed from the redistribution of LC3-I or LC3-II, further analysis 

was carried out by Western blot. Vero cells were transduced with adenovirus encoding either GFP 

or E199L and incubated for 24 hours to allow gene expression. During the final 3 hours of 

incubation, cells were either incubated in complete cell media, were starved in EBSS media or 

were starved in EBSS media in the presence of 100 nM Bafilomycin A1. Control cells that had not 

been transduced were treated under the same set of conditions. Samples were prepared from cells 

for analysis by immunoblotting and probed using anti-LC3 and anti-γ tubulin antibodies.   

The intensity of the band corresponding to LC3-II in the lane containing sample from the control 

cells under starvation conditions was greater than that from non-starved cells demonstrating the 

induction of autophagy (Figure 6.1). Control cells that had been starved in the presence of 

Bafilomycin A1 showed a greater amount of LC3-II when compared to cells that were starved in 

EBSS only indicating that lysosome fusion had been blocked which leads to the accumulation of 

autophagosomes. Comparing LC3-II levels between the control cells and cells that had been 
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transduced with the GFP adenovirus did not show a substantial difference under any of the 

treatment conditions demonstrating that transduction with the AdH5 vector did not have any effects 

on LC3-II. In cells that had been transduced with the E199L adenovirus, LC3-II levels were 

substantially greater when compared to the control cells under non-starved and starved conditions 

indicating that E199L expression induces the accumulation of LC3-II to a greater extent than 

starvation and in a manner that is unaffected by nutrient availability. Interestingly, the amount of 

LC3-II in E199L transduced cells that had been starved in the presence of Bafilomycin A1 was 

comparable to LC3-II levels under non-starved and starved conditions indicating that a block in 

autophagosome-lysosome fusion had no effect on the accumulation of LC3-II. Collectively, these 

results show that the redistribution of LC3 in cells expressing E199L is likely to be associated with 

an accumulation of LC3-II but that these effects are unlikely to be linked to a canonical autophagy 

response.   

 

Figure 6.1 E199L expression induces an accumulation of LC3-II in Vero cells 

Vero cells were transduced with adenovirus encoding GFP or E199L and incubated for 24 hours 

during which cells were either non-starved (NS) in complete cell media, starved (ST) in EBSS or 

starved in the presence of Bafilomycin A1 (BAF) for the final 3 hours. Control cells (CTRL) that 

had not been transduced were incubated under the same set of conditions. Cells were then lysed 

and samples prepared for resolution by bis-Tris PAGE before transfer to PVDF membrane. Finally, 

samples were probed with anti-LC3 and γ-tubulin antibodies followed by appropriate HRP-

conjugated secondary antibodies. The positions of molecular mass markers are indicated to the left 

of the gels.  

 

6.2.2 E199L expression promotes the formation of WIPI complexes 

The formation of WIPI complexes is essential to the process of LC3 lipidation and the downstream 

assembly of autophagosomes (Proikas-Cezanne et al., 2015). To investigate whether E199L 

expression induces the appearance of WIPI puncta, Vero cells that had been transduced with 

E199L were analysed by confocal microscopy. Previously, the redistribution of LC3 by E183L was 

described (see section 5.2.5) and therefore cells that had been transduced with E183L were also 

analysed for the appearance of WIPI puncta in addition to analysis of control cells that had not 

been transduced. Cells were incubated for a total period of 24 hours during which cells were 

incubated for the last 3 hours in either complete cell media (non-starved) or EBSS (starved) prior to 
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being fixed and labelled for immunofluorescence. Cells were labelled using anti-WIPI and anti-HA 

tag antibodies to detect transduced cells. 

Control cells that had not been transduced showed typically low numbers of WIPI puncta under 

nutrient replete conditions (Figure 6.2.1A) and similar to this, cells that had been transduced with 

E183L also showed low numbers of WIPI puncta (Figure 6.2.1B). Labelling of HA-tag protein 

revealed that cells expressing E183L did not exhibit an increase in WIPI puncta when compared to 

non-expressing cells (Figure 6.2.1C) demonstrating that E183L does not induce the appearance of 

WIPI puncta. In contrast, labelling of WIPI in cells that had been transduced with E199L showed 

some cells with a very high number of WIPI puncta and other cells with a comparable number of 

WIPI puncta to the control cells (Figure 6.2.1D). Labelling of HA-tag protein revealed that cells 

containing an elevated number of WIPI puncta were also expressing E199L (Figure 6.2.1E) 

suggesting that E199L is able to induce the assembly of WIPI complexes. 

Control cells that had been incubated in EBSS showed a high number of WIPI puncta as would be 

expected under starvation conditions (Figure 6.2.2A). Cells that had been transduced with E183L 

(Figure 6.2.2B) demonstrated similar numbers of WIPI puncta to the control cells and visual 

inspection of cells expressing E183L did not show any difference to non-expressing cells (Figure 

6.2.2C) indicating that E183L does not inhibit the assembly of WIPI complexes. The majority of 

cells that had been transduced with E199L (Figure 6.2.2D) showed a much greater number of WIPI 

puncta when compared to the control cells suggesting that the WIPI puncta were not formed 

exclusively in response to starvation. Visual inspection of cells expressing E199L (Figure 6.2.2E) 

revealed a higher number of WIPI puncta when compared to non-expressing cells. Interestingly, 

the WIPI puncta in some of the E199L expressing cells appeared to be concentrated in perinuclear 

locations rather than in the diffuse cytoplasmic pattern that was observed in the control cells and 

the E183L transduced cells. Collectively, these results indicate that E199L does not inhibit the 

formation of starvation-induced WIPI puncta but may be able to induce the formation of WIPI 

puncta in a way that is unaffected by the starvation status of the cells. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.1 Transduction of Vero cells with E199L but not E183L induces the appearance 

of WIPI puncta 

Vero cells were transduced with adenoviruses encoding either E183L (Panels B and C) or E199L 

(Panels D and E) and were incubated for 24 hours during which cells were incubated in complete 

Vero cell media for the final 3 hours. Additionally, control cells that had not been transduced were 

incubated in complete Vero cell media for 3 hours (Panel A). Cells were fixed and permeabilised in 

methanol and then labelled for WIPI shown in green, HA-tagged protein shown in red and nuclei 

shown in blue. Panels B and D show the same cells as Panels C and E respectively but with the red 

channel removed to allow for clearer observation of WIPI staining. Scale bars represent 10 µM. 
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Figure 6.2.1 Transduction of Vero cells with E199L but not E183L induces the appearance 

of WIPI puncta 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.2 Transduction of Vero cells with E199L or E183L does not inhibit the 

formation of starvation-induced WIPI puncta 

Vero cells were transduced with adenoviruses encoding either E183L (Panels B and C) or E199L 

(Panels D and E) and were incubated for 24 hours during which cells were incubated in EBSS 

starvation media for the final 3 hours. Additionally, control cells that had not been transduced were 

incubated in EBSS starvation media for 3 hours (Panel A). Cells were fixed and permeabilised in 

methanol and then labelled for WIPI shown in green, HA-tagged protein shown in red and nuclei 

shown in blue. Panels B and D show the same cells as Panels C and E respectively but with the red 

channel removed to allow for clearer observation of WIPI staining. Scale bars represent 10 µM. 
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Figure 6.2.2 Transduction of Vero cells with E199L or E183L does not inhibit the 

formation of starvation-induced WIPI puncta 
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The number of WIPI puncta per cell was enumerated using Imaris software in 30 cells per 

experimental condition (Figure 6.2.3). This analysis revealed an increase in the number of WIPI 

puncta per cell under starvation when compared to non-starved conditions in the control cells (P < 

0.001) demonstrating that autophagy was induced. Whereas a comparison between non-starved 

control cells and cells expressing E183L did not reveal any difference (P > 0.05), there was an 

increase in the number of WIPI puncta in non-starved cells expressing E199L when compared to 

non-starved control cells (P < 0.001) or E183L expressing cells (P < 0.001). A comparison of the 

starved cells revealed no difference (P > 0.05) between the control cells and cells expressing E183L 

but did reveal an increase in WIPI puncta in E199L expressing cells when compared to the control 

cells (P < 0.001). Collectively, these results confirm that expression of E183L does not induce or 

inhibit the formation of WIPI puncta but that expression of E199L is able to induce the formation 

of WIPI complexes in a manner that is unaffected by nutrient availability.  

 

Figure 6.2.3 Imaris analysis confirms that E199L induces the formation of WIPI puncta 

but E183L does not   

The number of WIPI puncta per cell for 30 individual cells per indicated experimental condition 

was quantified by Imaris analysis of confocal images. Vero cells were transduced with AdH5 

vectors encoding either E183L or E199L and were incubated for a total of 24 hours. Prior to 

fixation, cells were either non-starved in complete cell media or starved in EBSS for 3 hours to 

induce autophagy. Separately, control cells (CTRL) that had not been transduced were also either 

non-starved or starved for 3 hours. Centre lines show the means. Statistical analysis was carried out 

in Minitab using analysis of variance with Tukey multiple comparisons test. Asterisks represent 

significant differences in value between indicated experimental conditions (*** = P value of 

<0.001). 
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6.2.3 E199L can be detected at the viral factory during late stages of replication  

Previous results showed that ASFV promotes the formation of WIPI complexes at 4 hpi 

independently of nutrient availability (see section 3.2.4). In addition, WIPI and LC3 puncta were 

evident at the viral factory during the late stages of replication (see section 3.2.7). Whether WIPI 

and LC3 are vital proteins for virus replication is currently unknown as is the mechanism 

underlying their redistribution into punctate structures during infection. Following the results 

describing the appearance of WIPI puncta (see section 6.2.2) and LC3 labelled structures (see 

section 5.2.5) in cells expressing E199L, it is possible that E199L plays a role in inducing the 

appearance of WIPI and LC3 puncta in infected cells.     

In their study on the characterisation of E199L, Sun and colleagues generated polyclonal antiserum 

against purified E199L protein in rabbits (Sun et al., 1996). To test whether the antiserum could be 

used to accurately label expression of E199L in transduced Vero cells, a confocal assay was carried 

out to detect colocalisation with anti-HA tag labelling. Cells were transduced with adenovirus 

encoding E199L-HA and incubated for 24 hours to allow protein expression. Separately, control 

cells that had not been transduced were maintained under the same conditions. Cells were then 

fixed and labelled for immunofluorescence using anti-HA tag antibodies and anti-E199L 

polyclonal antiserum.  

In the control cells, no fluorescent signal was detected using either the anti-serum or the anti-HA 

tag antibody (Figure 6.3.1A) demonstrating the absence of any non-specific binding. Labelling of 

E199L transduced cells using rabbit antiserum (Figure 6.3.1B) revealed that protein was 

predominantly concentrated in discreet locations in the cell cytoplasm. A similar pattern was 

observed using the anti-HA tag antibody (Figure 6.3.1C) but this was in combination with a diffuse 

pattern of cytoplasmic protein expression that was not evident using rabbit antiserum. Viewed 

simultaneously, signal colocalisation from antiserum and anti-HA tag labelling was evident at sites 

of concentrated protein expression (Figure 6.3.1D) demonstrating the detection of E199L by the 

rabbit antiserum.        
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Figure 6.3.1 Rabbit antiserum detects E199L expression in transduced Vero cells 

Vero cells were transduced with adenovirus encoding E199L (Panels B - D) and were incubated for 

24 hours. Additionally, control cells that had not been transduced were incubated under the same 

conditions (Panel A). Cells were fixed and permeabilised and then labelled for E199L expression 

using rabbit antiserum shown in green (panel B), HA-tagged protein shown in red (Panel C) and 

nuclei shown in blue. Panel D shows the same cells as Panels B and C but with the red and green 

channels viewed simultaneously to show colocalisation (yellow). To detect non-specific antibody 

binding, control cells in panel A were imaged with both the red and green channels visible. Scale 

bars represent 10 µM. 

 

To investigate if E199L may be involved in the appearance of LC3 and WIPI puncta, the timing of 

E199L expression and sub-cellular location of the protein was analysed by confocal microscopy in 

infected cells. Vero cells were infected with Ba71V (MOI 5) and harvested at 2 hour intervals over 

a 16 hour time course of infection. Following fixation, cells were probed with polyclonal rabbit 

antiserum against E199L and anti-p30 antibody to identify infected cells.    
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From 8 hpi, DAPI staining revealed the appearance of viral factories at the nuclear periphery of 

infected cells as would be expected. Inspection of cells labelled for E199L expression showed the 

appearance of protein from 10 hpi. This was predominantly located at the viral factory although 

some diffuse cytoplasmic labelling was also visible (Figure 6.3.2A). Labelling of viral protein p30 

confirmed that E199L was only detected in cells expressing ASFV proteins (Figure 6.3.2B). The 

presence of E199L at the viral factory was also evident from 12 to 16 hpi (data not shown). 

Collectively, these results show that the timing and location of E199L expression coincides with 

the appearance of WIPI and LC3 puncta at the viral factory. 

 

 

Figure 6.3.2 E199L is located at the viral factory at 10 hpi 

Vero cells were infected with Ba71V (MOI 5) for 10 hours. Cells were fixed and permeabilised 

before labelling E199L and p30. E199L is shown in green, viral protein p30 is shown in red and 

nuclei and viral factories are shown in blue. Panel A shows the same infected cells as Panel B but 

with the red channel removed to allow for clearer observation of E199L staining. Scale bars 

represent 5 µM.   

 

6.2.4 Electron microscopy analysis of cells transduced with AdH5 E199L 

Visualised by confocal microscopy, the LC3-labelled structures induced by E199L expression did 

not resemble the typical rounded punctate structures that are representative of autophagosomes (see 

Figure 5.5.4). LC3-labelling was clumped together into much larger structures and was not 

observed as the dispersed cytoplasmic puncta that are usually associated with the induction of 

autophagy. This suggests that the redistribution of LC3 by E199L is not indicative of an autophagy 

response. However, evidence of WIPI complex assembly as well as LC3 lipidation in E199L 

expressing cells are both hallmarks of the early stages of autophagosome formation. To gain further 

clarity into whether E199L is able to induce the appearance of autophagosomes, transduced cells 

were examined by electron microscopy (EM). Expression of E183L was previously shown to also 
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induce the redistribution of LC3 (see Figure 5.5.3) and was therefore used as a control in this 

experiment. Vero cells were transduced with adenovirus encoding either E199L or E183L and were 

incubated for 24 hours to allow protein expression. Additionally, control cells that had not been 

transduced were incubated under the same conditions. Cells were fixed and processed for EM 

analysis according to the methods described in section 2.9.  

Visual inspection of the control cells revealed a typically normal cell environment with an intact 

nuclear membrane with cell organelles including mitochondria located at the nuclear periphery 

(Figure 6.4A). In contrast, cells that had been transduced with E183L demonstrated large arrays of 

membrane extending from and located in proximity to the nucleus (Figure 6.4B). Evidence of 

double-membrane vesicles consistent with the size of autophagosomes (0.5 to 1.5 µM in 

mammalian cells) were not apparent in these cells suggesting that the redistribution of LC3 is not 

linked to the induction of autophagy in E183L expressing cells. In cells that had been transduced 

with E199L, changes to the ER were apparent (Figure 6.4C). Dark patches of staining, believed to 

be locations of condensed protein were observed amongst ER membrane. Also observed in and 

around the ER were membrane-bound vesicles, however these were much smaller than the size 

typically associated with autophagosomes. These results therefore suggest that the large LC3 

labelled structures induced by E199L do not correspond to mature autophagosomes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Electron microscopy analysis of cells transduced with E183L and E199L 

Vero cells were transduced with adenovirus encoding either E183L (Panel B) or E199L (Panel C) 

and incubated for 24 hours to allow protein expression. Control cells (Panel A) that had not been 

transduced were incubated under the same conditions. Cells were fixed and processed for EM 

analysis. Arrows in Panel B indicate whorls of ER. Arrows in Panel C indicate patches of 

condensed protein. N = nucleus. Scale bars are represented below each panel.   
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Figure 6.4 Electron microscopy analysis of cells transduced with E183L and E199L 
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Figure 6.4 Electron microscopy analysis of cells transduced with E183L and E199L 

Vero cells were transduced with adenovirus encoding either E183L (Panel B) or E199L (Panel C) 

and incubated for 24 hours to allow protein expression. Control cells (Panel A) that had not been 

transduced were incubated under the same conditions. Cells were fixed and processed for EM 

analysis. Arrows in Panel B indicate whorls of ER. Arrows in Panel C indicate patches of 

condensed protein. N = nucleus. Scale bars are represented below each panel.   

 

6.2.5 Mass spectrometry analysis of E199L interacting proteins 

To gain further insight into whether E199L could be involved in the regulation of autophagy, mass 

spectrometry (MS) analysis was used to detect potential E199L interacting proteins (mass 

spectrometry methods are described in section 2.10). Vero cells were transduced with AdH5 

E199L-HA and were incubated for 24 hours to allow protein expression. In addition, control cells 

that had not been transduced were incubated under the same conditions. Three replicates of each of 

the transduced and control cells were included in the experiment. Cells were lysed and following 

centrifugation, cell supernatants were incubated with anti-HA affinity matrix. Captured protein was 

eluted from the matrix and samples were prepared for analysis by Western blot and were probed 

using anti-HA tag antibody.     
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Figure 6.5.1 Analysis of E199L expression and capture using anti-HA affinity matrix 

Vero cells were transduced with adenovirus encoding E199L-HA and were incubated for 24 hours. 

Control cells that had not been transduced were incubated under the same conditions. Three 

replicates of each of the transduced (POS 1-3) and control cells (NEG 1-3) were analysed. Cell 

lysates were incubated with anti-HA affinity matrix and samples were generated from eluted 

supernatant before preparation for resolution by bis-Tris PAGE and transfer to PVDF membrane. 

Finally, samples were probed using an anti-HA tag + HRP-conjugated antibody. The positions of 

molecular mass markers are indicated to the left of the gel.  

 

In each of the samples prepared from E199L transduced cells (POS 1-3) two protein bands were 

detected and no bands were detected in the samples prepared from the control cells (NEG 1-3) 

(Figure 6.5.1). Inspection of the protein bands in each sample from the transduced cells revealed 

that the lower band had an apparent molecular weight of approximately 24kDa and the upper band 

had an apparent molecular weight of approximately 30kDa. In each sample, the lower band 

indicated a much greater amount of protein when compared to the upper band. The molecular 

weight of E199L is approximately 22kDa (Sun et al., 1996) and would therefore roughly 

correspond to the lower band. The small difference in size could be due to the addition of an HA 

tag or alternatively the high level of protein expression may give the appearance of a greater 

molecular weight. The identity of the upper band is unknown but could be a protein with altered 

levels of glycosylation or myristoylation. E199L contains two potential glycosylation sites and five 

potential myristoylation sites (Sun et al., 1996).     

MS analysis was conducted on the eluted samples as well as samples prepared by treatment of the 

affinity matrix with reducing buffer to remove remaining proteins. A substantially greater amount 

of data was generated from analysis of the samples prepared from the affinity matrix when 

compared to samples prepared from the initial elution. For this reason, descriptions of the results 

pertain to data generated from the affinity matrix samples. MS spectra data was searched against 

either a human protein database or Chlorocebus sabaeus (African green monkey) protein database. 

The highly characterised human proteome was used to provide a comprehensive list of E199L 

interacting proteins and the less characterised monkey proteome was used to avoid potential loss of 

statistically significant proteins that may have occurred by conducting the experiment in Vero cells. 
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Significant proteins were determined by statistical comparison of intensity values between 

transduced and non-transduced cells where a p-value <0.05 and a fold change >2 were considered 

statistically significant.  

A total of 49 significant proteins were generated from the human data in comparison to 35 from the 

monkey data. In both cases, the large majority of proteins were identified from the proteasome (31 

from human and 23 from monkey) which may be due to mis-folding or ubiquitination of E199L. 

The remaining significant proteins are presented in Appendix I and inspection of these did not 

reveal any belonging to the autophagy pathway. Strikingly, examination of the human data 

revealed 10 proteins that are involved in ER function. Calreticulin, an ER chaperone protein was 

identified as the most significant E199L interacting protein. The human data is presented as a 

volcano plot in Figure 6.5.2. Significant proteins related to ER function have been highlighted and 

are also listed in Table 6.1. 

 

Figure 6.5.2 Analysis of E199L interacting proteins  

Analysis of E199L interacting proteins identified by mass spectrometry where each dot represents a 

unique protein. Statistically significant proteins are positioned to the right of and above the 

significance curve signifying a p-value <0.05 and a fold change >2. Significant proteins related to 

ER function are highlighted in red in addition to the E199L bait protein. Numbered dots correspond 

to the proteins presented in Table 6.1 
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Table 6.1 Significant E199L interacting proteins related to ER function 

# Protein name Function 

1 Calreticulin 
Calcium-binding chaperone that promotes folding, oligomeric 

assembly and quality control in the ER 

2 
Glucosidase 2  

subunit beta 

Subunit of glucosidase II that cleaves glucose residues from 

the oligosaccharide precursor of immature glycoproteins 

3 Calnexin 
Calcium-binding protein that interacts with newly synthesized 

glycoproteins in the ER 

4 
Prolyl 4-hydroxylase  

subunit alpha-1 

Catalyses the post-translational modification of collagens and 

other proteins 

5 
Prolyl 4-hydroxylase  

subunit alpha-2 

Catalyses the post-translational modification of collagens and 

other proteins 

6 Endoplasmin 
Molecular chaperone that functions in the processing and 

transport of secreted proteins 

7 
Vesicular integral-

membrane protein VIP36 

Plays a role as an intracellular lectin in the early secretory 

pathway 

8 
Large proline-rich  

protein BAG6 

Molecular chaperone preventing the aggregation of misfolded 

and hydrophobic patches-containing proteins 

9 Protein ERGIC-53 
Mannose-specific lectin that may be involved in the sorting or 

recycling of proteins, lipids, or both 

10 
Peptidyl-prolyl cis-trans 

isomerase FKBP10 
Accelerates the folding of proteins during protein synthesis 

 

In summary, MS analysis did not uncover any direct links between E199L and the autophagy 

machinery. However the data did reveal a potential link to the ER which would be in agreement 

with EM analysis that showed changes to the ER in cells transduced with E199L.  

6.2.6 E199L colocalises with the ER chaperone calnexin 

Calnexin (Cnx) is an integral ER membrane protein that functions in the retention of glycoproteins 

within the ER until they are correctly folded or targeted for degradation (Williams, 2006). Along 

with calreticulin, Cnx is one of the most well characterised molecular ER chaperones and can act as 

a useful ER marker in immunofluorescent studies. MS analysis of E199L interacting proteins 

revealed a significant interaction with Cnx (see section 6.2.5). To further examine the link between 

E199L and the ER, including the interaction with Cnx, Vero cells were transduced with AdH5 

E199L-HA and were incubated for 24 hours to allow protein expression. Control cells that had not 

been transduced were incubated under the same conditions. Cells were fixed and labelled for 

immunofluorescence using anti-Cnx antibodies as well as anti-HA tag antibodies to identify cells 

expressing E199L. In addition, cells were labelled with anti-WIPI antibodies to identify whether 

WIPI complexes induced by E199L expression are located at the ER. 

Control cells that were labelled with anti-Cnx antibodies demonstrated a typical ER pattern that is 

predominantly concentrated around the periphery of the nucleus and radiates outwards into the cell 
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cytoplasm (Figure 6.6A). Labelling of the control cells with WIPI antibodies revealed a very low 

number of WIPI puncta as would be expected in cells incubated under nutrient replete conditions 

(Figure 6.6A). In contrast, cells that were transduced with E199L showed a much greater number 

of WIPI puncta and these were observed in close proximity to areas of abundant E199L expression 

(Figure 6.6B). This confirms the previous result describing the induction of WIPI complex 

formation in E199L expressing cells (see section 6.2.2). When compared to the network-like 

pattern of Cnx observed in the control cells, cells expressing E199L showed an altered pattern of 

labelling in which Cnx seemed to be concentrated in defined areas of the cell cytoplasm (Figure 

6.6C). WIPI labelling showed that WIPI puncta were clustered together in close proximity to the 

labelled areas of Cnx (Figure 6.6C). Viewed simultaneously, signal colocalisation from Cnx and 

anti-HA tag labelling was evident at sites of extensive E199L expression (Figure 6.6D) 

demonstrating that E199L was located at the ER. Collectively, these results support previous 

observations that E199L is evident in the ER where it likely interacts with Cnx.  
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Figure 6.6 E199L colocalises with the ER chaperone calnexin 

Vero cells were transduced with adenovirus encoding E199L (Panels B - D) and were incubated for 

24 hours. Additionally, control cells that had not been transduced were incubated under the same 

conditions (Panel A). Cells were fixed and permeabilised and then labelled for calnexin shown in 

blue (Panels A; C and D), WIPI shown in green (Panels A - D), HA-tagged protein shown in red 

(Panels B and D) and nuclei shown in grey. Panel D shows the same cells as Panels B and C but 

with the red and blue channels viewed simultaneously to show colocalisation (pink). Scale bars 

represent 10 µM. 

 

6.2.7 E199L expression induces ER stress 

The ER is the site where proteins are processed, modified and folded prior to being transported to 

other locations in the cell. Various stresses such as hypoxia, calcium dysregulation and viral 

infection can alter the balance of protein folding within the ER, leading to the accumulation of 

unfolded proteins. If this accumulation continues, the unfolded protein response (UPR) is triggered 

(Chakrabarti et al., 2011). Activation of the UPR can lead to upregulated expression of the pro-



163 

 

apoptotic transcription factor C/EBP homologous protein (CHOP). Elevated levels of CHOP can 

therefore be used as an indication of ER stress. Prolonged activation of the UPR has been shown to 

induce autophagy (Bernales et al., 2006) and could potentially explain the LC3 lipidation and 

formation of WIPI complexes in E199L expressing cells.      

To investigate if E199L expression induces ER stress, Western blot analysis was carried out to 

determine the levels of CHOP in transduced cells. LC3 lipidation and Cnx levels were also 

analysed. Vero cells were transduced with adenovirus encoding either E199L, E183L or GFP and 

were incubated for 24 hours to allow protein expression. Control cells that had not been transduced 

were incubated under the same conditions. Separately, cells were treated for 16 hours with 20 

µg/ml of the N-glycosylation inhibitor tunicamycin. Treatment with tunicamycin has been shown 

to induce the UPR and trigger an increase in the expression of CHOP (Okada et al., 2002). Samples 

were prepared from cells for analysis by immunoblotting and probed using anti-CHOP, anti-

calnexin, anti-LC3, anti-GFP, anti-HA tag and anti-γ tubulin antibodies.     

Expression of GFP was only detected in cells transduced with AdH5 GFP as expected which 

demonstrates the successful transduction of the cells (Figure 6.7). Similarly, expression of HA-

tagged protein was only detected in cells that were transduced with E183L or E199L. Labelling for 

CHOP revealed an elevated amount in cells that were treated with tunicamycin when compared to 

the control cells demonstrating the induction of the UPR in response to ER stress. When compared 

to the control cells, greater amounts of CHOP were detected in E199L and E183L transduced cells 

but not GFP transduced cells suggesting that E199L and E183L expression trigger the UPR 

response. Interestingly, transduction with E183L led to a much greater amount of CHOP compared 

to cells transduced with E199L which may reflect a difference in the degree of induced ER stress or 

a difference in protein expression levels.  

Analysis of LC3-II levels revealed a much greater amount in cells that were treated with 

tunicamycin when compared to the control cells indicating that LC3 was lipidated in response to 

ER stress. Cells that were transduced with E183L or E199L also showed greater amounts of LC3-II 

when compared to the control cells which confirms the previous result that described the lipidation 

of LC3 by E199L (see Figure 6.1) and further reveals that E183L has the same effect. As seen 

previously in Figure 6.1, cells transduced with GFP showed a similar amount of LC3-II to the 

control cells demonstrating that transduction with AdH5 alone does not lead to LC3 lipidation. A 

comparison of Cnx levels revealed a similar amount between the control cells and all of the 

transduced cells, however in the tunicamycin treated cells, a slightly increased level of Cnx was 

detected. Taken together these results indicate that the lipidation of LC3 in response to E199L 

expression could be the consequence of an ER stress response.       
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Figure 6.7 E199L expression induces ER stress 

Vero cells were transduced with adenovirus encoding GFP, E183L or E199L and were incubated 

for 24 hours to allow protein expression. Control cells (CTRL) that had not been transduced were 

incubated under the same set of conditions. Separately, cells were treated for 16 hours with 20 

µg/ml tunicamycin (TUN) to induce ER stress. Cells were then lysed and samples prepared for 

resolution by bis-Tris PAGE before transfer to PVDF membrane. Finally, samples were probed 

with anti-calnexin, anti-CHOP, anti-GFP, anti-HA tag, anti-LC3 and anti-γ tubulin antibodies 

followed by appropriate HRP-conjugated secondary antibodies. The positions of molecular mass 

markers are indicated to the left of the gels.  

 

6.3   Discussion 

ASFV infection induces the appearance of WIPI and LC3 puncta at the viral factory during the late 

stages of viral replication. The appearance of the puncta coincides with the lipidation of LC3 but 

the function of these events in the context of viral replication is currently unknown as is the 

mechanisms underlying their occurrence. E199L is expressed as a late protein and transducing cells 

with E199L leads to the redistribution of LC3. The experiments that were described in this chapter 

were aimed at exploring the potential link between E199L and the puncta that are observed at the 

viral factory.       
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Vero cells that were transduced with E199L and analysed by Western blot showed elevated levels 

of LC3-II when compared to control cells or cells transduced with GFP (Figure 6.1) demonstrating 

that E199L expression causes the lipidation of LC3. The accumulation of LC3-II was evident under 

nutrient replete and starvation conditions indicating that this effect was not dependent on nutrient 

availability. Similarly, imposing a block on lysosome fusion using Bafilomycin A1 did not alter the 

levels of LC3-II. These results therefore suggest that the redistribution and lipidation of LC3 by 

E199L are likely linked but that these effects are probably not associated with a canonical 

autophagy response.   

Confocal analysis was carried out on cells that had been transduced with E183L or E199L to 

determine if expression of these proteins induces the formation of WIPI complexes which are 

critical to the assembly of autophagosomes. The results showed that under nutrient replete 

conditions, E199L stimulated the formation of WIPI complexes whereas E183L did not (Figure 

6.2.1). Under starvation conditions, similar numbers of WIPI puncta were observed between E183L 

expressing cells and non-transduced control cells, however in cells expressing E199L a much 

greater number of WIPI puncta were evident (Figure 6.2.2). These results were confirmed using 

Imaris analysis (Figure 6.2.3) and demonstrated that E199L stimulates the formation of WIPI 

complexes independently of nutrient availability, once again suggesting that these effects do not 

occur via the canonical autophagy pathway. In support of this, the WIPI puncta in E199L 

expressing cells were predominantly located in perinuclear regions which was in stark contrast to 

the diffusely located WIPI puncta in the control cells possibly suggesting an autophagy-

independent function. Interestingly, WIPI puncta were observed in perinuclear locations in infected 

cells at 4 hpi (see section 3.2.4), however it is unlikely that this is linked to E199L expression 

which occurs during the late stages of viral replication. The fact that E183L expression does not 

induce the appearance of WIPI puncta is also interesting as previously it was shown that E183L 

causes the redistribution of LC3 (see section 5.2.5). This could therefore suggest that the 

redistribution of LC3 in these cells is not indicative of the autophagosome assembly process.  

To investigate a possible link between E199L and the appearance of WIPI and LC3 puncta at the 

viral factory, infected Vero cells were monitored for E199L expression by confocal microscopy 

over a time course of infection. Testing of polyclonal antiserum showed that it accurately detected 

E199L in transduced cells and was therefore suitable for the labelling of infected cells (Figure 

6.3.1). From 10 hpi infection, E199L was detected at the viral factory (Figure 6.3.2) and was also 

evident at the viral factory between 12 and 16 hpi confirming that E199L was expressed as a late 

protein. LC3 and WIPI puncta were shown to appear at the viral factory from 12 hpi and 14 hpi 

respectively (see section 3.2.7), indicating that the timing of E199L expression coincides with these 

events. E199L therefore may play a role in stimulating the formation of WIPI and LC3 puncta late 

in infected cells. 
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Electron microscopy analysis was used to analyse cells that had been transduced with E183L or 

E199L to determine whether the redistribution of LC3 that was observed by confocal microscopy 

was potentially linked to the formation of autophagosomes. Images of cells transduced with E183L 

revealed striking changes to the ER which was arranged in large arrays of membrane at the nuclear 

periphery (Figure 6.4B). These were consistent with the disc-shaped whorls of ER that were 

previously described (Windsor et al., 2012) and demonstrate the extensive reorganisation of the ER 

by E183L. An abnormal appearance of the ER was also observed in E199L transduced cells in 

which the ER exhibited numerous patches of dark staining material believed to be condensed 

protein (Figure 6.4C). These results may point to the ER as the site of WIPI complex assembly and 

LC3 redistribution in cells expressing E199L. In this regard, conducting correlative light electron 

microscopy (CLEM) analysis would provide clarity. Double membrane vesicles consistent with the 

size of autophagosomes were not observed in either E183L or E199L transduced cells indicating 

that the redistribution of LC3 is not the result of a canonical autophagy response.  

To investigate whether E199L interacts with any proteins belonging to the autophagy pathway, 

E199L was affinity purified from transduced cell lysates and samples were analysed by mass 

spectrometry. Prior to this, Western blot analysis showed that E199L had been successfully 

expressed, captured and eluted from the affinity matrix (Figure 6.5.1). Analysis of the mass 

spectrometry data did not uncover any significant proteins that are involved in the autophagy 

pathway (Figure 6.5.2), however ten proteins related to ER function were revealed as having a 

significant interaction with E199L (Figure 6.5.2 and Table 6.1). In similarity to the electron 

microscopy analysis, this data therefore suggests a link between E199L expression and the ER 

which could indicate that the redistribution of LC3 in E199L transduced cells occurs at the ER. 

This may be interesting as the autophagy pathway is intimately associated with the ER which acts 

as the site of early autophagosome assembly and also contributes membrane to the expanding 

autophagosome (Axe et al., 2008, Ge et al., 2013). In addition, studies have shown that the ER is 

directly involved in the assembly of virus particles at the periphery of viral factories (Andres et al., 

1998, Rouiller et al., 1998) and therefore the location of E199L at the viral factory may suggest a 

functional role linked to the ER and virus morphogenesis.  

To confirm if E199L expression is located at the ER, an immunofluorescence experiment was 

carried out in which transduced cells were labelled for the detection of E199L and the ER. In 

addition, WIPI complexes were labelled to assess if they were located near the ER. Figure 6.6 

shows that E199L expression colocalised with the ER chaperone protein calnexin which mass 

spectrometry analysis had shown was a significant E199L interacting protein (see section 6.2.5). 

This confirms the link between E199L and the ER which could point to an ER-related function. 

Interestingly, WIPI puncta were seen clustered together in close proximity to the ER which may 

suggest that the stimulation of WIPI complex formation and the redistribution of LC3 by E199L is 

linked to ER disruption.  
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Studies of ER stress and the UPR have uncovered important connections with the autophagy 

pathway. In yeast cells, the UPR stimulates significant ER proliferation and autophagy provides a 

means to limit this expansion by degrading ER-derived membrane stacks to maintain homeostasis 

(Bernales et al., 2006). Similar links between the ER and autophagy have been described in 

mammalian cells in which autophagy acts to degrade unfolded proteins accumulated in the ER 

(Ogata et al., 2006) and is also involved in ER turnover (Khaminets et al., 2015). Although there 

are mechanistic differences between yeast and mammalian cells, collectively these events are 

termed ER-phagy (Lipatova and Segev, 2017).  

To investigate whether E199L may be inducing the UPR and stimulating ER-phagy, transduced 

cells were analysed by Western blot to detect changes in CHOP expression (Figure 6.7). The 

analysis showed that cells that were treated with the ER stress inducer, tunicamycin, demonstrated 

a substantially greater level of CHOP expression compared to control cells and that CHOP 

expression was also upregulated in E199L transduced cells. These results suggest that E199L 

expression is able to induce an ER stress response. An elevated level of CHOP was also observed 

in cells transduced with E183L but not in cells transduced with GFP. Examination of LC3-II levels 

showed that tunicamycin treatment had led to an increase in the amount of LC3-II demonstrating 

that LC3 was lipidated in response to ER stress most likely due to the stimulation of ER-phagy. 

Similar levels of LC3 lipidation were evident in cells transduced with E199L and E183L which 

may suggest that expression of these proteins had caused the induction of ER-phagy. Interestingly, 

labelling of calnexin revealed that upregulation of expression had only occurred in the tunicamycin 

treated cells which could reflect the difference in how ER stress had been induced compared to the 

transduced cells.     

Newly synthesised polypeptides are targeted to the ER as they emerge from the ribosome. Proteins 

that contain a signal sequence or hydrophobic domain are bound by the signal recognition particle 

which prevents inappropriate targeting of peptides to the ER (Keenan et al., 2001). The C-terminal 

hydrophobic domain of E199L is likely to play a part in directing it to the ER and it may be 

possible that the level of expression exceeds the capacity of the ER to maintain correct protein 

folding. Alternatively, the correct folding of E199L could be reliant on a virally-encoded chaperone 

as is the case with the specialised folding of the major capsid protein p72 by B602L (Cobbold et 

al., 2001). Finally, the addition of an HA-tag at the C-terminus of E199L may in some way disrupt 

its folding ability. The high number of E199L-interacting proteasomal proteins detected by mass 

spectrometry suggests that E199L is degraded by the proteasome and is a further indication of 

protein mis-folding.  In all of these scenarios, activation of the UPR which was demonstrated by 

the induction of CHOP expression, could lead to an autophagy response which may explain the 

redistribution of LC3 and appearance of WIPI puncta in E199L transduced cells. However, the 

absence of autophagosomes as shown by electron microscopy analysis (Figure 6.4C) is at odds 

with this hypothesis. The reason for this discrepancy is unknown but it may be possible that such a 
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high level of protein expression alters the internal cell environment to the extent of disrupting 

normal cell function. Indeed, tiny vesicles were observed in the vicinity of the ER but it is not 

known whether these consisted of single or double membranes. Evidence of double membrane 

vesicles could raise the possibility that these are early autophagosomes that have failed to mature.    

To provide greater insight into the link between the UPR and ER-phagy, future 

immunofluorescence experiments could be aimed at detecting similarities in the pattern of LC3 

redistribution between Vero cells treated with tunicamycin and cells transduced with E199L. 

Analysing whether WIPI complexes are assembled in response to tunicamycin treatment may also 

help to understand why WIPI puncta appear in cells transduced with E199L but not in cells 

transduced with E183L. E183L has been shown to cause the collapse of ER cisternae (Windsor et 

al., 2012) and therefore may induce a different ER stress pathway.              

In summary, these experiments did not establish any firm link between E199L expression and the 

appearance of WIPI and LC3 puncta at the viral factory. The observed effect of E199L on WIPI 

and LC3 has been shown to be more likely connected to an ER stress response. In the future, 

studies using E199L deletion mutants would be unlikely to succeed as E199L is almost certainly an 

essential virus protein evidenced by its incorporation into the virus particle and its putative role in 

virus fusion. Nevertheless, engineering a truncated version of E199L in which the hydrophobic 

domain has been deleted and monitoring for the potential abrogation of WIPI puncta and LC3 

redistribution could help to establish a link between ER stress and an autophagy response.  
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7 Final discussion 

African swine fever is a highly transmissible disease of domestic pigs that can inflict devastating 

socio-economic consequences on affected countries. The inter-continental spread of ASF following 

the 2007 outbreak in the Caucasus region has highlighted the urgent requirement for effective 

vaccines. The prospects for vaccine development are promising as low virulent strains can offer 

protection against high virulent strains, however, using this as a vaccine model has been limited by 

safety concerns. To address these concerns, a rational design approach incorporating genetic 

modifications of vaccine strain viruses may prove useful. This could be aimed at promoting viral 

attenuation or enhancing immunogenicity, however a significant barrier to this approach is the lack 

of knowledge surrounding the function of ASFV encoded proteins and the mechanisms by which 

the virus controls and subverts host cell pathways.  

To initiate and sustain a productive infection, viruses require a tremendous amount of cell 

resources which inevitably activates stress response pathways such as the unfolded protein 

response (UPR) and apoptosis. Viruses are thus required to overcome or limit the effects of these 

pathways and research has showed that ASFV encodes multiple modulators for this purpose (Dixon 

et al., 2019). Autophagy is a highly conserved process that is not only vital to the host cell stress 

response but also plays an integral role in both innate and adaptive immunity. Presenting such a 

potent threat, autophagy is specifically targeted for inhibition by numerous viruses and even 

harnessed by some to act in a pro-viral manner. ASFV encodes a protein, A179L that was shown to 

specifically bind to the key autophagy protein Beclin 1 which forms part of the Vps34 lipid kinase 

complex (Hernaez et al., 2013). The Vps34 complex is essential during the very early stages of the 

autophagy pathway and over-expression of A179L inhibits the formation of starvation-induced 

autophagosomes. Research has showed however that viruses often modulate autophagy at multiple 

steps in the pathway. For example, HSV-1 inhibits Beclin 1 function but can also inhibit 

stimulatory signals that are situated higher up in the pathway (Lussignol et al., 2013, Orvedahl et 

al., 2007). With this in mind, it may be possible that ASFV employs multiple strategies to modulate 

autophagy.    

Research conducted by Hernaez and colleagues demonstrated that autophagy is not induced during 

ASFV infection (Hernaez et al., 2013) and Basta et al reported that blocking autophagy had no 

effect on viral replication (Basta et al., 2010). These experiments do not however provide any clear 

evidence as to whether ASFV actively modulates the autophagy pathway. The aim of this project 

was therefore to characterise the modulation of autophagy by ASFV, principally to determine 

whether autophagy is specifically inhibited during infection. In addition, work was carried out to 

investigate if viral replication may require distinct elements of the autophagy machinery. Following 

this, experiments were conducted to try to elucidate the mechanisms of viral modulation including 

whether ASFV is able to activate the PI3K/Akt signalling pathway. Finally, a library of ASFV 

genes were screened for their potential to modify the autophagy response to starvation and some of 



170 

 

these were subjected to further investigation. Collectively, the goal of this work was to improve our 

understanding of the modulation of the host cell stress response by ASFV with the aim of providing 

potentially novel opportunities for therapeutic intervention including anti-viral and vaccine 

development.   

7.1 Characterisation of the modulation of autophagy by ASFV 

Initial characterisation of the effects of ASFV infection on autophagy was conducted by 

immunofluorescent detection of LC3-labelled autophagosomes using the Vero cell adapted strain 

Ba71V. This analysis revealed that ASFV infected cells demonstrated a reduced number of 

autophagosomes at 4 hpi when compared to control cells under nutrient replete conditions 

indicating that ASFV does not promote autophagy during the early stages of viral replication. This 

is consistent with previous results shown at later time points of viral replication (Hernaez et al., 

2013). To test if autophagy is inhibited by ASFV, cells were starved to induce autophagy and in 

comparison to the high number of autophagosomes detected in control cells, a significantly lower 

number were detected in cells infected with ASFV, suggesting that the virus actively inhibits 

autophagy. To confirm these results, Western blot analysis of LC3-II levels demonstrated that 

ASFV was able to block starvation-induced accumulation of LC3-II at 4 hpi. 

In the mammalian host, ASFV naturally targets cells of the monocyte/macrophage lineage. To 

ensure that the above results were not cell type specific or specific to the virus strain, Western blot 

analysis of LC3-II was carried out on porcine macrophages that had been infected with the field 

isolate OUR T88/1. In this experiment, autophagy was stimulated pharmacologically as opposed to 

using starvation. Consistent with the Vero cell results, ASFV was able to inhibit accumulation of 

LC3-II demonstrating that autophagy is also inhibited in macrophages and that this effect is not 

specific to cell type, virus strain or method of autophagy induction.   

Analysis of WIPI puncta was conducted to determine if ASFV targets the autophagy pathway 

during the very early stages of autophagosome formation. Unexpectedly, the results revealed that 

ASFV infection promotes the assembly of WIPI complexes at 4 hpi. This is despite the fact that 

ASFV was shown to inhibit the formation of autophagosomes. To provide clarity on the autophagy 

status of infected cells, an investigation into p62 levels in ASFV infected cells was carried out and 

showed that p62 is not degraded during the early or late stages of infection. A block in the 

degradation of p62 suggests that the breakdown of cargo via autophagosome-lysosome fusion, 

known as autophagic flux, is inhibited by ASFV. The observed block in autophagosome formation 

and autophagic flux provides compelling evidence that autophagy is not required by ASFV. This 

was confirmed by infecting an autophagy deficient cell line and demonstrating that a similar level 

of virus replication was achieved when compared to an autophagy competent cell line.          

The inhibition of autophagy by ASFV raises the question of the role of WIPI complexes during 

infection. It may be possible that WIPI puncta are formed due to the host response to infection and 
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that ASFV inhibits the autophagy pathway between the stages of WIPI complex assembly and 

autophagosome formation. Alternatively, WIPI complex assembly may be unrelated to the 

autophagy response and instead be required for viral replication. Indeed, their appearance at the 

nuclear periphery is in contrast to the diffusely located puncta observed in uninfected cells. WIPI 

and LC3 puncta were also observed at the viral factory during the late stages of infection which 

was accompanied by an accumulation of LC3-II in infected cell lysates. The structural nature of 

these puncta is currently unknown. In the future, correlative light electron microscopy (CLEM) to 

visualise membrane structure may help determine if the LC3 puncta are representative of 

autophagosomes. If autophagosomes are present at this stage of infection, they are unlikely to 

undergo lysosome fusion due to the observed block in autophagic flux.   

In summary, the results described in chapter 3 demonstrate that ASFV inhibits autophagy and that 

autophagy is not required for viral replication. However, the potential that parts of the autophagy 

machinery may be required at specific times during the virus life cycle requires further 

investigation. Using a panel of Atg knock-out cells may be useful in determining which elements of 

the autophagy pathway are required. Utilising this method, a recent publication described the use of 

distinct sets of autophagy initiation components by positive-strand RNA viruses (Abernathy et al., 

2019). 

In the context of macrophages, autophagy has been shown to be a fundamental regulator of 

inflammasomes (Germic et al., 2019). Inflammasomes are protein complexes that are activated 

upon cellular infection or stress that initiate the maturation of pro-inflammatory cytokines to 

engage innate immune defences (Schroder and Tschopp, 2010). In order to regulate the levels of 

inflammasomes, cells target them for degradation by autophagy (Shi et al., 2012). The inhibition of 

autophagy by ASFV may therefore be a significant contributor to the potent inflammatory 

responses that are observed in the infected host. 

7.2 Investigation of the mechanisms of autophagy modulation by ASFV 

When considering the mechanisms by which ASFV may modulate the autophagy pathway, the 

Beclin 1 binding capacity of A179L was regarded as a potential route of autophagy inhibition. The 

research conducted by Hernaez et al (2013) that showed the ability of A179L to inhibit 

autophagosome formation was based on an over-expression model but it is yet to be determined 

whether A179L is involved in the modulation of autophagy during infection. In analysing the 

capacity of recombinant A179L to bind to Bcl-2 proteins, Banjara and colleagues found that 

A179L possessed a relatively weaker affinity for Beclin 1 compared to other pro-apoptotic Bcl-2 

members (Banjara et al., 2017) which could suggest a reduced role in modulating autophagy 

compared to apoptosis. In chapter 4, an A179L KO virus was tested for its ability to inhibit 

starvation-induced autophagosome assembly. The results showed that infected cells demonstrated 

significantly less autophagosomes when compared to control cells indicating that the A179L KO 
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virus was also able to inhibit autophagy. This suggests that if A179L does play a role in inhibiting 

autophagy in infected cells, it is not the only means of inhibition employed by ASFV. 

To try to identify additional mechanisms by which ASFV could inhibit the induction of autophagy, 

the activation status of mTORC1 was determined in infected cells. The activation of mTORC1 is 

often required by viruses to maintain protein translation and its activation also inhibits autophagy 

via the ULK1 complex. In ASFV infected Vero cells, mTORC1 was shown to be active throughout 

a 16 hour time course of infection. Starvation of cells is an effective method of inactivating 

mTORC1 and the attempted inactivation of mTORC1 by starvation of infected cells was blocked 

by ASFV demonstrating that mTORC1 is specifically targeted by the virus. The activation of 

mTORC1 was observed in a time-dependent manner, becoming increasingly apparent as infection 

progressed which may suggest that the expression of virally encoded proteins are required for this 

effect. This has been reported for HSV-1, whereby expression of the Us3 kinase protein is directly 

linked to mTORC1 activation (Chuluunbaatar et al., 2010). Irrespective of the underlying 

mechanism, the ability of ASFV to activate mTORC1 represents a clear means by which autophagy 

may be inhibited.  

Akt activity can lead to the activation of mTORC1 via the inactivation of the mTORC1 repressor, 

TSC2. To investigate if mTORC1 activity in ASFV infected cells could be linked to Akt, Western 

blot analysis was conducted to determine if Akt is active during infection of Vero cells. A 16 hour 

time course showed that Akt remained active throughout infection signifying a potential route of 

mTORC1 activation that is exploited by the virus. Akt and mTORC1 were also shown to be active 

following infection with a highly purified virus, suggesting that Akt/mTORC1 activity is not 

affected by the presence of cell debris in the virus stock which has previously been hypothesised to 

potentially influence the method of virus entry (Hernaez et al., 2016). Preliminary studies have 

indicated that Akt and mTORC1 are also activated during infection of macrophages (data not 

shown) which may contribute to the previously observed inhibition of autophagy in these cells. 

Akt is predominantly activated via the action of class I PI3K at the cell surface in response to 

hormones or growth factors and this can be blocked by small molecule PI3K inhibitors such as 

LY294002. Akt can also be activated by I-kappa-B kinase epsilon (IKKε), a Ser/Thr kinase that 

plays a vital role in interferon mediated antiviral immunity (Guo et al., 2011). TANK-binding 

kinase 1 (TBK1) which is critical for the phosphorylation and activation of interferon response 

factors has also been shown to interact with and phosphorylate Akt following activation of Toll-

like receptors (TLR) in macrophages (Joung et al., 2011). Both IKKε and TBK1 activate Akt 

independently of PI3K as treatment of cells with LY294002 does not abrogate Akt activity. It 

would be interesting to test whether PI3K is involved in Akt activation during ASFV infection by 

treating infected cells with LY294002 and analysing Akt phosphorylation. However, LY294002 

would likely also inhibit the class III PI3K Vps34 autophagy complex and therefore conclusions 

regarding any direct links between PI3K activation at the cell surface and autophagy would not be 
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possible. It is worth highlighting that class I PI3K activity can act to suppress IL-12 production 

triggered by TLR signalling (Fukao et al., 2002) and therefore the potential activity of PI3K in 

ASFV infected cells could primarily be used to negatively regulate the innate immune response and 

the activation of Akt is a side-effect of this rather than by design. Finally, it would be interesting to 

determine if viral protein expression is essential for Akt/mTORC1 activation or if the PI3K/Akt 

signalling cascade is triggered in response to virus entry as has been reported for vaccinia virus 

(Soares et al., 2009). Infecting cells with UV or chemically inactivated virus may be useful in this 

respect.   

The capacity of ASFV to inhibit autophagy induction in the absence of Akt/mTORC1 activity was 

investigated using pharmacological inhibitors. Efficacy testing was conducted by Western blot 

analysis of Akt and mTORC1 substrate phosphorylation. The results showed that using a 

combination of Torin1 (mTOR inhibitor) and MK-2206 (Akt inhibitor) was an effective means of 

substantially reducing Akt/mTORC1 function. Interestingly, the use of both MK-2206 and Torin1 

was required to completely block phosphorylation of Akt at S473. This suggests that mTORC2, 

which phosphorylates Akt at S473 and is inhibited by Torin1, is likely targeted by ASFV and used 

to drive Akt activation. Techniques for the specific inhibition of mTORC2 are beginning to emerge 

(Murray and Cameron, 2017) which could be useful in determining the precise role of mTORC2 in 

ASFV infection. In the future it may be useful to test higher concentrations of MK-2206 to 

determine if Akt could be completely inactivated without the requirement for Torin1. Under 

complete Akt inactivation, testing for mTORC1 activity may help to determine if Akt is 

exclusively responsible for the activation of mTORC1 or if ASFV may be activating mTORC1 via 

alternative means such as virally encoded proteins.      

ASFV infected cells were analysed by immunofluorescence for the inhibition of autophagy at 2 and 

4 hpi in the presence or absence of Torin1 and MK-2206. Inhibition of starvation-induced 

autophagosomes was observed at both time points in the absence of the drugs. The inhibition at 2 

hpi is particularly interesting as at this stage of the replication cycle, the influence of viral protein 

expression would be minimal, suggesting that the activity of Akt and mTORC1 is sufficient to 

inhibit autophagy. Additional evidence to support this conclusion is the fact that at 2 hpi, the 

formation of autophagosomes could be induced in the presence of pharmacological inhibition of 

Akt and mTORC1 indicating that no other factors are involved. Testing the inhibition of Akt and 

mTORC1 in isolation rather than in combination showed that autophagy could not be induced and 

that both inhibitors were required to stimulate autophagosome formation. This demonstrates that 

the activity of mTORC1 is not exclusively responsible for the inhibition of autophagy and that Akt 

is also likely contributing to this effect. Future studies could examine the potential role that Akt 

plays in inhibiting Beclin 1 function which has previously been reported (Wang et al., 2012). By 4 

hpi, early viral protein expression is well established and despite the inhibition of Akt and 

mTORC1, ASFV is able to substantially reduce the number of starvation-induced autophagosomes 
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pointing to the involvement of virally encoded factors. These results were consistent between cells 

infected with wild-type virus and cells infected with the A179L KO virus suggesting that either 

A179L does not play a role in the inhibition of autophagy or that additional viral proteins are 

involved.  

The studies in chapter 4 reveal that the inhibition of autophagy by ASFV is multi-layered and 

linked to diverse elements of the autophagy pathway. The involvement of the Akt/mTORC1 

signalling cascade in addition to virally encoded modulators could point to a model of phased 

control. The PI3K/Akt pathway may be activated first at the point of virus entry to provide a 

preliminary defence mechanism against autophagy but as the viral replication cycle progresses and 

host cell stress responses are activated, an additional level of control is implemented by expression 

of viral factors. In this scenario, an attempt to limit the ability of the virus to inhibit autophagy 

would need to address both phases of modulation.    

7.3 Screening an ASFV gene library for potential autophagy modulators 

A library of 76 ASFV genes that predominantly consisted of highly conserved genes that are 

expressed during early virus replication was screened using an immunofluorescence assay to detect 

inhibition of starvation-induced autophagosomes. Tagged genes were delivered into Vero cells 

either by transient transfection of plasmids or by transduction using an adenovirus vector. A179L 

was used as a positive control and showed that the inhibition of autophagosome formation could be 

easily detected. A double mutation of the A179L Bcl-2 ligand binding groove was engineered to 

provide a negative control.       

The majority of genes demonstrated no detectable inhibition of autophagy. MGF360-11L, 

MGF505-5R and R298L showed inconsistent inhibition of autophagy that was predominantly seen 

in cells with extremely high levels of protein expression. It was therefore concluded that this effect 

may be the result of an artefact and could potentially represent a limitation of this assay. Having 

said that, further investigation of R298L may be warranted as this gene encodes a protein kinase 

that might play a role in the phosphorylation of proteins involved in the Akt/mTORC1 signalling 

cascade. Expression of C147L, an RNA polymerase subunit, resulted in the inhibition of autophagy 

in some cells that demonstrated potential morphological changes in the nucleus. This may be of 

interest in the future as ASFV replication includes an early nuclear phase that includes 

morphological modifications, the timing of which might coincide with the inhibition of autophagy. 

The major structural protein encoded by B646L was shown to inhibit autophagosome formation in 

some cells but not others. Further investigation revealed that this was likely linked to the level of 

protein expression or a difference in protein localisation. Nevertheless, this raises the possibility 

that structural proteins may be involved in inhibiting autophagy. A recent proteomics study 

revealed that the ASFV virion is comprised of 68 proteins (Alejo et al., 2018). In the future, 

screening of these genes may be beneficial in uncovering autophagy modulators although knocking 
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these proteins out does not seem feasible. Further testing could be conducted by using gene 

silencing such as RNAi in place of knock-out studies or by identifying specific autophagy 

regulating domains which can be targeted for modification.     

Unexpectedly, screening of E183L and E199L revealed a redistribution of LC3 into structures that 

were inconsistent with the pattern and size of LC3 puncta that are usually associated with 

autophagosomes. Further investigation in chapter 6 uncovered the potential mechanisms underlying 

these effects and this is discussed in detail below. Interestingly, expression of DP148R under 

nutrient replete conditions induced LC3 puncta that were much smaller than the size usually 

representative of autophagosomes. Under starvation conditions, similar sized LC3 puncta were 

observed and autophagosome-sized puncta were notably absent suggesting that this protein may be 

involved in the inhibition of autophagy. A comparison of the amino acid sequence of DP148R 

between the Benin 1997/1 and OURT88/3 strains showed that the latter encodes two separate 

proteins that are separated by a frameshift mutation. Testing of each of the aforementioned proteins 

individually did not reveal the same restriction of autophagosome formation as previously seen, 

demonstrating that the full length protein is required for this effect. Additionally, analysis of the 

DP148R coding sequence in the Ba71V strain showed that in comparison to the Benin 1997/1 and 

OURT88/3 strains, multiple start codons and putative promotor regions for this gene were absent. 

Together with transcriptome data generated in a separate study (Unpublished - Gwenny Cackett, 

UCL), this suggests that DP148R is not expressed during infection with Ba71V and therefore is not 

a factor in the inhibition of autophagy by this particular strain of ASFV.       

DP148R was shown to be expressed during early times post-infection using a Benin 1997/1 isolate 

(Reis et al., 2017a) which coincides with the timing of autophagy inhibition. In the study by Reis 

and colleagues, infection of pigs with a DP148R knock-out virus led to a dramatic reduction in 

pathogenesis when compared to the parental virus. Furthermore, immunization of pigs with the 

mutant virus provided near complete protection against challenge however the precise mechanism 

of protection could not be determined. In the future, it would be useful to determine if DP148R 

expression can restrict autophagosome formation in macrophages as previously observed in Vero 

cells. Additionally, it would be interesting to ascertain if the DP148R knock-out virus is unable to 

inhibit the induction of autophagy. In this scenario, it would be tempting to speculate whether an 

altered ability of the DP148R knock-out virus to modulate autophagy could be involved in 

generating a protective host immune response. Indeed, a mutant HSV-1 virus lacking the ability to 

control autophagy was shown to induce significantly greater interferon gamma production which is 

an important correlate of protection against ASFV (King et al., 2011, Leib et al., 2009).  

In summary, the gene library screen did not uncover any obvious autophagy modulators that were 

suitable for knock-out studies which raises the possibility that some of the ASFV genes that were 

excluded from the screen are involved in the inhibition of autophagy. Additionally, it may be 

possible that multiple proteins act on different parts of the process that when combined show the 
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dramatic inhibitory effect seen in infected cells. Alternatively, some genes may require virally 

encoded binding partners to exert their function or perhaps the combination of protein modulators 

and Akt/mTORC1 activation is required to inhibit autophagy.  

Screening was carried out using an immunofluorescence assay and it may be possible that an 

alternative approach could provide greater sensitivity. For example, a panel of Atg genes could be 

cloned and used as bait proteins in yeast two hybrid or mass spectrometry screening. A yeast two 

hybrid assay was previously used to identify the interaction between Beclin 1 and A179L (Hernaez 

et al., 2013). A potential limitation of the immunofluorescence assay is that it relied on visual 

inspection of the cells to detect inhibition which might be susceptible to relatively higher levels of 

subjectivity compared to other assays. An alternative method could be the use of flow cytometry. 

Commercial kits are available that permit the detection of changes in total cellular fluorescence 

which can be precisely quantified in large numbers of cells to obtain robust data (Eng et al., 2010). 

This method is however more suited to cells that grow in suspension rather than adherent cell lines 

and it has been reported that preparation of cell suspensions can lead to cell damage which may 

activate autophagy (Klionsky et al., 2016). In addition, plasmid transfection can sometimes lead to 

low levels of expression which imposes a limitation on the number of cells that can be analysed by 

high throughput methods.   

7.4 Investigation of the redistribution of LC3 by E199L 

Screening of E199L showed that protein expression induces a redistribution of LC3 and further 

investigation revealed that this effect is unaffected by nutrient availability. To explore the 

possibility that E199L may be inducing an autophagy response, Western blot analysis showed that 

E199L expression causes an accumulation of lipidated LC3 (LC3-II) and confocal analysis showed 

that E199L induces the appearance of WIPI puncta. The lipidation of LC3 and assembly of WIPI 

complexes are both hallmarks of the induction of autophagy, however the accumulation of LC3-II 

was unaffected by the addition of Bafilomycin A1 and the assembly of WIPI complexes was 

unaffected by the starvation status of the cells suggesting that a canonical autophagy response may 

not be involved. Nevertheless, it was hypothesised that E199L could be implicated in the 

appearance of WIPI and LC3 puncta at the viral factory during the late stages of infection. Indeed, 

immunofluorescent labelling of infected cells over a time course of infection showed that E199L 

expression at the viral factory roughly coincides with the appearance of the aforementioned puncta. 

To provide clarity on whether E199L is able to induce an autophagy response, transduced cells 

were analysed by electron microscopy. Interestingly, control cells that had been transduced with 

E183L, which had previously been shown to induce the redistribution of LC3, demonstrated 

substantial modifications to the ER which was arranged in large whorls. An altered ER morphology 

was also apparent in cells transduced with E199L in which numerous patches of dark staining 

material believed to be protein aggregates were observed. Membrane vesicles that were consistent 
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with the size of autophagosomes were not apparent in either E183L or E199L transduced cells 

suggesting that a canonical autophagy response had not been stimulated.  

Mass spectrometry was used to determine whether E199L interacts with components of the 

autophagy machinery. Cells were transduced with E199L which acted as a bait protein and was 

captured using affinity purification. Analysis of the captured samples revealed a number of proteins 

with a significant interaction with E199L, the most prevalent of which were proteins belonging to 

the proteasome. This indicates that E199L expression likely results in protein mis-folding leading 

to proteasomal degradation. No interactions with the autophagy pathway were identified, however 

the analysis uncovered multiple interactions with proteins belonging to the ER which supports the 

EM data. Immunofluorescent labelling of the ER chaperone protein Calnexin demonstrated 

colocalisation with E199L expression providing further evidence of a link to the ER.  

Accumulation of mis-folded proteins can lead to ER stress which can result in the activation of the 

unfolded protein response (UPR). Prolonged activation of the UPR has been shown to induce 

autophagy (Bernales et al., 2006) and could explain the LC3 lipidation and formation of WIPI 

complexes in E199L expressing cells. Indeed, E199L was shown to upregulate expression of the 

pro-apoptotic transcription factor, CHOP which is a hallmark of the activation of the UPR.  

Collectively, the evidence thus points to a non-specific induction of autophagy whereby the 

redistribution of LC3 is stimulated via an ER stress response as opposed to a specific function of 

E199L. The over-expression of E199L may be exceeding the capacity of the ER to maintain correct 

protein folding. In this regard, a time course of E199L expression could be conducted to determine 

if LC3 lipidation only occurs after large amounts of protein are expressed. Additionally, future 

investigations could include the removal of the hydrophobic domain at the C-terminus of E199L to 

determine if this alleviates induction of the UPR. E199L is purported to localise to the inner 

membrane of the ASFV virion which is derived from the ER during viral morphogenesis and thus 

conversely, it cannot be excluded that E199L could play a role in morphogenesis. In this regard, 

E199L may be vital to successful completion of the virus lifecycle by serving to alter ER structure 

or function.          

7.5 Concluding remarks 

As ASF is fast becoming a threat to major pork-producing countries in Europe, the necessity for 

protective vaccines is approaching a critical level. A rational design approach could prove to be a 

key factor in engineering a safe commercial vaccine. The research conducted here was aimed at 

characterising the modulation of autophagy by ASFV and investigating the viral mechanisms of 

modulation. It was envisaged that this may provide an opportunity to harness the important 

function that autophagy plays in host immunity which could be used to enhance vaccine strain 

immunogenicity. However, the emerging model indicates that ASFV employs an intricate strategy 

of autophagy control, targeting key cell signalling cascades such as the PI3K/Akt pathway as well 
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as components of the autophagy machinery. Consequently, it may prove challenging to overcome 

this. Nevertheless, this work has provided further insight into the complex interaction between 

ASFV and the host cell. As well as implementing an immune evasion strategy, ASFV is required to 

prolong cell survival in order to complete its replication cycle. The observation that two proteins, 

E183L and E199L are capable of inducing a host cell stress response highlights the importance of 

the ability of the virus to regulate cellular homeostasis.  
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Appendix I 

Significant E199L interacting proteins (excl. proteasomal proteins) 

Human database 

Calreticulin 

AN1-type zinc finger protein 2A 

Glucosidase 2 subunit beta 

Protein ERGIC-53 

Inhibin beta A chain 

Cyclin-dependent kinase inhibitor 1 

Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform 

Large proline-rich protein BAG6 

Transitional endoplasmic reticulum ATPase 

Breast cancer anti-estrogen resistance protein 1 

Heme oxygenase 1 

Peptidyl-prolyl cis-trans isomerase FKBP10 

Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase 

complex, mitochondrial 

Prolyl 4-hydroxylase subunit alpha-1 

Endoplasmin 

Vesicular integral-membrane protein VIP36 

Calnexin 

Prolyl 4-hydroxylase subunit alpha-2 

 African green monkey database 

Zinc finger AN1-type containing 2A OS=Chlorocebus sabaeus GN=ZFAND2A PE=4 SV=1 

Calreticulin OS=Chlorocebus sabaeus GN=CALR PE=3 SV=1 

Cyclin dependent kinase inhibitor 1A OS=Chlorocebus sabaeus GN=CDKN1A PE=4 SV=1 

Protein kinase C substrate 80K-H OS=Chlorocebus sabaeus GN=PRKCSH PE=4 SV=1 

Growth differentiation factor 15 OS=Chlorocebus sabaeus GN=GDF15 PE=3 SV=1 

Inhibin beta A subunit OS=Chlorocebus sabaeus GN=INHBA PE=3 SV=1 

Lectin, mannose binding 1 OS=Chlorocebus sabaeus GN=LMAN1 PE=4 SV=1 

Peptidylprolyl isomerase OS=Chlorocebus sabaeus GN=FKBP10 PE=4 SV=1 

TNF receptor superfamily member 10b OS=Chlorocebus sabaeus GN=TNFRSF10B PE=4 

SV=1 

Heme oxygenase 1 OS=Chlorocebus sabaeus GN=HMOX1 PE=4 SV=1 

Heat shock protein 90 beta family member 1 OS=Chlorocebus sabaeus GN=HSP90B1 PE=3 

SV=1 

Dihydrolipoamide S-succinyltransferase OS=Chlorocebus sabaeus GN=DLST PE=4 SV=1 

 


